古塔的变形模型
古塔变形的预测模型

The Pr e d i c t Mo de l o f Anc i e nt Pa g o d a De f o r ma t i o n
平 面 .且 所 围 图 形 接 近 正 八 边 形 .这 与 实 际 测 量 情 况 基 本 相
Y坐标 )的 坐标 图如 图 l 所示 。
《 蚰 。 一 一 一 一 举一 军一 一 u ~ 一
蚪
l
、j
,
符。由 8 个 点 构 成 的凸 多 面 体 的 中心 ( 重 心 )经过 投影 转换 为 求平 面几 何 图形 的 重 心 .利 用 重 心 推 导计 算公 式并 计算 出古 塔
一
层 的 数 据 导 入 Ma t l a b软 件 中f q ,得 出 八 个 测 试 点 ( x坐 标 和
( 3 ) 古塔 将 来 的变 化 趋 势 。对 于 问题 ( 1 ) ,资 料 给 出 了 每一 层 8个 观 测 点 的 坐 标数 据 ,经 过 验 证 发 现 每 组 坐 标 基 本 处 于一 个
A R T I F I C I A L I N T E L L I G E N C E A N D I D E N T I F I C A T I O N T E C H N I Q U E S
人 工 智 能 及 识 别 技 术
古塔 变形 的预测模型
贺永 会
( 山东英才学院 ,济南 2 5 0 1 0 4 )
摘 要 :针 对 某一 古塔 1 9 8 6 — 2 0 1 1 年4次 测 量 的 数 据 ,利 用操 作 研 究 的预 测 和优 化 方 法 ,对 该 古 塔 的 变形 进 行 了相
2013数学建模——古塔的变形

承诺书我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛网站下载)。
我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。
如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。
我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。
我们参赛选择的题号是(从A/B/C/D中选择一项填写): C我们的参赛报名号为(如果赛区设置报名号的话):5339所属学校(请填写完整的全名):参赛队员(打印并签名) :1.2.3.指导教师或指导教师组负责人(打印并签名):(论文纸质版与电子版中的以上信息必须一致,只是电子版中无需签名。
以上内容请仔细核对,提交后将不再允许做任何修改。
如填写错误,论文可能被取消评奖资格。
)日期: 2013 年 09 月 16 日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):古塔的变形数学模型摘要:本文是研究关于古塔变形类型以及变形分析的模型,用Matlab画出古塔的三维结构可以看出它是近似于正八边形的形状。
因此,问题一我们用每层各个测量点坐标的平均值作为塔每层的中心坐标,再用中心坐标的三个坐标值分别对时间t做回归来得到确定古塔各层中心位置的通用方法。
古塔变形情况分析预测模型

发 生 了 微 小 的偏 移 , 说 明 古 塔 已 发 生 了 变形 。 利 用 塔 尖 的坐 标 和 底 层 中 心 的 坐 标 求 出倾 斜 度 , 见 表2 . 分 析 古 塔 的倾 斜 情 况。
网2 p q 年 各层 中心分布雷达图
雷 达 图 是 基 于 一 种 形 似 导 航 雷 达 显 示 屏 上 的 罔形 . 它 可 以 让我 们 看 到 不 同时 间 段 、 不 同层 次 的 中心 所 在 的 位 置 ,
根据 附 件 1 提供 的数 据 , 把 第 一层z 轴坐标( 1 . 7 9 2 , 1 . 8 1 8 , 1 . 7 8 3 , 1 . 7 6 9 , 1 . 7 7 2 , 1 . 7 7 , 1 . 7 9 4 , 1 . 8 0 1 ) 代人式( 1 ) , 解得x = 5 6 6 . 6 9 0 4 , y = 5 2 2 . 7 2 5 4 , z = 7 . 3 2 0 2 5 , 中心 坐标 为( 5 6 6 . 6 9 o 4 , 5 2 2 . 7 2 5 4 , 7 . 3 2 0 2 5 ) , 以此 类 做 法 即 可求 得 各 层 中心 坐 标 。 2 分 析 古 塔倾 斜 、 弯 曲、 扭 曲等 变 形 情 况 2 . 1倾 斜 利 用 中心 点 的 坐 标 画 出雷 达 图 , 见 图2 , 可 以 看 出 中心
第2 1 卷 第 7期 鄂
州
大
学
学
报
2 0 1 4年 7 月
J u 1 . 2 0 1 4
J o u na r l o f Ez h o u Un i v e r s i t y
古塔变形情 况分析预 测模 型
焦 云 芳
( 晋城职业技术学院 教师教育 系, 山西 晋城 0 4 8 0 2 6 )
关于古塔变形的数学模型

关于古塔变形的数学模型摘 要本文主要研究古塔在自重、气温、风力等因素的影响下产生变形的问题。
采用中垂线求解外切圆圆心的模型以及多次平均除误差的方法,找到了确定古塔中心的通用方法,并用多元线性回归模型及插值拟合等方法对倾斜、弯曲、扭曲等变形情况进行分析,从而通过残差拟合得出预测数据对古塔变形趋势进行描述。
针对问题一:论文采用古塔八个角点中任意三个角点构成的两两连线,取其中垂线的交点得到外接圆圆心,已知正八边形的中心与外接圆圆心一致,但古塔八角点构成的八边形存在轻微不规则,所以我们采用多次取点求外接圆圆心,并用其平均值消除误差,最后对不同取点方式进行了精度分析(答案详见表一)。
针对问题二:首先是古塔倾斜分析,根据测量学本文取塔尖和塔底的中心连线作为倾斜角计算的倾斜方程,算出塔顶在水平面投影与塔底中心的间距S ∆,引入实测高程数据H ∆,可以得到古塔四次测量的倾斜角(HD∆∆=arctan α),对其倾斜情况经行描述;然后是弯曲情况分析,根据问题一中古塔各层中点坐标,本文对其进行多元回归分析及多项式拟合,得出函数曲线,并将其和倾斜方程进行比较得到最大差值即挠度(材料力学中对弯曲的描述量);最后是扭曲分析,本文分垂直和水平两个方向进行讨论,垂直方向上涉及高程Z ,即对各层中心点多元线性回归得到的拟合值与实测值进行残差分析,得到扭曲描述量(Ny y r i ∑-=2')()。
水平方向,本文参考材料力学中扭转角的计算,对古塔各层间的轴向扭转进行分析,得到扭转角对古塔扭曲情况进行描述。
针对问题三:在分析了四次观测值中倾斜、弯曲,扭曲的情况下,本文采用加权平均的方法各产生影响数据进行处理后,进行残差拟合,得到下一次观测的模拟数据,对古塔的变形进行变形趋势描述关键词 多边形中心确定 多元回归分析 多项式拟合 残差分析由于长时间承受自重、气温、风力等各种作用,偶然还要受地震、飓风的影响,古塔会产生各种变形,诸如倾斜、弯曲、扭曲等。
古塔的变形模型与预测

向 上评 价 的 方 法得 出最 终 的 综 合 评 价 结 果 , 结果表 明, 太 阳能 光 伏 发 电 项 目基 本 良好 , 评 价 结 果 客
观合理 , 实例 也 证 明 该 模 型 操 作 简便 可 行 .
随后呈 下 降 的趋 势 , 说 明古 塔 的弯 曲程 度 在 未来 几年 中可 能会有 所 好转 .
3 . 3 古 塔 的 扭 曲趋 势
拟合 曲线 , 很 明显 随着塔 的层 数 的增 加 , 相对底 层 的扭 曲程 度逐渐 增 大. 对 四年 中每年 的平 均 扭转 角度 作 线 性 拟合 , 从图 7 可 以看 出 , 拟合直 线呈 下降趋 势 , 说 明古 塔
[ 4 ]张志涌 , 杨祖樱 , Ma t l a b教程 R 2 0 1 1 a F M] . 北京 : 北京航空航天大学 出版社 , 2 0 1 1 : 1 9 3 — 2 1 9 . 编辑 : 文 心
基于商空间理论的太阳能光伏发电项 目评价研究
孙 群 , 刘 国璧 。 , 袁 宏 俊 。
的扭 曲程 度逐年 减小 .
将 表 4中古 塔 各 层 扭 曲 数 据进 行 线 性 拟 合 .
图 4 倾斜角趋势 图
图 5 平均曲率趋势 图
图 6 古塔各层扭 曲及其拟合直线
图 7 平均扭转角度趋势 图
参 考 文 献
[ 1 ]陈 平 , 姚谦峰 , 赵冬. 西 安 大雁 塔 抗 震 能 力 研 究 [ J ] . 建筑结构学报. 1 9 9 9 ( 1 ) : 4 6 — 4 9 .
由于长时 间受 气温 、 风力 、 自重等 各种 因素 的
表 1 各 层 塔 中心 点 坐 标
m
作用 及偶 然还 要受 地震 、 飓 风的影 响 , 古塔 会产 生 各种 变 形 , 如倾 斜 、 弯曲、 扭 曲等. 为 保 护古 塔 , 文
古塔的变形

古塔的变形摘要本论文研究的是古塔的变形问题,首先对古塔的基本情况进行了解、分析,本文使用了较为简单实用的方法得到了结果,进而对古塔的变形情况进行分析,最后再对古塔在未来几年的变形趋势进行描述。
针对问题一,本文采用平均值等两种算法分别进行求解最终求得古塔各层在1986年7月、1996年8月、2009年3月和2011年3月时的中心坐标(具体坐标见5.1.3)。
针对问题二,本文对古塔的变形情况粗略地描述了一部分,并根据已知的一部分信息最终选择了以倾斜度为主要指标对古塔的变形成都进行了粗略的描述,结果为:1986199620092011046'33",047'9",048'39",048'46"θθθθ==== 。
针对问题三,本文根据前两问求得的数据作为基础进行分析,仍旧从倾斜变形入手分别对倾斜的方向变化趋势和倾斜增量进行了分析,由于有偶然的大型因素的影响,如2006年的超强台风“桑美”,2008年的汶川地震等,本文将变形趋势分为两类,所得结果如下:(1) 无大型因素影响趋势:古塔有由原本倾斜方向向南倾斜的趋势。
古塔10年倾斜角偏移量为00'35.5"α=(2) 有大型因素影响趋势:古塔有由原本倾斜方向向南倾斜的趋势。
古塔10年倾斜角偏移量为01'17.4"β=对于缺失的数据本文采用了近似值的方法进行补全(详见5.1.1)。
关键词:古塔变形 Matlab 文物保护 变形趋势 Lingo11 Excel一、问题重述由于长时间承受自重、气温、风力等各种作用,偶然还要受地震、飓风的影响,古塔会产生各种变形,诸如倾斜、弯曲、扭曲等。
为保护古塔,文物部门需适时对古塔进行观测,了解各种变形量,以制定必要的保护措施。
某古塔已有上千年历史,是我国重点保护文物。
管理部门委托测绘公司先后于1986年7月、1996年8月、2009年3月和2011年3月对该塔进行了4次观测。
基于模型构建的古塔变形研究

曲等一系列变 形情况 ,最后给 出古塔变形趋势 。本 文采用模 型构 建方法研究古塔变 形,计算分析合理 ,提供 了较精
确 的结果,对于维护 古建筑物 的安 全性有着重要 的意义 。
关键 词:古塔变形; Ma t 1 a b 和E x c e l 软件; 模型构建; 夹角模 型 中图法 分类号: 0 2 9 文献标 示码 : A 文章编号 : 1 0 0 0 2 3 2 4 ( 2 0 1 5 ) 0 2 . - 0 2 6 5 . - 0 5
山东农业 大学学报( 自然科学版) . , 2 0 1 5 , : 4 6 ( 2 ) : 2 6 5 . . 2 6 9 d i t i o n) J o u r n a l o f S h a n d o n g Ag r i i c u l t u r a l Un i v e r s i t y( Na t u  ̄ S c i e n c e E
u s i n g t h e Ma la f b , . t h e n t h e mo d e l c o n s t r u c t i o n a n d s o l u t i o n c o u l d b e a p p l i e d . h e T a c c u mu l a t i o n mo d e l wa s u s e d t o d e t e r mi n e
摘 要 :根据在 1 9 8 6 年、1 9 9 6 年、2 0 0 9 年、2 0 1 1 年对 古塔 的实际观测数据 ,通过Ma t l a b 作图、编程等功能 ,以及E x c e l
软件 计算分析相关数据 , 给 出数 据分析的结果并作 出了相应 的图形。首先利用Ma t l a b 软件 绘制出1 9 8 6 : 年与2 0 1 1 年古塔 形 状的 图形 ,然 后利用模型构建 并求解 ,累加模 型确定古塔各层 次中心位置 ,夹角模 型描绘古塔的倾斜 、弯 曲、扭
古塔变形的模型及预测

古塔变形的模型及预测吉耀武【摘要】Pagodas are the key protected cultural relics of our country. In order to protect pagodas ,the cultural relics department surveies progodas to get all kinds of deflections and to draft the necessary protective measures ,by means of four observation data of the cultural relics department,the author firstly supplements the missing data in 1986 and 1996. With the complete data fitting in each layer,each point can be projected on to the flat surface,and the universal model of the center coordinates in each layer is obtained. Linear fitting the center points ,the measurement tilted model is obtained by using the angle of the central axis and the horizontal plane. Cubic spline fitting the center points is carried out,and the measuring bending model is obtained by using the fitted curve curvature at every point,and the measuring distorted model is obtained by using rotation angle of fitting adjacent planes. Finally using MATLAB programming the deformation data of model are calculated ,and the deformation of each layer can be detected,then the reliable basis for the cultural relics departments corresponding measures is established. The model can also be extended to the other structure deformation measurement.%古塔是我国重点保护文物,为保护古塔,文物部门对古塔进行观测,了解各种变形量,以制定必要的保护措施,借用文物部门的4次观测数据,首先对1986年和1996年缺失数据进行补充,利用完整的数据拟合每层各测量点所在平面,将各点投影到平面上,得到每层各中心点坐标的通用模型。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013高教社杯全国大学生数学建模竞赛承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、我网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。
如有违反竞赛规则的行为,我们将受到严肃处理。
我们参赛选择的题号是(从A/B/C/D中选择一项填写): C我们的参赛报名号为(如果赛区设置报名号的话):sm063所属学校(请填写完整的全名):山东现代职业学院参赛队员(打印并签名) :1. 马昱轩2. 李倩3. 梁帅健指导教师或指导教师组负责人(打印并签名):宋祖芳日期:2013年 9月 16 日赛区评阅编号(由赛区组委会评阅前进行编号):sm063032013高教社杯全国大学生数学建模竞赛编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):古塔的变形模型摘要某古塔是我国重点保护文物,已有上千年历史。
由于长时间承受自重、气温、风力等各种作用,偶然还要受地震、飓风的影响,古塔会产生诸如倾斜、弯曲、扭曲等各种变形。
为保护古塔,文物部门需适时对古塔进行观测,了解各种变形量,以制定必要的保护措施。
管理部门委托测绘公司先后于1986年7月、1996年8月、2009年3月和2011年3月对该塔进行了4次观测。
基于附件1提供的4次观测数据:对于问题1,1986年和1996年的观测数据中都缺少13层一个点的数据(因MATLA B程序中用的是循环语句,所以计算时赋予0值),其它各层均给出8个点的观测值,为使所得数据更具真实性,确定古塔各层中心位置的方法更具适用性,本文将每层所给8点构成的图形看做不规则八边形,用中垂线求交点法求得古塔各层中心坐标。
对于问题2,结合问题1的分析,采用垂直投影法[1]求古塔的倾斜度,根据所得数据,分析古塔的倾斜程度(因1986年和1996年13层赋予值后所得数据偏差较大,为使所得数据更具真实性,所以本问题起1986年和1996年13层数据予以舍弃);弯曲是建立在二维平面上的一条曲线,通过截取古塔过x轴、z轴的界面,求出每层古塔的倾斜度,从而分析得出古塔塔身在x轴、z轴的界面的弯曲程度。
同理,也可分析y轴、z轴的界面的弯曲程度;扭曲同样是采用垂直投影法[1]求古塔每层的倾斜度,建立三维立体空间,根据所得数据,分析古塔塔身的扭曲程度。
对于问题3,利用问题1、2所得数据,进行合理的分析与猜想,进而分析出古塔塔身的倾斜、弯曲、扭曲等变化趋势。
本文的模型解决了题目给出的问题,计算过程中充分尊重观测数据,给出更符合实际的结果。
本文所得结果大部分由图表给出,结合图像,较为直观地表现出古塔变形情况。
结果表明,采用MATLAB数学软件可得出可靠结论。
关键词:古塔变形监测MATLAB垂直投影法倾斜度一、问题的重述由于长时间承受自重、气温、风力等各种作用,偶然还要受地震、飓风的影响,古塔会产生各种变形,诸如倾斜、弯曲、扭曲等。
为保护古塔,文物部门需适时对古塔进行观测,了解各种变形量,以制定必要的保护措施。
某古塔已有上千年历史,是我国重点保护文物。
管理部门委托测绘公司先后于1 986年7月、1996年8月、2009年3月和2011年3月对该塔进行了4次观测。
请你们根据附件1提供的4次观测数据,讨论以下问题:1. 给出确定古塔各层中心位置的通用方法,并列表给出各次测量的古塔各层中心坐标。
2. 分析该塔倾斜、弯曲、扭曲等变形情况。
3. 分析该塔的变形趋势。
二、问题的分析2.1问题的背景某古塔是我国重点保护文物。
已有上千年历史,由于长时间承受自重、气温、风力等各种作用,偶然还要受地震、飓风的影响,古塔会产生诸如倾斜、弯曲、扭曲等各种变形。
对现存历史文物古塔的保护,掌握古塔的形变,显得尤为重要,文物部门需适时对古塔进行观测,了解各种变形量,以制定必要的保护措施。
管理部门委托测绘公司先后于1986年7月、1996年8月、2009年3月和2011年3月对该塔进行了4次观测。
2.2问题的分析基于附件1提供的4次观测数据:2.2.1问题一的分析本题建立模型是利用中垂线(即中垂线相交于一点为中点)法,求解古塔各层中心的坐标,以确保古塔中心坐标的准确性。
2.2.2问题二的分析根据层与层之间的中心点,塔体倾斜变化采用垂直投影法[1](即垂线法,利用相对位移量进行监测);弯曲是建立在二维平面上的一条曲线,通过截取古塔过x轴、z 轴的界面,求出每层古塔的倾斜度,从而分析得出古塔塔身在x 轴、z 轴的界面的弯曲程度。
同理,也可分析y 轴、z 轴的界面的弯曲程度;扭曲同样是采用垂直投影法求古塔每层的倾斜度,建立三维立体空间,根据所得数据,分析古塔塔身的扭曲程度。
2.2.3问题三的分析我们在对古塔进行安全性监测方面要满足两个方面:①塔体的倾斜变化;②塔身各段的变化[1]。
针对上述几个方面就采取对应的监测方法。
三、问题的假设1.假设求解古塔各层中心坐标时纵坐标先不予以考虑;2.假设古塔的地基土抗压能力强、韧性大、不易收缩,对古塔的变形不产生任何影响;3.假设对古塔观测数据的缺失可忽略不计;四、符号及文字说明x 表示建立古塔坐标轴的横坐标i x 表示古塔各层的第i (i =1,2,...,8)个点的横坐标y 表示建立古塔坐标轴的纵坐标i y 表示古塔各层的第i (i =1,2,...,8)个点的纵坐标z 表示建立古塔坐标轴竖坐标i z 表示古塔各层的第i (i =1,2,...,8)个点的竖坐标 i k 表示古塔的第i l 条直线的斜率'x 表示两个x 点之间的中点'y 表示两个y 点之间的中点H 表示古塔中心点到水平面的距离 D 表示古塔中心点的位移量Q表示古塔的倾斜度j表示古塔的第j(j=1,2,...,13)层数(MATLAB程序中)i表示古塔各层的第i(i=1,2,...,8)个点(MATLAB程序中)13⨯矩阵(MATLAB程序中)X表示关于横坐标的813⨯矩阵(MATLAB程序中)Y表示关于纵坐标的8K表示各层每两点之间中垂线的斜率(MATLAB程序中)xx表示每层8条中垂线两两相交所得交点的关于横坐标的813⨯矩阵(MATLAB程序中)13⨯矩阵(MATLAB程序yy表示每层8条中垂线两两相交所得交点的关于纵坐标的8中)五、模型的建立与求解(一)问题一的模型建立与求解1.通过中垂线的方法对古塔各层中心坐标进行求解,根据附件1表格数据,1986年和1996年的观测数据中都缺少13层一个点的数据计算时赋予0值。
然后观察数据,古塔的每i层八个点的高度变化不大,假设把古塔的每一层的点看作是在一个平面上,求解古塔各层中心坐标时纵坐标先不予以考虑,之后用平均值的方法计算出。
分析过程如下图1-1:(用MATLAB软件作图(附件1,程序1))1-1 根据上图,做出任意两边的中垂线,交与一点O,如下图所示1-2(在上图上用画图工具作图):1-2由图可知,'A 点坐标为()','y x ,'B 点坐标)","(y x 。
根据公式2'21x x x +=,得:2'21x x x +=,2'21y y y +=;2"32x x x +=,2"32y y y += ① 根据直线的斜率公式,求出直线AB l 的斜率A k 。
同理,求出直线BC l 的斜率B k 。
1212x x y y k A --=2323x x y y k B --=再根据中垂线定理1'-=kk ,求出中垂线1l ,2l 的斜率1k ,2k ; 122111y y x x k k A --=-=233221y y x x k k B --=-= ② 设中垂线的直线方程1l 为:)'('1x x k y y -=- ③ 设中垂线的直线方程2l 为:)"("2x x k y y -=- ④ 通过方程③、④建立方程组:⎩⎨⎧-=--=-)"(")'('21x x k y y x x k y y解得: 2121"''"k k x k x k y y x -+--=; ''21y x k x k y +-= ⑤再把①、②式中所求的数据代入⑤中,即可解出两中垂线交点O 坐标。
同理,通过数学软件MATLAB 编程求解(附录1,程序2)可得出每层八条中垂线两两相交的八个交点坐标,得出数据并对这八个中垂线的交点求平均值,因1986年和1996年的观测数据中都缺少13层一个点的数据计算时赋予0值得出的数据偏差太大,此时予以舍弃。
塔顶数据是塔顶的四个点求平均值而得。
各层中心坐标如下表:而每层古塔都有一定的高度差,因此,假设每层古塔的中心高度为每层八点的平均高度,即:),,(i i i i z y x O ,因此,古塔每层的中心坐标是:(二)问题二的模型建立与求解1,根据问题一求出的每层的中心坐标数据,通过分析古塔的倾斜、弯曲、扭曲及层与层之间的中心点,确定了塔体倾斜变化采用垂直投影法[1](即垂线法,利用相对位移量进行监测);弯曲、扭曲即为塔身各段的变化采用求倾斜度的方法。
用MATLAB数学软件编程(附件1,程序3)和画图工具画图,如下图2-1:2-1 通过对上图的观察与分析,每层的中心大致在一条倾斜的直线上,采用垂直投影的方法,对古塔的倾斜角进行求解,如下图通过MATLAB数学软件编程和画图工具并用作图(附件1,程序4),建立的数学模型,如下图2-2;2-2通过对图形的观察,()o o o z y x A ,,点为古塔塔顶的中心坐标,()111,,z y x O 点为古塔第一层的中心坐标,()1,,z y x B o o 点是A 点在O 点所在水平面上的投影, 根据倾斜度公式DH Q =,[3]计算出Q 的值:2112121)()(z z y y x x D o o -+-+-)(1z z H o - 21121211)()()(z z y y x x z z Q o o o -+-+--=比较数据:2011200919961986Q Q Q Q >>>分析数据,Q 的值越小,倾斜程度越严重,古塔随着年代的增加而越来越倾斜。