1.1.2集合间的基本关系

合集下载

1.1.2集合间的基本关系课件(人教版)

1.1.2集合间的基本关系课件(人教版)
新课
实数有相等关系,大小关系,类比 实数之间的关系,集合之间是否具备类 似的关系?
新课
实数有相等关系,大小关系,类比 实数之间的关系,集合之间是否具备类 似的关系?
示例1:视察下面三个集合, 找出它们之 间的关系:
A={1,2,3} B={1,2,7} C={1,2,3,4,5}
1.子 集 一般地,对于两个集合,如果A中
练习1:视察下列各组集合,并指明两个
集合的关系
① A=Z ,B=N;
AB
② A={长方形}, B={平行四边形方形}; AB
③ A={x|x2-3x+2=0},
B={1,2}.
A=B
3.真子集
示例3:A={1, 2, 7},B={1, 2, 3, 7}, 如果AB,但存在元素x∈B,且
x∈A,称A是B的真子集.
记作AB,或BA.
示例4:考察下列集合,并指出集合中的 元素是什么?
A={(x, y)| x+y=2}; B={x| x2+1=0,x∈R}.
ቤተ መጻሕፍቲ ባይዱ
4.空 集
示例4:考察下列集合,并指出集合中的 元素是什么? A={(x, y)| x+y=2}; B={x| x2+1=0,x∈R}.
A表示的是x+y=2上的所有的点; B没有元素.
不含任何元素的集合为空集,记作.
A.3个 B.4个 C.5个 D.6个
课堂小结
子集:AB任意x∈Ax∈B.
真子集:AB x∈A,x∈B,但存在
x0∈A且x0A. 集合相等:A=BAB且BA. 空集:.
性质:②①AAA.,若③AA非B空,,B则CAA. C.
1.子 集
A={1,2,3} B={1,2,7} C={1,2,3,4,5}

1.1.2集合间的基本关系

1.1.2集合间的基本关系

(2)对于集合A,B,C,若 A B 且 B C , 则 A C
2. 集合的相等
若A B且B A,
则A=B;反之,亦然.
3.空集
若 已 知 A B, 勿 忘 考 虑 A 时 的 情 况
3、能初步利用集合间的关系求参数范围
新课引入
观察以下几组集合,并指出它们元素间的关系:
① A={1,2,3}, B={1,2,3,4,5};
② A为高一(2)班全体女生组成的集合 ,
B为这个班全体学生组成的 集合;
③ A={x| x是等边三角形} . B={x | x是两边相等的三角形},
子集的概念
完成课本第7页:第2题和第3题
典例分析
例1 写出集合{a,b}的所有子集.
练习1:写出集合{a,b,c}的所有子集. 练习2:写出集合{a,b,c,d}的所有子集. 思考: 根据上面练习,能否得到{a,b,c,d,e}的子集的个 数,它与元素的个数有何联系?
重要结论
含n个元素的集合的所有子集的个数是2n 所有真子集的个数是2n-1(舍去本身)
复习回顾
1.集合、元素 2.集合的分类:有限集、无限集 3.集合元素的特性:确定性、互异性,无序性 3.集合的表示方法:列举法、描述法 4.常用数集: N , N * ( N ), Z , Q , R
1.1.2集合间的基本关系
学习目标 1、理解子集、真子集和空集的含义;
2、能够区别元素与集合、集合与集合关系;
①A={1,3,5}, B={1,2,3,4,5,6} (√ )
②A={1,3,5}, B={1,3,6,9} ③A={0}, B={x|x2+2=0} ④A={a,b,c,d}, B={d,b,c,a}

1.1.2集合间的基本关系

1.1.2集合间的基本关系
观察下面几个例子,你能发现两个集 合间有什么关系了吗? (1) A={1,2,3}, B={1,2,3,4,5}; (2)设A为五中高一(2)班全体女生组成的集合, B为这个班全体学生组成的集合. [定义1]一般地,对于两个集合A,B,如果集合A中的
任何一个元素都是集合B中的元素,我们就说这两个集 合有包含关系。称集合A为集合B的子集(subset)。 记作合是它本身的子集,即A A
结论2 若集合中的元素有n个,其子集个数 为2n,真子集个数为2n-1,非空真子 集个数为2n-2。
试一试
判断下列2个集合之间的关系
(1) A={1,2,4} B={X|X是8的约数}
(2) A={X|X=3k,k∊Z} B={X|X=6k,k∊Z} (3) A={X|X是4与10的公倍数,X∊N+} B={X|X=20m,m∊N+}
读作:“A含于B”(或B 包含A) 数学语言表示形式:
若对任意x∊A,有x ∊B,则 A⊆B。
A⊆B的图形语言
你能用图形形象地表示A⊆B?
用平面上封闭 的曲线的内部 代表集合,这 图叫Venn图
B
A
韦恩图
判断集合A是否为集合B的子集,若是则在 ( )打√,若不是则在( )打×: ①A={1,3,5}, B={1,2,3,4,5,6} ( ②A={1,3,5}, B={1,3,6,9} ③A={0}, B={x x2+2=0} ( ) )
把不含有任何元素的集合叫做空集(empty set)
记作∅。
规定:空集是任何集合的子集.
即对任何集合A, 都有: A
思考
{0} 与∅有什么区别?
写出集合{a,b}的所有子集,并指出哪些 是它的真子集。

1.1.2集合间的基本关系

1.1.2集合间的基本关系

目 录/contents
1. 什么是学习力 2. 高效学习模型 3. 超级记忆法 4. 费曼学习法
什么是学习力
什么是学习力-你遇到这些问 题了吗
总是 比别人 学得慢
一看就懂 一 做就错
看得懂,但不 会做
总是 比别人学得差 不会举一反三
什么是学习力含义
管理知识的能力 (利用现有知识 解决问题)
故事记忆法小妙招
费曼学习法
费曼学习法-简介
理查德·菲利普斯·费曼 (Richard Phillips Feynman)
费曼学习法出自著名物理学家费曼,他曾获的 1965年诺贝尔 物理学奖,费曼不仅是一名杰出的 物理学家,并且是一位伟 大的教育家,他能用很 简单的语言解释很复杂的概念,让其 他人能够快 速理解,实际上,他在学习新东西的时候,也会 不断的研究思考,直到研究的概念能被自己直观 轻松的理解, 这也是这个学习法命名的由来!
思维导图& 超级记忆法& 费曼学习法
1
外脑- 体系优化
知识体系& 笔记体系
内外脑高效学习模型
超级记忆法
超级记忆法-记忆 规律
记忆前
选择记忆的黄金时段
前摄抑制:可以理解为先进入大脑的信息抑制了后进 入大脑的信息
后摄抑制:可以理解为因为接受了新的内容,而把前 面看过的忘记了
超级记忆法-记忆 规律
TIP1:我们可以选择记忆的黄金时段——睡前和醒后! TIP2:可以在每天睡觉之前复习今天或之前学过的知识,由于不受后摄抑制的 影 响,更容易储存记忆信息,由短时记忆转变为长时记忆。
硬背“在复合句中,修饰某一名词或代词的从句叫做定语从句”这个概念。
3.这个步骤可以使用思维导图或流程图,可以更好加深自己的理解哦~

1.1.2集合间的基本关系

1.1.2集合间的基本关系

课堂练习
设集合A={x|1≤x≤3} B={x|xA={x|1≤x≤3}, 1 设集合A={x|1≤x≤3},B={x|x-a≥0} 的真子集,求实数a的取值范围。 若A是B的真子集,求实数a的取值范围。 A={1,2},B={x|x⊆A}, 2 设A={1,2},B={x|x⊆A},问A与B有什 么关系?并用列举法写出B 么关系?并用列举法写出B?
3.已知A = { x | −2 ≤ x ≤ 5}, B = { x | a + 1 ≤ x ≤ 2a − 1}, B ⊆ A, 求实数a的取值范围.
∵ 解: ∅ ⊆ A, 当B = ∅,有a + 1 > 2a − 1, 即a < 2 ∴ 2 a − 1 ≥ a + 1 当B ≠ ∅时,有a + 1 ≥ -2 2 a − 1 ≤ 5 ∴2 ≤ a ≤ 3 综上所述,a的取值范围a ≤ 3.
例3、写出集合{a, b}的所有子集,并指出哪些是它 的真子集.
5.反馈演练 5.反馈演练
1、下列命题: 空集没有子集; 任何集合至少有两个 (1) (2) 子休; 空集是任何集合的真子集; 若∅ ⊂ A,则A ≠ (3) (4) ∅.其中正确的有( A.0个 ) D.3个 B.1个 C.2个
y-3 2.设x, y ∈ R,A = {(x, y) | y - 3 = x - 2}, B = {(x, y) | = 1}, x-2 则A,B的关系是______.
⑴ A={1,2,3} , B={1,2,3,4,5}; ⑵设A为新华中学高一 班女生的全体组成的集合 为新华中学高一(2)班女生的全体组成的集合 为新华中学高一 班女生的全体组成的集合, B为这个班学生的全体组成的集合 为这个班学生的全体组成的集合; 为这个班学生的全体组成的集合 是两条边相等的三角形}, ⑶ 设C={x|x是两条边相等的三角形 ,D={x|x是 = 是两条边相等的三角形 是 等腰三角形}. 等腰三角形

1.1.2 集合的基本关系

1.1.2 集合的基本关系

由集合间关系求参
例5
已知集合A={x|x2+x-6=0},B={x|mx+1=0},且B⫋A,
求m的值.
正解:A={x|x2+x-6=0}={-3,2}.
∵B⫋A,
∴可以分以下情形讨论:当B=⌀时,有m=0,符合题意.
由集合间关系求参
例5
已知集合A={x|x2+x-6=0},B={x|mx+1=0},且B⫋A,
系数的关系,得b=-3,c=2.
答案:A
3.已知集合U,S,T,F的关系如图所示,则下列关系正确的
是(
)
①S∈U;②F⊆T;③S⊆T;
④S⊆F;⑤S∈F;⑥F⊆U.
A.①③ B.②⑤C.③④D.③⑥
解析:元素与集合之间的关系才用∈,故①⑤错误;子集的区域要
被全部涵盖,故②④错误,③⑥正确.
答案:D
微思考
子集
(1)任意两个集合之间是否有包含关系?
(2)符合“∈”与“⊆”有什么区别?
(1)不一定,如集合A={1,3},B={2,3},这两个集合就
没有包含关系.
微思考
子集
(1)任意两个集合之间是否有包含关系?
(2)符合“∈”与“⊆”有什么区别?
(2)①“∈”是表示元素与集合之间的关系,比如1∈N,-1∉N.
由此猜想:含n个元素的集合{a1,a2,…,an}的所有子集的个数是2n.
例1
子集个数
集合A={x|0≤x<3,x∈N}的真子集的个数为
(
)
A.4
B.7
C.8
D.16
解析:由题意,可得A={0,1,2},
其真子集为⌀,{0},{1},{2},{0,1},{0,2},{1,2},共7个.

1.1.2集合间的基本关系

1.1.2集合间的基本关系

1.1.2集合的基本关系一、教材1、教材的地位和作用本节主要学习内容是集合之间包含与相等的含义,子集、真子集的定义,以及识别给定集合的子集。

本节课是在学生学习了集合的含义与表示的基础上来进行的,为以后集合的基本运算做知识准备。

因此本节课在知识结构上起了承上启下的作用。

2、教学目标根据《课程标准》的要求以及结合学生的心理特点,我确定了以下目标:(1)知识与技能:理解集合之间包含与相等的含义,掌握子集、真子集、空集的定义,能够识别给定集合的子集。

同时培养学生类比、分析、归纳的能力,能使用Venn图表达集合的关系。

(2)过程与方法: 通过类比元素与集合的从属关系,实数相等与不相等的关系,探究集合之间的包含与相等关系;初步经历使用最基本的集合语言表示有关的数学对象的过程,体会集合语言,发展运用数学语言进行交流的能力。

(3)情感态度与价值观:培养学生积极参与、合作交流的主体意识,在知识探索和发现的过程中,激发学生学习数学的兴趣。

3、教学重点、难点及确定依据根据《课程标准》的规定、上述教材的分析和学生已有知识的储备,本课的重点、难点如下:重点:集合之间包含与相等的含义,子集、真子集的概念,以及识别给定集合的子集.难点:识别给定集合的子集,子集和真子集之间的区别和联系。

二、学情学习的对象是高一学生,他们已具备一定的数学基础,对集合已经有了初步的认识,逻辑思维从经验型逐步走向理论型发展。

高中生好奇心强,渴望明白原理、知道方法,同时他们也希望得到平等的交流研讨,厌烦空洞的说教。

三、教法学法1、教法根据本节课的教学目标以及学生的实际情况,为了更有效地突出重点、突破难点,按照学生的认知规律,遵循教师为主导,学生为主体,训练为主线的指导思想,采用以启发式引导法为主,问答式教学法、反馈式评价法为辅。

教学中,教师精心设计一个又一个带有启发性和思考性的问题,创设问题情境,诱导学生思考,使学生始终处于主动探索问题的积极状态,从而培养思维能力。

1.1.2 集合的基本关系

1.1.2 集合的基本关系
23456789
A B
1.1.2 集合的基本关系
练习1. 已知非空集合 A {x | a x 5} , B {x | x 2} 且满足 A B,求a的值。 B A
01234567
A B
2≤a<5
1.1.2 集合的基本关系
练习2. 设集合
A {四边形}、B {平行四边形}、C {矩形}、D {正方形}
高中数学 高中物理 高考专题
更多精彩资料,请下载点击下方文字/图案 更多资料
更多精彩内容,weixingongzhonghao:学霸兔
例1. 写出集合{a,b}的所有子集,并指出哪些是它的真子集。 子集:{a},{b},{a,b},∅ 真子集:{a},{b},∅
集合A的子集中,除了本身A以外的子集都是真子集. 集合A有n个元素,其子集的个数2n,真子集的个数2n-1.
1.1.2 集合的基本关系
例2. 集合 A={x|x-3>2},B={x|x≥ 5},并表示A、B的关系; 经简化:集合 A={x|x>5},B={x|x≥ 5} B A
试用Venn图表示它们之间的关系。 A
B DC
1.1.2 集合的基本关系
小结
包含: A B 相等: A B
子集: A B 真子集: A Ø B
空集:
必修1 选修1-1 选修4-4
必修2 选修1-2 选修4-5
必修3 选修2-1 数学全集
必修4 选修2-2
必修5 选修2-3
点击题目,即可下载对应的资料
记作: A B(或B A) 读作:A包含于B,或 B包含A
B
A
Venn图
1.1.2 集合的基本关系
“相等”关系 如果集合A包含于集合B(A B),且集合B包含于集合A (A B),我们说这两个集合相等. 记作: A B
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【议一议★深化概念】
1.包含关系{a} A与属于关系a A有什么区别?
2.集合A B与集合A B有什么区别?
3. 0, {0},与四者之间有什么关系?
4.试讨论类比法在本节课是如何应用的?
【听一听★更上一层】
例1.写出集合a, b的所有子集,并指出哪
些是它的真子集.
解 : 集合{a, b}的所有子集为:
,{a}, {b}, {a, b} 真子集为:,{a}, {b}
【听一听★更上一层】
变式 写出集合a, b,c的所有子集,并指出它的真子集.
解 : 没有元素的子集:; 有1个元素的子集 : {a}, {b}, {c}; 有2个元素的子集 : {a,b}, {a,c},{b,c}; 有3个元素的子集 : {a, b, c}.
1.1.2 集合间的基本关系
山东省单县第一中学
【三维目标】
一、知识与技能 1. 了解集合间包含关系的意义; 2. 理解子集、真子集的概念和意义; 3. 理解空集的定义; 4. 会判断简单集合的包含关系. 二、过程与方法 1.类比实数间的关系,联想集合间的关系; 2.分别能用自然语言、符号语言、图形语言描述子集的概念. 三、情感、态度与价值观 1.培养数学来源于生活,又为生活服务的思维方式; 2.个体与集体之间,小集体构成大社会的依存关系; 3.发展学生抽象、归纳事物的能力,培养学生辨证的观点.
集合{a, b, c}的所有子集为: ,{a}, {b}, {c}, {a, b}, {a, c}, {b, c},{a, b, c}.
集合{a, b, c}的所有真子集为: ,{a}, {b}, {c}, {a,b}, {a,c}, {b,c}.
【听一听★更上一层】
例2.集合M { x | x k 1 , k Z}, N { x | x k 1 , k Z }.
当k Z时,2k 1为奇数,k 2为整数,因为奇数都
是整数,且整数不都是奇数.
M N,故选C.
【练一练★巩固提高】
1、2题见课本第7页练习第2、3题
3. x、y是实数,集合M { x, y ,1}, N { x2 , x y, 0}, x
若M N,则x2008 y2008 ( A ).
A.1
B. 1
C .0
D. 1
设A {a, b}, B { x | x A}.请问A与B之间的
关系是什么?
AB
【总一总★成竹在胸】
一.本节课的知识网络:
相等
子集 AB
空集
AB
真子集 A B
()
二.本节课主要的思想方法:
性质
性质
类比法 分类讨论思想
【号一号★课下习之】
作业:P12 A 5;B 2.
A B (或B A )
读作:“A含于B”(或“B包含A”)
符号语言: 任意x A,有x B,则 A B
【说一说★本节新知】
Venn图表示集合的包含关系
在数学中,我们经常用平面上封闭的曲 线的内部表示集合,这种图称为Venn图.
A B
BA
【说一说★本节新知】
2.集合相等
如果集合A是集合B的子集(即A B),且集合B 是集合 A的子集(即B A),此时集合A与集合B中的 元素是一样的,我们称集合A与集合B相等.
记作:A B.
符号语言:若A B, B A,则A B
【说一说★本节新知】
3.真子集
如果集合A B, 但存在元素x B,且x A, 我们称集合A是集合B的真子集.
记作:A B ( 或B A ).
读作:“A真含于B”(或“B真包含 A”)
【说一说★本节新知】
4.空集
不含任何元素的集合叫做空集,记为. 规定:空集是任何集合的子集,即 A.
【引一引★温故知新】
集合与集合 之间呢?
实数有相等关系 如:5=5
实数有大小关系
如:5<7,5>3
【集的性质
【说一说★本节新知】
1.子集
一般地,对于两个集合A、B,如果集合A中任 意一个元素都是集合B中的元素,我们就说这两个集 合有包含关系,称集合A为集合B的子集.记作:
空集是任何非空集合的真子集. 即: B. (B )
【说一说★本节新知】
5.子集的有关性质
(1).任何一个集合是它本身的子集,即A A.
(2).对于集合A、B、C,如果A B且B C那么A C. (3).对于集合A、B、C,如果 A B且B C那么A C. (4).对于集合A、B、C,如果 A B且B C那么A C. (5).对于集合A、B、C,如果 A B且B C那么A C. (6).对于集合A、B、C,如果 A B且B C那么A C.
M N ,故选C.
【听一听★更上一层】
例2.集合M {x | x k 1 , k Z}, N {x | x k 1 , k Z}.
24
42
则( ).
A.M N B.M N C.M N D.M与N没有相同元素
分析:M { x | x 2k 1 , k Z }, 4
N { x | x k 2 , k Z}. 4
24
42
则( ).
A.M N B.M N C.M N D.M与N没有相同元素
分析:令k ,1, 0, 1, 2, 3, 得:
M { , 1 , 1 , 3 , 5 , 7 , } 4 44 4 4
令k 3, 2,1, 0, 1, 2, 3, 4,5 得:
N { , 1 , 0, 1 , 1 , 3 , 1, 5 , 3 , 7 , } 4 42 4 424
相关文档
最新文档