6-相变导热
传热学第六章凝结与沸腾换热

珠状凝结:凝结液体不能很好地润湿壁面,凝结 液体在壁面上形成一个个小液珠。珠状凝结时, 所形成的液珠不断长大,在非水平的壁面上,因 受重力作用,液珠长大到一定尺寸后就沿壁面滚 下。在滚下的过程中,一方面会合相遇的液珠, 合并成更大的液滴,另一方面也扫清了沿途的液 珠,更利于蒸汽的凝结。凝结液只是局部隔断了 蒸汽与壁面间的换热,因此其热阻要远小于膜状 凝结。
层的导热热阻是主要热阻这一特点,忽略次要因 素,是分析求解换热问题的一个典范。 Nusselt膜状理论:凝结换热系数h只决定于膜的 厚度。
合理简化假设: 1)常物性; 2)蒸汽静止,汽液界面上无对液膜的粘滞应力; 3)液膜的惯性力可以忽略;
4)汽液界面无温差,界面上液膜温度等于饱和温度,tδ=ts;
7.凝结表面的几何形状
纯净水蒸气凝结表面传热系数很大,凝结侧热阻不是主要部 分。若实际运行中有空气漏入,则表面传热系数明显下降。
对制冷剂凝结,主要热阻在凝结一侧,必须对凝结换热进行 强化。方法:
(1)用各种带有尖锋的表面,使在其上凝结的液膜减薄; (2)使已凝结的液体尽快从换热表面排泄掉。 (3)对水平管外凝结,可采用各种类型锯齿管或低肋管冷凝
亦适用。实验表明:当膜层Re<1600时为层流。
2.湍流膜状凝结换热实验关联式
Nu = Ga1/(
Prw Prs
)
1 4
(Re
3 4
−
253)
+
9200
式中:Ga — 伽里略数,Ga = gl 3 .
ν2
Prw — 以tw为定性温度的 Pr Ga、Re 、Prs — 以ts为定性温度
4.液膜过冷度及温度分布的非线性
传热学(第9章--对流换热)

— —
横向节距 纵向节距
23
9-3 流体有相变时的对流换热
一、凝结换热
1.特点:
——蒸汽和低于饱和温度的冷壁面相接触时会发 生凝结换热,放出凝结潜热。(如电厂中:凝汽 器和回热加热器内,管外蒸汽与管外壁的换热)
➢两种凝结方式:根据凝结液体依附在壁面上的形
态不同分.
tw ts
1)膜状凝结:凝结液体能润湿壁面,
腾换热设备安全经济的工作区为泡态沸腾区。
34
炉内高热负荷区水冷壁沸腾换热的强化
35
各种对流换热比较
液体对流换热比气体强;
对同一种流体,强制对流换热比自然对流换热强;
紊流换热比层流换热强;横向冲刷比纵向冲刷强;
有相变的对流换热比无相变换热强。
表9-5 各种对流换热平均换热系数的大致范围
换热系数 α[w/(m2.K)]
二是在蒸汽中混入油类或脂类物质。对紫铜管进行表面改 性处理,能在实验室条件下实现连续的珠状凝结,但在工 业换热器上应用,尚待时日。
26
2.影响蒸汽膜状凝结换热的因素:
(1)蒸汽中含有不凝结气体的影响 ➢ 蒸汽中含有不凝结气体(如空气)时,即使含量极微,
也会对凝结换热产生十分有害的影响。不凝结气体将会在 液膜外侧聚集而形成一层气膜,使热阻大大增加,从而恶 化传热。
21
(1)管束排列方式的影响
s1
s1
s2
顺排
s2
叉排
叉排:换热系数大,但流动阻力大. 顺排:换热系数小,但流动阻力小.
22
s1
s1
s2
s2
顺排
叉排
(2)流动方向上管排数的影响
后排管受前排管尾流的扰动作用对平均换热系 数的影响直到20排以上的管子才能消失。
传热学

传热学第一章绪论1.传热学的定义: 研究由于温度差而引起的热能传递规律的科学.2.热流量(heat transfer rate):单位时间内通过某一给定面积A的热量,记为Φ,单位为 W3.热流密度(或称面积热流量):通过单位面积的热流量,记为q,单位是 W/m24.稳态过程与非稳态过程稳态过程:热量传递系统中各点温度不随时间而改变的过程非稳态过程:各点温度随时间而改变的过程5.热传导的定义:物体各部分之间不发生相对位移时,依靠分子、原子及自由电子等微观粒子热运动而产生的热量传递过程1)导热是物质的固有属性2)固、液、气等均具有一定的导热能力3)纯导热只发生在密实的固体和静止的流体中导热现象的判断?1)有温差;2)密实固体或静止流体6.模型一平壁稳态导热.影响因素:平壁面积,厚度,温差平壁稳态导热的计算公式:7.λ —热导率,又称导热系数.单位:W/(m·K) (热物理参数)8.热对流:流体中温度不同的各部分发生相互混合的宏观运动而引起的热量传递现象特点: 1)发生在流体中2)流体内部必须存在温差3)流体必须有宏观运动4)伴随着热传导9.对流传热:流动的流体与温度不同的固体壁面间的热量传递过程.(热对流的一种方式,传热学研究方式).分类:按流体流动的起因:1)自然对流、自由对流:流体冷、热各部分密度不同而引起的2)受迫对流、强迫对流:流体的流动是在外力(在泵或风机)作用下产生的技巧:给出流体速度的为强迫对流按流体有无相变:1)无相变的对流传热2)有相变的对流传热:沸腾换热、凝结换热10.如何判断对流传热1)发生在壁面和流体之间:参与物质类型2)壁面和流体存在温差:热量传递的前提3)流体要运动:速度体现一定不要遗漏自然对流11.对流传热的计算—牛顿冷却公式(对流传热的热量传递速率方程)当流体被加热时:当流体被冷却时:h-表面传热系数(过程量),W/(m2·K)13.热辐射:由于自身温度(热)的原因而发出辐射能的现象(heat radiation)1)辐射传热:物体之间因为相互辐射、相互吸收而引起的热量传递过程2)理想物体:绝对黑体,简称黑体(能够全部吸收投射到其表面上辐射能的物体)14.黑体辐射的斯忒藩-玻耳兹曼(Stefan-Boltamann)定律实际物体的辐射能力:注意:1)σ—斯忒藩-玻耳兹曼常数,5.67×10-8W/(m2·K4) 2)ε—发射率(emissivity),习惯上也称为黑度,物性参数15.理想模型2—两平行黑体平板间的辐射传热(相距很近,表面间充满了透明介质)16.理想模型3—非凹表面1包容在面积很大的空腔2中注意:1)辐射传热必须采用热力学温度2)注意公式的使用条件3)“动态平衡”的含义(p8)17.导热、对流与辐射的辨析:1)导热、对流只在有物质存在的条件下才能实现;热辐射不需中间介质(非接触性传热)2)辐射不仅有能量的转移,而且伴随能量形式的转换;3)辐射换热是一种双向热流同时存在的换热过程;4)辐射能力与其温度有关,导热、对流与温差有关;导热与对流的辨析:气、液、固均具有导热能力,纯导热只发生在静止的流体中;对流只发生在流动的流体中;18.传热过程:热量由固体一侧的高温流体通过固体壁面传给另一侧低温流体的热量传递过程 。
导热相变材料.doc

1000J/g 以上。
纳米石墨相变储能复合材料具有储能密度高、导热换热效果优异、安全稳定、阻燃和环境友好等优点。
应用潜力:相变材料在其相变温度附近发生相变,释放或吸收大量热量,相变材料的这一特征可被用于储存能量或控制环境温度目的,在许多领域具有应用价值。
相变材料具有应用领域非常广泛的特点,在建筑节能、现代农业温室、太阳能利用、生物医药制品及食品的冷藏和运输、物理医疗(热疗)、电子设备散热、运动员降温(保暖)服饰、特殊控温服装、航天科技、军事红外伪装、电力调峰应用、工业余热储存利用等诸多领域均具有明显的应用价值。
相变材料简介相变材料的蓄热机理与特点相变储能建筑材料相变材料与建筑材料的复合工艺相变材料在建筑围护结构中的应用相变材料的选择简介相变材料(PCM - Phase Change Material)是指随温度变化而改变形态并能提供潜热的物质。
相变材料由固态变为液态或由液态变为固态的过程称为相变过程,这时相变材料将吸收或释放大量的潜热。
相变材料可分为有机(Organic)和无机(Inorganic) 相变材料。
亦可分为水合(Hydrated)相变材料和蜡质(Paraffin Wax)相变材料.我们最常见的相变材料非水莫属了,当温度低至0°C 时,水由液态变为固态(结冰)。
当温度高于0°C时水由固态变为液态(溶解)。
在结冰过程中吸入并储存了大量的冷能量,而在溶解过程中吸收大量的热能量。
冰的数量(体积)越大,溶解过程需要的时间越长。
这是相变材料的一个最典型的例子。
从以上的例子可看出,相变材料实际上可作为能量存储器。
这种特性在节能,温度控制等领域有着极大的意义。
因此,相变材料及其应用成为广泛的研究课题。
相变材料的蓄热机理与特点相变材料具有在一定温度范围内改变其物理状态的能力。
以固-液相变为例,在加热到熔化温度时,就产生从固态到液态的相变,熔化的过程中,相变材料吸收并储存大量的潜热;当相变材料冷却时,储存的热量在一定的温度范围内要散发到环境中去,进行从液态到固态的逆相变。
导热pcm

导热PCM(相变材料)什么是导热PCM?导热PCM,全称导热相变材料(Phase Change Material),是一种具有热吸收和释放能力的特殊材料。
它可以在特定温度范围内通过相变过程吸收热量或者释放热量,从而实现热量储存和热能传递的功能。
相变材料通常是一种可逆的热化学材料,在温度变化过程中释放或吸收热量,而且不发生化学变化。
导热PCM的工作原理导热PCM的工作原理基于相变过程中潜热的吸收和释放。
当PCM处于固态时,其温度随周围环境的升高或下降而发生变化,但在相变温度阈值范围内,PCM仍然保持固态。
当达到相变温度时,PCM会吸收或释放巨大的潜热。
以储能为例,当环境温度升高时,PCM开始吸热并迅速变为液体,从而吸收了潜热。
当环境温度下降时,液态PCM会通过放热的方式释放储存的热量,重新转变为固态。
这样,导热PCM可以在储能和释放能量的过程中实现温度调节和能量传递。
导热PCM的应用领域1. 建筑节能领域导热PCM被广泛应用于建筑节能领域。
通过在建筑物内部或外部的材料中添加导热PCM,可以实现夏季降温、冬季保温的效果。
当环境温度升高时,PCM吸收热量,阻止热量传入建筑物内部。
当环境温度下降时,PCM释放热量,提供额外的保温效果。
2. 电子产品散热领域导热PCM被广泛应用于电子产品的散热领域。
电子产品在运行过程中产生大量热量,如果无法及时散热,会导致设备的性能下降甚至损坏。
通过在电子产品中添加导热PCM,可以吸收和释放热量,提高散热效率,保持设备的正常运行。
3. 太阳能领域导热PCM在太阳能利用中的应用也非常重要。
太阳能热收集系统一般包含太阳能集热器和储热装置。
通过在储热装置中添加导热PCM,可以在太阳能不可用时储存热量,并在需要时释放热量,实现太阳能的稳定利用。
4. 食品运输和储存领域导热PCM在食品运输和储存领域也有重要应用。
食品在长途运输或储存过程中,需要保持一定的温度范围以保持新鲜和安全性。
相变调温纺织品的热性能测试方法与指标(2)

展义臻,朱平,张建波,郭肖青(青岛大学化工学院,山东青岛266071)摘要:论述了相变调温纺织品热性能的测试方法(热分析法、TRF测试法、暖体假人法、微气候仪法、步冷曲线法)以及表示指标(导热系数、相变温度与相变焓、循环性、保暖性、暖体假人热阻、ACR值).关键词:调温;相变材料;热性能;测试;指标中图分类号:TS197文献标识码:C文章编号:1004-0439(2006)10-0043-04相变调温纺织品的热性能测试方法与指标Thethermalperformancetestingmethodsandindicesofphase-changingtemperature-regulatingfabricsZHANYi-zhen,ZHUPing,ZHANGJian-bo,GUOXiao-qing(Chem.Eng.Coll.,QingdaoUniv.,Qingdao266071,China)Abstract:Thetestingmethodsofthephase-changingtemp.-regulatingtextilesweredescribed,suchasthermalanalysis,TRFtest,warmmanikintest,microclimatetestandstepcoolingcurvetest.Thetestindiceswerealsopresented,e.g.,thermalconductivity,phasechangingtemp.,phasechangingenthalpy,circulationprop-erty,thermalisolation,thermalresistanceonwarmmanikinsandACRvalues.Keywords:temperature-regulation;phase-changingmaterials;thermalproperties;tests;indices收稿日期:2006-04-08作者简介:展义臻(1981-),男,山东青岛人,在读硕士,研究方向为新纤维材料的制备及其功能化改性.相变调温纺织品是将相变材料与纤维和纺织品制造技术相结合的一种高技术产品,具有自动吸收、存储、分配和放出热量的功能,在外部环境温度剧烈变化时,营造舒适的衣内微气候.[1]相变材料PCMs(PhaseChangeMaterials)有一定狭窄明确的温度(相变点温度)范围.在相变过程中,它以潜热形式从周围环境吸收或向环境释放大量热量,而PCMs的温度保持恒定.[2]关于相变调温织物和服装的温度调节性能,至今还没有统一的测试方法与标准.通常用热分析法、Out-last公司的方法和暖体假人法测试,指标大都为传统的热性能指标.1相变纺织品测试方法1.1热分析法热分析研究物质在受热或冷却过程中其性质和状态的变化,并将这种变化作为温度或时间的函数研究其规律的一种技术,使用自动化动态跟踪测量.与静态法相比,具有连续、快速、简单等优点.相变材料测试主要采用差热分析法(DTA)、差示扫描量热法(DSC)和热重分析法(TGA).1.1.1差示扫描量热法(DSC)现阶段相变特征和行为的表征与测试主要采用DSC,与DTA相比,它在测定过程中,样品和参比物之间始终保持相同的温度.在程序升温过程中,记录样品温度和向样品输入的热流量与向参考样品输入的热流量的差值.DSC可以得到相变温度、相变热.通过温度变化对空白样品和含相变物质的试样进行比较,当样品发生相变时,就会有热效应发生,并促使样品印染助剂TEXTILEAUXILIARIESVol.23No.10Oct.2006第23卷第10期2006年10月印染助剂23卷与参比物在升温或降温过程中温度变化速率发生变化,反应在DSC谱图上就会有一个脉冲出现(图1).根据图谱就可得到相变的有关信息,从而分析相变过程.DSC是针对性的测量方法,用于测量相变材料吸热和放热的相转变点、熔点、结晶点和温度变化的范围,并可提供热转变中的能量损耗.[3]1.1.2热重分析法(TGA)热重分析法(TGA)用于测量微胶囊中相变材料的热应力,也是熔融纺丝必须的测试方法之一.常见的质量损失有2种:(1)100℃时水分蒸发损失;(2)280 ̄310℃时微胶囊壁破裂释放出碳氢化合物.如果在2种温度下微胶囊的质量没有明显差异,就说明了微胶囊壁的完整性(见图2).1.2温度调节因素(TRF)测试法温度调节因素法(TRF)是Outlast纤维纱线、织物性能的非生理检测方法.[4]这项新技术测量影响温度调节的各种因素,适用于在试验室模拟真实生活状况的生理测试.该系统使用连续的环境温度和能量,维持一种模拟皮肤的温度.测量皮肤温度随外界能量变化的波动状况,这种能量正是织物和纤维调节温度的决定因素.该程序的数字范围是0 ̄1.‘0’代表织物有能力适应连续的温度变化,‘1’意味着调节温度的能力很差.若该技术能够区分有无热能力的相似织物间的差别,将有助于织物的设计.TRF测试在专门的测试仪上进行,每一个织物测试2次,一次测量稳定状态的温度调节参数R值,另一次测量TRF.在R值试验中,通过热片的热流要保持连续,常为150W/m2.冷片温度也要连续,常为10℃;在TRF测试中,热片温度的变化范围集中在被测织物相变材料使用温度区域的中点附近.经15min2次能量循环后,不同的能量输入热板,记录热板第二次循环的温度,在第二次循环中,可得到热板的温度变化量(Tmax-Tmin,℃)和热量变化量(qmax-qmin,J).[5]TRF决定于温度变化和热量变化(见式1),式(1)中,R为温度调节参数,℃/J.无相变微胶囊合成纤维的TRF值是0.52或0.78,较小的峰值和谷值有好的温度调节.Outlast公司和其他研究机构在这种条件下作了生理测试,测试环境应与织物使用环境有很好的一致性和相似性.1.3暖体假人法暖体假人模拟真人群体的几何造型,符合真人群体统计数据的平均值;全身分为头、躯干、四肢等解剖段,至少6段;皮肤温度被加热到一恒定温度,其温度应与人体平均皮肤温度基本相近且皮肤表面安装温度传感器;能维持静止站立和动态步行2种姿势,步速为30 ̄60步/min.[6]在暖体假人法中,气候调节仓内至少放置3只环境温度传感器、2只环境湿度传感器、2只环境风速传感器,分别放置在距假人周围0.5m的非等高间隔位置处;温度传感器精度优于0.2℃;湿度传感器精度优于5%;风速传感器的精度优于0.05m/s.暖体假人试验可分为静态和动态试验.动态试验时设定步速和步长.暖体假人达到动态热平衡后,至少每分钟检测一次皮肤温度、环境温度和调控加热功率,这种状态必须保持30min以上.暖体假人符合人体解剖生理特点,能模拟人体表面温度分布,可进行与人体有关的热学研究,也是进行服装隔热值试验研究的理想测试设备,它可以接受任何试验条件,由于没有生理、心理因素的影响,试验结果稳定,误差较小,测量精确合理.1.4微气候仪法通常织物微气候仪模拟外界环境中检测模拟皮肤与试样间的微气候变化及热湿传递状况,即检测人体热量和汗气通过织物内空气层、织物及织物外空气层与环境进行能量、质量交换的全过程,并用温度和湿度梯度法测试出织物能量交换和质量交换的状态变化,反应织物对能量流和质量流的阻力.[7,8]原田织物微气候仪、姚穆-Yasuda多功能织物微气候仪、Wehner-Gibson织物微气候仪、崔慧杰动态织物微气候仪等温度/℃图1标准DSC曲线示意图吸热↑!T↓放热#相变温度温度/℃图2TGA曲线示意图失重百分数/(%)w2w3w1t1t2t3失重温度T1失重温度T2TRF=Tmax-Tmin(qmax-qmin)×R(1)4410期一直致力于解决热湿传递多功能测试,传感技术和计算机技术的应用使这种目标成为可能,并能简化操作程序,实现由稳态测试向动态测试的发展.[9]1.5步冷曲线法分别将含和不含相变材料的试样放入圆筒保温仪中,同时升温到一定温度(如46℃),并稳定一定时间(如15min)后同时移出,开动秒表,在一定时间间隔(如10s)下记录试样在不同时间所对应的温度.以时间为横坐标、温度为纵坐标,绘制步冷曲线.[10]从图3中可看到,在温度下降到相变点之前,2个试样均为显热放热,温度下降趋势大体相同.但温度下降到相变点之后,相变材料变为潜热放热,温度变化趋于缓和,温度下降的速度明显低于空白试样.比较二者的步冷曲线可以看出,含相变材料试样有调节温度和延缓温度变化的作用.2相变纺织品测试指标2.1导热系数按照傅利叶导热定律,服装在人体与环境之间的导热量与服装内外表面的温度差、时间及传热面积成正比,与服装的厚度成反比(见式2).因此,导热系数可理解为单位面积、单位时间内通过的热量.而热阻R=L/λ,其含义正好与导热系数相反.织物的热阻大或导热系数小,则织物的隔热性能好.因相变纤维需要灵敏地感应温度而激发相变,提供或吸收热能,同时又要低热阻的传导热量,所以它的热传导系数应偏小.[11,12]式(2)中,Q为服装的导热量,J;S为服装面积,m2;T为时间,s;λ为导热系数,W/m・℃;△t为服装内外表面温度差,℃;L为服装厚度,m.2.2相变温度与相变焓由相变纤维的功能可知,相变发生点和终止点温度以及整个相变过程的总焓是相变纤维的最主要性质(图4),起、止点温度反映材料的可使用性,相变焓反映其温度调节能力.PCMs应用中的关键是有合适可控的相变激发点,能保证应用时舒适与有效;较大的相变能可有效持久地调控温度.[13]2.3循环性相变的循环性表示PCMs的反复可使用性和有效性,Vigo等在织物表面涂层PEG,经过150次冷热交换循环后发现,织物的蓄放热性能仍很好.[14]此性能不仅是材料温度波动响应能力的体现,也是材料反复有效使用的关键.在可控温度调节室内进行相变服装的循环性测试,可用反复升降温方法对热焓变化的测定来确定循环性好坏(图5).2.4保暖性将试样覆盖在平板式织物保暖仪的试验板上,试验板、底板以及周围的保护板都用电热控制相同的温度,并通过通、断电保持恒温,使试验板的热量只能随试样的方向散发.通过测定试验板在一定时间保持恒温所需要的加热时间来计算织物的保暖指标(保暖率、传热系数和克罗值).[15]2.4.1保暖率Q保暖率Q是指无试样时的散热量Q0(W/℃)和有试样时的散热量Q1(W/℃)之差与无试样时的散热量Q0之比的百分率(式3).该值越大,试样的保暖性越好.2.4.2传热系数U传热系数U为纺织品表面温差为1℃时,通过单位面积的热流量(见式4).传热系数越小,保暖性越好.t/s图3步冷曲线示意图T/℃"相变点温度含PCMs试样T1T2t1t2t3t4"无PCMs试样Q=→!=!ST!tL(2)QLST!t温度/℃图4DSC曲线测相变温度和相变焓示意图热焓/mW"内推基线(试样基线)零线(空白样基线)相变温度相变焓循环次数/次图5相变材料循环性能热焓/J热焓/J相变材料循环性好相变材料循环性差Q=×100%Q0-Q1Q0(3)U=U0gU1/(U0-U1)(4)展义臻等:相变调温纺织品的热性能测试方法与指标45印染助剂23卷式(4)中,U为试样的传热系数,W/m2・℃;U0为无试样时试验板的传热系数,W/m2・℃;U1为有试样时试验板的传热系数,W/m2・℃.2.4.3CLO值CLO值是目前国际上最常用的测试服装保暖性能的指标,该指标1941年由Gagge和Burton提出.其定义是:室温21.1℃,相对湿度50%以下,气流为10cm/s(无风)条件下,试穿者静止不动,基础代谢为58.15W/m2感觉舒适并保持其体表温度在33.3℃时所穿服装的保暖量(隔热值)为1CLO;服装表面滞留空气层的热阻为0.78CLO;1CLO=0.155(℃・m2)/W.隔热值可按式(5)计算:式(5)中,U为试样的传热系数,W/m2・℃.2.5暖体假人热阻应用暖体假人测试服装热阻的基本原理是在模拟人体-服装-环境之间热交换的过程中,从暖体假人皮肤表面温度与环境温度之间的温差、体表单位面积的非蒸发散热率等物理参数之间的关系,导出服装热阻的量值,其基本方程如式(6)所示[6]:式(6)中,I为热阻,CLO;Ts为假人皮肤温度,℃;Ta为环境温度,℃;H为单位体表面积的非蒸发散热率,W/m2;0.155为热阻单位换算系数.2.6ACR值ACR值(AdaptiveComfortRating)是Outlast纤维的温度调节功能舒适性级别,用来衡量产品吸收、储存以及适时释放能量的能力.该等级反映了PCMs的密度、类型以及可供储存和释放热量的PCMs总量(即热敏变相材料的微胶囊).产品ACR等级越高就越舒适,传统纤维的ACR值接近于零,很难储存热量.Out-last产品的ACR等级高达5000,层叠后的ACR值可超过11000,使产品倍感舒适;例如Outlast席垫ACR达到5000、枕头则为1000.ACR的计算方法(按Outlast公司的专家解释):“在试验室内,每单位ACR按2.5J对其舒适度的测量”计算公式如式(7)所示:式(7)中,COutlast为Outlast材料的比热,即Outlast材料的吸热能力,J/m2;SOutlast为Outlast材料的面积,m2;λ为材料的接近系数,即相变材料在产品中接近人体的程度.3结论相变调温纺织品是继防水透湿织物后新的舒适性织物品种,在美国、欧洲和日本得到了飞速发展,中国科研工作者也从20世纪末开始了探索研究并取得了重大成果,现今,对相变调温纺织品的测试方法与指标确定十分迫切.现用的方法与指标都有局限性,如何结合各自的优点及在此基础上创新已成为纺织工作者迫切需要解决的问题,本文仅能提供一些借鉴.参考文献:[1]GhaliK,GhaddarN.Experimentalandnumericalinvestigationoftheeffectofphasechangematerialsonclothingduringperiodicventila-tion[J].TextileRes.J,2004,74(3):205-214.[2]FaridMM,KhudhairAM,RazackSA.Areviewonphasechangeen-ergystorage:materialsandapplications[J].EnergyConversionandMan-agement,2004(45):1597-1615.[3]蔡正千.热分析[M].北京:高等教育出版社:1993.118-132.[4]BendkowskaW,TysiakJ,GrabowskiL.Determiningtemperatureregu-latingfactorforapparelfabricscontainingphasechangematerial[J].InternationalJournalofClothingScienceandTechnology,2005,17(3-4):209-214.[5]R.Cox著,徐鹏译.Outlast热量调节纤维[J].国外纺织技术,2001,190(1):4-6.[6]GB/T18398-2001.服装热阻测试方法暖体假人法[S].[7]SpeckmanKL,AllanAE,SawkaMN.Perspectivesinmicroclimatecoolinginvolvingprotectiveclothinginhotenvironments[J].Interna-tionalJournalofIndustrialErgonomics,1988,3(2):121-147.[8]SariH,BergerX.Anewdynamicclothingmodel.Part2:Parametersoftheunderclothingmicroclimate[J].InternationalJournalofThermalSci-ences,2000,39(5):646-654.[9]周小红,王善元.织物热湿传递性能测试仪器的研究进展[J].现代纺织技术,2004,12(1):43-46.[10]IlangovanR,RaviG,SubramanianC,etal.Growthandcharacteriza-tionofpotassiumtantalateniobatesinglecrystalsbythestep-cool-ingtechnique[J].JournalofCrystalGrowth,2002(237-239):694-699.[11]ShiinaY,InagakiT.Studyontheefficiencyofeffectivethermalcon-ductivitiesonmeltingcharacteristicsoflatentheatstoragecapsules[J].InternationalJournalofHeatandMassTransfer,2005(48):373-383.[12]张华,刘维.防寒服保暖性能的测试和评价指标[J].中国个体防护装备,2003(2):21-23.[13]BoH,GustafssonEM,SetterwallF.Tetradecaneandhexadecanebi-narymixturesasphasechangematerials(PCMs)forcoolstorageindi-strictcoolingsystems[J].Energy,1999(24):1015-1028.[14]VigoTL,BrunoJS,GoynesWR.EnhancedwearandsurfaceCharac-teristicsofpolol-modifiedfibers[J].JournalofAppliedPolymerSci-ence:AppliedPolymerSymposium,1991(47):417-435.[15]余序芬.纺织材料试验技术[M].北京:中国纺织出版社.2004.304-312.1CLO=10.155U(5)I=Ts-Ta0.155H(6)ACR=COutlast×SOutlast×!2.5(7)46。
hotdisk法测相变材料导热系数

导热率是表征材料热传递能力大小的参数。
其定义为:1m 厚的物体,当其
两侧表面的温差为1K 时,以热传导方式在单位时间内通过单位面积传递的热量。
由于导热率随温度变化而变化,所以必须给出试样测试的平均温度。
测试的平均
温度为室温,导热率的单位是W/(m・K)。
其大小直接关系到相变储能装置的储能和释能功率,如果导热率过低,则不利于储能装置在实际使用过程中充分利用其内含相变材料的储能容量,实际效果相当于降低其潜热能。
而相变材料本身存在导热系数不高等缺点以及与容器相容性等问题,采取一些措施强化相变材料导热性能成为相变储能技术的必要研究环节。
本实验采用Hot Disk热传导分析仪进行测试,Hot Disk的测量原理是基于Silas Gustafso博士发明的瞬变平面热(Transient Plane Source Method TPS)在本方法中,探针是一个平面的探头,是由导电金属镍经刻蚀处理后形成的连续双螺旋结构的薄片,外层为双层Kapton保护层。
外层的Kapton保护层的厚度只有
0.025mm,它令探头具有一定的机械强度,同时保持探头与样品之间的电绝缘性。
探头通常被放置于两片样品中间进行测试,Hot Disk提供了不同尺寸与构造的探头供客户选择,适用于各种不同性质样品的测试。
测试时,探头被夹在两片样品中间,形成类似三明治的结构(见图3-4),在探头上通过恒定输出的直流电,由于温度的增加,探头的电阻发生变化,从而在探头两端产生的电压下降,通过记录在一段时间内电压和电流的变化,可以较为精确地得到探头和被测样品中的热流信息。
相变储热换热器文献综述

相变储热换热器文献综述1引言在工业生产中,为了实现物料之间热量传递过程的一种设备,统称为换热器。
它是化工、炼油、动力、原子能和其他许多工业部门广泛应用的一种通用工艺设备。
对于迅速发展的化工、炼油等工业生产来说,换热器尤为重要。
通常在化工厂得建设中,换热器约占总投资的10~20%。
在石油炼厂中,换热器约占全部工艺设备投资的85~40%。
在化工生产中,为了工艺流程的需要,往往进行着各种不同的换热过程:如加热、冷却、蒸发和冷凝等。
换热器就是用来进行这些热传递过程的设备,通过这种设备,以便使热量从温度较高的流体传递给温度较低的流体,以满足工艺上的需要。
由于使用的条件不同,换热设备又有各种各样的形式和结构。
另外,在化工生产中,有时换热器作为一个单独的化工设备,有时则把它作为某一个工艺设备中的组成部分。
其他如回收排放出去的高温气体中的废热所用的废热锅炉,有时在生产中也是不可缺少的。
总之,换热器在化工生产中的应用是十分广泛的,任何化工生产工艺几乎都离不开它。
2换热器发展历史简要回顾二十世纪20年代出现板式换热器,并应用于食品工业。
以板代管制成的换热器,结构紧凑,传热效果好,因此陆续发展为多种形式。
30年代初,瑞典首次制成螺旋板换热器。
接着英国用钎焊法制造出一种由铜及其合金材料制成的板翅式换热器,用于飞机发动机的散热。
30年代末,瑞典又制造出第一台板壳式换热器,用于纸浆工厂。
在此期间,为了解决强腐蚀性介质的换热问题,人们对新材料料制成的换热器开始注意。
60年代左右,由于空间技术和尖端科学的迅速发展,迫切需要各种高效能紧凑型的换热器,再加上冲压、钎焊和密封等技术的发展,换热器制造工艺得到进一步完善,从而推动了紧凑型板面式换热器的蓬勃发展和广泛应用。
此外,自60年代开始,为了适应高温和高压条件下的换热和节能的需要,典型的管壳式换热器也得到了进一步的发展。
70年代中期,为了强化传热,在研究和发展热管的基础上又创制出热管式换热器。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x
液体带入的焓:l vl hl
固体带出的焓: s vs hs
l vl (hl hs ) s vs 质量守恒: 净焓流量: l vl hl s vs hs lv llL lv
2、能量平衡条件
t s tl qs ql s l x x
t t∞ qs ts(x,τ) vs s( τ ) tl(x,τ)
l s
t
t∞
tl(x,τ)
tm ts(x,τ) tw O s( τ ) x
扩展性内容:
查阅资料,了解本学科前沿,追踪研究 领域内的最新进展:导热、对流、辐射中 选一个主题。 要求: 自由组合,5人左右1组,不超过6人; 整理成文,排版要求参照上海理工大学硕 士论文要求; 标明参考文献; 说明成员贡献;
第六章 相变导热
所谓相变是指物质集态或组分的变化。 液态相由于冷却而凝固成固态相,或固态 相由于受热而熔化成液态相。 在伴有相变的导热中,都包含了相变与导 热这两种物理过程,因此它比单纯的导热 问题要复杂一些。 例:浇铸——冷却过程 河面结冰过程
6-1 相变导热的特点
1、固、液两相之间存在着移动的交界面, s(τ)
l vl hl s vs hs l vl L s vs L
tm tw
ql
vl vx
vx dS d
t s tl s l l vl L s vs L x x
O
x
(1)固、液两相密度相同时
l s
t s tl s l l vl L t ) L x d
对温度连续性条件求全微分:……
t s tl s l L L t s tl x x x x t s tl
相界面上的能量方程是非线性的。
6-3 相变问题的解
问题:半空间的凝固过程
1. 2. 3.
4.
t s tl s l L L t s tl x x x x t s tl
相界面上的能量方程是非线性的。
(2)固、液两相密度不相同时
t
s l
凝固:导致液相以整体速 度 vl* 向相界面移动 液相区对相界面总的相 对移动速度
vl vx v
t t∞ tl(x,τ)
tm ts(x,τ) tw O s( τ ) x
2、两相交界面有潜热的释放(或吸收)
6-2 移动相界面上的边界条件
1、温度连续性条件
固相:ts(x,τ) 液相:tl(x,τ) 两相交界面: x=s(x,τ) ts(x,τ) = tl (x,τ)=tm
tm ts(x,τ) tw O s( τ ) x t
dS vl vs vx d
t s tl dS s l Lv x L x x d
若液相中的换热为对流换热—— ql h(tm t )
t s dS s h(t m t ) L x d
(1) 固液两相密度相同时
对温度连续性条件求全微分:……
t∞
tl(x,τ)
6-2 移动相界面上的边界条件
2、能量平衡条件 导入的热量: 导出的热量:
t q s s s x tl ql l x
t
t∞
tl(x,τ) qs tm ts(x,τ) tw s( τ ) vs
ql
vl vx
vx dS d
t t 净导热量: qs ql s s l l x x O
* l
t∞ qs ts(x,τ) vs s( τ )
tl(x,τ)
tm tw O
ql vl
vx
vx dS d
质量守恒: l vl s vs svx
vl* vx
x
s
ts t l l s Lvx x x
s l l
(2) 固液两相密度不相同时