转化与化归的数学思想[公开课类]

合集下载

转化与化归的数学思想40页PPT

转化与化归的数学思想40页PPT

31、只有永远躺在泥坑里的人,才不会再掉进坑里。——黑格尔 32、希望的灯一旦熄灭,生活刹那间变成了一片黑暗。——普列姆昌德 33、希望是人生的乳母。——科策布 34、形成天才的决定因素应该是勤奋。——郭沫若 35、学到很多东西的诀窍,就是一下子不要学很多。——洛克
转化与化归的数学思想
16、自己选择的路、跪着也要把它走 完。 17、一般情况下)不想三年以后的事, 只想现 在的事 。现在 有成就 ,以后 才能更 辉煌。
18、敢于向黑弱的人只会裹足不前,莽撞的 人只能 引为烧 身,只 有真正 勇敢的 人才能 所向披 靡。

初中数学转化与化归思想——消元

初中数学转化与化归思想——消元

转化与化归思想——消元转化与化归的思想所谓化归与转化的思想是指在研究数学问题时,采用某种手段将问题通过变换使之转化,进而使问题得到解决的一种解题策略.一般情况下,都要将未解决的问题化归转化为已解决的问题。

化归与转化的思想方法是数学中最基本的思想方法,同时也是在解决数学问题过程中无处不存在的基本思想方法。

数形结合的思想体现了数与形的相互转化;函数与方程思想体现了函数、方程、不等式间的相互转化;分类讨论思想体现了局部与整体的相互转化,因此以上三种思想方法都是转化思想的具体体现,各种变换的方法及分析法、反证法、特定系数法、构造法等都是转化的手段。

化归与转化的原则是:将不熟悉和难解的问题转化为熟知的易解的或已经解决的问题:将抽象的问题转化为具体的直观的问题;将复杂的问题转化为简单的问题;将一般性的问题转化为特殊的问题,将实际问题转化为数学问题,使问题便于解决。

解题方法指导1.运用化归与转化的思想解题需明确三个问题:(1)明确化归对象,即对什么问题转化;2)认清化归目标,即化归到何处去;(3)把握化归方法,即如何进行化归;2.运用化归与转化的思想解题的途径:(1)借助函数进行转化;(2)借助方程(组)进行转化;(3)借助辅助命题进行转化;(4)借助等价变换进行转化;(5)借助特殊的数与式的结构进行转化;(6)借助几何特征进行转化。

消元例 用加减法解方程组34165633x y x y +=⎧⎨-=⎩ 分析:这两个方程中未知数的系数既不相反也不相同,直接加减不能消元,试一试,能否对方程变形,使得两个方程中某个未知数的系数相反或相同。

①②解:①×3,得9x+12y=48 ③②×2,得10x-12y=66 ④③+④,得19x=114x=6把x=6代入①,得3×6+4y=164y=-2, y=-1 2所以,这个方程组的解是612 xy=⎧⎪⎨=-⎪⎩。

化归与转化的数学思想解题举例

化归与转化的数学思想解题举例

化归与转化的数学思想解题举例化归与转化的思想确是指在解决问题时,采用某种手段使之转化,进而使问题得到解决的一种解题策略,是数学学科与其它学科相比,一个特有的数学思想方法,化归与转化思想的核心是把生题转化为熟题。

事实上,解题的过程就是一个缩小已知与求解的差异的过程,是求解系统趋近于目标系统的过程,是未知向熟知转化的过程,因此每解一道题,无论是难题还是易题,都离不开化归。

下面介绍一些常用的转化方法,及化归与转化思想解题的应用。

化归与转化常遵循以下几个原则(1)熟悉化原则:将陌生的问题转化为熟悉的问题,以利于我们运用熟知的知识、经验和问题来解决。

(2)简单化原则:将复杂的问题化归为简单问题,通过对简单问题的解决,达到解决复杂问题的目的,或获得某种解题的启示和依据。

(3)和谐化原则:化归问题的条件或结论,使其表现形式更符合数与形内部所表示的和谐的形式,或者转化命题,使其推演有利于运用某种数学方法或其方法符合人们的思维规律。

(4)直观化原则:将比较抽象的问题转化为比较直观的问题来解决。

(5)正难则反原则:当问题正面讨论遇到困难时,可考虑问题的反面,设法从问题的反面去探求,使问题获解。

一、正与反的转化:有些数学问题,如果直接从正面入手求解难度较大,致使思想受阻,我们可以从反面着手去解决。

如对立事件的概率、间接法求解排列组合问题、举不胜举。

例1:某射手射击1次击中目标的概率是0.9他连续射击4次且他各次射击是否击中目标是相互独立的,则他至少击中目标1次的概率为。

例2:求常数m的范围,使曲线y=x2的所有弦都不能被直线y=m(x-3)垂直平分.当面临的数学问题由一般情况难以解决,可以从特殊情况来解决,反之亦然,这种方法在选择题,填空题中非常适用。

例1:设等比数列{a n }的公比为q ,前n 项和为S n ,若S n +1、S n 、S n +2成等差数列,则q =___________.例2:已知平面上的直线l 的方向向量)53,54(-=→e ,点(0,0)和A (1,-2)在l 上的射影分别为A O ''和,若A O λ=''则λ为( )A .511 B .-511 C .2 D .-2例3:设三棱柱ABC —A 1B 1C 1的体积为V ,P 、Q 分别是侧棱AA 1、CC 1上的点,且1PA QC =,则四棱锥B —PAQC 的体积为:A .61V B .41V C .31V D .21V利用主元与参变量的关系,视参变量为主元(即变量与主元的角色换位)常常可以简化问题的解决,先看下面两题。

高考数学复习化归与转化思想

高考数学复习化归与转化思想

高考数学复习化归与转化思想佚名知识整合1.解决数学问题时,常遇到一些问题直截了当求解较为困难,通过观看、分析、类比、联想等思维过程,选择运用恰当的数学方法进行变换,将原问题转化为一个新问题(相对来说,对自己较熟悉的问题),通过新问题的求解,达到解决原问题的目的,这一思想方法我们称之为化归与转化的思想方法。

宋以后,京师所设小学馆和武学堂中的教师称谓皆称之为“教谕”。

至元明清之县学一律循之不变。

明朝入选翰林院的进士之师称“教习”。

到清末,学堂兴起,各科教师仍沿用“教习”一称。

事实上“教谕”在明清时还有学官一意,即主管县一级的教育生员。

而相应府和州掌管教育生员者则谓“教授”和“学正”。

“教授”“学正”和“教谕”的副手一律称“训导”。

于民间,专门是汉代以后,关于在“校”或“学”中传授经学者也称为“经师”。

在一些特定的讲学场合,比如书院、皇室,也称教师为“院长、西席、讲席”等。

2.化归与转化思想的实质是揭示联系,实现转化。

除极简单的数学问题外,每个数学问题的解决差不多上通过转化为已知的问题实现的。

从那个意义上讲,解决数学问题确实是从未知向已知转化的过程。

化归与转化的思想是解决数学问题的全然思想,解题的过程实际上确实是一步步转化的过程。

数学中的转化比比皆是,如未知向已知转化,复杂问题向简单问题转化,新知识向旧知识的转化,命题之间的转化,数与形的转化,空间向平面的转化,高维向低维转化,多元向一元转化,高次向低次转化,超越式向代数式的转化,函数与方程的转化等,差不多上转化思想的表达。

与当今“教师”一称最接近的“老师”概念,最早也要追溯至宋元时期。

金代元好问《示侄孙伯安》诗云:“伯安入小学,颖悟专门貌,属句有夙性,说字惊老师。

”因此看,宋元时期小学教师被称为“老师”有案可稽。

清代称主考官也为“老师”,而一样学堂里的先生则称为“教师”或“教习”。

可见,“教师”一说是比较晚的事了。

现在体会,“教师”的含义比之“老师”一说,具有资历和学识程度上较低一些的差别。

浅谈化归与转化的数学思想

浅谈化归与转化的数学思想

浅谈化归与转化的数学思想我们在学习的过程中常常会遇到一些陌生的问题和复杂的问题,是我们一时间不知所措,但是大家要知道再陌生的数学问题也一定存在最熟悉的理论基础,再复杂的数学问题也都是有简单的命题复合或者演化而成的,如果我们学会了将陌生的数学问题转化为熟悉的问题,把复杂的数学问题转化为简单的数学问题,那么问题就能得以顺利解决。

因此我们总的解题策略是化归,即设法将我们待解决的或未解决的陌生的复杂的问题,通过某种转化,归结到一类已经解决或容易解决的问题中去,最终将问题给予圆满解答的一种手段和方法叫化归法。

化归与转化的思想是解决数学问题的根本思想,解题的过程实际就是转化的过程。

应用化归与转化的思想,运用数学变换的方法去灵活地解决有关的数学问题,是提高思维能力的有效保证。

下面介绍一些常用的转化方法,及化归与类比思想解题的应用。

(一)使用正与反的思想转化:有些数学问题,如果直接从正面入手求解难度较大,致使思想受阻,我们可以从反面着手去解决。

如函数与反函数的有关问题,对立事件的概率、间接法求解排列组合问题、证明命题的唯一性、无理性,或所给的命题以否定形式出现(如:不存在、不相交等),并伴有“至少”“不都”“都不”“没有”等指示性词语时,均可考虑用正与反的思想来实现转化。

正与反的思想是数学解题中逆向思维的直接体现。

例 1 已知下列三个方程:x2+4ax-4a+3=0,x2+(a-1)x+a2=0,x2+2ax-2a=0中,至少有一个方程有实根,求实数a的取值范围。

分析:此题若采用正面讨论,则必须分成“有且只有一个方程有实根”,“有两个方程有实根”和“三个方程全部有实根”三种不同情况来讨论,求解过程将会非常复杂。

所以,应采用补集和反证法的思想来求。

解:若方程没有一个有实根,则有16a2-4(3-4a)<0(a-1)2-4a2<04a2+8a <0解之得:-■<a<-1∴满足三个方程至少有一个方程有实根的a的解集是{a/a≥-1,或a≤-■}。

数学思想方法梳理(3)——化归与转化思想

数学思想方法梳理(3)——化归与转化思想

数学思想方法梳理(3)——化归与转化思想解决数学问题时,常遇到一些问题直接求解较为困难,通过观察、分析、类比、联想等思维过程,选择运用恰当的数学方法进行变换,将原问题转化为一个新问题(相对来说,对自己较熟悉的问题),通过新问题的求解,达到解决原问题的目的.化归与转化思想的实质是揭示联系,实现转化,是具有较高思维能力要求的压轴题中重点考查的数学思想方法。

1.求函数y ax =可以设t 则原函数转化为关于t 的二次函数 ;2.若lg y u =的定义域为R ,其中()u f x =,则问题等价于不等式 恒成立;若lg ()y f x =的值域为R ,则问题等价于函数()u f x =在(0,)+∞能 ;3.对于[,]x a b ∀∈,总有()()f x g x <等价于函数()h x = 在[,]a b 上的最大值小于零;对于1[,]x a b ∀∈,2[,]x a b ∀∈总有12()()f x g x <等价于max min [()],[()]f x g x 之间满足 ;4.对于12,[,]x x a b ∈,1122()()()()f x g x f x g x -<-等价于函数()()y f x g x =-在[,]a b 上 ;实数,m n 分别满足320am bm cm d +++=,320an bn cn d +++=,可构造()f x = 且()()0f m f n ==.5. 当遇到四个变量1122,,,x y x y ,满足11220,0ax by c ax by c ++=++=时,则1122(,),(,)x y x y 可以可视为直线 上的两个的不同点的坐标,该直线也就是过两定点1122(,),(,)x y x y 的直线; 当遇到两个变量,x y ,满足22,(0)x y m x y n n +=+=>,则可理解为 有公共点;6. ()()()()f x g x f x g x ''+是 的导数; ()()()()0f x g x f x g x ''->(0)(≠x g )说明函数 在定义域的某个区间上单调增;()()0xg x g x '+<说明函数 在定义域内单调减;7.已知实数[,]k m n ∈, 若210kx kx ++≥恒成立,构造关于k 的一次函数()f k = ,问题等价于不等式 在[,]k m n ∈上恒成立;已知210ax bx ++=,其中[,]x m n ∈,欲求22a b +的最小值,可以视方程为直线:l ,22a b +的最小值就等价于坐标原点到直线l 的的距离d = 的平方的最小值;8.如图(1),A 、B 在直线L 的异侧,在直线L 上任取一点M ,M A M B AB +≥,当且仅当点M与M '重合时有MA MB AB ''+=,所以MA+MB 的最小值是 .简单地说,就是“异侧和最小”;9.如图(2),A ,B 在直线L 的同侧,在直线L 上任取一点M ,AB MB MA ≤-,当且仅当点M 在AB 的延长线与L 的交点处时有MA MB AB ''-=,此时MA-MB 的最大值是 .简单地说,就是“同侧差最大”【例1】已知曲线2(),()21a f x g x ax b x+==++.(1)若1,1a b ==为常数,点(,)x y 为直线()y g x =的最小值;(2)若,,0a b a ∈≠R ,关于x 的方程()()f x g x =在[3,5]【解析】(1的最小值,等价于原点到直线30x y -+=的距离d ==2; (2)方程整理得2(21)20ax b x a ++--=,即2220x a xb a x +--+=,以aOb 建立平面坐标系,的最小值 ,设()x ϕ=,其中[3,5]x ∈.2221()51252x t x x t t t t ϕ-====+++++,2t x =-, 设5()2h t t t =++,[1,3]t ∈,225()t h t t-'=,当()0h t '>3t ≤,函数()h t 单调增; 当()0h t '<,1t ≤<()h t 单调减。

转化与化归思想

转化与化归思想

转化与化归思想转化与化归的思想,就是在研究和解决数学问题时采用某种方式,借助某种函数性质、图象、公式或已知条件将问题通过变换加以转化,进而达到解决问题的思想。

等价转化总是将抽象转化为具体,复杂转化为简单、未知转化为已知,通过变换迅速而合理的寻找和选择问题解决的途径和方法。

转化与化归的基本类型:(1)正与反、一般与特殊的转化,即正难则反、特殊化原则。

(2)常量与变量的转化,即在处理多元问题时,选取其中的常量(或参数)当“主元”,其它的变量看作常量。

(3)数与形的转化,即利用对数量关系的讨论来研究图形性质,也可利用图形直观提供思路,直接的反应函数或方程中变量之间的关系。

(4)数学各分支之间的转化,如利用向量法解立体几何问题,用解析几何方法处理平面几何、代数、三角问题等。

(5)相等与不等之间的转化。

(6)实际问题与数学模型的转化。

[例1]对任意函数f(x),x∈d,可按图示构造一个数列发生器,其工作原理如下:①输入数据x0∈d,经数列发生器输出x1=f(x0);②若x1 d,则数列发生器结束工作;若x1∈d,则将x1反馈回输入端,再输出x2=f(x1),并依此规律继续下去。

现定义f(x)=(1)若输入x0= ,则由数列发生器产生数列{xn},请写出{xn}的所有项;(2)若要数列发生器产生一个无穷的常数列,试求输入的初始数据x0的值;(3)若输入x0时,产生的无穷数列{xn},满足对任意正整数n均有xn4,x3=f(x2)x1且1xn(n∈n*)综上所述,x1∈(1,2)由x1=f(x0),得x0∈(1,2)。

[例2]设动直线x=m与函数f(x)=x3,g(x)=lnx的图像分别交于点m,n,则mn的最小值为()a. (1+ln3)b. ln3c. (1-ln3)d.ln3-1解析:如图,mn=x3-lnx,令h(x)=x3-lnx,则h(x)=3x3- = ,令h(x)=0,解得x= ,当0 时,h(x)>0,h(x)单调递增;所以当x= 时,h(x)取最小值,即mn=h(x)=h 。

马井堂-高中数学-专题-转化与化归思想

马井堂-高中数学-专题-转化与化归思想

第四讲 转化与化归思想Z 知识整合hi shi zheng he一、转化与化归思想的含义转化与化归思想方法,就是在研究和解决有关数学问题时,采用某种手段将问题通过变换使之转化,进而使问题得到解决的一种数学方法,一般是将复杂的问题通过变换转化为简单的问题,将难解的问题通过变换转化为容易求解的问题,将未解决的问题通过变换转化为已解决的问题.二、转化与化归的常见方法1.直接转化法:把原问题直接转化为基本定理、基本公式或基本图形问题. 2.换元法:运用“换元”把式子转化为有理式或使整式降幂等,把较复杂的函数、方程、不等式问题转化为易于解决的基本问题.3.数形结合法:研究原问题中数量关系(解析式)与空间形式(图形)关系,通过互相变换获得转化途径.4.等价转化法:把原问题转化为一个易于解决的等价问题,以达到化归的目的. 5.特殊化方法:把原问题的形式向特殊化形式转化,并证明特殊化后的问题的结论适合原问题.6.构造法:“构造”一个合适的数学模型,把问题变为易于解决的问题.7.坐标法:以坐标系为工具,用计算方法解决几何问题是转化方法的一个重要途径. 8.类比法:运用类比推理,猜测问题的结论,易于探求. 9.参数法:引进参数,使原问题转化为熟悉的问题进行解决.10.补集法:如果正面解决原问题有困难,可把原问题的结果看作集合A ,而把包含该问题的整体问题的结果类比为全集U ,通过解决全集U 及补集∁U A 使原问题获得解决,体现了正难则反的原则.命题方向1 特殊与一般的转化例1 (1)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a ,b ,c 成等差数列,则cos A +cos C 1+cos A cos C =45.[思路探究] 看到a ,b ,c 成等差数列,可联想到等边三角形举特例求解. [解析] 显然△ABC 为等边三角形时符合题设条件,所以cos A +cos C1+cos A cos C=cos60°+cos60°1+cos60°cos60°=11+14=45.(2)已知f (x )=33x +3,则f (-2018)+f (-2017)+…+f (0)+f (1)+…+f (2019)=2019.[思路探究] 看到求f (-2018)+f (-2017)+…+f (0)+f (1)+…+f (2019)的值,想到求f (x )+f (1-x )的值.[解析] f (x )+f (1-x )=33x +3+331-x +3=33x +3+3x 3+3x =3x +33x +3=1,所以f (0)+f (1)=1,f (-2018)+f (2019)=1,所以f (-2018)+f (-2017)+…+f (0)+f (1)+…+f (2019)=2019. 『规律总结』 化一般为特殊的应用(1)常用的特例有特殊数值、特殊数列、特殊函数、特殊图形、特殊角、特殊位置等. (2)对于选择题,当题设在普通条件下都成立时,用特殊值进行探求,可快捷地得到答案.(3)对于填空题,当填空题的结论唯一或题设条件提供的信息暗示答案是一个定值时,可以把题中变化的量用特殊值代替,即可得到答案.G 跟踪训练en zong xun lian1.AB 是过抛物线x 2=4y 的焦点的动弦,直线l 1,l 2是抛物线两条分别切于A ,B 的切线,则l 1,l 2的交点的坐标为(0,-1).[解析] 找特殊情况,当AB ⊥y 轴时,AB 的方程为y =1,则A (-2,1),B (2,1),过点A 的切线方程为y -1=-(x +2),即x +y +1=0.同理,过点B 的切线方程为x -y -1=0,则l 1,l 2的交点为(0,-1).2.已知数列{x n }满足x n +3=x n ,x n +2=|x n +1-x n |(n ∈N *),若x 1=1,x 2=a (a ≤1,a ≠0),则数列{x n }的前2019项和S 2019=1346.[解析] 根据题意,特殊化可得x 3=|x 2-x 1|=|a -1|=1-a (a ≤1,a ≠0),则x 1+x 2+x 3=2又因为x n +3=x n ,所以x 4=x 1,x 5=x 2,x 6=x 3,即x 4+x 5+x 6=x 1+x 2+x 3=2.同理,x 7+x 8+x 9=2,x 10+x 11+x 12=2,…,而2019=673×3,则S 2019=2×673=1346.命题方向2 函数、方程、不等式之间的转化例2 已知e 为自然对数的底数,若对任意的x ∈[1e,1],总存在唯一的y ∈[-1,1],使得ln x -x +1+a =y 2e y 成立,则实数a 的取值范围是( A )A .[1e,e]B .(2e,e]C .(2e ,+∞)D .(2e ,e +1e)[解析] 设f (x )=ln x -x +1+a ,当x ∈[1e ,1]时,f ′(x )=1-x x ≥0,f (x )是增函数,所以x ∈[1e ,1]时,f (x )∈[a -1e ,a ];设g (y )=y 2e y ,则g ′(y )=e y y (y +2),则g (y )在[-1,0)单调递减,在[0,1]单调递增,且g (-1)=1e <g (1)=e.因为对任意的x ∈[1e ,1],存在唯一的y ∈[-1,1],使得f (x )=g (y )成立,所以[a -1e ,a ]⊆[0,e],解得1e≤a ≤e.『规律总结』函数、方程与不等式相互转化的应用(1)函数与方程、不等式联系密切,解决方程、不等式的问题需要函数帮助.(2)解决函数的问题需要方程、不等式的帮助,因此借助于函数与方程、不等式进行转化与化归可以将问题化繁为简,一般可将不等式关系转化为最值(值域)问题,从而求出参变量的范围.G 跟踪训练en zong xun lian已知函数f (x )=x 3+3ax -1,g (x )=f ′(x )-ax -5,其中f ′(x )是f (x )的导函数.对满足-1≤a ≤1的一切a 的值,都有g (x )<0,则实数x 的取值范围为(-23,1).[解析] 由题意得g (x )=3x 2-ax +3a -5,令φ(a )=(3-x )a +3x 2-5,-1≤a ≤1,对-1≤a ≤1,恒有g (x )<0,即φ(a )<0,∴⎩⎪⎨⎪⎧ φ(1)<0,φ(-1)<0即⎩⎪⎨⎪⎧3x 2-x -2<0,3x 2+x -8<0解得-23<x <1.故x 的取值范围是(-23,1).命题方向3 正难则反的转化例3 若对于任意t ∈[1,2],函数g (x )=x 3+(m2+2)x 2-2x 在区间(t,3)上总不为单调函数,则实数m 的取值范围是( B )A .(-5,-103)B .(-373,-5)C .(-5,-2)D .(-5,+∞)[解析] g ′(x )=3x 2+(m +4)x -2, 若g (x )在区间(t,3)上总为单调函数,则①g ′(x )≥0在(t,3)上恒成立,或②g ′(x )≤0在(t,3)上恒成立.由①得3x 2+(m +4)x -2≥0,即m +4≥2x -3x 在x ∈(t,3)上恒成立,所以m +4≥2t -3t 恒成立,又t ∈[1,2],则m +4≥21-3×1=-1,即m ≥-5;由②得m +4≤2x -3x 在x ∈(t,3)上恒成立,则m +4≤23-9,即m ≤-373.所以函数g (x )在区间(t,3)上总不为单调函数的m 的取值范围为-373<m <-5.『规律总结』转化化归思想遵循的原则(1)熟悉化原则:将陌生的问题转化为我们熟悉的问题. (2)简单化原则:将复杂的问题通过变换转化为简单的问题.(3)直观化原则:将较抽象的问题转化为比较直观的问题(如数形结合思想,立体几何向平面几何问题转化).(4)正难则反原则:若问题直接求解困难时,可考虑运用反证法或补集法或用逆否命题间接地解决问题.G 跟踪训练en zong xun lian若抛物线y =x 2上的所有弦都不能被直线y =k (x -3)垂直平分,则k 的取值范围是( D )A .(-∞,12]B .(-∞,12)C .(-12,+∞)D .[-12,+∞)[解析] 设抛物线y =x 2上两点A (x 1,x 21),B (x 2,x 22)关于直线y =k (x -3)对称,AB 的中点为P (x 0,y 0),则x 0=x 1+x 22,y 0=x 21+x 222.由题设知x 21-x 22x 1-x 2=-1k ,所以x 1+x 22=-12k .又AB 的中点P (x 0,y 0)在直线y =k (x -3)上,所以x 21+x 222=k (x 21+x 222)=k (x 1+x 22-3)=-6k +12,所以中点P (-12k ,-6k +12).由于点P 在y >x 2的区域内,则-6k +12>(-12k )2,整理得(2k +1)(6k 2-2k +1)<0,解得k <-12.因此当k <-12时,抛物线y =x 2上存在两点关于直线y =k (x -3)对称,于是当k ≥-12时,抛物线y =x 2上存在两点关于直线y =k (x =3)对称.所以实数k 的取值范围是[-12,+∞).故选D .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档