浅谈转换与化归思想(精)

合集下载

转化与化归思想

转化与化归思想

正面与反面的转化 例 2:若抛物线 y=x2+4ax+3-4a,y=x2+(a-1)x +a2,y=x2+2ax-2a 中至少有一条与 x 轴相交,则实数 a 的取值范围是________.
第20讲 │ 要点热点探究
4 (1)-3,7 3 (2)-∞,-2∪[-1,+∞)
【解析】(1)g(x)=f′(x)=3x2+4x-a.g(x)=f′(x)在区间(-1,1) 上存在零点,等价于 3x2+4x=a 在区间(-1,1)上有解,等价于 a 的 取值范围是函数 y=3x2+4x 在区间(-1,1)上的值域,不难求出这个 4 4 函数的值域是-3,7.故所求的 a 的取值范围是-3,7. (2) 若 三 条 抛 物 线 均 不 与 x 轴 相 交 , 则
第20讲 │ 要点热点探究
x2 y2 (2)证明:由(1)知 a =3b ,所以椭圆 2+ 2=1 可化为 x2+3y2=3b2. a b → 设OM=(x,y),由已知得(x,y)=λ(x1,y1)+μ(x2,y2),
2 2
x=λx1+μx2, ∴ y=λy1+μy2.
ቤተ መጻሕፍቲ ባይዱ
∵M(x,y)在椭圆上,∴(λx1+μx2)2+3(λy1+μy2)2=3b2, 2 2 即 λ2(x1+3y2)+μ2(x2+3y2)+2λμ(x1x2+3y1y2)=3b2. ① 1 2 a2c2-a2b2 3 2 3 3 2 1 2 由(1)知 x1+x2= c,a2= c ,b2= c ,∴x1x2= 2 = c. 2 2 2 8 a +b2 ∴x1x2+3y1y2=x1x2+3(x1-c)(x2-c) 3 9 =4x1x2-3(x1+x2)c+3c2= c2- c2+3c2=0. 2 2 2 又 x2+3y1=3b2,x2+3y2=3b2, 1 2 2 代入①得 λ2+μ2=1.故 λ2+μ2 为定值,定值为 1.

浅谈化归思想

浅谈化归思想

浅谈化归思想数学思想方法是数学的灵魂所在,而化归思想不仅是一种重要数学思想,也是一种最基本的思维策略,更是一种非常有效的数学思维方式和解题方法。

一、什么是化归从字面上来看,化归,可以理解为转化和归结。

数学方法论中提到的“化归”,是指把需要解决的问题,运用一些手段方法先把它转化(或再转化)然后归结到已经能解决(或容易解决)的问题中去,采用迂回的方式以先求转化后的问题答案再反过来,求未解决的问题,最终得到原问题答案的一种方法。

数学中的化归形成,还与数学本身的根源有关即公理化方法。

数学总是用已有的概念去定义新出现的概念,并且以此为据去处理解决各种新出现的未解决问题或者说把未知转化归结为已知,这就是化归思想。

化归有三个最基本的要素:化归对象(把什么进行转化),化归目标(化归对象转化成什么形式),化归途径(用什么方法进行转化)。

二、化归原则一般情况下,化归的时应遵循以下几个原则:1.熟悉化原则(也叫一般化原则),把我们所遇到的“陌生”问题转化成相对熟悉的问题以便于解答。

2.简单化原则,把复杂的问题转化为简单且容易解答的问题。

这里的简单与复杂是相对而言,简单也可以是解决问题的方案或处理方式简单。

3.直观化原则,把抽象的或内部关系模糊不清的问题转化为比较直观具体的问题。

有利于理清并把握问题涉及的各对象间的相互关系。

4.和谐化原则,指的是在对未知问题进行转化时应注意问题内部的和谐统一,便于制定解决问题的程序和选择处理方法。

5.寻找对立面原则,是指在解决问题时,如果从正面无法处理或很难处理,此时可以解决问题的反面从中找到处理原问题的灵感和方法。

化归的过程中这几个基本原则是相互联系、相互渗透和相互补充的,在解决实际性问题的过程中,常常需要把它们结合起来使用,这样可以让化归过程更加快速和简洁,会收到更好的效果。

三、化归方法进行化归时,选择适当的方法可以使转化处理问题更快捷。

化归有五种基本方法:分割法与组合法、一般化与特殊化法、恒等变形法、RMI方法和基本模型法。

转化与化归思想

转化与化归思想

转化与化归思想等价转化思想方法的特点是具有灵活性和多样性.在应用等价转化的思想方法去解决数学问题时,没有一个统一的模式去进行.它可以在数与数、形与形、数与形之间进行转换;它可以在宏观上进行等价转化,如在分析和解决实际问题的过程中,普通语言向数学语言的翻译;它可以在符号系统内部实施转换,即所说的恒等变形.消去法、换元法、数形结合法、求值求范围问题等等,都体现了等价转化思想,我们更是经常在函数、方程、不等式之间进行等价转化.可以说,等价转化是将恒等变形在代数式方面的形变上升到保持命题的真假不变.由于其多样性和灵活性,我们要合理地设计好转化的途径和方法,避免死搬硬套题型.►探究点一高维与低维的转化事物的空间形成,总是表现为不同维数且遵循由低维向高维的发展规律,如从点研究线,由线到面,由面再到空间.通过降维可以把问题从一个领域带到另一个领域研究,从而使问题简单化.如立体几何中三维问题转化为平面几何的二维问题,多元问题转化为一元问题进行研究等.例(1)如图30-1,直三棱柱ABC-A1B1C1中,AB=1,BC=2,AC=5,AA1=3,M为线段BB1上的一动点,则当AM+MC最小时,△AMC的面积为________.30-1(2)若不等式x2108+y24≥xy3k对于任意正实数x,y总成立的必要不充分条件是k∈[m,+∞),则正整数m只能取________.►探究点二特殊与一般的转化所谓特殊化的策略,就是当我们面临的是一道难以入手的一般性题目时,要注意从一般退到特殊,先考查包含在一般情形里的某些比较简单的特殊问题,以便从特殊问题的研究,拓宽解题的思路,从而发现解答原题的方向或途径,即“由一般退回特殊,再由特殊推广至一般”.例2已知椭圆x24+y22=1,A、B是其左、右顶点,动点M满足MB⊥AB,连结AM交椭圆于点P,在x轴上有异于点A、B的定点Q,以MP为直径的圆经过直线BP,MQ的交点,则点Q的坐标为________.► 探究点三 陌生与熟悉的转化化陌生为熟悉,即当我们面临一个没有接触过的问题时,要设法把它转化为曾经解过的或比较熟悉的题目,以便充分利用已有知识、经验或解题模式解出原题.一般来说对题目的熟悉程度取决于对题目自身结构的认识和理解.常用转化途径有:(1)充分联想、回忆基本知识和题型;(2)全方位、多角度地分析题意;(3)恰当构造辅助元素.例3 若关于x 的方程x 4+ax 3+ax 2+ax +1=0有实数根,求实数a 的取值范围.变式 设x ,y 为正实数,a =x 2+xy +y 2,b =p xy ,c =x +y .(1)如果p =1,则是否存在以a ,b ,c 为三边长的三角形?请说明理由;(2)对任意的正实数x ,y ,试探索当存在以a ,b ,c 为三边长的三角形时p 的取值范围.例 [2011·江苏卷] 在平面直角坐标系xOy 中,已知圆x 2+y 2=4上有且仅有四个点到直线12x -5y +c =0的距离为1,则实数c 的取值范围是________.例设实数x ,y 满足⎩⎪⎨⎪⎧ x -y -2≤0,x +2y -5≥0,y -2≤0,则u =y x -x y 的取值范围是________.例设A 1、A 2为椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右顶点,若在椭圆上存在异于A 1、A 2的点P ,使得PO →·PA 2→=0,其中O 为坐标原点,则椭圆的离心率e 的取值范围是________.► 探究点四 函数中的分类讨论问题函数的基本概念和基本性质中本身涉及分类讨论的问题并不多,但是有一类带有参数的函数即动态函数问题中,其单调性的求解、值域的研究、零点问题等往往都需要对参数的取值进行划分后,分成不同情况进行研究.例1已知函数f (x )=x 2-a ln x (a ∈R).(1)若a =2,求证:f (x )在(1,+∞)上是增函数;(2)求f (x )在[1,e]上的最小值.。

转化与化归思想

转化与化归思想

转化与化归思想转化与化归思想就是把那些待解决或难解决的问题,通过某种手段,使之转化为一类已解决或易解决的问题,最终使原问题获解.使用化归思想的原则是:化难为易、化生为熟、化繁为简、化未知为已知.转化与化归思想高考中占有十分重要的地位,数学问题的解决,总离不开转化与化归,它几乎可以渗透到所有的数学内容和解题过程中. 类型一 直接转化【典例1】 已知在数列{a n }中,a 1=1,a n +1=2a na n +2,求数列{a n }的通项公式.【答题模板】【解析】 ∵a n +1=2a n a n +2,a 1=1,∴a n ≠0,∴1a n +1=1a n +12,即1a n +1-1a n =12.又a 1=1,则1a 1=1,∴{1a n}是以1为首项,12为公差的等差数列.∴1a n =1a 1+(n -1)×12=n 2+12,∴a n =2n +1(n ∈N *).【对点练1】 求下列函数的值域:(1)y =sin x +cos x ;(2)y =sin 2x -cos x +1; (3)y =cos x2cos x +1;(4)y =1+sin x 3+cos x.【解析】 (1)∵y =sin x +cos x =2sin(x +π4),∴函数的值域为[-2,2]. (2)∵y =sin 2x -cos x +1=2-cos 2x -cos x =-(cos x +12)2+94,∴函数的值域为[0,94]. (3)由y =cos x 2cos x +1,得cos x =y1-2y .∵|cos x |≤1,∴解不等式|y 1-2y |≤1,得y ≤13或y ≥1.∴函数的值域为(-∞,13]∪[1,+∞).(4)由y =1+sin x3+cos x ,得sin x -y cos x =3y -1,即1+y 2·sin(x -φ)=3y -1.∴sin(x -φ)=3y -11+y 2.∵|sin(x -φ)|≤1,∴|3y -11+y 2|≤1.平方化简得y ·(4y -3)≤0.∴0≤y ≤34,即函数值域为[0,34].类型二 换元法【典例2】 求函数y =(4-3sin x )(4-3cos x )的最小值. 【答题模板】【解析】 y =16-12(sin x +cos x )+9sin x cos x ,令t =sin x +cos x ,则t ∈[-2,2]且sin x cos x =t 2-12.∴y =16-12t +9×t 2-12=12(9t 2-24t +23). 故当t =43时,y min =72.【对点练2】 (2015·衡水调研)已知x +y =-1,且x ,y 都是负数,求xy +1xy 的最值. 【解析】 设x =-sin 2α(sin 2α≠0),y =-cos 2α(cos 2α≠0),则xy +1xy =sin 2αcos 2α+1sin 2αcos 2α=14sin 22α+4sin 22α=14(sin 22α+16sin 22α). ∵sin 22α+16sin 22α在sin 22α∈(0,1]上是减函数,∴sin 22α=1时,取得最小值,∴xy +1xy 的最小值为14(1+161)=174.【典例3】 若关于x 的方程9x +(4+a )·3x +4=0有解,则实数a 的取值范围是________. 【答题模板】 可采用换元法,令t =3x ,将问题转化为关于t 的方程有正解进行解决. 【解析】 设t =3x ,则原命题等价于关于t 的方程 t 2+(4+a )t +4=0有正解,分离变量a 得a +4=-(t +4t ),∵t >0,∴-(t +4t )≤-4.∴a ≤-8,即实数a 的取值范围是(-∞,-8]. 【对点练3】 设x ,y 为实数,若4x 2+y 2+xy =1,则2x +y 的最大值是________. 【解析】 令2x +y =t ,则y =t -2x .则4x 2+y 2+xy =1变形为6x 2-3tx +t 2-1=0. Δ=9t 2-4·6·(t 2-1)≥0,t 2≤85.∴-2105≤t ≤2105,即2x +y 的最大值是2105.类型三 数形结合法【典例4】 求函数f (x )=2-sin x2+cos x 的值域.【解析】 函数f (x )=2-sin x2+cos x ,可看作点(2,2),(-cos x ,sin x )两点连线的斜率.点(-cos x ,sin x )的轨迹为x 2+y 2=1.函数值域即为(2,2)与单位圆x 2+y 2=1上点连线斜率的范围,由图可知,过(2,2)且与单位圆相切的直线斜率存在,不妨设为k .∴切线方程为y -2=k (x -2),即kx -y -2k +2=0.∴满足|2-2k |1+k 2=1,解之得k =4±73.∴函数f (x )的值域为[4-73,4+73]. 【对点练4】 设f (x )=1+x 2,求证:对于任意实数a ,b ,a ≠b ,都有|f (a )-f (b )|<|a -b |.【解析】 设A (x 1,1),B (x 2,1),则|OA |=1+x 21,|OB |=1+x 22,|AB |=|x 1-x 2|.在△AOB 中,||OA |-|OB ||<|AB |,即有|1+x 21-1+x 22|<|x 1-x 2|,所以|f (x 1)-f (x 2)|<|x 1-x 2|,即|f (a )-f (b )|<|a -b |. 类型四 构造法【典例5】 在三棱锥P -ABC 中,PA =BC =234,PB =AC =10,PC =AB =241,则三棱锥P -ABC 的体积为________.【答题模板】 用常规方法利用三棱锥的体积公式求解体积时,无法求出三棱锥的高.但若换个角度来思考,注意到三棱锥的三对棱两两相等,我们可以构造一个特定的长方体,将问题转化为长方体中的某个问题.【解析】 如图所示,把三棱锥P -ABC 补成一个长方形AEBG -FPDC ,易知三棱锥P -ABC 的各棱分别是长方体的面对角线,不妨令PE =x ,EB =y ,EA =z ,则由已知有:⎩⎪⎨⎪⎧ x 2+y 2=100,x 2+z 2=136,y 2+z 2=164,解得⎩⎪⎨⎪⎧x =6,y =8,z =10.所以V P -ABC =V AEBG -FPDC -V P -AEB -V C -ABG -V B -PDC -V A -FPC =V AEBG -FPDC -4V P -AEB =6×8×10-4×16×6×8×10=160.故所求三棱锥P -ABC 的体积为160.【对点练5】 已知正三棱锥P -ABC ,点P ,A ,B ,C 都在半径为3的球面上,若PA ,PB ,PC 两两相互垂直,则球心到截面ABC 的距离为________.【解析】先在一个正方体中找一个满足条件的正三棱锥,再利用正方体的性质解题.如图,满足题意的正三棱锥P -ABC 可以是正方体的一部分,其外接球的直径是正方体的体对角线,且面ABC 与体对角线的交点是体对角线的一个三等分点,所以球心到平面ABC 的距离等于体对角线长的16,故球心到截面ABC 的距离为16×23=33. 类型七 参数法【典例8】 已知直线l 过点A (2,3)且与x 轴,y 轴的正半轴分别交于M ,N 两点,则当|AM |·|AN |最小时,直线l 的方程为________. 【解析】 设∠AMO 为θ,则θ∈(0,π2), ∴|AM |=3sin θ,|AN |=2cos θ. ∴|AM |·|AN |=6sin θ·cos θ=12sin2θ≥12. 当且仅当sin2θ=1,即θ=π4时取“=”号.此时k l =-1,∴l 的方程为x +y -5=0. 【对点练8】 (2015·北京东城联考)已知点P (3,4)与圆C :(x -2)2+y 2=4,A ,B 是圆C 上两个动点,且|AB |=23,则OP →·(OA →+OB →)(O 为坐标原点)的取值范围是( ) A .[3,9] B .[1,11] C .[6,18] D .[2,22]【解析】 设AB 的中点为D ,则OA →+OB →=2OD →,因为|AB |=23,所以|CD |=1,故点D在圆(x -2)2+y 2=1上,所以点D 的坐标为(2+cos α,sin α),故OP →·(OA →+OB →)=2OP →·OD →=2(6+3cos α+4sin α)=2[6+5sin(α+φ)],而2≤2[6+5sin(α+φ)]≤22,则OP →·(OA →+OB →)的取值范围是[2,22].。

数学思想之转化与化归总结

数学思想之转化与化归总结

数学思想之转化与化归总结在数学中,转化与化归是一种常用的思想方法。

通过转化问题的表达形式或者化简问题的复杂度,我们可以更容易地理解和解决数学问题。

转化与化归涉及到问题的等价转化、代数化简、几何转化、枚举化归等多个方面。

下面将从这几个方面对转化与化归进行总结。

首先,等价转化是一种常见的数学思想之一。

它意味着将一个问题转化为与之等价的另一个问题,以求得更容易解决的问题。

等价转化包括将问题的形式转化为更简单或者更具有可操作性的形式,或者将问题与已知的问题进行对应。

一个经典的例子是将一个复杂的代数方程转化为一个简单的一次方程或者二次方程,从而解决原方程。

在某些情况下,等价转化也可以是不可逆的,这意味着我们只能从简单的问题得到复杂的问题,但是这种转化仍然能够帮助我们更好地理解问题的本质和特点。

其次,代数化简是转化与化归的另一个重要方面。

代数化简是指通过运用代数运算的性质和规则,将一个复杂的代数表达式或者方程化简为更简单的形式。

代数化简的方法包括合并同类项、因式分解、配方法、三角函数的恒等变换等。

代数化简不仅可以减少问题的复杂度,还可以揭示问题的规律和特点,从而更好地解决数学问题。

几何转化是将几何问题转化为代数问题或者相反,通过几何图形的变换和变形,我们可以使得问题的解决更加直观和简单。

几何转化常常涉及到使用待定系数法、相似三角形的性质、勾股定理等几何知识,从而求得问题的解。

几何转化不仅能够帮助我们更好地理解和解决几何问题,还能够提高我们的思维能力和几何直观。

最后,枚举化归是一种将一个复杂的问题化归为若干个简单的情况,通过对每个简单情况的分析和解决,来解决原问题的方法。

枚举化归可以通过列举具体的例子,或者考虑特殊情况来进行。

枚举化归的优点是能够将一个复杂的问题简化为多个简单的情况,从而更好地理解和解决问题。

然而,枚举化归的缺点是可能需要计算大量的情况,耗费时间和精力。

综上所述,转化与化归是数学中一种重要的思想方法。

化归与转化思想【讲师版】

化归与转化思想【讲师版】

解题思想数学“化归与转化思想”学生姓名授课日期教师姓名授课时长匈牙利著名数学家罗莎·彼得在他的名著《无穷的玩艺》中,通过一个十分生动而有趣的笑话,来说明数学家是如何用化归的思想方法来解题的。

有人提出了这样一个问题:“假设在你面前有煤气灶,水龙头、水壶和火柴,你想烧开水,应当怎样去做?”对此,某人回答说:“在壶中灌上水,点燃煤气,再把壶放在煤气灶上。

”提问者肯定了这一回答,但是,他又追问道:“如果其他的条件都没有变化,只是水壶中已经有了足够的水,那么你又应该怎样去做?”这时被提问者一定会大声而有把握地回答说:“点燃煤气,再把水壶放上去。

”但是更完善的回答应该是这样的:“只有物理学家才会按照刚才所说的办法去做,而数学家却会回答:‘只须把水壶中的水倒掉,问题就化归为前面所说的问题了’”。

“把水倒掉”,这就是化归,这就是数学家常用的方法。

翻开数学发展的史册,这样的例子不胜枚举,笛卡儿誉其为“万能方法”。

他在《指导思维的法则》一书中指出:第一,将任何种类的问题转化为数学问题;其次,将任何种类的数学问题转化为代数问题;第三,将任何代数问题转化为方程式的求解。

其实所谓化归思想,一般就是指人们将待解决或难以解决的问题通过某种转化过程,归结到一类已经解决或比较容易解决的问题中去,最终求得原问题的解答的一种手段和方法。

化归与转化思想的实质是揭示联系,实现转化。

化归与转化的思想是解决数学问题的根本思想,实质是转化矛盾的思想方法,其遵循“运动——转化——解决”的基本思想。

数学中的转化比比皆是,如未知向已知转化,复杂问题向简单问题转化,新知识向旧知识的转化,命题之间的转化,数与形的转化,空间向平面的转化,高维向低维转化,多元向一元转化,高次向低次转化,超越式向代数式的转化,函数与方程的转化等,都是转化思想的体现。

这种思想方法可分为①多维化归方法,如:换元法、恒等变换法、反证法、构造法、待定系数法、数学归纳法;②二维化归法,如解析法、三角代换法、向量法;③单维化归法,如:复数法、代入法、加减法、判别式法、曲线系数法、坐标变换法。

转化和化归_数学思想方法

转化和化归_数学思想方法
• [分析] 正面解决较难,考虑到“不能” 的反面是“能”,被直线垂直平分的弦的 两端点关于此直线对称,于是问题转化为 “抛物线y=x2上存在两点关于直线y= m·(x-3)对称,求m的取值范围”,再求 出m的取值集合的补集即为原问题的解.
• [评析] 1.在运用补集的思想解题时,一 定要搞清结论的反面是什么,“所有弦都 不能被直线y=m(x-3)垂直平分”的反面 是“至少存在一条弦能被直线y=m(x-3) 垂直平分”,而不是“所有的弦都能被直 线y=m(x-3)垂直平分”.
[评析] 本题如果从已知条件 a23=a1·a9⇒(a1+2d)2= a1(a1+8d),解得 a1 与 d 的关系后,代入所求式子: aa21++aa43++aa190=a1a+1+d+a1+a12+d3+d+a1+a18+d9d,也能求解,但 计算较繁锁,易错.因此,把抽象数列转化为具体的简单 的数列进行分析,可以很快得到答案.
(1)若 a2+b2=1,可设 a=cosα,b=sinα; (2)若 a2+b2≤1,可设 a=rcosα,b=rsinα(0≤r≤1); (3)对于 1-x2,∵|x|≤1,由|cosθ|≤1 或|sinθ|≤1 知, 可设 x=cosθ 或 x=sinθ.
• [例3] 试求常数m的范围,使曲线y=x2的 所有弦都不能被直线y=m(x-3)垂直平 分.
[解析] 设 t=sinx+cosx, 则 t= 2sinx+π4,t∈[- 2, 2], 而 sinxcosx=21[(sinx+cosx)2-1]=12(t2-1), 于是 y=f(t)=a2-a(sinx+cosx)+sinxcosx =a2-at+12(t2-1)=12t2-at+a2-12
• [解析] 由题意得A={y|y>a2+1或y<a},B ={y|2≤y≤4},我们不妨先考虑当A∩B=∅时 a的取值范围.如图:

转化、与化归思想方法

转化、与化归思想方法
例1已知二次函数f(x)=ax2+2x-2a-1,其中x=2sinθ(0<θ≤ ).若二次方程f(x)=0恰有两个不相等的实根x1和x2,求实数a的取值范围.
【分析】注意0<θ≤ ,则-1≤2sinθ≤2,即-1≤x≤2,问题转化为二次方程根的分布问题,根据图象得出等价的不等式组.
【解】由以上分析,问题转化为二次方程ax2+2x-2a-1=0.在区间[-1,2]上恰有两个不相等的实根,由y=f(x)的图象(如图1所示),得等价不等式组:
依次类推可得数列{xn}的所有项均满足xn+1>xn(n∈N*)
综上所述,x1∈(1,2)由x1=f(x0),得x0∈(1,2)
评析:本题主要考查学生的阅读审题、综合理解的能力,涉及函数求值的简单运算、方程思想的应用,解不等式及化归转化思想的应用
问题四:等式与不等式的转化
例4、若正数a,b满足ab=a+b+3,则ab的取值范围是____。
二、转化的主要方式:
1、等价转化
.2、空间图形问题转化为平面图形问题.
3、局部与整体的相互转化.
4、特殊与一般的转化.
5、非等价转化.
6、换元、代换等转化方法的运用.
7、正与反的转化,
8、数与形的转化、
9、相等与不等的转化,
10、常量与变量的转化、
11、实际问题与数学语言的转化等。
三、典例分析:
问题1函数与方程的转化
由此得:AB=BC,AC=a.在三棱锥中,取AC中点D.连PD、BDAC⊥PD,AC⊥BD,故AC⊥平面PDB,且D到PB的距离为异面直线PB与AC之间的距离d,∴S△PDB=ad,∴V= a2d.
【评析】立体几何中有关位置关系的论证实际上是位置关系的相互转化,有关空间角的计算总是转化为平面内的角来求解.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浅谈转换与化归思想
转化思想是数学中的一种基本却很重要的思想。

深究起来,转化两字中包含着截然不同的两种思想,即转换和化归。

这两者其实表达了不同的思想方法,可以说是思维方式与操作方法的区别。

一、 转换思想
(1)转换思想的内涵
转换思想是指解决问题时策略、方法、指导思想的跳跃性变化,能跳出现有领域的局限,联系相关领域,并用相关领域的思维方式来解决现有领域内的问题。

要做到这一点,对思维能力的要求相对更高,必须对各个领域分别都有透彻的了解,更必须对各领域之间的联系有较多的研究,在关键时刻才能随心所欲地运用。

(2)转换思想在同一学科中的应用
转换思想可以是在同一学科的不同知识模块之间的变换,在解决问题时改变解题方向。

象数学学科中,数与式的互相转换、数与形的互相转换、文字语言与符号语言的互相转换。

比如,函数、方程、不等式是代数中的三大重要问题,而它们之间完全可以用三个知识模块的不同方法解决其他模块的各类问题。

不等式恒成立问题可以转换到用函数图象解决,或者是二次方程根的分布,也可以转换到二次函数与x 轴的交点问题。

再比如,数列问题用函数观点来解释,那更是我们数学课堂中一再强调的问题了。

看这样一个问题: 已知:11122=-+-a b b a ,求证:122=+b a 。

[分析] 这是一个纯粹的代数证明问题,条件的变形是比较艰难的,所以希望把条件变形从而得到结论这条思路也有点
令人望而生畏。

再仔细观察本题的条件、结论中所出现的形式,稍加联系,我们完全可以想到:21a -、21b -、12
2=+b a 这些特殊形式在另一知识模块——三角函数中经常出现,它们呈现出完全类似的规律性。

[解答]由题意1≤a 、1≤b ,则可设αsin =a ,αcos =b ,πα<≤0 11122=-+-a b b a 即为1sin 1cos cos 1sin 22=-+-αααα
化简得1cos cos sin sin =+αααα
所以0sin ≥=αa ,0cos ≥=αb
则 1cos sin 2222=+=+ααb a
[小结] 本题的解决了是发现了不同知识模块中的类似规律,加以利用得到新的思路,本题的题设和结论中都没有出现
三角函数的形式,最终却必须引进三角函数加以解决,思维已经具有跳跃性,对一般学生来说解决起来还是比较棘手的。

转换思想对思维要求确实很高,但这一点还是能够做到的。

因为各学科都有对知识模块的介绍,同时也有对各知识模块之间横向纵向的对比联系的研究。

典型的例子就是数与形之间的思维转换,因为学生已经在初中老师的指导下
对代数与几何分别有了研究,高中时不但分别进行了深化,更把两门学科合而为一,更多地注重两者之间的对比联系的研究。

高中的《平面解析几何》的实质就是用“解析法”即“代数的方法”解决几何问题,已经体现了几何到代数的转换,比如介绍某些代数形式的几何表示(绝对值、不等式、方程的几何意义),引入几何图形中圆锥曲线(圆、椭圆、抛物线)的方程,都是为培养思维在数与形之间的跳跃作了准备。

再比如物理学科中有“电场”与“磁场”的分别研究,也有对“电磁场”的综合研究。

所以学生在同学科内部的思维转换应该能够做到游刃有余。

(3)转换思想在不同学科中的应用
转换思想也可以是在同一学习领域的不同学科之间进行跳跃性变换,解决问题时采用不同的思维方式。

比如解决数学问题时,可以在代数与几何之间的互相转换,另外,物理中的行程问题、化学中的浓度问题都可以转换到数学模型来解决。

化学中典型的浓度问题:
a 克糖溶于水中形成
b 克糖水,其浓度为
b
a ;若加入m 克溶质糖,虽然溶质溶液的质量同时增加,但可以得到加糖后的浓度m
b m a ++必然要大于原来溶液的浓度b a 。

这个结论完全可以由数学学科中《不等式》部分的知识加以证明: 根据实际情况:0>>a b ,0>m ,
)
()()(m b b m a b m b b am ab bm ab b a m b m a +-=+--+=-++, 因为 0>>a b ,0>m , 所以0)()()(>+-=+--+=-++m b b m a b m b b am ab bm ab b a m b m a 即b
a m
b m a >++ 同样,物理中的匀加速运动:
物体初始速度为0v 米/秒,加速度为a 米/秒2,则经过t 秒后的即时速度为202
1at t v v t +=。

这公式稍加变形就是数学中的函数t v t a v t 02
)21(+=,当0=a 时,它是一次函数,图象为一条直线,当0≠a 时,它是二次函数,图象为一条抛物线,完全可以脱离物理,用研究函数的方法来研究物体的即时速度t v 什么时刻最大,是怎样变化的。

可以说,转换思想最重要的作用应该就是在不同学科之间的跳跃性思维,这也是目前高中学生比较薄弱的环节,比如数学、物理、化学,虽然学生们分别学习了三门学科,但对它们的联系却缺少研究,所以学科渗透类问题都是比较令学生头疼的,也是应用题总显得那么高深莫测的原因,更使理论与实际应用脱离,学不能致用。

由此,高中新课程改革中把课程整合放在了很重要的地位。

二、 化归思想 (1)化归思想的内涵
化归思想相对转换来说,是在解决问题时改变问题的形式,用一些技巧性的处理方法和手段把问题变得更显化明了、更熟悉常见、更和谐统一,但并没有改变问题所属的领域。

化归思想包括三要素:化归的对象、化归的原则、化归的方法。

所以掌握化归思想必须:抓住化归的对象也就是当前需要解决的问题;化归时应遵循简单化、熟悉化、和谐化的基本原则;中学常用的化归方法有①恒等变换法:包括分解法、配方法、代定系数法等;②映射反演法:包括换元法、对数法、坐标法、仿射法等。

(2)实施化归的关键
为了有效地实施化归,我们首先必须实现问题的“规范化”,即掌握一些“常规性问题”。

这里“常规性问题”就是指我们课堂上所说的具有确定的解题方法和解题程序的问题,或者可以说是模式型问题。

然后再把其他问题“规范化”,一般我们采用的化归方向是:化未知为已知、化难为易、化繁为简、化一般为特殊、化抽象为具体、正难则化反、化新知识到旧知识、化不熟悉到熟悉等等。

1.在《三角函数》中,对于角α有六个三角函数αsin 、αcos 、αtan 、αcot 、αsec 、αcsc 。

但我们研究其中众多的公式时并不需要同时研究六个,只需要研究αsin 、αcos 、αtan 三个就可以,其余三个可以利用它们之间的倒数关系进行化归;在解题时的“切割化弦”思想也是把后四个函数都化为αsin 、αcos 来解决。

2.在《立体几何》中,点、线、面之间的复杂关系是让人很头疼的 ,我们也采用了化归的思想使得需要考虑的问题更少更简单。

下面是立体几何中常用几种的化归方法。

方法一:位置关系互化。

正方体 ABCD-A 1B 1C 1D 1是我们研究的典型空间图形之一,它内部各种面对角线、体对角线与各表面、对角面形成的线线距离、线面距离、面面距离我们都作了深入研究,所以涉及到正方体中的各种距离问题我们就尽量向上述距离问题化归。

方法二:化高维到低维。

例:如右图,直三棱柱ABC-A 1B 1C 1,∠BCA=900
,点
D 1、F 1分别是棱A 1B 1、A 1C 1的中点,若BC=CA=CC 1,
求异面直线BD 1与AF 1所成的角。

[分析]本题中的直线BD 1与AF 1是三维空间内的异面直线,常用的化归方法就是把直线经过平移变为二维空间内两条相交直线,即在平面内求两直线所成角。

作法:如右图,沿平面BCB 1C 1补出一个与ABC-A 1B 1C 1完全全等的图形,最终构成一个正方体
ABCE-A 1B 1C 1E 1,取B 1E 1的中点G 1,连接BG 1,则AF 1∥BG 1。

所以,异面直线BD 1与AF 1所成的角即为平面BD 1G 1内两条相交直线BD 1与BG 1所成角∠D 1BG 1,
然后在△D 1BG 1中求此角。

这是把三维空间内的问题降维化归到二维平面内的问题来解决,是立体几何中常用的化归思想。

当然,我们既然总是说“转化”,那就意味着转换与化归在本质区别的同时也是紧密联系的,既有宏观上学科之间的转化,也有微观上学科内部各模块之间的转化。

化归在各个学科内部,在各模块内部都有体现和运用,在模块内部应用更是有多向性、层次性、重复性,是操作细节方面的问题,但却为思维跳跃性的转换提供了基础和经验,因此不能割裂看待。

相关文档
最新文档