牛顿第二定律·典型题剖析

合集下载

第二讲 牛顿第二定律(解析版)

第二讲  牛顿第二定律(解析版)

牛顿第二定律 力学单位制【例1】如图是汽车运送圆柱形工件的示意图。

图中P 、Q 、N 是固定在车体上的压力传感器,假设圆柱形工件表面光滑,汽车静止不动时Q 传感器示数为零,P 、N 传感器示数不为零。

当汽车向左匀加速启动过程中,P 传感器示数为零而Q 、N 传感器示数不为零。

已知sin15=0. 26,cos15=0. 97,tan15=0. 27,g=10 2/m s 。

则汽车向左匀加速启动的加速度可能为( )A .4 2/m sB .32/m sC .22/m sD .1 2/m s答案:AB 解析:当汽车向左匀加速启动过程中,P 传感器示数为零而Q 、N 传感器示数不为零,受力分析如图知:0cos15Q N F mg F +=…①0sin15N F F ma ==合…②由①②知:0tan150.27100.270.27 2.7 2.7Q QQF mgF F a m s m m m +==⨯+⨯=⨯+≥【例2】如图甲所示,一质量为m 的物体系于长度分别为L 1、L 2的两根细线上,L 1的一端悬挂在天花板上,与竖直方向夹角为θ,L 2水平拉直,物体处于平衡状态.(1)现将L 2线剪断,求剪断瞬间物体的加速度;(2)若将图甲中的细线L 1改为质量不计的轻弹簧而其余情况不变,如图乙所示,求剪断L 2线瞬间物体的加速度.解析:(1)对图甲的情况,L 2剪断的瞬间,绳L 1不可伸缩,物体的加速度只能沿切线方向,则mg sin θ=ma 1所以a 1=g sin θ,方向为垂直L 1斜向下.(2)对图乙的情况,设弹簧上拉力为F T1,L2线上拉力为F T2.重力为mg,物体在三力作用下保持平衡,有F T1cos θ=mg,F T1sin θ=F T2,F T2=mg tan θ剪断线的瞬间,F T2突然消失,物体即在F T2反方向获得加速度.因为mg tan θ=ma2,所以加速度a2=g tan θ,方向与F T2反向,即水平向右.【思维提升】(1)力和加速度的瞬时对应性是高考的重点.物体的受力情况应符合物体的运动状态,当外界因素发生变化(如撤力、变力、断绳等)时,需重新进行运动分析和受力分析,切忌想当然;(2)求解此类瞬时性问题,要注意以下四种理想模型的区别:特性模型质量内部弹力受外力时的形变量力能否突变产生拉力或压力轻绳不计处处相等微小不计可以突变只有拉力没有压力橡皮绳较大一般不能突变只有拉力没有压力轻弹簧较大一般不能突变既可有拉力也可有压力轻杆微小不计可以突变既有拉力也可有支持力【练习1】如图所示,质量为m的小球用水平弹簧系住,并用倾角为30°的光滑木板AB托住,小球恰好处于静止状态.当木板AB突然向下撤离的瞬间,小球的加速度为( )A.0B.大小为23g,方向竖直向下C.大小为23g,方向垂直于木板向下D.大小为3g,方向水平向右答案:C解析:在未撤离木板时,小球处于平衡状态,受到重力G、弹簧的拉力F、木板的弹力F N,在撤离木板的瞬间,弹簧的弹力大小和方向均没有发生变化,而小球的重力是恒力,故小球在此时受到重力G、弹簧的拉力F的合力,与木板提供的弹力大小相等,方向相反,故可知加速度的方向是垂直于木板向下.由此可知选项C 是正确的.【练习2】如图所示,弹簧S 1的上端固定在天花板上,下端连一小球A ,球A 与球B 之间用线相连.球B 与球C 之间用弹簧S 2相连.A 、B 、C 的质量分别为m A 、m B 、m C ,弹簧与线的质量均不计.开始时它们都处于静止状态.现将A 、B 间的线突然剪断,求线刚剪断时A 、B 、C 的加速度.解析:剪断A 、B 间的细线前,对A 、B 、C 三球整体分析,弹簧S 1中的弹力:F 1=(m A +m B +m C )g① 方向向上.对C 分析,S 2中的弹力:F 2=m C g ②方向向上.剪断A 、B 间的细线时,弹簧中的弹力没变.对A 分析:F 1-m A g =m A a A③ 对B 分析:F 2′+m B g =m B a B④ 对C 分析:F 2-m C g =m C a C⑤ F 2′=F 2由①③式解得a A =A C B m m m +g ,方向向上. 由②④式解得a B =BC B m m m +g ,方向向下. 由②⑤式解得a C =0【例3】质量为0.6 kg 的物体在水平面上运动,图中的两条斜线分别是物体受水平拉力和不受水平拉力的v -t 图象,则( )A .斜线①一定是物体受水平拉力时的图象B .斜线②一定是物体不受水平拉力时的图象C .水平拉力一定等于0.2 ND .物体所受的摩擦力可能等于0.2 N解析:由速度图象可知,两物体均做减速运动,且a 1=-13 m/s 2,a 2=-23m/s 2,故对应的合外力分别为F 1=ma 1=-0.2 N ,F 2=ma 2=-0.4。

牛顿第二定律经典例题

牛顿第二定律经典例题

牛顿第二定律应用的问题1.力和运动的关系力是改变物体运动状态的原由,而不是保持运动的原由。

由知,加快度与力有直接关系,剖析清楚了力,就知道了加快度,而速度与力没有直接关系。

速度怎样变化需剖析加快度方向与速度方向之间的关系,加快度与速度同向时,速度增添;反之减小。

在加快度为零时,速度有极值。

例1. 如图1 所示,轻弹簧下端固定在水平面上。

一个小球从弹簧正上方某一高度处由静止开始自由着落,接触弹簧后把弹簧压缩到必定程度后停止着落。

在小球着落的这一全过程中,以下说法中正确的选项是()图 1A.小球刚接触弹簧瞬时速度最大B.从小球接触弹簧起加快度变成竖直向上C.从小球接触弹簧到抵达最低点,小球的速度先增大后减小D.从小球接触弹簧到抵达最低点,小球的加快度先减小后增大例 2.一航天探测器达成对月球的探测任务后,在走开月球的过程中,由静止开始沿着与月球表面成一倾斜角的直线飞翔,先加快运动,再匀速运动,探测器经过喷气而获取推进力,以下对于喷气方向的描绘中正确的选项是()A.探测器加快运动时,沿直线向后喷气B.探测器加快运动时,竖直向下喷气C.探测器匀速运动时,竖直向下喷气D.探测器匀速运动时,不需要喷气分析:小球的加快度大小决定于小球遇到的合外力。

从接触弹簧到抵达最低点,弹力从零开始渐渐增大,所以协力先减小后增大,所以加快度先减小后增大。

当协力与速度同向时小球速度增大,所以当小球所受弹力和重力大小相等时速度最大。

应选 CD。

分析:受力剖析如图 2 所示,探测器沿直线加快运动时,所受协力方向与运动方向同样,而重力方向竖直向下,由平行四边形定章知推力方向一定斜向上方,由牛顿第三定律可知,喷气方向斜向下方;匀速运动时,所受协力为零,所以推力方向一定竖直向上,喷气方向竖直向下。

故正确答案选C。

图 22.力和加快度的刹时对应关系(1)物体运动的加快度 a 与其所受的合外力 F 有刹时对应关系。

每一刹时的加快度只取决于这一刹时的合外力,而与这一刹时之间或刹时以后的力没关。

牛顿第二定律典型题型

牛顿第二定律典型题型

牛顿第二定律典型题型题型1:矢量性:加速度的方向总是与合外力的方向相同。

在解题时,可以利用正交分解法进行求解。

1、如图所示,物体A放在斜面上,与斜面一起向右做匀加速运动,物体A受到斜面对它的支持力和摩擦力的合力方向可能是 ( )A.斜向右上方 B.竖直向上C.斜向右下方 D.上述三种方向均不可能1、A 解析:物体A受到竖直向下的重力G、支持力F N和摩擦力三个力的作用,它与斜面一起向右做匀加速运动,合力水平向右,由于重力没有水平方向的分力,支持力F N和摩擦力F f的合力F一定有水平方向的分力,F在竖直方向的分力与重力平衡,F向右斜上方,A正确。

2、如图所示,有一箱装得很满的土豆,以一定的初速度在摩擦因数为的水平地面上做匀减速运动,(不计其它外力及空气阻力),则其中一个质量为m的土豆A受其它土豆对它的总作用力大小应是 ( )A.mg B.mgC.mg D.mg2、C 解析:像本例这种物体系的各部分具有相同加速度的问题,我们可以视其为整体,求关键信息,如加速度,再根据题设要求,求物体系内部的各部分相互作用力。

选所有土豆和箱子构成的整体为研究对象,其受重力、地面支持力和摩擦力而作减速运动,且由摩擦力提供加速度,则有mg=ma,a=g。

而单一土豆A的受其它土豆的作用力无法一一明示,但题目只要求解其总作用力,因此可以用等效合力替代。

由矢量合成法则,得F总=,因此答案C正确。

例3、如图所示,电梯与水平面夹角为300,当电梯加速向上运动时,人对梯面压力是其重力的6/5,则人与梯面间的摩擦力是其重力的多少倍?拓展:如图,动力小车上有一竖杆,杆端用细绳拴一质量为m的小球.当小车沿倾角为30°的斜面匀加速向上运动时,绳与杆的夹角为60°,求小车的加速度和绳中拉力大小.题型2:必须弄清牛顿第二定律的瞬时性牛顿第二定律是表示力的瞬时作用规律,描述的是力的瞬时作用效果—产生加速度。

物体在某一时刻加速度的大小和方向,是由该物体在这一时刻所受到的合外力的大小和方向来决定的。

牛顿第二定律 练习与解析

牛顿第二定律 练习与解析

牛顿第二定律 练习与解析1.一辆质量为10kg 的小车,受到20N 的拉力作用,求这辆小车在拉力作用下的加速度是多大?答案:2m/s 2解:由牛顿第二定律,F =maa =F /m =20/10m/s 2=2m/s 2.2.一个物体的质量为50kg ,在100N 的水平拉力的作用下,以1.5m/s 2的加速度加速运动,求物体受到的摩擦力的大小.答案:25N解:由牛顿第二定律可知物体受到的合外力的大小:F =ma =50×1.5N =75N物体受力如图所示:F =F 1-ff =f 1-F =(100-75)N =25N .3.要使重5N 的物体在竖直方向上做匀速直线运动,应对物体施加的拉力是_____N ,此力的方向为_____.答案:5 竖直向上解:物体做匀速直线运动,加速度a =0,由牛顿第二定律:F =ma =0;即物体受到的合外力为零.所以,物体受到的力和物体的重力大小相等,方向相反,所以应对物体施加5N 的力,方向竖直向上.4.一个5N 的力作用在一个物体上,使物体得到的加速度是8m/s 2,作用在另一个物体上所得到的加速度为24m/s 2.如果将两个物体拴在一起,仍用5N 的力作用,求物体得到的加速度是多大?答案:6m/s 2解:设第一个物体的质量为m 1,第二个物体的质量为m 2,第一个物体的加速度为a 1,第二个物体的加速度为a 2,它们共同的加速度为a .由牛顿第二定律得:F =m 1a 1F =m 2a 2 F =(m 1+m 2)a解得a =6m/s 2.5.地面上放一木箱,质量为40kg ,用100N 的力与水平成 37角推木箱,如图4-5所示,恰好使木箱匀速前进.若用此力与水平成 37角向斜上方拉木箱,木箱的加速度多大?(取g =10m/s 2,sin 37=0.6,cos37=0.8) 答案:0.56m/s 2解:当用力推木箱时,物体的受力如图(1)F cos 37-f =0f =μN =μ(mg +F sin 37)得μ=0.17当用力拉木箱时,物体的受力如图(2)合F =F cos 37-f 1=ma f 1=μN 1=μ(mg -F sin37)解得a=0.56m/s2.。

最新高中物理牛顿第二定律经典例题(精彩4篇)

最新高中物理牛顿第二定律经典例题(精彩4篇)

最新高中物理牛顿第二定律经典例题(精彩4篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、演讲发言、策划方案、合同协议、心得体会、计划规划、应急预案、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, speeches, planning plans, contract agreements, insights, planning, emergency plans, teaching materials, essay summaries, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!最新高中物理牛顿第二定律经典例题(精彩4篇)练习题从狭义上讲,练习题是以巩固学习效果为目的要求解答的问题;从广义上讲,练习题是指以反复学习、实践,以求熟练为目的的问题,包括生活中遇到的麻烦、难题等。

牛顿第二定律典型例题分析

牛顿第二定律典型例题分析

牛顿第二定律典型例题分析(一)例1、一物体质量为10 kg,在5N的水平向右的拉力作用下沿水平桌面由静止开始运动,物体与桌面间的动摩擦因数为0.20。

①画出物体的受力图。

②加速度多大?方向如何?③求物体在4.0秒末的速度;④求物体在4.0秒末的位移⑤若在4秒末撤去拉力,求物体还能滑行多长时间?针对练习:一辆质量为1.0×103kg的小汽车正以10m/s的速度在平直公路上行驶,现在关闭发动机让它在12.5m的距离内匀减速地停下来,求所需的阻力。

例2、如图所示,质量为4 kg的物体静止于水平面上,物体与水平面间的动摩擦因数为0.5,物体受到F=20 N,与水平方向成37°角斜向上的拉力作用时,沿水平面做匀加速运动。

(g取10 m/s2) 求①物体的加速度是多大?②4秒内的位移?③经过多长时间速度变为10m/s④若在4秒末撤去拉力,求物体还能滑行多长时间?例3、一斜面AB 长为10 m,倾角为37°,一质量为2kg 的小物体(大小不计)从斜面顶端A 点由静止开始下滑,如图所示(g取10 m/s 2)①若斜面光滑,求小物体下滑到斜面底端B 点时的速度及所用时间.②若斜面与物体间的动摩擦因数为0.5,求小物体下滑到斜面底端B 点时的速度及所用时间.针对练习:2004年12月22日,一场瑞雪降临我市。

许多同学在课间追逐嬉戏,尽情玩耍,而同学王清和张华却做了一个小实验:他们造出一个方形的雪块,让它以一定的初速度从一斜坡的底端沿坡面冲上该足够长的斜坡(坡上的雪已压实,斜坡表面平整),发现雪块能沿坡面最大上冲3.4 m 。

已知雪块与坡面间的动摩擦因数为μ=0.1,他们又测量了斜坡的倾角为θ=37º,如图所示。

他俩就估测出了雪块的初速度。

那么:(1)请你算出雪块的初速度为多大?(2)请问雪块沿坡面向上滑的时间为多长?(sin37º=0.6 , cos37º=0.8,g 取10 m/s 2)。

牛顿第二定律典型例题讲解与错误分析

牛顿第二定律典型例题讲解与错误分析牛顿第二定律是动力学的核心规律,动力学又是经典力学的基础,也是进一步学习热学、电学等其它局部知识所必须掌握的内容,所以对牛顿第二定律准确理解、掌握典型例题、理解常见错误显得非常重要。

(一)明确力是使物体产生加速度的原因。

【例1】物体运动的速度方向、加速度的方向与作用在物体上的合外力方向的关系是:[ ]A. 速度方向、加速度的方向与合外力的方向三者总是相同C. 速度方向总是与合外力的方向相同,加速度方向可能与速度方向相同也可能不相同D. 速度方向总是与加速度方向相同,而速度方向可能与合外力方向相同也可能不相同【分析解答】准确答案是B 。

根据牛顿第二定律可知,加速度方向与合外力方向相同,而由运动学知识可知,速度方向与加速度方向能够相同也能够不相同,应选B.【例2】放在桌面上的小车,用力推它时,小车就运动起来了,停止用力时,小车运动一会儿就停下来,于是有同学就认为,力是维持物体运动的原因。

这种说法对吗?为什麽?【分析解答】不对。

这是因为物体原来处于静止状态,用力推时,是推力迫使它由静止变为运动;停止用力时,因为摩檫阻力的防碍作用,小车由运动变为静止。

可见,力并不是维持物体运动的原因,而是改变物体运动状态的原因。

(二)加速度与合力在每个时刻都有大小和方向上的对应关系【例3】 如图1所示,一轻质弹簧一端固定在墙上的O 点,自由伸长到B 点。

今用一小物体m 把弹簧压缩到A 点(m 与弹簧不连接),然后释放,小物体能经B 点运动到C 点而静止。

小物体m 与水平面间的动摩擦因数μ恒定,则以下说法中准确的是[ ]A. 物体从A 到B 速度越来越大B. 物体从A 到B 速度先增加后减小C. 物体从A 到B 加速度越来越小D. 物体从A 到B 加速度先减小后增加【分析解答】物体从A 到B 的过程中水平方向一直受到向左的滑动摩擦力F f =μmg ,大小不变;还一直受到向右的弹簧的弹力,从某个值逐渐减小为0。

牛顿第二定律经典例题及答案

牛顿第二定律经典例题及答案
例题:如图,质量的小车停放在光滑水平面上,在小车右端施加一水平恒力F=8N。

当小车向右运动速度达到3m/s时,在小车的右端轻放一质量m=2kg的小物块,物块与小车间的动摩擦因数μ=0.2,假定小车足够长,问:
(1)经过多长时间物块停止与小车间的相对运动?
(2)小物块从放在车上开始经过t0=3s 所通过的位移是多少?(g 取10m/s2)
【分析与解答】:
(1)依据题意,物块在小车上停止运动时,物块与小车保持相对静止,应具有共同的速度。

设物块在小车上相对运动时间为t,物块、小车受力分析如图:
物块放上小车后做初速度为零加速度为a1的匀加速直线运动,小车做加速度a2的匀加速运动。

其中对物块:由μmg=ma1,
有a1=μg=2m
对小车:F-μmg=Ma2
∴a2=0.5m/s2物块在小车上停止相对滑动时,速度相同
则有:a1t1=v0+a2t1
故答案为:
(1)经多2s物块停止在小车上相对滑动;
(2)小物块从放在车上开始,经过t=3.0s,通过的位移是8.4m.本文网络搜索,如有侵权联系删除。

高中物理必修一牛顿第二定律典型例题

高一物理牛顿第二定律典型例题讲解与错误分析【例1】在光滑水平面上的木块受到一个方向不变,大小从某一数值逐渐变小的外力作用时,木块将作 [ ]A.匀减速运动B.匀加速运动C.速度逐渐减小的变加速运动D.速度逐渐增大的变加速运动【分析】木块受到外力作用必有加速度,已知外力方向不变,数值变小,根据牛顿第二定律可知,木块加速度的方向不变,大小在逐渐变小,也就是木块每秒增加的速度在减少,由于加速度方向与速度方向一致,木块的速度大小仍在不断增加,即木块作的是加速度逐渐减小速度逐渐增大的变加速运动.【答】 D.【例2】一个质量m=2kg的木块,放在光滑水平桌面上,受到三个大小均为F=10N、与桌面平行、互成120°角的拉力作用,则物体的加速度多大?若把其中一个力反向,物体的加速度又为多少?【分析】物体的加速度由它所受的合外力决定.放在水平桌面上的木块共受到五个力作用:竖直方向的重力和桌面弹力,水平方向的三个拉力.由于木块在竖直方向处于力平衡状态,因此,只需由水平拉力算出合外力即可由牛顿第二定律得到加速度.(1)由于同一平面内、大小相等、互成120°角的三个力的合力等于零,所以木块的加速度a=0.(2)物体受到三个力作用平衡时,其中任何两个力的合力必与第三个力等值反向.如果把某一个力反向,则木块所受的合力F合=2F=20N,所以其加速度为:它的方向与反向后的这个力方向相同.【例3】沿光滑斜面下滑的物体受到的力是 [ ]A.力和斜面支持力B.重力、下滑力和斜面支持力C.重力、正压力和斜面支持力D.重力、正压力、下滑力和斜面支持力【误解一】选(B)。

【误解二】选(C)。

【正确解答】选(A)。

【错因分析与解题指导】 [误解一]依据物体沿斜面下滑的事实臆断物体受到了下滑力,不理解下滑力是重力的一个分力,犯了重复分析力的错误。

[误解二]中的“正压力”本是垂直于物体接触表面的力,要说物体受的,也就是斜面支持力。

高中物理必修1《牛顿第二定律》难题有答案解析

例1. 在粗糙的水平面上,物体在水平推力的作用下,由静止开始做匀加速直线运动,经过一段时间后,将水平推力逐渐减小到零(物体不停止),那么,在水平推力减小到零的过程中A. 物体的速度逐渐减小,加速度逐渐减小B. 物体的速度逐渐增大,加速度逐渐减小C. 物体的速度先增大后减小,加速度先增大后减小D. 物体的速度先增大后减小,加速度先减小后增大答案:D变式1、例2. 如下图所示,弹簧左端固定,右端自由伸长到O点并系住物体m,现将弹簧压缩到A点,然后释放,物体一直可以运动到B点,如果物体受到的摩擦力恒定,则A. 物体从A到O先加速后减速B. 物体从A到O加速,从O到B减速C. 物体运动到O点时,所受合力为零D. 以上说法都不对答案:A变式2、例3. 如图所示,固定于水平桌面上的轻弹簧上面放一重物,现用手往下压重物,然后突然松手,在重物脱离弹簧之前,重物的运动为A. 先加速,后减速B. 先加速,后匀速C. 一直加速D. 一直减速答案:A问题2:牛顿第二定律的基本应用问题:例4. 2003年10月我国成功地发射了载人宇宙飞船,标志着我国的运载火箭技术已跨入世界先进行列,成为第三个实现“飞天”梦想的国家,在某一次火箭发射实验中,若该火箭(连同装载物)的质量,启动后获得的推动力恒为,火箭发射塔高,不计火箭质量的变化和空气的阻力。

(取)求:(1)该火箭启动后获得的加速度。

(2)该火箭启动后脱离发射塔所需要的时间。

解析:本题考查牛顿第二定律和匀变速直线运动的规律在实际中的应用,首先应对火箭进行受力分析,因火箭发射在竖直方向上,一定不要漏掉重力,再利用牛顿第二定律求出火箭加速度,利用匀变速直线运动规律求时间。

(1)如图所示,根据牛顿第二定律:∴(2)设火箭在发射塔上运动的时间为t,则:∴。

答案:(1)(2)例5. 如图(1)所示,沿水平方向做匀变速直线运动的车厢中,悬挂小球的悬线偏离竖直方向角,球和车厢相对静止,球的质量为1kg。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

牛顿第二定律·典型题剖析
例1 在光滑水平面上的木块受到一个方向不变,大小从某一数值逐渐变小的外力作用时,木块将作 [ ]
A.匀减速运动. B.匀加速运动.
C.速度逐渐减小的变加速运动.
D.速度逐渐增大的变加速运动.
分析木块受到外力作用必有加速度.已知外力方向不变,数值变小,根据牛顿第二定律可知,木块加速度的方向不变,大小在逐渐变小,也就是木块每秒增加的速度在减少.由于加速度方向与速度方向一致,木块的速度大小仍在不断增加,即木块作的是加速度逐渐减小、速度逐渐增大的变加速运动.
答D.
说明物体的加速度只与它受到的外力有联系,当外力逐渐减小到零时,物体的速度恰增大到最大值vm.以后,物体就保持这个速度沿光滑水平面作匀速直线运动,这个物体的v-t图大致如图3-5所示.
例2 如图3-6所示,底板光滑的小车上用两个量程为20N、完全相同的弹簧秤甲和乙系住一个质量1kg的物块.在水平地面上当小车作匀速直线运动时,两弹簧秤的示数均为10N.当小车作匀加速直线运动时,弹簧秤甲的示数变为8N.这时小车运动的加速度大小是 [ ]
A.2m/s2. B.4m/s2.
C.6m/s2. D.8m/s2.
分析因弹簧的弹力与其形变量成正比,当弹簧秤甲的示数由10N变为8N时,其形变量减少,则弹簧秤乙的形变量必增大,且甲、乙两弹簧秤形变量变化的大小相等,所以,弹簧秤乙的示数应为12N.物体在水平方向所受到的合外力为
F=T乙-T甲=12N-8N=4N.
根据牛顿第二定律,得物块的加速度大小为
答B.
说明无论题中的弹簧秤原来处于拉伸状态或压缩状态,其结果相同.读者可自行通过对两种情况的假设加以验证.
例3 汽车空载时的质量是4×103kg,它能运载的最大质量是3×103kg.要使汽
车在空载时加速前进需要牵引力是2.5×104N,那么满载时以同样加速度前进,需要的牵引力是多少?
分析由空载时车的质量和牵引力算出加速度,然后根据加速度和满载时的总质量,再由牛顿第二定律算出牵引力.
解答空载时,m1=4×103kg,F1=2.5×104N,由牛顿第二定律得加速度:
满载时,总质量为m1+m2=7×103kg,同理由牛顿第二定律得牵引力:
F2=(m1+m2)a=7×103×6.25N
=4.375×104N.
说明根据牛顿第二定律F=ma可知,当加速度a相同时,物体所受的合外力与其质量成正比.因此可以不必先算出加速度的大小,直接由比例关系求解.即由
直接得
根据牛顿第二定律,当加速度a相同时,各个物体(或各个部分)所受的合外力与其质量成正比.用公式可表示为
F1∶F2∶F3∶…Fn=m1∶m2∶m3∶…mn,
或Fi∶F合=m i∶∑m.
式中Fi表示质量为mi的物体所受的合外力,F合表示总质量为∑m=m1+m2+…+m n 的整个物体系统所受的合外力.
利用合外力与质量的这种比例关系,解题中常会带来很大的方便(如例3).。

相关文档
最新文档