ZPW—2000A无绝缘移频自动闭塞系统认识简述

合集下载

浅谈ZPW—2000A无绝缘移频自动闭塞系统故障处理

浅谈ZPW—2000A无绝缘移频自动闭塞系统故障处理

浅谈ZPW—2000A无绝缘移频自动闭塞系统故障处理ZPW-2000A无绝缘移频自动闭塞系统,是在UM-71无绝缘轨道电路的根底上结合我国国情进行开发的,既充分肯定、保持了UM-71无绝缘轨道电路整体结构上的优势,又实现了调谐区断轨检查,在轨道电路传输平安性、传输长度、系统可靠性、可维修性以及结合国情提高技术性能价格比、降低工程造价上都有了显著提高。

该系统自2004年6月在郑州电务段管内新荷线开通以来,运行良好。

由于该系统推广不久,在使用中存在着一些问题,现就对其故障处理谈一谈个人的认识。

一.ZPW—2000A无绝缘移频自动闭塞系统工作原理1、工作原理该闭塞系统由室外设备、室内设备、系统防雷等组成,。

根本原理是该轨道电路由主轨道电路和小轨道电路两局部组成,小轨道电路被视为列车运行前方主轨道电路的“延续段〞,主轨道电路的发送器配有由编码电路控制的、表示不同含义的低频调制移频信号。

该信号经电缆通道传到室外的匹配变压器及调谐单元,从轨道的发送端经钢轨送入主轨道电路以及调谐区小轨道电路接收器。

主轨道电路信号经钢轨送到轨道电路的收电端,然后经调谐单元、匹配变压器、电缆通道将信号传到本区段的接收器。

调谐区小轨道信号由运行前方相邻轨道电路接收器处理,并将处理结果形成小轨道电路继电器执行条件送至本区段接收器,本区段的接收器同时接收主轨道电路移频信号及小轨道电路继电器执行条件,判断无误后,驱动轨道电路继电器吸起,根据继电器的吸起或落下来判断区段的空闲和占用情况。

2、接收端技术标准主轨道电路接收电压:不小于240MV主轨道电路继电器电压:不小于20V小轨道电路继电器或执行条件电压:不小于20V小轨道电路接收电压:不小于100MV二、故障处理1、声光报警装置1总移频报警灯设在控制台,通过移频总报警继电器YBJ落下表示发送、接收故障,接通控制台声、光报警电路。

2衰耗器面板表示灯1发送工作灯---绿色,亮灯表示工作正常,灭灯表示故障。

ZPW-2000要点

ZPW-2000要点

ZPW2000A移频自动闭塞1.1ZPW2000A闭塞系统概述一、概述1.载频、频偏的选择我国于20世纪90年代初引进法国高速铁路的UM71移频自动闭塞设备,并在此基础上结合我国国情研制了更加适应我国铁路的区间移频自动闭塞设备,该设备即为目前铁道部推广使用的ZPW-2000无绝缘轨道电路移频自动闭塞设备。

ZPW-2000无绝缘轨道电路移频自动闭塞低频、载频延用了UM71技术。

载频分别为四种:1700HZ、2000HZ、2300HZ、2600HZ。

其中上行线使用2000 HZ和2600 HZ 交替排列,下行线用l700HZ和2300 Hz交替排列。

UM71轨道电路的频偏Δf为11HZ。

UM71低频调制信号Fc(低频信息)从10.3 HZ 至29 HZ按1.1 HZ递增共18种。

即这18种低频信息分别为:10.3 HZ、11.4HZ、12.5 HZ、13.6 HZ、14.7 HZ、15.8 HZ、16.9 Hz、18 HZ,19.1 HZ、20.2 HZ、21.1H2、22.4 HZ、23.5 HZ、24.6 HZ、25.7HZ、26.8 HZ、27.9 HZ、29 HZ。

在低频调制信号作用下,一个周期内,信号频率发生f1、f2来回变化。

其中f1=f0 -Δf,f2=f0 +Δf 。

2.18信息的显示3.基本工作原理在移频自动闭塞区段,移频信息的传输,是按照运行列车占用闭塞分区的状态,迎着列车的运行方向,自动地向各闭塞分区传递信息的。

如图3-1-1所示,若下行线有两列列车A 、B 运行,A 列车运行在1G 分区,B 列车运行在5G 分区。

由于1G 有车占用,防护该闭塞正线通过信号L 码 11.4出站信号开放黄灯信号L U 码 13.6经18号道岔侧线通过U U S 码 19.1列车“直进”“弯出”通过 U 2 码 14.7 (出站信号开放)进站开放正线停车信号 U 码 16.9 进站开放侧线停车信号U U 码 18进站开放引导信号H B 码 24.6进站信号关闭H U 码 26.8 进站信号机前方有2以上闭塞分区空闲L 码 11.4前方只有2个闭塞分区空闲L U 码 13.6次架为进站信号机开放黄、闪黄信号U 2S 码 20.2(次架信号机显示U S U )次架为进站信号机开放双黄信号U 2 码 14.7(次架信号机显示U U ) 前方只有1个闭塞分区空闲U 码 16.9(次架信号机显示H )前方闭塞分区有车占用H U 码 26.8通过 或出站 信号机信号显示含义发送的低频码(H Z )显示分区的通过信号机7显示红灯,这时7信号点的发送设备自动向闭塞分区2G发送以26.8 Hz调制的中心载频为2300Hz的移频信号。

《ZPW-2000A无绝缘移频自动闭塞原理与维护》V5

《ZPW-2000A无绝缘移频自动闭塞原理与维护》V5
4、三显示自动闭塞宜在规定的列车追踪间隔时间内划分三个闭塞分区排列通过信号机。在区间内遇有困难的上坡道或从车站发车时划分三个闭塞分区有困难时,可按两个闭塞分区划分(按两个闭塞分区设置通过信号机,不得增加规定的列车追踪间隔时间,包括司机确认信号变换显示的时间)。从车站发车还应考虑确认出站信号机显示、车站值班员指示发车信号、车长指示发车信号及列车起动所需的时间。
列车运行在三显示自动闭塞区段,越过显示黄灯的通过信号机时开始减速,至次架显示红灯的通过信号机前停车,因此要求每个闭塞分区的长度绝对不能小于列车的制动距离。随着列车的不断提速,为了提高区间通过能力,采用了四显示自动闭塞。
四显示自动闭塞是在三显示自动闭塞的基础上增加了一种绿黄显示,它能预告列车运行前方三个闭塞分区的状态,允许列车以规定的速度越过绿黄显示后必须减速。
(2)在规定的运行时隔内按三个或四个闭塞分区排列通过信号机,应使列车经常在绿灯状态下运行。
6、自动闭塞的通过信号机采用经常点灯方式,并能连续反映所防护闭塞分区的空闲和占用情况。
在单线自动闭塞区段,当一个方向的通过信号机开放后,另一方向的通过信号机须在灭灯状态,与其衔接的车站向区间发车的出站信号机开放后,对方站不能向该区间开放出站信号机。
7、当进站或通过信号机红灯灭灯时,其前一架通过信号机应自动显示红灯。
8、在自动闭塞区段,当闭塞分区被占用或有关轨道电路设备失效时,防护该闭塞分区的通过信号机应自动关闭。
在双向运行区段,有关设备失效时,经两站有关人员确认后,可通过规定手续改变运行方向。
9、自动闭塞应有与本轨道电路信息相适应的连续式机车信号。四显示自动闭塞必须有超速防护设备。
单向自动闭塞,只防护列车的尾部,双向自动闭塞,必须对列车的尾部和头部两个方向进行防护。为了防止两方向的列车正面冲突,平时规定一个方向的通过信号机亮灯,另一个方向的通过信号机灭灯(或双线区段另一个方向的机车信号没有信息),只有在需要改变运行方向,而且在区间空闲的条件下,由车站值班员办理一定的手续后才能允许反方向的列车运行。

ZPW-2000A无绝缘移频自动闭塞系统原理

ZPW-2000A无绝缘移频自动闭塞系统原理
关键词 : Z P W一 2 0 0 0 A; 自动 闭塞 ; 维 护
型号为 Z P W一 2 0 0 0 A的无绝缘移频 自动闭塞是一种从法 国引进的 3 . 1 调谐 区断轨检查 只能无绝缘轨道 电路技术 , 但是在我国呈现出国产化的特点 , 并且在满 3 . 2 减小诃谐区 0 . 1 5 n 分路死 区 足我 国基本国情的基础上, 重新进行研发的一种技术。 这一技术的特点 3 . 3 调谐单元断线检查 在价格、 技术性能以及很多方面都具有—定的优势。 并目 获得了一系列 3 . 4 轨道 电路全程断轨检查 的技术专利, 本文重点对这方面的问题进行研究。 3 . 5 钢轨对地不平衡对传输安全的影响及防护 1 Z P W一 2 0 0 0 A型无绝缘移频自动闭塞系统技术特点 4故障查找流程 1 . 1 在原有无绝缘轨道电路整体结构的基础上予 以了肯定 , 并且充 发生故障以后, 首先要对故障加 以 判断, 厘清产生的故障是在室内 还是在室外 , 只有确定 了位置 , 才能进一步 的处理。故障的查找流程主 分保留了相关的优: 势。 1 . 2可以满足轨道电路全程诊断的要求。 要分为三步, 一是相对于发送端而言 , 要按照一定 的顺序进行检查 , 先 是检查室外发送器的功出电压 , 然后检查组合架, 紧接着对区间综合柜 1 . 3 避免出现调谐分录死区段的问题 。 加以检查 ; 二是相对于接收端而言 , 先是对室 内接收输入进行检查 , 然 1 4可以X  ̄ i  ̄ J i 皆 单元断线产生的故障加以进一步的检查。 后检查衰耗盘 以及组合架 , 最后检查区间综合柜; 三是相对于室外设备 1 . 5 降低了试验队拍频产生的干扰 , 并且加以有效的保护。 先检查电缆盒以及发送端相互匹配的变压器以及调谐单元 , 紧接 1 . 6 在相关系统参数的基础上加 以 进一步的优化 , 满足轨道电 路相 而言, 着检查钢轨传输通道 ,然后检查与受电端相互匹配的变压器与协调单 关传输长度 的要求。 l - 7 对于 1 n・ k m标准道碴电阻以及低道碴电阻传输所提出的长度 元 , 最后再对相关电缆盒进行仔细的检查, 找出故障的源头。 般 隋况下 , 室外设备故障 , 无论处理人员先到达送 电端还是受 电 要求均能够满足 , 并目 . 符合稳定 陛的要求。 先用表测量轨面 , 看是否有电压。若有电压 , 则按电流流动方向顺序 1 . 8 选用我国 自主生产的电缆 , 将法国的电缆加 以取代 , 将铜芯的 端 , 线径予以进一步的减小 , 同时也降低备用芯组的使用 , 扩大传输之间的 依次检查测量 , 检查到有 电压和无 电压之间就是故障点。若没有电压 , 距离 , 从而进一步提高系统在技术以及价格等方面的比例 , 解决工程造 则要首先判断是开路故障还是混线故障 , 此时 , 如果先到送 电端就应顺 序检查送电钢丝绳 、 匹配变压器 、 电缆接口等处 , 检查到有电压和无 电 价过高的问题。 1 . 9 选择长钢包铜引接线 的目的在于可以让工务维修变得更加便 压之间就是故障点 ; 如果先到受电端就应迅速检查受 电钢丝绳 、 匹配变 捷。 压器等看是否有混线的可能 , 若无异常, 就应快速 向送电方向移动检查 电容等 , 看是否有造成混线的处所。 1 . 1 0 为了将系统的可靠性予以进一步提升 , 主要运用“ N +1 ” 冗余 轨面 、 发射器以及双机并联的接收器。 室外匹配单元故障 , 一般发生在防雷元件和 电容被击穿 , 如果检查 确认是防雷元件被击穿,为压缩故障延时可临时将电缆线跳过防雷元 1 . 1 1 具有完整的检测和故障报警功能。 2 z P w一 2 0 0 0 A型绝缘轨道 电路系统构成 件接 人设备。 ’ 2 . 1 室外部分。 2 . 1 . 1 调谐区。 按2 9 m设计 , 实现两相邻轨道电路电 与一般的轨道电路存在一定 的差异性 ,在对 Z P W一 2 0 0 0 A产生的 对于本区段的主轨以及小轨具有较高的要求 , 需要保 气隔离 , 由空心线圈、 调谐匹配单元( 调谐单元和匹配变压器) 组成。 2 . 1 . 2 故障进行处理时, 机械绝缘节。 由机械绝缘节空线圈与调匹单元并接构成。 2 . 1 。 3 匹配变压 持在正常工作的状态下,相邻区段的小轨也需要处在正常工作的状态 当在两个区段都出现红光带时 , 很有可能是因为在两个区段的中间 器。按 0 . 2 5 一 l D Q・ k m道碴电阻范围设计 , 实现轨道电路与 S P T 传输电 下 , 针对这一问题的出现 , 应该先在相邻区段之间的 缆的匹配连接。 2 . 1 . 4补偿电容。 使传输通道趋于阻性 , 在轨道电路中, 电 公共部分出现了问题 , 容按等间距法设置, 保证轨道电路良好的传输性能。 2 . 1 . 5传输电缆。 S F F 衰耗盘 E 对输 出电压进行测试, 观察输出电压值是否高出 4 0 0 mV , 如果 型数字信号电缆, 中1 . 0 mm, 总长一般 1 0 k n, i 也可按 1 2 s . k m或者 1 5 k n。 i 是小于这个数值 , 那么就说明是主轨的问题 , 紧接着对相邻区段间的小 观察结果, 如果结果低于 1 0 0 m V, 那么就说 明是 2 . 1 . 6调谐区设备引接线。 采用 3 6 0 0 mm 、 1 6 0 0 mm钢包铜引接线 , 用于调 轨输出电压进行测量 , 谐 单元 、空心 线圈 、机械 节空心线圈等设备 与钢轨 的链接 ,也有 小轨 的问题。 当其 中的—个区段有红光带的现象发生时 , 那么很有可能 4 0 0 0 m m、 2 0 0 0 mm设计。 2 . 1 . 7扼流变压器 。 在每—个轨道电路起到平衡 是相邻后段的小轨存在异常的情况 ,这样就要x C d , 轨的输出电压进行 测试 , 当检测结果低于 1 0 0 m V时, 那么可以肯定是小轨的原因。还有一 次牵引电流的作用。 也就是在室外的主轨道 中有一端电容 比较容易丢失 , 2 . 2室内部分。 2 . 2 . 1 电缆模拟网络。 按0 5 . 、 0 5、 . 1 、 2 . 2 、 2 * 2 六段i 殳汁, 种是特殊 的情况 , 那么小轨电压会 出现低于 7 0 m V 用于对电缆 的补偿 , 总补偿距离为 1 0 k m 。2 . 2 . 2发送器 。 产生高精度、 高 还有可能出现电容塞钉头松动的迹象, 稳定移频信号源, 采用 N + I 冗余 十, 故障时通过发送报警继电器接点 的情况 , 也就会因此造成红光带的出现。 结束 语 转至 + 1 发送。 2 . 2 . 3 接收器。接收器主要的作用就是对主轨道发出的电 本文主要对 Z P W一 2 0 0 0 A故障的相关问题进行 了研究 ,探讨故障 路信号进行接收 , 当满足相关状态的 ̄ , t C T, 还能够对相邻 区 段的信号 进行接收 , 为其提供相关的小轨道电路状态条件 。 一般 情况下的接收器 查找的程序等问题 , 希望对今后的工作提供一定的帮助 。 参考文献 都采用的是双机并联的方式加以运行 。 2 . 2 . 4衰耗盒。 用于实现主轨道电 1 高速铁路管理人 员和专业技术人 员培训教材—Z P w- 2 0 0 0 A型无绝 路、 小轨道电路的调整。给出发送接收故障、 轨道 占用表示及发送 、 接收 … 用+ 2 4 V电源 电压 、 发送功出电压 、 接收 G J 、 xG J 测试条件。 缘移频 自动闭塞 系统 邮 . 北京: 中国铁道 出版社. 2 ] Z P W- 2 0 0 0 A型 无 绝缘 移频 自动 闭塞 系统技 术 综 述阴. 北 京全 路 通信 2 . 3系统防雷。室内: 发送端、 接收端的站防雷。实现对从电缆引入 [ 雷电冲击的横向、 纵向防护 , 并满足电缆绝缘在线测试。室外 : 对从钢轨 信 号研 究设计 院. 3 ] Z P W- 2 0 0 0 A移频 自动闭塞系统原理、 维护和故障��

ZPW-2000A型移频自动闭塞

ZPW-2000A型移频自动闭塞
10.3Hz、11.4Hz、12.5Hz、13.6Hz、14.7Hz、15.8Hz、 16.9Hz、18Hz、19.1Hz、20.2Hz、21.3Hz、22.4Hz、 23.5Hz、24.6Hz、25.7Hz、26.8Hz、27.9Hz、29Hz。 频偏: 11Hz
四、补偿电容
目的: 为抵消钢轨电感对移频信号传输的影响,采取在轨道 电路中,分段加装补偿电容的方法,使钢轨对移频信号的 传输趋于阻性,接收端能够获得较大的信号能量。另外, 加装补偿电容能够实现钢轨断轨检查。在钢轨两端对地不 平衡条件下,能够保证列车分路。 结构特征 电容器采用电缆线焊接在电容器内部,轴向分两头引出, 把电缆用环氧塑脂灌封。电缆的连接方式有两种,一种是 用锡焊接塞钉,塞钉镀锡。另一种是压接线鼻子,然后用 专用销钉与钢轨连接。电容器的外壳材料为黑色ABS塑料。
调 谐 单 元
匹 配 变压器
匹 配 变压器
匹 配 变压器
电 缆 模 拟网络
电 缆 模 拟网络
电 缆 模 拟网络
室 防 达
内 雷
衰 耗
接 收
GJ
ZPW-2000A 型无绝 缘轨道电路系统,采用电气 绝缘节来实现相邻轨道电 路区段的隔离。它由室内 、室外及系统防雷三部分 组成。
发 送
室 防 达
内 雷
室 防 达
步长Δ 设置电容,以获得最佳传输效果。
补偿电容规格及技术指标:
1700Hz:55μ F±5%(轨道电路长度250~1450m) 2000Hz:50μ F±5%(轨道电路长度250~1400m) 2300Hz:46μ F±5%(轨道电路长度250~1350m) 2600Hz:40μ F±5%(轨道电路长度250~1350m)
低频调制信号中包含地面信号和机车信号的控制信息,所以需要按 照区间信号显示方式和机车信号的种类多少进行合理设置。

ZPW-2000A无绝缘移频自动闭塞原理及故障分析

ZPW-2000A无绝缘移频自动闭塞原理及故障分析

ZPW-2000A系统构成及原理
ZPW-2000A系统构成及原理
• 主要技术指标 • 轨道继电器GJ吸起必须具备两个技术条件,二者
缺一不可: • 1、主轨道条件正常:本轨道衰耗器上测量“轨出
1”电压应大于240mV,一般调整在450-900mV之 间;测量“GJ(Z)”与“GJ(B)”直流28V左右 (标准值:不小于20伏)。 • 2、小轨道条件正常:运行前方相邻轨道衰耗器上 测量小轨道条件“轨出2”电压应在160±10mV之 间,本轨道衰耗器上测量“XGJ”电压,直流28V左 右(标准值:不小于20伏)。
• 技术特性: • 1) 分路灵敏度为0.15Ω;分路残压小于140mV。 • 2) ZPW-2000A系统在10km SPT电缆及不同道碴电阻条件,
轨道电路传输长度按调整表。 • 3)ZPW-2000A系统在10、12.5、15km SPT电缆及1.0、1.2、
1.5Ω·km道碴电阻下,轨道电路传输长度见调整表。 • 4)主轨道无分路死区间,调谐区分路死区不大于5m。 • 5)有分离式断轨检查性能:轨道电路全程(含主轨及小
• 2) 实现对与受电端相连接调谐区 短小轨道电路移频信号的解调,给 出短小轨道电路执行条件,送至相 邻轨道电路接收器。
• 3) 检查轨道电路完好,减少分路 死区长度,还用接收门限控制实现 对BA断线的检查。
ZPW-2000A系统构成及原理
• ZPW-2000K型无绝缘轨道电路分为主轨道电路和 调谐区小轨道电路两部分,小轨道电路就是接续 主轨送端的调谐谐区部分。主轨道电路的发送器 由编码条件控制,产生表示不同含义的低频调制 的移频信号,该信号经电缆通道传给匹配变压器 及调谐单元,因为钢轨是无绝缘的,所以该信号 既向主轨道传送,也向调谐区小轨道传送,主轨 道信号经钢轨送到轨道电路的受电端,然后经调 谐单元、匹配变压器、电缆通道,将信号传至本 区段接收器。

ZPW-2000A无绝缘移频自动闭塞系统

ZPW-2000A无绝缘移频自动闭塞系统
5. 传输电缆:采用国产SPT铁路信号数字电缆,线径为Φ 1.0mm,一般 条件下,电缆长度按10km考虑。根据工程需要,传输电缆长度可按12.5 km、15 km设计。
6. 调谐区设备引接线:采用3600mm、1600mm钢包铜引接线构成。用于 BA、SVA、SVA’等设备与钢轨间的连接。
ZPW-2000A无绝缘移频自动闭塞系统—系统构成
匹配变压器
空心线圈
调谐单元
调谐单元外形
ZPW-2000A无绝缘移频自动闭塞系统—系统构成
2.2 系统构成
ZPW-2000A无绝缘移频自动闭塞系统—系统构成
系统框图
ZPW-2000A无绝缘移频自动闭塞系统—系统构成
2.3 室外部分
1. 调谐区(JES—JES):调谐区按29m设计,设备包括调谐单元及空心 线圈,其参数保持“UM71”参数。功能是实现两相邻轨道电路电气隔离 。
ZPW-2000A无绝缘移频自动闭塞系统
ZPW-2000A无绝缘移频自动闭塞系统—项目综述
1.2 系统技术特点
1)充分肯定、保持UM71无绝缘轨道电路整体结构上的优势。 2)通过解决调谐区断轨检查,实现了轨道电路全程断轨检查。 3)减少了调谐区分路死区。 4)实现了对调谐单元断线故障的检查。 5)实现了对拍频干扰的防护。 6)通过系统参数优化,提高了轨道电路传输长度。 7)提高了机械绝缘节轨道电路传输长度,实现了与电气绝缘节 轨道电路等长传输。
2.4 室内部分
1. 发送器:用于产生高精度、高稳定移频信号源。系统采用N+1冗余设 计。故障时,通过FBJ的接点转至“+1”FS。 2. 接收器:接收器用于接收本主轨道电路信号,并在检查所属调谐区 短小轨道电路状态(XGJ、XGJH)条件下,动作本轨道电路的轨道 继电器(GJ)。另外,接收器还接收相邻区段小轨道电路的信号,向 相邻区段提供小轨道电路状态(XG、XGH)条件。接收器采用DSP 数字信号处理技术,将接收到的两种频率信号进行快速傅氏变换(FFT ),获得两种信号能量谱的分布,并进行判决。系统采用接收器成对双 机并联冗余方式。 3. 衰耗盘:用于实现主轨道电路、小轨道电路的调整。给出发送和接 收故障、轨道占用表示及发送、接收用+24电源电压、发送功出电压、 接收GJ、XG测试条件等。 4. 防雷模拟网络盘:电缆模拟网络设在室内,按0.5、0.5、1、2、2、 2×2km六段设计,用于对SPT电缆长度的补偿,电缆与电缆模拟网络补 偿长度之和为10km 。

ZPW-2000A型无绝缘介绍

ZPW-2000A型无绝缘介绍

• 系统防雷 系统防雷由室内、室外两部分构成: 室内防雷设在电缆模拟网络盘内,纵向为 低转移系数的防雷变压器,横向为带劣化 显示的压敏电阻。 室外横向防雷设在匹配变压器内,为压敏 电阻。纵向防雷设在空心线圈处,通过中 心抽头接地。
系统主要技术条件
• 发送器 低频频率:10.3+n×1.1Hz,n=0~17 即10.3Hz、11.4Hz、12.5Hz、13.6Hz、14.7Hz、 15.8Hz、16.9Hz、18Hz、19.1Hz、20.2Hz、21.3Hz、 22.4Hz、23.5Hz、24.6Hz、25.7Hz、26.8Hz、27.9Hz、 29Hz。 载频频率:(频偏:±11 Hz,输出功率:70W—负载 400 时)
主要技术特点
• 发送器和接收器均有较完善的检测功能, 发送器可实现“N+1”冗余,接收器可实现 双机互为冗余。发送、接收设备四种载频 频率通用。 • 调谐区按29m设计,设备包括调谐单元及空 心线圈,以实现两相邻轨道电路电气隔离。 • 机械绝缘节按载频分为1700、2000、2300、 2600Hz四种,与调谐单元并接而成。
• 轨道电路 分路灵敏度为0.15 ,分路残压小于等于 140mv(带内)。 轨道电路有三种情况,规定如下: 电气绝缘—电气绝缘:由空心线圈到空心 线圈; 电气绝缘—机械绝缘:由空心线圈到机械 绝缘; 机械绝缘—机械绝缘:由机械绝缘到机械 绝缘。
• 电气绝缘节及调谐单元
电气绝缘节长29米,在两端各设一个调谐单 元(BA)对于较低载频轨道电路(1700、 2000Hz)设置F1型调谐单元,反之,设置F2 型调谐单元。
主要技术特点
• 匹配变压器,一般条件下按0.3~1.0 1 .km道渣电阻设计,实现轨道电路与SPT 传输电缆的匹配连接。 • 补偿电容,根据通道参数并兼顾低道渣电 阻道床传输,选择电容器容量。使传输通 道趋于阻性,保证轨道电路具有良好传输 性能。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

ZPW—2000A无绝缘移频自动闭塞系统认识简述作者:张凯来源:《科技与创新》2014年第07期摘要:移频自动闭塞以移频轨道电路为基础,以钢轨作为传输通道传递信息。

移频自动闭塞抗干扰性能强,适用于电气化和非电气化区段。

ZPW-2000A型无绝缘移频自动闭塞具有轨道电路传输安全性、传输长度、系统可靠性、可维修性等特点。

ZPW-2000A型无绝缘移频自动闭塞轨道电路系统主要是由室外部分、室内部分和系统防雷三部分组成。

关键词:铁路信号;闭塞;移频;轨道电路中图分类号:U284.43 文献标识码:A 文章编号:2095-6835(2014)07-0002-02铁路信号是组织行车运行,保证行车安全,提高运输效率,传递信息,改善行车人员劳动条件的关键技术。

铁路信号在铁路现代化建设和国民经济发展中起着极其重要的作用。

当前,由于铁路运输已向着高速、高密和重载的方向发展,所以,铁路信号已成为实现运输管理自动化、列车运行自动控制和改善铁路员工劳动条件的重要技术手段。

铁路信号系统按其应用场所可分为车站信号控制系统、编组站调车控制系统、区间信号控制系统、铁路行车指挥控制系统和列车运行自动控制系统等。

区间信号自动控制是铁路区间信号闭塞、区段自动控制和远程控制技术的总称,是确保列车在区间内安全运行的技术之一。

1 行车闭塞法由于列车在线路上运行,不能以相互避让的方法避免迎面相撞,加之列车速度快、质量大,从开始制动到停车需要行走较长的距离,这就产生了后续列车追撞前行列车的可能。

闭塞设备是保证列车在区间内运行安全的设备,属于铁路区间信号的一种。

铁路线路以车站(线路所)为分界点划分为若干区间,区间的界限在单线上以两个车站的进站信号机柱的中心线为车站与区间的分界线,在双线或多线上,分别以各线路的进站信号机柱或站界标的中心线为车站与区间的分界线。

为了提高线路通过的能力,在自动闭塞区段又将一个区间划分为若干个闭塞分区,以同方向两架通过信号机作为闭塞分区的分界线。

为了保证列车在区间内的运行安全,列车由车站向区间发车时必须确认区间(分区)内没有列车,并要遵循一定的规律组织行车,以免发生列车正面冲突或追尾等事故。

这种按照一定规律组织列车在区间内运行的方法一般称之为行车闭塞法,简称闭塞。

闭塞制度在我国铁路上的运用和发展已有几十年。

1985年以前,我国铁路区间闭塞设备大量采用64D和64F型继电半自动闭塞。

继电半自动闭塞制式不论闭塞区间长短,只允许运行一列列车,因而它的效能受到很大限制。

当铁路的运量增大,每昼夜列车的运行对数超过一定限度时,半自动闭塞显然已不能满足运输的需要,自动闭塞成为了发展的方向。

自动闭塞经过了交流二元三位式的自动闭塞、交流计数电码自动闭塞、极性电充自动闭塞、极频自动闭塞和移频自动闭塞等几个阶段的发展。

2 移频自动闭塞移频自动闭塞是一种选用频率参数作为信息的制式,利用调制方法把规定的调制信号搬移到载频段并形成震荡,由上下边频构成交替变化的移频波形,其交替变化的速率就是低频信息的频率。

采用不同载频交叉来防护,采用避开的方法,站内将载频选在工频的偶次谐波上,区间选在奇次谐波上。

移频自动闭塞抗干扰性能强,适用于电气化和非电气化区段。

目前,为了保证行车安全,加强信号设备管理,检测信号设备的运用质量,必须要对发现的故障进行科学分析。

我国自行研制的新型移频自动闭塞系统ZPW-2000A已被广泛应用。

3 ZPW-2000A型无绝缘移频自动闭塞ZPW-2000A型无绝缘移频自动闭塞是在引进法国UM71无绝缘轨道电路技术、国产化的基础上,结合国情进行的技术再开发。

较之UM71、ZPW-2000A型无绝缘移频自动闭塞系统,它在轨道电路传输安全性、传输长度、系统可靠性、可维修性方面都有了很大的提升,同时,在结合国情提高技术性能价格比、降低工程造价方面也有了显著的提高。

ZPW-2000A型无绝缘移频自动闭塞轨道电路系统主要是由室外部分、室内部分和系统防雷三部分组成。

3.1 室外设备调谐区:长度为29 m,由调谐单元和空芯线圈组成,实现两相邻轨道电路电气隔离。

机械绝缘节:由机械绝缘节空芯线圈与调谐单元并接而成,其特性与电气绝缘节相同。

匹配变压器:在一般条件下,按1 Ω·km道碴电阻设计,实现轨道电路与SPT传输电缆的匹配连接。

补偿电容:根据通道参数兼顾低道碴电阻道床传输,考虑其容量,使传输通道趋于阻性,保证轨道电路良好的传输性能。

传输电缆:SPT型铁路信号数字电缆,线径Φ1.0 mm,一般条件下,电缆长度为10 km。

调谐区设备引接线:由3 600 mm、1 600 mm的钢包铜引接线构成,每一轨道区段各使用3根,用于BA,SVA设备与钢轨间的连接。

3.2 室内设备3.2.1 发送器该设备是用于产生高稳定、高精度的移频信号源,采用微电子器件构成的。

该设备考虑了在同一载频、同一低频控制条件下,双CPU电路的使用。

为了实现双CPU的自检、互检,两组CPU和一组用于产生FSK移频信号的可编程控制器各自采用了独立的石英晶体源。

发送设备的放大器均采用射极输出器方式构成,防止故障时功出电压的升高。

同时,该设备考虑了对移频载频、低频和幅度三个特征的检测。

两组CPU的检测结果符合要求时,以动态信号输出,通过“安全与门”控制执行环节——发送报警继电器(FBJ)将信号输出。

系统采用N+1冗余设计。

故障时,通过FBJ接点转至“+1”FS.3.2.2 接收器接收器主要是对主轨道电路移频信号进行解调,并配合与送电端相连接调谐区短小轨道电路的检查条件,设置动作轨道继电器。

它可以实现对与受电端相连接调谐区短小轨道电路移频信号的解调,给出短小轨道电路执行条件,将其送至相邻轨道的电路接收器。

同时,还可以检查轨道电路的完好情况,减少分路死区长度,还用接收门限控制实现对BA断线的检查。

接收器除了接收本主轨道电路频率信号外,还同时接收相邻区段小轨道电路的频率信号。

接收器采用DSP数字信号处理技术,将接收到的两种频率信号进行快速变换,并进行判决。

上述“延续段”信号由运行前方相邻轨道电路接收器处理,并将处理结果形成小轨道电路轨道继电器执行条件(XG,XGH)送至本轨道电路接收器,作为轨道继电器(GJ)励磁的必要检查条件(XGJ,XGJH)之一。

综上所述,接收器用于接收主轨道电路信号,并在检查所属调谐区短小轨道电路状态(XGJ,XGJH)的条件下,动作本轨道电路的轨道继电器(GJ)。

另外,接收器还同时接收邻段所属调谐区小轨道电路信号,向相邻区段提供小轨道电路状态(XG,XGH)条件。

3.2.3 衰耗盘它主要用于实现主轨道电路、小轨道电路的调整。

它会给出发送接收故障、轨道占用表示和发送、接收用+24 V电源电压、发送供出电压、接收GJ和XGJ的测试条件。

3.2.4 电缆模拟网络该网络设在室内,按0.5 km、0.5 km、1 km、2 km、2 km、2×2 km六段设计,用于对SPT电缆的补偿,总补偿距离为10 km。

3.3 系统防雷部分发送端、接受端的防雷:设于模拟网络盘内,实现对从电缆引入雷电冲击的横向、纵向防护;站内电码化设计单独的防雷单元。

对从钢轨引入的雷电冲击进行保护:横向防护设在调谐单元、匹配变压器两端;纵向防护在空心线圈中心线不接地的条件下,防雷单元设在中心线与地线间。

4 系统原理ZPW-2000A型无绝缘移频轨道电路系统与UM71无绝缘轨道电路一样,采用电气绝缘节来实现相邻轨道电路区段的隔离。

电气绝缘节长度改进为29 m,由空心线圈、29 m长钢轨和调谐单元构成。

调谐区对本区段频率呈现极阻抗,有利于本区段信号的传输和接收;对相邻区段频率信号呈现零阻抗,可靠地短路相邻区段信号,防止越区传输,这样便实现了相邻区段信号的电气绝缘。

同时,为了解决全程断轨检查,在调谐区内增加了小轨道电路。

ZPW-2000A型无绝缘移频轨道电路将轨道电路分为主轨道电路和调谐区小轨道电路两个部分,并将短小轨道电路视为列车运行前方主轨道电路所属的“延续段”。

主轨道电路的发送器由编码条件控制产生,表示不同含义的低频调制移频信号。

该信号经电缆通道(实际电缆和模拟电缆)传给匹配变压器和调谐单元,因为钢轨是无绝缘的,该信号既向主轨道传送,也向小轨道传送。

主轨道信号经钢轨送到轨道电路受电端,然后经调谐单元、匹配变压器、电缆通道,将信号传至本区段接收器。

调谐区小轨道信号由运行前方相邻轨道电路接收器处理,并将处理结果形成小轨道电路轨道继电器执行条件通过(XG,XGH)送至本轨道电路接收器,作为轨道继电器(GJ)励磁的必要检查条件之一。

本区段接收器同时接收到主轨道移频信号和小轨道电路继电器执行条件,判决无误后驱动轨道电路继电器吸起,并由此来判断区段的空闲和占用情况。

5 该系统的特点ZPW-2000A型无绝缘移频自动闭塞系统具有多方面的特点:①保持UM71无绝缘轨道电路整体结构上的优势;②解决了调谐区断轨检查的问题,实现轨道电路全程断轨检查;③减少调谐区分路死区;④实现对调谐单元断线故障的检查;⑤实现对拍频干扰的防护;⑥通过优化系统参数,提高轨道电路的传输长度;⑦提高机械绝缘节轨道电路的传输长度,实现与电气绝缘节轨道电路的传输;⑧轨道电路调整按固定轨道电路长度与允许最小道碴电阻方式进行,提高轨道电路工作的稳定性;⑨用SPT国产铁路数字信号电缆取代法国ZC03电缆,减小铜芯线径,减少备用芯组,加大传输距离,提高系统技术性能价格比,降低工程造价;⑩采用长钢包铜引接线取代75 mm2铜引接线,便于维修;○11系统中的发送器采用“N+1”冗余,接收器采用成对双机并联运用,以提高系统的可靠性,大幅度减小单一电子设备故障对系统正常工作造成的影响。

6 结束语ZPW-2000A无绝缘移频自动闭塞系统无论在电气还是在机械绝缘节轨道电路中,比法国UM71轨道电路都有更长的传输距离,在满足了我国0.25~1.5 Ω·km各种道碴电阻道床传输、20~30 km的站间距离和采用国产SPT数字信号电缆等方面要求的同时,还使系统性能价格比大幅度提高。

ZPW-2000无绝缘移频自动闭塞系统满足了“机车信号作为主体信号”的要求,为今后铁路进一步安全提速创造了必备条件。

通过查阅大量的资料,学到了很多新的、有用的知识。

在对ZPW-2000A无绝缘移频自动闭塞系统的工程设计有了全面了解的同时,也对ZPW-2000A的系统构成有了更深入的认识,基本掌握了ZPW-2000A工程设计的思路、方法和步骤,并让笔者体会到了理论学习和实际工程设计的差异,同时,也培养了严谨、认真、细致的工作态度。

这些都为笔者今后的工作打下良好的基础。

〔编辑:白洁〕。

相关文档
最新文档