xx站下行离去区段ZPW-2000A移频自动闭塞工程设计

合集下载

毕业设计:ZPW-2000A型无绝缘移频自动闭塞监测网络设计(终稿)

毕业设计:ZPW-2000A型无绝缘移频自动闭塞监测网络设计(终稿)

毕业设计:ZPW-2000A型无绝缘移频自动闭塞监测网络设计(终稿)1 绪论为适应铁路运输的需要,实现我国铁路的跨越式发展,满足铁路运输高密度、高速度的发展,铁路电务装备大量引入新技术、新设备,我国铁路在对自闭系统的技术更新和研发上,将发展无绝缘移频自动闭塞的改造确定为我国铁路自闭的技术发展重点。

在众多制式的自动闭塞系统中,ZPW-2000A系统以其高可靠和适应性广等优点,能为实现机车信号主体化创造了必备条件,成为我国铁路自动闭塞系统轨道电路的首选。

ZPW-2000A无绝缘轨道电路由较为完备的轨道电路传输安全性技术及优化的传输系统参数构成。

国家知识产权局已受理了有关“钢轨断轨检查”、“多路移频信号接收器”((等8项专利,成为我国目前安全性高、传输性能好、具有自主知识产权的一种先进自动闭塞制式,为“机车信号作为主体信号”创造了必备的安全基础条件。

ZPW-2000A型无绝缘移频自动闭塞在轨道电路传输安全性、传输长度、系统可靠性、可维修性以及结合国情提高技术性能价格比、降低工程造价上都比其他制式的自动闭塞轨道电路有了显著提高。

ZPW-2000A型无绝缘移频自动闭塞,每个闭塞分区分别对应发送和接收设备以及检测设备,在全程检查轨道状态的同时向机车提供多种信息。

为满足机车在站内能通过轨道接收到机车信号信息的要求,站内轨道电路实施逐段预先发码的叠加方式闭环电码化用于给机车信号提供可靠的地面信息,保证行车安全和提高运输能力2-1无绝缘移频轨道电路系统构成示意图分 1)调谐区(JES―JES)按29m设计,在两端各设一个调谐单元,实现两相邻轨道电路电气隔离。

2)机械绝缘节由“机械绝缘节空心线圈”与调谐单元并接而成,ZPW-2000A系统绝缘节分为“电气-电气”(JES-JES)和“电气-机械”(JES-BA//SVA)。

这两种绝缘节结构电气性能相同。

空心线圈的作用是逐段平衡两钢轨的牵引电流;实现上下行线路间的等电位连接;改善电气绝缘节的Q值,保证工作稳定性。

毕业设计(论文)-zpw-2000a移频自动闭塞工程设计和设备维护[管理资料]

毕业设计(论文)-zpw-2000a移频自动闭塞工程设计和设备维护[管理资料]

毕业设计(论文)中文题目:ZPW-2000A移频自动闭塞工程设计和设备维护学院: 远程与继续教育学院专业:自动化姓名:学号:指导教师:年月日北京交通大学毕业设计(论文)成绩评议北京交通大学毕业设计(论文)任务书本任务书下达给:2012春级科自动化专业学生王帅设计(论文)题目:一、设计(论述)内容:完成对X1LQG、7195G、7209G自动闭塞区间工程设计的部分图纸。

分别有:区间信号平面图、闭塞分区电路图、区间N+1电路图、移频柜、综合柜布置图、移频柜零层配线表、组合架设备布置图,设备主要采用ZPW-2000A无绝缘自动闭塞系统。

二、基本要求:符合铁路信号工程设计的各种规范和标准,利用调研资料,要求采用计算机绘图,论文格式符合规范要求,条理清楚,重点突出。

要充分发挥个人的主动性和造性,学以致用,更好运用学习到的知识发挥到工作中设备的日常维护中。

在老师的指导下,完成ZPW—2000A 移频自动闭塞工程设计和设备维护。

三、重点研究的问题:通过本次毕业论文设计,熟悉ZPW—2000A移频自动闭塞系统,了解工程设计的规范、具体内容、方法、步骤等。

在设计中充分运用在大学中学到的相关知识,将理论与实际相结合,不断的补充欠缺的专业知识,努力提高理论和实践能力,为今后更快的进入工作状态,打下坚实的基础四、主要技术指标:1、ZPW-2000A轨道电路载频类型有 8 种。

2、、、、3、ZPW-2000A无绝缘移频自动闭塞系统发送器能产生 18种低频信号。

4、站内道岔区段轨道电路采用“分支并联”一送一受轨道电路结构,以实现道岔弯股的分路检查防护和车载信号信息的连续性传输。

5、ZPW-2000A轨道,在最不利条件下,载频2600Hz的轨道电路任一处轨面机车信号短路电流不小于450mA6、ZPW-2000A无绝缘轨道电路有主轨道和小轨道两部分组成。

当长度超过300m时,主轨道需要加装补偿电容进行补偿7、轨道电路在调整状态时,轨出1电压应不小于240mV。

ZPW-2000A无绝缘移频自动闭塞系统原理

ZPW-2000A无绝缘移频自动闭塞系统原理
关键词 : Z P W一 2 0 0 0 A; 自动 闭塞 ; 维 护
型号为 Z P W一 2 0 0 0 A的无绝缘移频 自动闭塞是一种从法 国引进的 3 . 1 调谐 区断轨检查 只能无绝缘轨道 电路技术 , 但是在我国呈现出国产化的特点 , 并且在满 3 . 2 减小诃谐区 0 . 1 5 n 分路死 区 足我 国基本国情的基础上, 重新进行研发的一种技术。 这一技术的特点 3 . 3 调谐单元断线检查 在价格、 技术性能以及很多方面都具有—定的优势。 并目 获得了一系列 3 . 4 轨道 电路全程断轨检查 的技术专利, 本文重点对这方面的问题进行研究。 3 . 5 钢轨对地不平衡对传输安全的影响及防护 1 Z P W一 2 0 0 0 A型无绝缘移频自动闭塞系统技术特点 4故障查找流程 1 . 1 在原有无绝缘轨道电路整体结构的基础上予 以了肯定 , 并且充 发生故障以后, 首先要对故障加 以 判断, 厘清产生的故障是在室内 还是在室外 , 只有确定 了位置 , 才能进一步 的处理。故障的查找流程主 分保留了相关的优: 势。 1 . 2可以满足轨道电路全程诊断的要求。 要分为三步, 一是相对于发送端而言 , 要按照一定 的顺序进行检查 , 先 是检查室外发送器的功出电压 , 然后检查组合架, 紧接着对区间综合柜 1 . 3 避免出现调谐分录死区段的问题 。 加以检查 ; 二是相对于接收端而言 , 先是对室 内接收输入进行检查 , 然 1 4可以X  ̄ i  ̄ J i 皆 单元断线产生的故障加以进一步的检查。 后检查衰耗盘 以及组合架 , 最后检查区间综合柜; 三是相对于室外设备 1 . 5 降低了试验队拍频产生的干扰 , 并且加以有效的保护。 先检查电缆盒以及发送端相互匹配的变压器以及调谐单元 , 紧接 1 . 6 在相关系统参数的基础上加 以 进一步的优化 , 满足轨道电 路相 而言, 着检查钢轨传输通道 ,然后检查与受电端相互匹配的变压器与协调单 关传输长度 的要求。 l - 7 对于 1 n・ k m标准道碴电阻以及低道碴电阻传输所提出的长度 元 , 最后再对相关电缆盒进行仔细的检查, 找出故障的源头。 般 隋况下 , 室外设备故障 , 无论处理人员先到达送 电端还是受 电 要求均能够满足 , 并目 . 符合稳定 陛的要求。 先用表测量轨面 , 看是否有电压。若有电压 , 则按电流流动方向顺序 1 . 8 选用我国 自主生产的电缆 , 将法国的电缆加 以取代 , 将铜芯的 端 , 线径予以进一步的减小 , 同时也降低备用芯组的使用 , 扩大传输之间的 依次检查测量 , 检查到有 电压和无 电压之间就是故障点。若没有电压 , 距离 , 从而进一步提高系统在技术以及价格等方面的比例 , 解决工程造 则要首先判断是开路故障还是混线故障 , 此时 , 如果先到送 电端就应顺 序检查送电钢丝绳 、 匹配变压器 、 电缆接口等处 , 检查到有电压和无 电 价过高的问题。 1 . 9 选择长钢包铜引接线 的目的在于可以让工务维修变得更加便 压之间就是故障点 ; 如果先到受电端就应迅速检查受 电钢丝绳 、 匹配变 捷。 压器等看是否有混线的可能 , 若无异常, 就应快速 向送电方向移动检查 电容等 , 看是否有造成混线的处所。 1 . 1 0 为了将系统的可靠性予以进一步提升 , 主要运用“ N +1 ” 冗余 轨面 、 发射器以及双机并联的接收器。 室外匹配单元故障 , 一般发生在防雷元件和 电容被击穿 , 如果检查 确认是防雷元件被击穿,为压缩故障延时可临时将电缆线跳过防雷元 1 . 1 1 具有完整的检测和故障报警功能。 2 z P w一 2 0 0 0 A型绝缘轨道 电路系统构成 件接 人设备。 ’ 2 . 1 室外部分。 2 . 1 . 1 调谐区。 按2 9 m设计 , 实现两相邻轨道电路电 与一般的轨道电路存在一定 的差异性 ,在对 Z P W一 2 0 0 0 A产生的 对于本区段的主轨以及小轨具有较高的要求 , 需要保 气隔离 , 由空心线圈、 调谐匹配单元( 调谐单元和匹配变压器) 组成。 2 . 1 . 2 故障进行处理时, 机械绝缘节。 由机械绝缘节空线圈与调匹单元并接构成。 2 . 1 。 3 匹配变压 持在正常工作的状态下,相邻区段的小轨也需要处在正常工作的状态 当在两个区段都出现红光带时 , 很有可能是因为在两个区段的中间 器。按 0 . 2 5 一 l D Q・ k m道碴电阻范围设计 , 实现轨道电路与 S P T 传输电 下 , 针对这一问题的出现 , 应该先在相邻区段之间的 缆的匹配连接。 2 . 1 . 4补偿电容。 使传输通道趋于阻性 , 在轨道电路中, 电 公共部分出现了问题 , 容按等间距法设置, 保证轨道电路良好的传输性能。 2 . 1 . 5传输电缆。 S F F 衰耗盘 E 对输 出电压进行测试, 观察输出电压值是否高出 4 0 0 mV , 如果 型数字信号电缆, 中1 . 0 mm, 总长一般 1 0 k n, i 也可按 1 2 s . k m或者 1 5 k n。 i 是小于这个数值 , 那么就说明是主轨的问题 , 紧接着对相邻区段间的小 观察结果, 如果结果低于 1 0 0 m V, 那么就说 明是 2 . 1 . 6调谐区设备引接线。 采用 3 6 0 0 mm 、 1 6 0 0 mm钢包铜引接线 , 用于调 轨输出电压进行测量 , 谐 单元 、空心 线圈 、机械 节空心线圈等设备 与钢轨 的链接 ,也有 小轨 的问题。 当其 中的—个区段有红光带的现象发生时 , 那么很有可能 4 0 0 0 m m、 2 0 0 0 mm设计。 2 . 1 . 7扼流变压器 。 在每—个轨道电路起到平衡 是相邻后段的小轨存在异常的情况 ,这样就要x C d , 轨的输出电压进行 测试 , 当检测结果低于 1 0 0 m V时, 那么可以肯定是小轨的原因。还有一 次牵引电流的作用。 也就是在室外的主轨道 中有一端电容 比较容易丢失 , 2 . 2室内部分。 2 . 2 . 1 电缆模拟网络。 按0 5 . 、 0 5、 . 1 、 2 . 2 、 2 * 2 六段i 殳汁, 种是特殊 的情况 , 那么小轨电压会 出现低于 7 0 m V 用于对电缆 的补偿 , 总补偿距离为 1 0 k m 。2 . 2 . 2发送器 。 产生高精度、 高 还有可能出现电容塞钉头松动的迹象, 稳定移频信号源, 采用 N + I 冗余 十, 故障时通过发送报警继电器接点 的情况 , 也就会因此造成红光带的出现。 结束 语 转至 + 1 发送。 2 . 2 . 3 接收器。接收器主要的作用就是对主轨道发出的电 本文主要对 Z P W一 2 0 0 0 A故障的相关问题进行 了研究 ,探讨故障 路信号进行接收 , 当满足相关状态的 ̄ , t C T, 还能够对相邻 区 段的信号 进行接收 , 为其提供相关的小轨道电路状态条件 。 一般 情况下的接收器 查找的程序等问题 , 希望对今后的工作提供一定的帮助 。 参考文献 都采用的是双机并联的方式加以运行 。 2 . 2 . 4衰耗盒。 用于实现主轨道电 1 高速铁路管理人 员和专业技术人 员培训教材—Z P w- 2 0 0 0 A型无绝 路、 小轨道电路的调整。给出发送接收故障、 轨道 占用表示及发送 、 接收 … 用+ 2 4 V电源 电压 、 发送功出电压 、 接收 G J 、 xG J 测试条件。 缘移频 自动闭塞 系统 邮 . 北京: 中国铁道 出版社. 2 ] Z P W- 2 0 0 0 A型 无 绝缘 移频 自动 闭塞 系统技 术 综 述阴. 北 京全 路 通信 2 . 3系统防雷。室内: 发送端、 接收端的站防雷。实现对从电缆引入 [ 雷电冲击的横向、 纵向防护 , 并满足电缆绝缘在线测试。室外 : 对从钢轨 信 号研 究设计 院. 3 ] Z P W- 2 0 0 0 A移频 自动闭塞系统原理、 维护和故障��

xx站下行离去区段ZPW-2000A移频自动闭塞工程设计毕业答辩

xx站下行离去区段ZPW-2000A移频自动闭塞工程设计毕业答辩

区间设备布置图和配线表
区间组合架设备布置图设计方案 每个闭塞分区用1个组合,有3个区间组合架QZ1、QZ2、 QZ3,每个区间组合架存在零层、5、4、3、2和1等六个单 元。3个零层均放置D1~D13,每种组合都有其固定的继电 器类型。 本次设计中QZ1的5、4、3、2层分别对应为X1LQG、9915G 、9927G、9937G的组合,依照组合类型的选用原则,故依 次选用组合类型为1LQ组合、L组合、L组合、L(JF)组合; QZ2的5、4、2、1层分别对应为9950G、9940G、9928G、 9918G的组合,其组合类型依次为L(F)组合、L组合、LU组 合、U组合。因为此次设计中上下行各有四个闭塞分区, 所以QZ1-1、QZ2-1和QZ3均空置。
区间设备布置图和配线表
综合柜零层配线表
零层D1~D30为18柱端子板,室外电缆由此引入,D31、D32分别为防雷 接地板条(FLE)和电缆接地铜板条(DLE),均为带24个M6-φ14螺栓端 子和一个M10-φ23螺栓端子的铜板条。其中D1~D5为区间移频发送、 接收的室外电缆,D6~D10为区间移频发送、接收的区间移Байду номын сангаас组合架侧 面端子,D11~D18为区间信号机点灯的室外电缆,D19~D20为自动闭塞 方向电路、电话线的室外电缆,D21~D26为站间联系电路的室外电缆 ,D31 用于防雷接地,D32用于电缆接地。
区间设备布置图和配线表
点灯隔离变压器侧面配线表 区间综合柜的1~4层安装点灯隔离变压器。本次设计中艳 锋站区间综合柜的第3层安装下行方向的通过信号机,第1 层安装上行方向的通过信号机。第3层安装下行方向的 9915、9927、9937三架通过信号机,第1层安装上行方向 的9950、9940、9928、9918四架通过信号机。由于9915信 号机所在的组合位置是QZ1-4,所以它使用的点灯隔离变 压器侧面端子是QZ1-404-15和QZ1-405-15;9937信号机所 在的组合位置是QZ2-2,所以它使用的点灯隔离变压器侧 面端子是QZ1-204-15和QZ1-205-15;其它信号机的点灯隔 离变压器侧面端子配线同理配置。

ZPW-2000A型移频自动闭塞

ZPW-2000A型移频自动闭塞
低频调制信号中包含地面信号和机车信号的控制信息,所以需要按 照区间信号显示方式和机车信号的种类多少进行合理设置。
对于调频常数的选择,调频常数的值越大,移频信号的频谱能量越 分散,带宽也就越宽,边频含的能量越多,抗干扰性能越强;调频常数 的值越小,移频信号的频谱能量越集中,带宽越窄,边频所含的能量越 少,抗干扰性能越弱。所以在保证带宽合适的前提下应选择尽可能大的 调频常数。通过计算和实验,发现调频常数为6时比较合理。另外,为 使信息与信息之间有效区分,调制信号频率不能太低,太低LC选频放 大器制作困难。所以ZPW-2000A型移频自动闭塞系统的低频调制信号 频率选择为10.3+1.1n(Hz),n=0~17,共18个频率,包含18种信息, 各频率分别为 :
zpw2000a型无绝缘移频轨道电路将轨道电路分为主轨道电路和调谐区小轨道电路两部分并将短小轨道电路视为列车运行前方住轨道电路的所属延续段主轨道电路的发送器由编码条件控制产生丌同含义的低频调制的移频信号该信号经电缆通道传给匹配变压器及调谐单元因为钢轨是无绝缘的该信号既向主轨道传送也向小轨道传送
ZPW-2000A型移频自动闭塞系统简介
步长Δ 设置电容,以获得最佳传输效果。
补偿电容规格及技术指标:
1700Hz:55μ F±5%(轨道电路长度250~1450m) 2000Hz:50μ F±5%(轨道电路长度250~1400m) 2300Hz:46μ F±5%(轨道电路长度250~1350m) 2600Hz:40μ F±5%(轨道电路长度250~1350m)
四、频率参数的选择
1、干扰的产生
一方面两根钢轨各自对地漏电阻以及其自身阻抗不一样而使其 上流过的牵引电流不完全相等,这在二流变压器的线圈中所产生的 磁通不能抵消,从而牵引电流不平衡会对信号产生干扰电压。另一 方面,电力牵引电流是经整流过后的非正弦波,其中含有大量的谐 波成分,从而会对信号产生谐波干扰。

ZPW-2000A无绝缘移频自动闭塞系统及故障检修毕业设计论文

ZPW-2000A无绝缘移频自动闭塞系统及故障检修毕业设计论文

论文(初稿)ZPW-2000A无绝缘移频自动闭塞系统及故障检修学生姓名: 王婷学号:1132404专业班级:铁道通信信号311615班指导教师:ZPW-2000A无绝缘移频自动闭塞系统及故障检修摘要随着铁路的提速,移频自动闭塞系统在控制列车行车安全方面起到越来越重要的作用,其中ZPW-2000A型无绝缘移频轨道电路,是在法国UM71无绝缘移频轨道电路技术引进及国产化基础上,于2000年开始以结合国情而进行以的二次开发。

本文首先针对zpw-2000无绝缘轨道电路的介绍和主要特点,结合实际案例分析主要的处理方法。

ZPW-2000A-2000A型无绝缘移频自动闭塞设备的故障范围,进行了探讨.ZPW-2000 型自动闭塞是一种具有国际先进水平的新型自动闭塞,它对于保证区间行车安全,提高区段通过能力,起着非常显著的作用。

ZPW-2000 移频自动闭塞有着诸多优点,它克服了UM71 系统在传输安全性和传输长度上存在的问题,解决了轨道电路全程断轨检查,调谐区死区长度,调谐单元断线检查,拍频干扰防护等技术难题。

延长了轨道电路长度。

采用单片机和数字信号处理技术,提高了抗干扰能力。

本设计对ZPW-2000 型无绝缘轨道电路的系统结构组成,系统的电路原理,系统测试和轨道电路的调整以及自动闭塞系统在站间站内的应用都做出了详细的说明,重点设计了ZPW-2000 系统的的内部电路结构,包括电气绝缘节,发送器,接收器,衰耗盘,防雷模拟网络盘,匹配变压器,补偿电容等,文章主要分别设计了他们的内部各个模块的电路结构,阐述了其作用和构成原理。

关键词:ZPW-2000;移频;自动闭塞论文(初稿)目录摘要 (II)引言 (1)1 ZPW-2000A无绝缘移频自动闭塞系统概述 (2)1.1 ZPW-2000A 概述 (2)1.2 ZPW-2000A型无绝缘轨道电路系统硬件设置 (2)室外部分系统构成 (2)1.2.2 室内部分系统构成 (5)1.2.3 电路原理介绍 (8)1.2.4 系统防雷 (9)2.设备介绍 (10)发送器 (10)接收器 (10)衰耗盘 (10)电缆模拟网络 (10)机械绝缘节空芯线圈 (11)衰耗盘 (11)防雷模拟网络盘 (11)匹配变压器 (11)调谐区用钢包铜引接线 (12)补偿电容 (12)数字电缆 (12)3.ZPW-2000A无绝缘轨道电路的特点 (13)主要技术特点 (13)主要技术条件 (13)3.2,1 环境条件 (13)3.2.2 发送器 (13)3.2.3 接收器 (14)3.2.4 工作电源 (14)3.2.5 轨道电路 (14)3.2.6 系统冗余方式 (15)4 故障分析及处理 (16)ZPW-2000A无绝缘移频自动闭塞系统及故障检修发送器本身故障的处理 (16)发送器插片接触不良 (16)衰耗盘内部开路故障 (16)相邻区段衰耗盘故障 (17)衰耗盘故障一 (17)发送回路电缆模拟网络盘内部开路故障 (17)发送回路电缆模拟网络盘内部短路故障 (18)发送端室外电缆混线故障 (18)发送端室外电缆断线故障 (19)发送调谐单元与匹配单元连接线接触不良 (19)点灯电路电缆混线故障 (20)电容失效引起的轨道电路故障 (20)补装电容后未对轨道电路重新调整引起的故障 (21)站联电缆断线故障 (21)结论 (23)致谢 (24)参考文献 (25)论文(初稿)引言ZPW-2000A型无绝缘移频自动闭塞系统是在法国UM71无绝缘轨道电路技术引进、国产化基础上,结合国情进行的技术再开发。

ZPW-2000A无绝缘移频自动闭塞系统

ZPW-2000A无绝缘移频自动闭塞系统
5. 传输电缆:采用国产SPT铁路信号数字电缆,线径为Φ 1.0mm,一般 条件下,电缆长度按10km考虑。根据工程需要,传输电缆长度可按12.5 km、15 km设计。
6. 调谐区设备引接线:采用3600mm、1600mm钢包铜引接线构成。用于 BA、SVA、SVA’等设备与钢轨间的连接。
ZPW-2000A无绝缘移频自动闭塞系统—系统构成
匹配变压器
空心线圈
调谐单元
调谐单元外形
ZPW-2000A无绝缘移频自动闭塞系统—系统构成
2.2 系统构成
ZPW-2000A无绝缘移频自动闭塞系统—系统构成
系统框图
ZPW-2000A无绝缘移频自动闭塞系统—系统构成
2.3 室外部分
1. 调谐区(JES—JES):调谐区按29m设计,设备包括调谐单元及空心 线圈,其参数保持“UM71”参数。功能是实现两相邻轨道电路电气隔离 。
ZPW-2000A无绝缘移频自动闭塞系统
ZPW-2000A无绝缘移频自动闭塞系统—项目综述
1.2 系统技术特点
1)充分肯定、保持UM71无绝缘轨道电路整体结构上的优势。 2)通过解决调谐区断轨检查,实现了轨道电路全程断轨检查。 3)减少了调谐区分路死区。 4)实现了对调谐单元断线故障的检查。 5)实现了对拍频干扰的防护。 6)通过系统参数优化,提高了轨道电路传输长度。 7)提高了机械绝缘节轨道电路传输长度,实现了与电气绝缘节 轨道电路等长传输。
2.4 室内部分
1. 发送器:用于产生高精度、高稳定移频信号源。系统采用N+1冗余设 计。故障时,通过FBJ的接点转至“+1”FS。 2. 接收器:接收器用于接收本主轨道电路信号,并在检查所属调谐区 短小轨道电路状态(XGJ、XGJH)条件下,动作本轨道电路的轨道 继电器(GJ)。另外,接收器还接收相邻区段小轨道电路的信号,向 相邻区段提供小轨道电路状态(XG、XGH)条件。接收器采用DSP 数字信号处理技术,将接收到的两种频率信号进行快速傅氏变换(FFT ),获得两种信号能量谱的分布,并进行判决。系统采用接收器成对双 机并联冗余方式。 3. 衰耗盘:用于实现主轨道电路、小轨道电路的调整。给出发送和接 收故障、轨道占用表示及发送、接收用+24电源电压、发送功出电压、 接收GJ、XG测试条件等。 4. 防雷模拟网络盘:电缆模拟网络设在室内,按0.5、0.5、1、2、2、 2×2km六段设计,用于对SPT电缆长度的补偿,电缆与电缆模拟网络补 偿长度之和为10km 。

ZPW-2000A型无绝缘移频自动闭塞设备毕业论文

ZPW-2000A型无绝缘移频自动闭塞设备毕业论文

第1章绪论我国铁路正向重载、高速和高密度方向发展,原有的铁路信号已不适应发展需要,为适应铁路运输的需要,实现“跨越式发展”的目标,铁道部确定了无绝缘轨道电路作为铁路自闭的发展方向。

ZPW-2000A型无绝缘移频自动闭塞设备是在继承法国UM71系统设备和WG-21A型设备优点的基础上,结合国情通过优化传输参数达到提高系统安全性、系统传输性能、系统可靠性及降低工程造价的目的。

因此,ZPW-2000A型以其高可靠性、优良性成为目前我国铁路自闭设备的“领头军”,在国内进行推广使用。

天津电务段已于2005年5月在天西—杨柳青间开通使用了该设备,对其在现场闭塞分区的应用情况,包括设备间的电路连接、低频信息的发送条件、发送的低频含义、区间通过信号机的点灯条件、机车信号的信息定义、参数测试等内容,针对这些应用问题展开分析,对推广使用该设备具有一定的现实意义。

第2章几种移频制式轨道电路的对比1、绝缘节、载频、低频、频偏对比2、可靠性、安全性、抗干扰性、室内测试系统对比第3章ZPW-2000A型无绝缘移频自动闭塞的特点1、设备简况ZPW-2000A型无绝缘轨道电路,是在法国UM71无绝缘轨道电路技术引进及国产化基础上,结合国情进行提高系统安全性、系统传输性能及系统可靠性的技术再开发。

前者较后者在轨道电路传输安全性、传输长度、系统可靠性以及结合国情提高技术性能价格比、降低工程造价上都有了提高。

ZPW-2000A型无绝缘轨道电路系统,与UM71无绝缘轨道电路一样采用电气绝缘节来实现相邻轨道电路区段的隔离。

电气绝缘节长度改进为29m,电气绝缘节由空芯线圈、29m长钢轨和调谐单元构成。

调谐区对于本区段频率呈现极阻抗,利于本区段信号的传输及接收,对于相邻区段频率信号呈现零阻抗,可靠地短路相邻区段信号,防止了越区传输,实现了相邻区段信号的电气绝缘。

同时为了解决全程断轨检查,在调谐区内增加了小轨道电路。

ZPW-2000A型无绝缘轨道电路分为主轨道电路和调谐区小轨道电路两部分,小轨道电路视为列车运行前方主轨道电路的所属“延续段”。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

摘要ZPW-2000A型无绝缘移频自动闭塞是在法国UM71无绝缘轨道电路技术引进、国产化基础上,结合国情进行自主研发的技术产品。

目前,铁路信号正向着信息化、智能化和综合化的方向发展。

ZPW-2000A型无绝缘移频自动闭塞系统不仅高效、经济、可靠,而且更重要的是它符合故障—安全原则。

在本次设计过程中,本人通过对ZPW-2000A型无绝缘移频自动闭塞系统的设计,达到了基本掌握ZPW-2000A型无绝缘移频自动闭塞系统设计的方法。

本论文详细介绍了XX站-XX站X1LQG、9915G和9937G闭塞分区的工程设计过程,且绘制出了相关的图纸。

图纸部分包括区间信号平面布置图,下行分界点9937G闭塞分区电路图、下行一离去X1LQG闭塞分区电路图和下行二离去9915G闭塞分区电路图,区间移频柜、综合柜设备布置图,综合柜零层配线表和点灯隔离变压器侧面配线布置图,站间联系电路(三),车站结合电路图等,并在论文中对ZPW-2000A系统的设备和技术条件以及原理等进行了系统的分析和论述。

随着铁路信号技术的迅速发展,ZPW-2000A型无绝缘轨道电路在铁路信号系统中得到了广泛应用,为今后铁路进一步安全提速创造了必备条件。

关键词:工程设计;轨道电路;无绝缘;自动闭塞AbstractZPW-2000A jointless frequency-shift automatic block is the technology pruducts of independent research and development based on the technology imporing and localization of French UM71 jointless track circuit. At present, the railway signal is developing toward information, intelligence and integration direction. ZPW-2000A jointless frequency-shift automatic block system is not only efficient, economic and reliable, but also more importantly, it is consistent with failure-safety principle.In this engineering design, I master the way of design ZPW-2000A jointless frequency shift automatic block system through designing the ZPW-2000A jointless frequency-shift automatic block system. This thesis introduces process of XX to XX station’s X1LQG, 9915G and 9937G blocks’ engineering designs systematically, and the draws telated pictures. The elements of the design drawings include signal plane arrangement diagram, down section demarcation point 9937G block section’s track circuit diagram, down first departure section XILQG block section’s track circuit diagram, down second departure section 9915G block section track circuit diagram,section frequency-shift cabinets, section integrated cabinets and combination cabinets equipments arrangement diagrams, integrated cabinets zero-layer distribution table and light isolating transformers side distribution table, relation circuit between stations diagram (three), station combine circuit diagram and so on. This paper systematically analyses and expounds the equipments, technical conditions and principle of ZPW-2000A system.With the rapid development of the railway signal technology, ZPW-2000A jointless track circuits have been widely applied in the railway signal system, and create necessary conditions for improving transportation management speed safety with the future railway.Key Words: Engineering design, Track circuits, Jointless, Automatic block目录摘要 (I)Abstract (II)目录 (III)1 区间信号平面布置图设计 (1)1.1 区间通过信号机布置原则 (1)1.2 区间信号机及闭塞分区长度的命名 (1)1.2.1 区间信号机的命名 (1)1.2.2 闭塞分区的长度及命名 (1)1.3 载频配置原则 (2)1.4 绝缘节的设置 (2)2 区间设备布置图和配线表 (3)2.1 区间移频柜设备布置图 (3)2.1.1 区间移频柜的组成及排列要求 (3)2.1.2 区间移频柜设备布置图设计方案 (3)2.2 区间组合架设备布置图及组合继电器类型表 (4)2.2.1 组合架设备组成及组合继电器类型 (4)2.2.2 区间组合架设备布置图设计方案 (4)2.3 区间综合柜设备布置图 (4)2.3.1 综合柜的组成 (4)2.3.2 区间综合柜设备布置图设计方案 (5)2.4 综合柜零层配线表及点灯隔离变压器侧面配线表 (5)2.4.1 综合柜零层配线表 (5)2.4.2 点灯隔离变压器侧面配线表 (5)3 区间闭塞分区电路图设计 (7)3.1 下行一离去闭塞分区电路图设计 (7)3.1.1 下行一离去编码电路 (7)3.1.2 下行一离去小轨道电路接入条件 (8)3.2 下行二离去闭塞分区电路图设计 (8)3.2.1 下行二离去编码电路 (8)3.2.2 下行二离去小轨道电路接入条件 (9)3.3 下行分界点闭塞分区电路图设计 (10)3.3.1 下行分界点编码电路 (10)3.3.2 下行分界点小轨道电路接入条件 (11)3.4 信号机点灯电路 (11)3.5 红灯转移电路 (12)4 下行N+1冗余电路图 (13)4.1 低频编码切换电路 (13)4.2 载频及低频编码的故障转换 (13)4.3 载频切换电路 (14)5 车站结合电路图及站间联系电路图设计 (15)5.1 车站结合电路 (15)5.2 站间联系电路 (16)结论 (17)致谢 (18)参考文献 (19)1 区间信号平面布置图设计1.1 区间通过信号机布置原则本次设计完成了对XX站-XX站区间信号平面布置图的设计。

在此次设计中本人只设计XX站上下行各4个闭塞分区,一共2架进站信号机和6架区间通过信号机,在图中标明了每个闭塞分区的长度、载频、绝缘节及信号机名称。

具体如图册中图BS-01所示,主要按以下原则进行了布置[1]:(1) 区间通过信号机在以货运为主的线路上,应按货物列车运行速度曲线及时间点布置,但闭塞分区长度应满足高速旅客列车的制动距离要求;(2) 闭塞分区长度应满足各种列车制动距离的要求,两架信号机之间的距离一般设置在1000-1500m之间;(3) 区间通过信号机应在车站进站、出站信号机位置确定后开始布置;(4) 进、出站及区间通过信号机都设为高柱,且区间通过信号机为三灯四显示;(5) 为了节省投资及维修方便,上、下行方向的通过信号机,在不影响行车效率和司机瞭望的情况下,尽可能并列布置;(6) 在利用动能闯坡和在列车停车后可能脱钩的处所不宜设置信号机。

在起动困难的坡道上,也应尽量避免设置信号机,如必须设置时,应装设容许信号。

但进站信号机前方第一架通过信号机不得装设容许信号,并应涂三条黑斜线,进站信号机前方第二架通过信号机应涂一条黑斜线,以与其它通过信号机相区别;(7) 通过信号机在正常情况下应设在便于司机瞭望的直线上,在不利的条件下,信号机显示距离应不小于200m。

1.2 区间信号机及闭塞分区长度的命名1.2.1 区间信号机的命名信号机位置确定后,应进行编号,一般以信号机坐标公里数和百米数组成,下行编奇数,上行编偶数。

例如本次设计中在下行993km+778m处设置的通过信号机,编号就为9937,同样的在上行991km+849m处设置的通过信号机,编号就为9918。

1.2.2 闭塞分区的长度及命名闭塞分区长度应满足各种列车制动距离的要求,在三显示区段,当两架通过信号机之间的距离不得小于1200m。

当采用8min及以下列车追踪运行间隔,在满足列车制动距离及自动停车装置动作过程中列车走行距离的条件时,可以小于1200m,但是不得小于1000m。

闭塞分区长度原则上按照不少于1000m进行设计,满足350km/h速度、3分钟列车追踪列车的要求。

此次设计中,要求每个闭塞分区长度取1000-1500m不等,如下行的9927G的长度就可以用9937信号机的坐标K993+778减去9927信号机的坐标K992+725得到,为1053m,即该闭塞分区9927G的长度就是1053m。

两车站间设两个分界点。

分界点两边的区段部分由不同车站管辖。

闭塞分区的名字是由防护该闭塞分区的信号机的名字来命名,如9927G。

特殊的S1LQG、X1LQG的命名不遵循这条规则,而是直接命名反向进站信号机外方的第一个区段为1LQ,上行为S1LQG,下行为X1LQG。

相关文档
最新文档