山东省2007高考数学样卷(文理各一套)
2007年普通高等学校招生全国统一考试数学卷(全国卷Ⅰ

梅花风扇散文
【实用版】
目录
1.梅花风扇的特点
2.梅花风扇的历史
3.梅花风扇的象征意义
4.梅花风扇在文学艺术中的表现
正文
梅花风扇,是一种独特的中国传统工艺品,以其独特的设计和优雅的形象备受人们喜爱。
梅花,作为中国传统文化中的四君子之一,一直以其高洁、坚韧的品质为人们所敬仰。
而梅花风扇,正是将梅花的高洁品质与扇子的实用功能完美结合,形成了一种既有观赏价值又有实用价值的艺术品。
梅花风扇的历史悠久,可以追溯到明朝。
最初的梅花风扇是由纸制成的,后来发展为用象牙、玳瑁等珍贵材料制成,扇面则由纸、绢等材料绘制成各种梅花图案。
梅花风扇的流行,不仅体现了人们对梅花的热爱,也反映了中国古代工艺的高超水平。
梅花风扇不仅仅是一种实用品,更有着深厚的象征意义。
梅花的五瓣象征着五福,即长寿、富贵、康宁、好德、善终,寓意着人们对美好生活的向往。
而在扇面上绘制的梅花图案,更是寓意着文人墨客的清高风骨和傲骨清流。
在文学艺术中,梅花风扇也有着丰富的表现。
在古典小说中,常常以梅花风扇为道具,描绘出主人公的高洁品质和坚韧精神。
在诗词中,梅花风扇更是被反复吟咏,如“梅花香自苦寒来,雪满山中高士卧”等,都是对梅花风扇的赞美之词。
2007年普通高等学校招生全国统一考试(全国卷I)数学(文科)试卷参考答案

2007年普通高等学校招生全国统一考试(全国卷I)数学(文科)试卷参考答案一、选择题1.D2.B3.A4.A5.C6.C7.D8.D9.B 10.D11.A12.C二、填空题13.0.2514.3()x x∈R15.4π316.1 3三、解答题17.解:(Ⅰ)由a=2b sinA,根据正弦定理得sinA=2sinBsinA,所以1 sin2B=,由△ABC为锐角三角形得π6B=。
(Ⅱ)根据余弦定理,得b2=a2+c2-2ac cosB=27+25-45=7所以,b=18.解:(Ⅰ)记A表示事件:“3位顾客中至少1位采用一次性付款”,则A表示事件:“3位顾客中无人采用一次性付款”。
()P A=(1-0.6)2=0.064,P(A)=1-()P A=1-0.064=0.936。
(Ⅱ)记B表示事件:“3位顾客每人购买1件该商品,商场获得利润不超过650元”。
B0表示事件:“购买该商品的3位顾客中无人采用分期付款”。
B1表示事件:“购买该商品的3位顾客中恰有1位采用分期付款”。
则B= B 0+ B 1。
P (B 0)=0.63=0.216,1213()0.60.40.432P B C =⨯⨯=。
P (B )=P (B 0+ B 1) =P (B 0)+P (B 1) =0.216+0.432 =0.64819.解法一:(1)作SO ⊥BC ,垂足为O ,连结AO ,由侧面SBC ⊥底面ABCD ,得SO ⊥底面ABCD 。
因为SA=SB ,所以AO=BO ,又∠ABC=45°,故AOB △为等腰直角三角形,AO ⊥BO , 由三垂线定理,得SA ⊥BC 。
(Ⅱ)由(Ⅰ)知SA ⊥BC , 依题设AD BC ∥, 故SA ⊥AD , 由,SA =SD =又AO=ABsin45°,作DE ⊥BC ,垂足为E ,则DE ⊥平面SBC ,连结SE 。
∠ESD 为直线SD 与平面SBC 所成的角。
2007年高考全国1卷数学理科试卷含答案

2007年普通高等学校招生全国统一考试理科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页.第Ⅱ卷3至4页.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效.3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 参考公式:如果事件A B ,互斥,那么球的表面积公式 ()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么其中R 表示球的半径 ()()()P A B P A P B =球的体积公式如果事件A 在一次试验中发生的概率是p ,那么34π3V R =n 次独立重复试验中事件A 恰好发生k 次的概率其中R 表示球的半径()(1)(012)k kn k n n P k C p p k n -=-=,,,…,一、选择题(1)α是第四象限角,5tan 12α=-,则sin α=( ) A .15B .15-C .513D .513-(2)设a 是实数,且1i1i 2a +++是实数,则a =( ) A .12B .1C .32D .2(3)已知向量(56)=-,a ,(65)=,b ,则a 与b ( ) A .垂直B .不垂直也不平行C .平行且同向D .平行且反向(4)已知双曲线的离心率为2,焦点是(40)-,,(40),,则双曲线方程为( )A .221412x y -= B .221124x y -= C .221106x y -= D .221610x y -= (5)设a b ∈R ,,集合{}10b a b a b a⎧⎫+=⎨⎬⎩⎭,,,,,则b a -=( ) A .1B .1-C .2D .2-(6)下面给出的四个点中,到直线10x y -+=的距离为2,且位于1010x y x y +-<⎧⎨-+>⎩,表示的平面区域内的点是( ) A .(11),B .(11)-,C .(11)--,D .(11)-,(7)如图,正四棱柱1111ABCD A B C D -中,12AA AB =,则异面直线1A B 与1AD 所成角的余弦值为( )A .15B .25C .35 D .45(8)设1a >,函数()log a f x x =在区间[]2a a ,上的最大值与最小值之差为12,则a =( ) AB .2C.D .4(9)()f x ,()g x 是定义在R 上的函数,()()()h x f x g x =+,则“()f x ,()g x 均为偶函数”是“()h x 为偶函数”的( ) A .充要条件B .充分而不必要的条件C .必要而不充分的条件D .既不充分也不必要的条件AB 1B1A1D1C CD(10)21nx x ⎛⎫- ⎪⎝⎭的展开式中,常数项为15,则n =( )A .3B .4C .5D .6(11)抛物线24y x =的焦点为F ,准线为l ,经过F 的直线与抛物线在x 轴上方的部分相交于点A ,AK l ⊥,垂足为K ,则AKF △的面积是( )A .4B .C .D .8(12)函数22()cos 2cos 2xf x x =-的一个单调增区间是( ) A .233ππ⎛⎫ ⎪⎝⎭,B .62ππ⎛⎫ ⎪⎝⎭,C .03π⎛⎫ ⎪⎝⎭,D .66ππ⎛⎫- ⎪⎝⎭,第Ⅱ卷注意事项:1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,然后贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.第Ⅱ卷共2页,请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,在试题卷上作答无效.3.本卷共10题,共90分.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在横线上. (13)从班委会5名成员中选出3名,分别担任班级学习委员、文娱委员与体育委员,其中甲、乙二人不能担任文娱委员,则不同的选法共有 种.(用数字作答)(14)函数()y f x =的图像与函数3log (0)y x x =>的图像关于直线y x =对称,则()f x = .(15)等比数列{}n a 的前n 项和为n S ,已知1S ,22S ,33S 成等差数列,则{}n a 的公比为 .(16)一个等腰直角三角形的三个顶点分别在正三棱柱的三条侧棱上.已知正三棱柱的底面边长为2,则该三角形的斜边长为 .三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分10分)设锐角三角形ABC 的内角A B C ,,的对边分别为a b c ,,,2sin a b A =. (Ⅰ)求B 的大小;(Ⅱ)求cos sin A C +的取值范围. (18)(本小题满分12分)某商场经销某商品,根据以往资料统计,顾客采用的付款期数ξ的分布列为商场经销一件该商品,采用1期付款,其利润为200元;分2期或3期付款,其利润为250元;分4期或5期付款,其利润为300元.η表示经销一件该商品的利润.(Ⅰ)求事件A :“购买该商品的3位顾客中,至少有1位采用1期付款”的概率()P A ; (Ⅱ)求η的分布列及期望E η. (19)(本小题满分12分)四棱锥S ABCD -中,底面ABCD 为平行四边形,侧面SBC ⊥底面ABCD .已知45ABC =∠,2AB =,BC =SA SB =(Ⅰ)证明SA BC ⊥;(Ⅱ)求直线SD 与平面SAB 所成角的大小.(20)(本小题满分12分) 设函数()e e x xf x -=-.(Ⅰ)证明:()f x 的导数()2f x '≥;(Ⅱ)若对所有0x ≥都有()f x ax ≥,求a 的取值范围.(21)(本小题满分12分)已知椭圆22132x y +=的左、右焦点分别为1F ,2F .过1F 的直线交椭圆于B D ,两点,过2F 的直线交椭圆于A C ,两点,且AC BD ⊥,垂足为P .(Ⅰ)设P 点的坐标为00()x y ,,证明:2200132x y +<; (Ⅱ)求四边形ABCD 的面积的最小值. (22)(本小题满分12分)已知数列{}n a 中12a =,11)(2)n n a a +=+,123n =,,,…. (Ⅰ)求{}n a 的通项公式; (Ⅱ)若数列{}n b 中12b =,13423n n n b b b ++=+,123n =,,,…,43n n b a -<≤,123n =,,,….2007年普通高等学校招生全国统一考试 理科数学试题(必修+选修Ⅱ)参考答案一、选择题: (1)D(2)B(3)A(4)A(5)C(6)C(7)D(8)D(9)B(10)D(11)C(12)A二、填空题:(13)36 (14)3()xx ∈R(15)13(16)三、解答题: (17)解:(Ⅰ)由2sin a b A =,根据正弦定理得sin 2sin sin A B A =,所以1sin 2B =, 由ABC △为锐角三角形得π6B =. (Ⅱ)cos sin cos sin A C A A π⎛⎫+=+π-- ⎪6⎝⎭cos sin 6A A π⎛⎫=++ ⎪⎝⎭1cos cos 2A A A =++3A π⎛⎫=+ ⎪⎝⎭.由ABC △为锐角三角形知,22A B ππ->-,2263B ππππ-=-=. 2336A πππ<+<,所以1sin 23A π⎛⎫+<⎪⎝⎭.3A π⎛⎫<+< ⎪⎝⎭所以,cos sin A C +的取值范围为322⎛⎫⎪ ⎪⎝⎭,. (18)解:(Ⅰ)由A 表示事件“购买该商品的3位顾客中至少有1位采用1期付款”. 知A 表示事件“购买该商品的3位顾客中无人采用1期付款”2()(10.4)0.216P A =-=,()1()10.2160.784P A P A =-=-=.(Ⅱ)η的可能取值为200元,250元,300元.(200)(1)0.4P P ηξ====,(250)(2)(3)0.20.20.4P P P ηξξ===+==+=,(300)1(200)(250)10.40.40.2P P P ηηη==-=-==--=.η的分布列为2000.42500.43000.2E η=⨯+⨯+⨯240=(元).(19)解法一:(Ⅰ)作SO BC ⊥,垂足为O ,连结AO ,由侧面SBC ⊥底面ABCD ,得SO ⊥底面ABCD .因为SA SB =,所以AO BO =,又45ABC =∠,故AOB △为等腰直角三角形,AO BO ⊥,由三垂线定理,得SA BC ⊥.(Ⅱ)由(Ⅰ)知SA BC ⊥,依题设ADBC ∥, 故SA AD ⊥,由AD BC ==SA =AO =1SO =,SD =.SAB △的面积211122S ABSA ⎛=-= ⎝连结DB ,得DAB △的面积21sin13522S AB AD == 设D 到平面SAB 的距离为h ,由于D SAB S ABD V V --=,得121133h S SO S =,解得h =设SD与平面SAB 所成角为α,则sin 11h SD α===. 所以,直线SD 与平面SBC 所成的我为arcsin 11. 解法二:(Ⅰ)作SO BC ⊥,垂足为O ,连结AO ,由侧面SBC ⊥底面ABCD ,得SO ⊥平面ABCD .因为SA SB =,所以AO BO =.又45ABC =∠,AOB △为等腰直角三角形,AOOB ⊥. 如图,以O 为坐标原点,OA 为x0)A ,,(0B ,(0C -,,(001)S ,,,(2,(0CB =,0SA CB =,所以SA BC ⊥.(Ⅱ)取AB 中点E ,022E ⎛⎫⎪ ⎪⎝⎭,,连结SE ,取SE 中点G ,连结OG ,1442G ⎛⎫⎪ ⎪⎝⎭,,. 1442OG ⎛⎫= ⎪ ⎪⎝⎭,,,122SE ⎛⎫= ⎪ ⎪⎝⎭,,(AB =. 0SE OG =,0AB OG =,OG 与平面SAB 内两条相交直线SE ,AB 垂直.所以OG ⊥平面SAB ,OG 与DS 的夹角记为α,SD 与平面SAB 所成的角记为β,则α与β互余.D,(DS =.22cos 11OG DS OG DSα==,sin 11β=,所以,直线SD 与平面SAB 所成的角为arcsin . (20)解:(Ⅰ)()f x 的导数()e e xxf x -'=+.由于e e 2x -x +=≥,故()2f x '≥. (当且仅当0x =时,等号成立). (Ⅱ)令()()g x f x ax =-,则()()e e x xg x f x a a -''=-=+-,(ⅰ)若2a ≤,当0x >时,()e e 20x xg x a a -'=+->-≥,故()g x 在(0)+,∞上为增函数,所以,0x ≥时,()(0)g x g ≥,即()f x ax ≥.(ⅱ)若2a >,方程()0g x '=的正根为1ln 2a x +=,此时,若1(0)x x ∈,,则()0g x '<,故()g x 在该区间为减函数.所以,1(0)x x ∈,时,()(0)0g x g <=,即()f x ax <,与题设()f x ax ≥相矛盾. 综上,满足条件的a 的取值范围是(]2-∞,. (21)证明: (Ⅰ)椭圆的半焦距1c ==,由AC BD ⊥知点P 在以线段12F F 为直径的圆上,故22001x y +=,所以,222200021132222y x y x ++=<≤.(Ⅱ)(ⅰ)当BD 的斜率k 存在且0k ≠时,BD 的方程为(1)y k x =+,代入椭圆方程22132x y +=,并化简得2222(32)6360k x k x k +++-=. 设11()B x y ,,22()D x y ,,则2122632k x x k +=-+,21223632k x x k -=+22212221221)(1)()432k BD x x kx x x x k +⎡=-=++-=⎣+;因为AC 与BC 相交于点P ,且AC 的斜率为1k-, 所以,2211132k AC k⎫+⎪⎝⎭==⨯+ 四边形ABCD 的面积222222222124(1)(1)962(32)(23)25(32)(23)2k k S BD AC k k k k +24+===++⎡⎤+++⎢⎥⎣⎦≥. 当21k =时,上式取等号.(ⅱ)当BD 的斜率0k =或斜率不存在时,四边形ABCD 的面积4S =.综上,四边形ABCD 的面积的最小值为9625. (22)解: (Ⅰ)由题设:11)(2)n n aa +=+1)(1)(2n a =+1)(n a =11)(n n a a +=.所以,数列{n a 是首项为21的等比数列,1)n n a ,即n a的通项公式为1)1n n a ⎤=+⎦,123n =,,,…. (Ⅱ)用数学归纳法证明.(ⅰ)当1n =2<,112b a ==,所以11b a <≤,结论成立.(ⅱ)假设当n k =43k k b a -<≤,也即430k k b a -<.当1n k =+时,13423k k k b b b ++-=-+(3(423k k b b -+-=+(3023k k b b -=>+,又1323k b <=-+ 所以1(323k k k b b b +-=+2(3(k b <-4431)(k a -≤41k a +=也就是说,当1n k =+时,结论成立.43n n b a -<≤,123n =,,,….。
2007年全国统一高考数学试卷(理科)(全国卷一)及解析

2007年全国统一高考数学试卷(理科)(全国卷Ⅰ)一、选择题(共12小题,每小题4分,满分48分)1.(4分)α是第四象限角,,则sinα=()A.B.C. D.2.(4分)设a是实数,且是实数,则a=()A.B.1 C.D.23.(4分)已知向量,,则与()A.垂直B.不垂直也不平行C.平行且同向D.平行且反向4.(4分)已知双曲线的离心率为2,焦点是(﹣4,0),(4,0),则双曲线方程为()A. B. C. D.5.(4分)设a,b∈R,集合{1,a+b,a}={0,,b},则b﹣a=()A.1 B.﹣1 C.2 D.﹣26.(4分)下面给出的四个点中,到直线x﹣y+1=0的距离为,且位于表示的平面区域内的点是()A.(1,1)B.(﹣1,1)C.(﹣1,﹣1)D.(1,﹣1)7.(4分)如图,正棱柱ABCD﹣A1B1C1D1中,AA1=2AB,则异面直线A1B与AD1所成角的余弦值为()A.B.C.D.8.(4分)设a>1,函数f(x)=log a x在区间[a,2a]上的最大值与最小值之差为,则a=()A. B.2 C.D.49.(4分)f(x),g(x)是定义在R上的函数,h(x)=f(x)+g(x),则“f(x),g(x)均为偶函数”是“h(x)为偶函数”的()A.充要条件B.充分而不必要的条件C.必要而不充分的条件D.既不充分也不必要的条件10.(4分)的展开式中,常数项为15,则n=()A.3 B.4 C.5 D.611.(4分)抛物线y2=4x的焦点为F,准线为l,经过F且斜率为的直线与抛物线在x轴上方的部分相交于点A,AK⊥l,垂足为K,则△AKF的面积是()A.4 B.C.D.812.(4分)函数f(x)=cos2x﹣2cos2的一个单调增区间是()A.B. C.D.二、填空题(共4小题,每小题5分,满分20分)13.(5分)从班委会5名成员中选出3名,分别担任班级学习委员、文娱委员与体育委员,其中甲、乙二人不能担任文娱委员,则不同的选法共有种.(用数字作答)14.(5分)函数y=f(x)的图象与函数y=log3x(x>0)的图象关于直线y=x对称,则f(x)=.15.(5分)等比数列{a n}的前n项和为S n,已知S1,2S2,3S3成等差数列,则{a n}的公比为.16.(5分)一个等腰直角三角形的三个顶点分别在正三棱柱的三条侧棱上,已知正三棱柱的底面边长为2,则该三角形的斜边长为.三、解答题(共6小题,满分82分)17.(12分)设锐角三角形ABC的内角A,B,C的对边分别为a,b,c,a=2bsinA(Ⅰ)求B的大小;(Ⅱ)求cosA+sinC的取值范围.18.(12分)某商场经销某商品,根据以往资料统计,顾客采用的付款期数ξ的分布列为商场经销一件该商品,采用1期付款,其利润为200元;分2期或3期付款,其利润为250元;分4期或5期付款,其利润为300元,η表示经销一件该商品的利润.(Ⅰ)求事件A:“购买该商品的3位顾客中,至少有1位采用1期付款”的概率P(A);(Ⅱ)求η的分布列及期望Eη.19.(14分)四棱锥S﹣ABCD中,底面ABCD为平行四边形,侧面SBC ⊥底面ABCD,已知∠ABC=45°,AB=2,BC=2,SA=SB=.(Ⅰ)证明:SA⊥BC;(Ⅱ)求直线SD与平面SBC所成角的大小.20.(14分)设函数f(x)=e x﹣e﹣x(Ⅰ)证明:f(x)的导数f′(x)≥2;(Ⅱ)若对所有x≥0都有f(x)≥ax,求a的取值范围.21.(14分)已知椭圆的左右焦点分别为F1、F2,过F1的直线交椭圆于B、D两点,过F2的直线交椭圆于A、C两点,且AC⊥BD,垂足为P(Ⅰ)设P点的坐标为(x0,y0),证明:;(Ⅱ)求四边形ABCD的面积的最小值.22.(16分)已知数列{a n}中,a1=2,,n=1,2,3,…(Ⅰ)求{a n}的通项公式;(Ⅱ)若数列{b n}中,b1=2,,n=1,2,3,…,证明:,n=1,2,3,…2007年全国统一高考数学试卷(理科)(全国卷Ⅰ)参考答案与试题解析一、选择题(共12小题,每小题4分,满分48分)1.(4分)(2007•全国卷Ⅰ)α是第四象限角,,则sinα=()A.B.C. D.【分析】根据tanα=,sin2α+cos2α=1,即可得答案.【解答】解:∵α是第四象限角,=,sin2α+cos2α=1,∴sinα=﹣.故选D.2.(4分)(2007•全国卷Ⅰ)设a是实数,且是实数,则a=()A.B.1 C.D.2【分析】复数分母实数化,化简为a+bi(a、b∈R)的形式,虚部等于0,可求得结果.【解答】解.设a是实数,=是实数,则a=1,故选B.3.(4分)(2007•全国卷Ⅰ)已知向量,,则与()A.垂直B.不垂直也不平行C.平行且同向D.平行且反向【分析】根据向量平行垂直坐标公式运算即得.【解答】解:∵向量,,得,∴⊥,故选A.4.(4分)(2007•全国卷Ⅰ)已知双曲线的离心率为2,焦点是(﹣4,0),(4,0),则双曲线方程为()A. B. C. D.【分析】根据焦点坐标求得c,再根据离心率求得a,最后根据b=求得b,双曲线方程可得.【解答】解.已知双曲线的离心率为2,焦点是(﹣4,0),(4,0),则c=4,a=2,b2=12,双曲线方程为,故选A.5.(4分)(2007•全国卷Ⅰ)设a,b∈R,集合{1,a+b,a}={0,,b},则b﹣a=()A.1 B.﹣1 C.2 D.﹣2【分析】根据题意,集合,注意到后面集合中有元素0,由集合相等的意义,结合集合中元素的特征,可得a+b=0,进而分析可得a、b的值,计算可得答案.【解答】解:根据题意,集合,又∵a≠0,∴a+b=0,即a=﹣b,∴,b=1;故a=﹣1,b=1,则b﹣a=2,故选C.6.(4分)(2007•全国卷Ⅰ)下面给出的四个点中,到直线x﹣y+1=0的距离为,且位于表示的平面区域内的点是()A.(1,1)B.(﹣1,1)C.(﹣1,﹣1)D.(1,﹣1)【分析】要找出到直线x﹣y+1=0的距离为,且位于表示的平面区域内的点,我们可以将答案中的四个点逐一代入验证,不难得到结论.【解答】解.给出的四个点中,(1,1),(﹣1,1),(﹣1,﹣1)三点到直线x﹣y+1=0的距离都为,但∵,仅有(﹣1,﹣1)点位于表示的平面区域内故选C7.(4分)(2007•全国卷Ⅰ)如图,正棱柱ABCD﹣A1B1C1D1中,AA1=2AB,则异面直线A1B与AD1所成角的余弦值为()A.B.C.D.【分析】先通过平移将两条异面直线平移到同一个起点B,得到的锐角∠A1BC1就是异面直线所成的角,在三角形中A1BC1用余弦定理求解即可.【解答】解.如图,连接BC1,A1C1,∠A1BC1是异面直线A1B与AD1所成的角,设AB=a,AA 1=2a,∴A1B=C1B=a,A1C1=a,∠A1BC1的余弦值为,故选D.8.(4分)(2007•全国卷Ⅰ)设a>1,函数f(x)=log a x在区间[a,2a]上的最大值与最小值之差为,则a=()A. B.2 C.D.4【分析】因为a>1,函数f(x)=log a x是单调递增函数,最大值与最小值之分别为log a2a、log a a=1,所以log a2a﹣log a a=,即可得答案.【解答】解.∵a>1,∴函数f(x)=log a x在区间[a,2a]上的最大值与最小值之分别为log a2a,log a a,∴log a2a﹣log a a=,∴,a=4,故选D9.(4分)(2008•上海)f(x),g(x)是定义在R上的函数,h(x)=f(x)+g(x),则“f(x),g(x)均为偶函数”是“h(x)为偶函数”的()A.充要条件B.充分而不必要的条件C.必要而不充分的条件D.既不充分也不必要的条件【分析】本题主要是抽象函数奇偶性的判断,只能根据定义,而要否定奇偶性,一般用特值.【解答】解.若“f(x),g(x)均为偶函数”,则有f(﹣x)=f(x),g(﹣x)=g(x),∴h(﹣x)=f(﹣x)+g(﹣x)=f(x)+g(x)=h(x),∴“h(x)为偶函数”,而反之取f(x)=x2+x,g(x)=2﹣x,h(x)=x2+2是偶函数,而f(x),g(x)均不是偶函数”,故选B10.(4分)(2007•全国卷Ⅰ)的展开式中,常数项为15,则n=()A.3 B.4 C.5 D.6【分析】利用二项展开式的通项公式求出第r+1项,令x的指数为0求出常数项,据n的特点求出n的值.【解答】解:的展开式中,常数项为15,则,所以n可以被3整除,当n=3时,C31=3≠15,当n=6时,C62=15,故选项为D11.(4分)(2007•全国卷Ⅰ)抛物线y2=4x的焦点为F,准线为l,经过F且斜率为的直线与抛物线在x轴上方的部分相交于点A,AK ⊥l,垂足为K,则△AKF的面积是()A.4 B.C.D.8【分析】先根据抛物线方程求出焦点坐标和准线方程,进而可得到过F且斜率为的直线方程然后与抛物线联立可求得A的坐标,再由AK⊥l,垂足为K,可求得K的坐标,根据三角形面积公式可得到答案.【解答】解:∵抛物线y2=4x的焦点F(1,0),准线为l:x=﹣1,经过F且斜率为的直线与抛物线在x轴上方的部分相交于点A(3,2),AK⊥l,垂足为K(﹣1,2),∴△AKF的面积是4故选C.12.(4分)(2007•全国卷Ⅰ)函数f(x)=cos2x﹣2cos2的一个单调增区间是()A.B. C.D.【分析】化简函数为关于cosx的二次函数,然后换元,分别求出单调区间判定选项的正误.【解答】解.函数=cos2x﹣cosx﹣1,原函数看作g(t)=t2﹣t﹣1,t=cosx,对于g(t)=t2﹣t﹣1,当时,g(t)为减函数,当时,g(t)为增函数,当时,t=cosx减函数,且,∴原函数此时是单调增,故选A二、填空题(共4小题,每小题5分,满分20分)13.(5分)(2007•全国卷Ⅰ)从班委会5名成员中选出3名,分别担任班级学习委员、文娱委员与体育委员,其中甲、乙二人不能担任文娱委员,则不同的选法共有36种.(用数字作答)【分析】由题意知本题是一个有约束条件的排列组合问题,先从除甲与乙之外的其余3人中选出1人担任文娱委员,再从4人中选2人担任学习委员和体育委员,写出即可.【解答】解.从班委会5名成员中选出3名,分别担任班级学习委员、文娱委员与体育委员,其中甲、乙二人不能担任文娱委员,∵先从其余3人中选出1人担任文娱委员,再从4人中选2人担任学习委员和体育委员,∴不同的选法共有C31•A42=3×4×3=36种.14.(5分)(2007•全国卷Ⅰ)函数y=f(x)的图象与函数y=log3x(x >0)的图象关于直线y=x对称,则f(x)=3x(x∈R).【分析】由题意推出f(x)与函数y=log3x(x>0)互为反函数,求解即可.【解答】解.函数y=f(x)的图象与函数y=log3x(x>0)的图象关于直线y=x对称,则f(x)与函数y=log3x(x>0)互为反函数,f(x)=3x(x∈R)故答案为:3x(x∈R)15.(5分)(2007•全国卷Ⅰ)等比数列{a n}的前n项和为S n,已知S1,2S2,3S3成等差数列,则{a n}的公比为.【分析】先根据等差中项可知4S2=S1+3S3,利用等比数列的求和公式用a1和q分别表示出S1,S2和S3,代入即可求得q.【解答】解:∵等比数列{a n}的前n项和为S n,已知S1,2S2,3S3成等差数列,∴a n=a1q n﹣1,又4S2=S1+3S3,即4(a1+a1q)=a1+3(a1+a1q+a1q2),解.故答案为16.(5分)(2007•全国卷Ⅰ)一个等腰直角三角形的三个顶点分别在正三棱柱的三条侧棱上,已知正三棱柱的底面边长为2,则该三角形的斜边长为2.【分析】由于正三棱柱的底面ABC为等边三角形,我们把一个等腰直角三角形DEF的三个顶点分别在正三棱柱的三条侧棱上,结合图形的对称性可得,该三角形的斜边EF上的中线DG的长等于底面三角形的高,从而得出等腰直角三角形DEF的中线长,最后得到该三角形的斜边长即可.【解答】解:一个等腰直角三角形DEF的三个顶点分别在正三棱柱的三条侧棱上,∠EDF=90°,已知正三棱柱的底面边长为AB=2,则该三角形的斜边EF上的中线DG=,∴斜边EF的长为2.故答案为:2.三、解答题(共6小题,满分82分)17.(12分)(2007•全国卷Ⅰ)设锐角三角形ABC的内角A,B,C 的对边分别为a,b,c,a=2bsinA(Ⅰ)求B的大小;(Ⅱ)求cosA+sinC的取值范围.【分析】(1)先利用正弦定理求得sinB的值,进而求得B.(2)把(1)中求得B代入cosA+sinC中利用两角和公式化简整理,进而根据A的范围和正弦函数的性质求得cosA+sinC的取值范围.【解答】解:(Ⅰ)由a=2bsinA,根据正弦定理得sinA=2sinBsinA,所以,由△ABC为锐角三角形得.(Ⅱ)===.由△ABC为锐角三角形知,0<A<,0<﹣A<,∴<A<,,所以.由此有<,所以,cosA+sinC的取值范围为(,).18.(12分)(2007•全国卷Ⅰ)某商场经销某商品,根据以往资料统计,顾客采用的付款期数ξ的分布列为商场经销一件该商品,采用1期付款,其利润为200元;分2期或3期付款,其利润为250元;分4期或5期付款,其利润为300元,η表示经销一件该商品的利润.(Ⅰ)求事件A:“购买该商品的3位顾客中,至少有1位采用1期付款”的概率P(A);(Ⅱ)求η的分布列及期望Eη.【分析】(Ⅰ)由题意知购买该商品的3位顾客中至少有1位采用1期付款的对立事件是购买该商品的3位顾客中无人采用1期付款,根据对立事件的概率公式得到结果.(2)根据顾客采用的付款期数ξ的分布列对应于η的可能取值为200元,250元,300元.得到变量对应的事件的概率,写出变量的分布列和期望.【解答】解:(Ⅰ)由题意知购买该商品的3位顾客中至少有1位采用1期付款的对立事件是购买该商品的3位顾客中无人采用1期付款,设A表示事件“购买该商品的3位顾客中至少有1位采用1期付款”.知表示事件“购买该商品的3位顾客中无人采用1期付款”,∴.(Ⅱ)根据顾客采用的付款期数ξ的分布列对应于η的可能取值为200元,250元,300元.得到变量对应的事件的概率P(η=200)=P(ξ=1)=0.4,P(η=250)=P(ξ=2)+P(ξ=3)=0.2+0.2=0.4,P(η=300)=1﹣P(η=200)﹣P(η=250)=1﹣0.4﹣0.4=0.2.∴η的分布列为∴Eη=200×0.4+250×0.4+300×0.2=240(元).19.(14分)(2007•全国卷Ⅰ)四棱锥S﹣ABCD中,底面ABCD为平行四边形,侧面SBC⊥底面ABCD,已知∠ABC=45°,AB=2,BC=2,SA=SB=.(Ⅰ)证明:SA⊥BC;(Ⅱ)求直线SD与平面SBC所成角的大小.【分析】解法一:(1)作SO⊥BC,垂足为O,连接AO,说明SO⊥底面ABCD.利用三垂线定理,得SA⊥BC.(Ⅱ)由(Ⅰ)知SA⊥BC,设AD∥BC,连接SE.说明∠ESD为直线SD与平面SBC所成的角,通过,求出直线SD与平面SBC所成的角为.解法二:(Ⅰ)作SO⊥BC,垂足为O,连接AO,以O为坐标原点,OA为x轴正向,建立直角坐标系O﹣xyz,通过证明,推出SA⊥BC.(Ⅱ).与的夹角记为α,SD与平面ABC所成的角记为β,因为为平面SBC的法向量,利用α与β互余.通过,,推出直线SD与平面SBC所成的角为.【解答】解法一:(1)作SO⊥BC,垂足为O,连接AO,由侧面SBC⊥底面ABCD,得SO⊥底面ABCD.因为SA=SB,所以AO=BO,又∠ABC=45°,故△AOB为等腰直角三角形,AO⊥BO,由三垂线定理,得SA⊥BC.(Ⅱ)由(Ⅰ)知SA⊥BC,依题设AD∥BC,故SA⊥AD,由,,.又,作DE⊥BC,垂足为E,则DE⊥平面SBC,连接SE.∠ESD为直线SD与平面SBC所成的角.所以,直线SD与平面SBC所成的角为.解法二:(Ⅰ)作SO⊥BC,垂足为O,连接AO,由侧面SBC⊥底面ABCD,得SO⊥平面ABCD.因为SA=SB,所以AO=BO.又∠ABC=45°,△AOB为等腰直角三角形,AO⊥OB.如图,以O为坐标原点,OA为x轴正向,建立直角坐标系O﹣xyz,因为,,又,所以,,.S(0,0,1),,,,所以SA⊥BC.(Ⅱ),.与的夹角记为α,SD与平面ABC所成的角记为β,因为为平面SBC的法向量,所以α与β互余.,,所以,直线SD与平面SBC所成的角为.20.(14分)(2007•全国卷Ⅰ)设函数f(x)=e x﹣e﹣x(Ⅰ)证明:f(x)的导数f′(x)≥2;(Ⅱ)若对所有x≥0都有f(x)≥ax,求a的取值范围.【分析】(Ⅰ)先求出f(x)的导函数,利用a+b≥2当且仅当a=b 时取等号.得到f'(x)≥2;(Ⅱ)把不等式变形令g(x)=f(x)﹣ax并求出导函数令其=0得到驻点,在x≥0上求出a的取值范围即可.【解答】解:(Ⅰ)f(x)的导数f'(x)=e x+e﹣x.由于,故f'(x)≥2.(当且仅当x=0时,等号成立).(Ⅱ)令g(x)=f(x)﹣ax,则g'(x)=f'(x)﹣a=e x+e﹣x﹣a,(ⅰ)若a≤2,当x>0时,g'(x)=e x+e﹣x﹣a>2﹣a≥0,故g(x)在(0,+∞)上为增函数,所以,x≥0时,g(x)≥g(0),即f(x)≥ax.(ⅱ)若a>2,方程g'(x)=0的正根为,此时,若x∈(0,x1),则g'(x)<0,故g(x)在该区间为减函数.所以,x∈(0,x1)时,g(x)<g(0)=0,即f(x)<ax,与题设f(x)≥ax相矛盾.综上,满足条件的a的取值范围是(﹣∞,2].21.(14分)(2007•全国卷Ⅰ)已知椭圆的左右焦点分别为F1、F2,过F1的直线交椭圆于B、D两点,过F2的直线交椭圆于A、C 两点,且AC⊥BD,垂足为P(Ⅰ)设P点的坐标为(x0,y0),证明:;(Ⅱ)求四边形ABCD的面积的最小值.【分析】(Ⅰ)椭圆的半焦距,由AC⊥BD知点P在以线段F1F2为直径的圆上,故x02+y02=1,由此可以证出.(Ⅱ)设BD的方程为y=k(x+1),代入椭圆方程,并化简得(3k2+2)x2+6k2x+3k2﹣6=0.设B(x1,y1),D(x2,y2),由题意知|BD|=再求出|AC|=,由此可以求出四边形ABCD的面积的最小值.【解答】证明:(Ⅰ)椭圆的半焦距,由AC⊥BD知点P在以线段F1F2为直径的圆上,故x02+y02=1,所以,.(Ⅱ)(ⅰ)当BD的斜率k存在且k≠0时,BD的方程为y=k(x+1),代入椭圆方程,并化简得(3k2+2)x2+6k2x+3k2﹣6=0.设B(x1,y1),D(x2,y2),则,|BD|=;因为AC与BD相交于点P,且AC的斜率为,所以,|AC|=.四边形ABCD的面积•|BD||AC|=.当k2=1时,上式取等号.(ⅱ)当BD的斜率k=0或斜率不存在时,四边形ABCD的面积S=4.综上,四边形ABCD的面积的最小值为.22.(16分)(2007•全国卷Ⅰ)已知数列{a n}中,a1=2,,n=1,2,3,…(Ⅰ)求{a n}的通项公式;(Ⅱ)若数列{b n}中,b1=2,,n=1,2,3,…,证明:,n=1,2,3,…【分析】(Ⅰ)先对进行整理可得到,即数列是首项为,公比为的等比数列,再由等比数列的通项公式可得到,进而得到.(Ⅱ)用数学归纳法证明.当n=1时可得到b1=a1=2满足条件,然后假设当n=k时满足条件进而得到当n=k+1时再对进行整理得到=,进而可得证.【解答】解:(Ⅰ)由题设:==,.所以,数列是首项为,公比为的等比数列,,即a n的通项公式为,n=1,2,3,.(Ⅱ)用数学归纳法证明.(ⅰ)当n=1时,因,b 1=a1=2,所以,结论成立.(ⅱ)假设当n=k时,结论成立,即,也即.当n=k+1时,==,又,所以=.也就是说,当n=k+1时,结论成立.根据(ⅰ)和(ⅱ)知,n=1,2,3,.。
2007年高考数学(理)真题(Word版)——全国1卷(试题+答案解析)

2007年普通高等学校招生全国统一考试(全国1卷)数学(理)试题第Ⅰ卷参考公式:如果事件A B ,互斥,那么球的表面积公式 ()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么其中R 表示球的半径 ()()()P A B P A P B =球的体积公式如果事件A 在一次试验中发生的概率是p ,那么34π3V R =n 次独立重复试验中事件A 恰好发生k 次的概率其中R 表示球的半径()(1)(012)k k n kn n P k C p p k n -=-=,,,…, 一、选择题(1)α是第四象限角,5tan 12α=-,则sin α=( ) A .15 B .15- C .513 D .513-(2)设a 是实数,且1i 1i 2a +++是实数,则a =( ) A .12 B .1 C .32D .2(3)已知向量(56)=-,a ,(65)=,b ,则a 与b ( ) A .垂直B .不垂直也不平行C .平行且同向D .平行且反向(4)已知双曲线的离心率为2,焦点是(40)-,,(40),,则双曲线方程为( ) A .221412x y -= B .221124x y -= C .221106x y -= D .221610x y -= (5)设a b ∈R ,,集合{}10ba b a b a ⎧⎫+=⎨⎬⎩⎭,,,,,则b a -=( ) A .1B .1-C .2D .2-(6)下面给出的四个点中,到直线10x y -+=的距离为22,且位于1010x y x y +-<⎧⎨-+>⎩,表示的平面区域内的点是( )A .(11),B .(11)-,C .(11)--,D .(11)-,(7)如图,正四棱柱1111ABCD A BC D -中,12AA AB =,则异面直线1A B 与1AD 所成角的余弦值为( )A .15B .25C .35D .45(8)设1a >,函数()log a f x x =在区间[]2a a ,上的最大值与最小值之差为12,则a =( ) A .2B .2C .22D .4(9)()f x ,()g x 是定义在R 上的函数,()()()h x f x g x =+,则“()f x ,()g x 均为偶函数”是“()h x 为偶函数”的( ) A .充要条件 B .充分而不必要的条件C .必要而不充分的条件D .既不充分也不必要的条件(10)21nx x ⎛⎫- ⎪⎝⎭的展开式中,常数项为15,则n =( )A .3B .4C .5D .6(11)抛物线24y x =的焦点为F ,准线为l ,经过F 且斜率为3的直线与抛物线在x 轴上方的部分相交于点A ,AK l ⊥,垂足为K ,则AKF △的面积是( ) A .4B .33C .43D .8(12)函数22()cos 2cos 2xf x x =-的一个单调增区间是( ) A .233ππ⎛⎫ ⎪⎝⎭,B .62ππ⎛⎫ ⎪⎝⎭,C .03π⎛⎫ ⎪⎝⎭,D .66ππ⎛⎫- ⎪⎝⎭,第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分.把答案填在横线上.(13)从班委会5名成员中选出3名,分别担任班级学习委员、文娱委员与体育委员,其中AB1B1A1D1C C D甲、乙二人不能担任文娱委员,则不同的选法共有 种.(用数字作答) (14)函数()y f x =的图像与函数3log (0)y x x =>的图像关于直线y x =对称,则()f x = .(15)等比数列{}n a 的前n 项和为n S ,已知1S ,22S ,33S 成等差数列,则{}n a 的公比为 . (16)一个等腰直角三角形的三个顶点分别在正三棱柱的三条侧棱上.已知正三棱柱的底面边长为2,则该三角形的斜边长为 .三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分10分)设锐角三角形ABC 的内角A B C ,,的对边分别为a b c ,,,2sin a b A =. (Ⅰ)求B 的大小;(Ⅱ)求cos sin A C +的取值范围.(18)(本小题满分12分) 某商场经销某商品,根据以往资料统计,顾客采用的付款期数ξ的分布列为ξ1 2 3 4 5 P0.40.20.20.10.1商场经销一件该商品,采用1期付款,其利润为200元;分2期或3期付款,其利润为250元;分4期或5期付款,其利润为300元.η表示经销一件该商品的利润.(Ⅰ)求事件A :“购买该商品的3位顾客中,至少有1位采用1期付款”的概率()P A ; (Ⅱ)求η的分布列及期望E η.(19)(本小题满分12分)四棱锥S ABC D -中,底面A B C D 为平行四边形,侧面SBC ⊥底面A B C D .已知45ABC = ∠,2AB =,22BC =,3SA SB ==.(Ⅰ)证明SA BC ⊥;(Ⅱ)求直线SD 与平面SAB 所成角的大小.(20)(本小题满分12分) 设函数()e e xxf x -=-.DBCAS(Ⅰ)证明:()f x 的导数()2f x '≥;(Ⅱ)若对所有0x ≥都有()f x ax ≥,求a 的取值范围.(21)(本小题满分12分)已知椭圆22132x y +=的左、右焦点分别为1F ,2F .过1F 的直线交椭圆于B D ,两点,过2F 的直线交椭圆于AC ,两点,且AC BD ⊥,垂足为P .(Ⅰ)设P 点的坐标为00()x y ,,证明:2200132x y +<; (Ⅱ)求四边形ABCD 的面积的最小值.(22)(本小题满分12分)已知数列{}n a 中12a =,1(21)(2)n n a a +=-+,123n =,,,…. (Ⅰ)求{}n a 的通项公式; (Ⅱ)若数列{}n b 中12b =,13423n n n b b b ++=+,123n =,,,…, 证明:432n n b a -<≤,123n =,,,….答案解析一、选择题 1.答案:D解析:α是第四象限角,5tan 12α=-,则sin α=-215131tan α=-+ 2.答案:B解析:设a 是实数,112a i i +++=(1)1(1)(1)222a i i a a i-+++-+=是实数,则a =1,选B 。
2007年全国统一高考数学试卷(理科)(全国卷Ⅱ)及答案(分析解答)

2007年全国统一高考数学试卷(理科)(全国卷Ⅱ)一、选择题(共12小题,每小题5分,满分60分)1.(5分)求值sin210°=()A.B.﹣C.D.﹣2.(5分)函数y=|sinx|的一个单调增区间是()A.B.C.D.3.(5分)设复数z满足=i,则z=()A.﹣2+i B.﹣2﹣i C.2﹣i D.2+i4.(5分)以下四个数中的最大者是()A.(ln2)2B.ln(ln2)C.ln D.ln25.(5分)在△ABC中,已知D是AB边上一点,若=2,=,则λ=()A.B.C.﹣ D.﹣6.(5分)不等式的解集是()A.(2,+∞)B.(﹣2,1)∪(2,+∞) C.(﹣2,1)D.(﹣∞,﹣2)∪(1,+∞)7.(5分)已知正三棱柱ABC﹣A1B1C1的侧棱长与底面边长相等,则AB1与侧面ACC1A1所成角的正弦值等于()A.B.C.D.8.(5分)已知曲线的一条切线的斜率为,则切点的横坐标为()A.3 B.2 C.1 D.9.(5分)把函数y=e x的图象按向量=(2,3)平移,得到y=f(x)的图象,则f(x)=()A.e x﹣3+2 B.e x+3﹣2 C.e x﹣2+3 D.e x+2﹣310.(5分)从5位同学中选派4位同学在星期五、星期六、星期日参加公益活动,每人一天,要求星期五有2人参加,星期六、星期日各有1人参加,则不同的选派方法共有()A.40种B.60种C.100种D.120种11.(5分)设F1,F2分别是双曲线的左、右焦点.若双曲线上存在点A,使∠F1AF2=90°,且|AF1|=3|AF2|,则双曲线离心率为()A.B.C.D.12.(5分)设F为抛物线y2=4x的焦点,A,B,C为该抛物线上三点,若++=,则的值为()A.3 B.4 C.6 D.9二、填空题(共4小题,每小题5分,满分20分)13.(5分)(1+2x2)(x﹣)8的展开式中常数项为.14.(5分)在某项测量中,测量结果ξ服从正态分布N(1,2),若ξ在(0,1)内取值的概率为0.4,则ξ在(0,2)内取值的概率为.15.(5分)一个正四棱柱的各个顶点在一个直径为2cm的球面上.如果正四棱柱的底面边长为1cm,那么该棱柱的表面积为cm2.16.(5分)已知数列的通项a n=﹣5n+2,其前n项和为S n,则=.三、解答题(共6小题,满分70分)17.(10分)在△ABC中,已知内角A=,边BC=2,设内角B=x,周长为y (1)求函数y=f(x)的解析式和定义域;(2)求y的最大值.18.(12分)从某批产品中,有放回地抽取产品二次,每次随机抽取1件,假设事件A:“取出的2件产品中至多有1件是二等品”的概率P(A)=0.96.(1)求从该批产品中任取1件是二等品的概率p;(2)若该批产品共100件,从中任意抽取2件,求事件B:“取出的2件产品中至少有一件二等品”的概率P(B).19.(12分)如图,在四棱锥S﹣ABCD中,底面ABCD为正方形,侧棱SD⊥底面ABCD,E、F分别是AB、SC的中点(1)求证:EF∥平面SAD(2)设SD=2CD,求二面角A﹣EF﹣D的大小.20.(12分)在直角坐标系xOy中,以O为圆心的圆与直线:x﹣y=4相切(1)求圆O的方程(2)圆O与x轴相交于A、B两点,圆内的动点P使|PA|、|PO|、|PB|成等比数列,求的取值范围.21.(12分)设数列{a n}的首项a1∈(0,1),a n=,n=2,3,4…(1)求{a n}的通项公式;,其中n为正整数.(2)设,求证b n<b n+122.(12分)已知函数f(x)=x3﹣x(1)求曲线y=f(x)在点M(t,f(t))处的切线方程(2)设a>0,如果过点(a,b)可作曲线y=f(x)的三条切线,证明:﹣a<b <f(a)2007年全国统一高考数学试卷(理科)(全国卷Ⅱ)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)(2007•全国卷Ⅱ)求值sin210°=()A.B.﹣C.D.﹣【分析】通过诱导公式得sin 210°=﹣sin(210°﹣180°)=﹣sin30°得出答案.【解答】解:∵sin 210°=﹣sin(210°﹣180°)=﹣sin30°=﹣故答案为D2.(5分)(2007•全国卷Ⅱ)函数y=|sinx|的一个单调增区间是()A.B.C.D.【分析】画出y=|sinx|的图象即可得到答案.【解答】解:根据y=|sinx|的图象,如图,函数y=|sinx|的一个单调增区间是,故选C.3.(5分)(2007•全国卷Ⅱ)设复数z满足=i,则z=()A.﹣2+i B.﹣2﹣i C.2﹣i D.2+i【分析】将复数z设a+bi,(a,b∈R),代入复数方程,利用复数相等的条件解出复数z.【解答】解:设复数z=a+bi,(a,b∈R)满足=i,∴1+2i=ai﹣b,,∴z=2﹣i,故选C.4.(5分)(2007•全国卷Ⅱ)以下四个数中的最大者是()A.(ln2)2B.ln(ln2)C.ln D.ln2【分析】根据lnx是以e>1为底的单调递增的对数函数,且e>2,可知0<ln2<1,ln(ln2)<0,故可得答案.【解答】解:∵0<ln2<1,∴ln(ln2)<0,(ln2)2<ln2,而ln=ln2<ln2,∴最大的数是ln2,故选D.5.(5分)(2007•全国卷Ⅱ)在△ABC中,已知D是AB边上一点,若=2,=,则λ=()A.B.C.﹣ D.﹣【分析】本题要求字母系数,办法是把表示出来,表示时所用的基底要和题目中所给的一致,即用和表示,画图观察,从要求向量的起点出发,沿着三角形的边走到终点,把求出的结果和给的条件比较,写出λ.【解答】解:在△ABC中,已知D是AB边上一点∵=2,=,∴=,∴λ=,故选A.6.(5分)(2007•全国卷Ⅱ)不等式的解集是()A.(2,+∞)B.(﹣2,1)∪(2,+∞) C.(﹣2,1)D.(﹣∞,﹣2)∪(1,+∞)【分析】首先不等式的分母可化为(x+2)(x﹣2),不等式的分子和分母共由3个一次因式构成.要使得原不等式大于0,可等同于3个因式的乘积大于0,再可根据串线法直接求解.【解答】解:依题意,原不等式可化为等同于(x+2)(x﹣1)(x﹣2)>0,可根据串线法直接解得﹣2<x<1或x>2,故答案应选B.7.(5分)(2007•全国卷Ⅱ)已知正三棱柱ABC﹣A1B1C1的侧棱长与底面边长相等,则AB1与侧面ACC1A1所成角的正弦值等于()A.B.C.D.【分析】根据正三棱柱及线面角的定义知,取A1C1的中点D1,∠B1AD1是所求的角,再由已知求出正弦值.【解答】解:取A1C1的中点D1,连接B1D1,AD1,在正三棱柱ABC﹣A1B1C1中,B1D1⊥面ACC1A1,则∠B1AD1是AB1与侧面ACC1A1所成的角,∵正三棱柱ABC﹣A1B1C1的侧棱长与底面边长相等,∴,故选A.8.(5分)(2007•全国卷Ⅱ)已知曲线的一条切线的斜率为,则切点的横坐标为()A.3 B.2 C.1 D.【分析】根据斜率,对已知函数求导,解出横坐标,要注意自变量的取值区间.【解答】解:设切点的横坐标为(x0,y0)∵曲线的一条切线的斜率为,∴y′=﹣=,解得x0=3或x0=﹣2(舍去,不符合题意),即切点的横坐标为3故选A.9.(5分)(2007•全国卷Ⅱ)把函数y=e x的图象按向量=(2,3)平移,得到y=f(x)的图象,则f(x)=()A.e x﹣3+2 B.e x+3﹣2 C.e x﹣2+3 D.e x+2﹣3【分析】平移向量=(h,k)就是将函数的图象向右平移h个单位,再向上平移k个单位.【解答】解:把函数y=e x的图象按向量=(2,3)平移,即向右平移2个单位,再向上平移3个单位,平移后得到y=f(x)的图象,∴f(x)=e x﹣2+3,故选C.10.(5分)(2009•湖北)从5位同学中选派4位同学在星期五、星期六、星期日参加公益活动,每人一天,要求星期五有2人参加,星期六、星期日各有1人参加,则不同的选派方法共有()A.40种B.60种C.100种D.120种【分析】分2步进行,首先从5人中抽出两人在星期五参加活动,再从剩下的3人中,抽取两人安排在星期六、星期日参加活动,分别计算其情况数目,由分步计数原理计算可得答案.【解答】解:根据题意,首先从5人中抽出两人在星期五参加活动,有C52种情况,再从剩下的3人中,抽取两人安排在星期六、星期日参加活动,有A32种情况,则由分步计数原理,可得不同的选派方法共有C52A32=60种,故选B.11.(5分)(2007•全国卷Ⅱ)设F1,F2分别是双曲线的左、右焦点.若双曲线上存在点A,使∠F1AF2=90°,且|AF1|=3|AF2|,则双曲线离心率为()A.B.C.D.【分析】由题设条件设|AF2|=1,|AF1|=3,双曲线中2a=|AF1|﹣|AF2|=2,,由此可以求出双曲线的离心率.【解答】解:设F1,F2分别是双曲线的左、右焦点.若双曲线上存在点A,使∠F1AF2=90°,且|AF1|=3|AF2|,设|AF2|=t,|AF1|=3t,(t>0)双曲线中2a=|AF1|﹣|AF2|=2t,t,∴离心率,故选B.12.(5分)(2007•全国卷Ⅱ)设F为抛物线y2=4x的焦点,A,B,C为该抛物线上三点,若++=,则的值为()A.3 B.4 C.6 D.9【分析】先设A(x1,y1),B(x2,y2),C(x3,y3),根据抛物线方程求得焦点坐标和准线方程,再依据=0,判断点F是△ABC重心,进而可求x1+x2+x3的值.最后根据抛物线的定义求得答案.【解答】解:设A(x1,y1),B(x2,y2),C(x3,y3)抛物线焦点坐标F(1,0),准线方程:x=﹣1∵=,∴点F是△ABC重心则x1+x2+x3=3y1+y2+y3=0而|FA|=x1﹣(﹣1)=x1+1|FB|=x2﹣(﹣1)=x2+1|FC|=x3﹣(﹣1)=x3+1∴|FA|+|FB|+|FC|=x1+1+x2+1+x3+1=(x1+x2+x3)+3=3+3=6故选C二、填空题(共4小题,每小题5分,满分20分)13.(5分)(2007•全国卷Ⅱ)(1+2x2)(x﹣)8的展开式中常数项为﹣42.【分析】将问题转化成的常数项及含x﹣2的项,利用二项展开式的通项公式求出第r+1项,令x的指数为0,﹣2求出常数项及含x﹣2的项,进而相加可得答案.【解答】解:先求的展开式中常数项以及含x﹣2的项;由8﹣2r=0得r=4,由8﹣2r=﹣2得r=5;即的展开式中常数项为C84,含x﹣2的项为C85(﹣1)5x﹣2∴的展开式中常数项为C84﹣2C85=﹣42故答案为﹣4214.(5分)(2007•全国卷Ⅱ)在某项测量中,测量结果ξ服从正态分布N(1,2),若ξ在(0,1)内取值的概率为0.4,则ξ在(0,2)内取值的概率为0.8.【分析】根据ξ服从正态分布N(1,),得到正态分布图象的对称轴为x=1,根据在(0,1)内取值的概率为0.4,根据根据随机变量ξ在(1,2)内取值的概率与ξ在(0,1)内取值的概率相同,得到随机变量ξ在(0,2)内取值的概率.【解答】解:∵测量结果ξ服从正态分布N(1,),∴正态分布图象的对称轴为x=1,在(0,1)内取值的概率为0.4,∴随机变量ξ在(1,2)内取值的概率与ξ在(0,1)内取值的概率相同,也为0.4,∴随机变量ξ在(0,2)内取值的概率为0.8.故答案为:0.815.(5分)(2007•全国卷Ⅱ)一个正四棱柱的各个顶点在一个直径为2cm的球面上.如果正四棱柱的底面边长为1cm,那么该棱柱的表面积为2+4cm2.【分析】本题考查的知识点是棱柱的体积与表面积计算,由一个正四棱柱的各个顶点在一个直径为2cm的球面上.如果正四棱柱的底面边长为1cm,我们根据球的直径等于棱柱的对角线长,我们可以求出棱柱的各棱的长度,进而得到其表面积.【解答】解:由一个正四棱柱的各个顶点在一个直径为2cm的球面上.正四棱柱的对角线的长为球的直径,现正四棱柱底面边长为1cm,设正四棱柱的高为h,∴2R=2=,解得h=,那么该棱柱的表面积为2+4cm2.故答案为:2+416.(5分)(2007•全国卷Ⅱ)已知数列的通项a n=﹣5n+2,其前n项和为S n,则=.【分析】由通项公式知该数列是等差数列,先求出首项和公差,然后求出其前n 项和,由此能得到的值.【解答】解:∵数列的通项a n=﹣5n+2,∴a1=﹣3,a2=﹣8,d=﹣5.∴其前n项和为S n,则=﹣.故答案为:﹣.三、解答题(共6小题,满分70分)17.(10分)(2007•全国卷Ⅱ)在△ABC中,已知内角A=,边BC=2,设内角B=x,周长为y(1)求函数y=f(x)的解析式和定义域;(2)求y的最大值.【分析】(1)由内角A=,边BC=2,设内角B=x,周长为y,我们结合三角形的性质,△ABC的内角和A+B+C=π,△ABC的周长y=AB+BC+AC,我们可以结合正弦定理求出函数的解析式,及自变量的取值范围.(2)要求三角函数的最值,我们要利用辅助角公式,将函数的解析式,化为正弦型函数的形式,再根据正弦型函数的最值的求法进行求解.【解答】解:(1)△ABC的内角和A+B+C=π,由得.应用正弦定理,知,.因为y=AB+BC+AC,所以,(2)∵=,所以,当,即时,y取得最大值.18.(12分)(2007•全国卷Ⅱ)从某批产品中,有放回地抽取产品二次,每次随机抽取1件,假设事件A:“取出的2件产品中至多有1件是二等品”的概率P(A)=0.96.(1)求从该批产品中任取1件是二等品的概率p;(2)若该批产品共100件,从中任意抽取2件,求事件B:“取出的2件产品中至少有一件二等品”的概率P(B).【分析】(1)有放回地抽取产品二次,每次随机抽取1件,取出的2件产品中至多有1件是二等品包括无二等品和恰有一件是二等品两种情况,设出概率,列出等式,解出结果.(2)由上面可以知道其中二等品有100×0.2=20件取出的2件产品中至少有一件二等品的对立事件是没有二等品,用组合数列出结果.【解答】解:(1)记A0表示事件“取出的2件产品中无二等品”,A1表示事件“取出的2件产品中恰有1件二等品”.则A0,A1互斥,且A=A0+A1,故P(A)=P(A0+A1)=P(A0)+P(A1)=(1﹣p)2+C21p(1﹣p)=1﹣p2于是0.96=1﹣p2.解得p1=0.2,p2=﹣0.2(舍去).(2)记B0表示事件“取出的2件产品中无二等品”,则.若该批产品共100件,由(1)知其中二等品有100×0.2=20件,故.19.(12分)(2007•全国卷Ⅱ)如图,在四棱锥S﹣ABCD中,底面ABCD为正方形,侧棱SD⊥底面ABCD,E、F分别是AB、SC的中点(1)求证:EF∥平面SAD(2)设SD=2CD,求二面角A﹣EF﹣D的大小.【分析】法一:(1)作FG∥DC交SD于点G,则G为SD的中点.要证EF∥平面SAD,只需证明EF平行平面SAD内的直线AG即可.(2)取AG中点H,连接DH,说明∠DMH为二面角A﹣EF﹣D的平面角,解三角形求二面角A﹣EF﹣D的大小.法二:建立空间直角坐标系,平面SAD即可证明(1);(2)求出向量和,利用,即可解答本题.【解答】解:法一:(1)作FG∥DC交SD于点G,则G为SD的中点.连接,又,故为平行四边形.EF∥AG,又AG⊂平面SAD,EF⊄平面SAD.所以EF∥平面SAD.(2)不妨设DC=2,则SD=4,DG=2,△ADG为等腰直角三角形.取AG中点H,连接DH,则DH⊥AG.又AB⊥平面SAD,所以AB⊥DH,而AB∩AG=A,所以DH⊥面AEF.取EF中点M,连接MH,则HM⊥EF.连接DM,则DM⊥EF.故∠DMH为二面角A﹣EF﹣D的平面角.所以二面角A﹣EF﹣D的大小为.法二:(1)如图,建立空间直角坐标系D﹣xyz.设A(a,0,0),S(0,0,b),则B(a,a,0),C(0,a,0),,.取SD的中点,则.平面SAD,EF⊄平面SAD,所以EF∥平面SAD.(2)不妨设A(1,0,0),则B(1,1,0),C(0,1,0),S(0,0,2),,.EF中点,,,又,,所以向量和的夹角等于二面角A﹣EF﹣D的平面角..所以二面角A﹣EF﹣D的大小为.20.(12分)(2007•全国卷Ⅱ)在直角坐标系xOy中,以O为圆心的圆与直线:x﹣y=4相切(1)求圆O的方程(2)圆O与x轴相交于A、B两点,圆内的动点P使|PA|、|PO|、|PB|成等比数列,求的取值范围.【分析】首先分析到题目(1)中圆是圆心在原点的标准方程,由切线可直接求得半径,即得到圆的方程.对于(2)根据圆内的动点P使|PA|、|PO|、|PB|成等比数列,列出方程,再根据点P在圆内求出取值范围.【解答】解:(1)依题设,圆O的半径r等于原点O到直线的距离,即.得圆O的方程为x2+y2=4.(2)不妨设A(x1,0),B(x2,0),x1<x2.由x2=4即得A(﹣2,0),B(2,0).设P(x,y),由|PA|,|PO|,|PB|成等比数列,得,两边平方,可得(x2+y2+4)2﹣16x2=(x2+y2)2,化简整理可得,x2﹣y2=2.=x2﹣4+y2=2(y2﹣1).由于点P在圆O内,故由此得y2<1.所以的取值范围为[﹣2,0).21.(12分)(2007•全国卷Ⅱ)设数列{a n}的首项a1∈(0,1),a n=,n=2,3,4…(1)求{a n}的通项公式;(2)设,求证b n<b n+1,其中n为正整数.【分析】(1)由题条件知,所以{1﹣a n}是首项为1﹣a1,公比为的等比数列,由此可知(2)方法一:由题设条件知,故b n>0.那么,b n+12﹣bn2=an+12(3﹣2a n+1)﹣a n2(3﹣2a n)=由此可知b n<b n+1,n为正整数.方法二:由题设条件知,所以.由此可知b n<b n+1,n为正整数.【解答】解:(1)由,整理得.又1﹣a1≠0,所以{1﹣a n}是首项为1﹣a1,公比为的等比数列,得(2)方法一:由(1)可知,故b n>0.那么,b n+12﹣bn2=a n+12(3﹣2a n+1)﹣a n2(3﹣2a n)==又由(1)知a n>0且a n≠1,故b n+12﹣bn2>0,因此b n<b n+1,n为正整数.方法二:由(1)可知,因为,所以.由a n≠1可得,即两边开平方得.即b n<b n+1,n为正整数.22.(12分)(2007•全国卷Ⅱ)已知函数f(x)=x3﹣x(1)求曲线y=f(x)在点M(t,f(t))处的切线方程(2)设a>0,如果过点(a,b)可作曲线y=f(x)的三条切线,证明:﹣a<b <f(a)【分析】(1)求出f′(x),根据切点为M(t,f(t)),得到切线的斜率为f'(t),所以根据斜率和M点坐标写出切线方程即可;(2)设切线过点(a,b),则存在t使b=(3t2﹣1)a﹣2t3,于是过点(a,b)可作曲线y=f(x)的三条切线即为方程2t3﹣3at2+a+b=0有三个相异的实数根.记g(t)=2t3﹣3at2+a+b,求出其导函数=0时t的值,利用t的值分区间讨论导函数的正负得到g(t)的单调区间,利用g(t)的增减性得到g(t)的极值,根据极值分区间考虑方程g(t)=0有三个相异的实数根,得到极大值大于0,极小值小于0列出不等式,求出解集即可得证.【解答】解:(1)求函数f(x)的导函数;f'(x)=3x2﹣1.曲线y=f(x)在点M(t,f(t))处的切线方程为:y﹣f(t)=f'(t)(x﹣t),即y=(3t2﹣1)x﹣2t3;(2)如果有一条切线过点(a,b),则存在t,使b=(3t2﹣1)a﹣2t3.于是,若过点(a,b)可作曲线y=f(x)的三条切线,则方程2t3﹣3at2+a+b=0有三个相异的实数根.记g(t)=2t3﹣3at2+a+b,则g'(t)=6t2﹣6at=6t(t﹣a).当t变化时,g(t),g'(t)变化情况如下表:)由g(t)的单调性,当极大值a+b<0或极小值b﹣f(a)>0时,方程g(t)=0最多有一个实数根;当a+b=0时,解方程g(t)=0得,即方程g(t)=0只有两个相异的实数根;当b﹣f(a)=0时,解方程g(t)=0得,即方程g(t)=0只有两个相异的实数根.综上,如果过(a,b)可作曲线y=f(x)三条切线,即g(t)=0有三个相异的实数根,则即﹣a<b<f(a).。
2007年普通高等学校招生全国统一考试数学卷(全国卷Ⅰ.理)含详解

2007年普通高等学校招生全国统一考试理科数学第Ⅰ卷一、选择题(1)α是第四象限角,5tan 12α=-,则sin α=( ) A .15 B .15- C .513 D .513-(2)设a 是实数,且1i1i 2a +++是实数,则a =( ) A .12 B .1 C .32D .2(3)已知向量(56)=-,a ,(65)=,b ,则a 与b ( ) A .垂直B .不垂直也不平行C .平行且同向D .平行且反向(4)已知双曲线的离心率为2,焦点是(40)-,,(40),,则双曲线方程为( )A .221412x y -=B .221124x y -=C .221106x y -=D .221610x y -=(5)设a b ∈R ,,集合{}10b a b a b a⎧⎫+=⎨⎬⎩⎭,,,,,则b a -=( ) A .1B .1-C .2D .2-(6)下面给出的四个点中,到直线10x y -+=的距离为2,且位于1010x y x y +-<⎧⎨-+>⎩,表示的平面区域内的点是( ) A .(11),B .(11)-,C .(11)--,D .(11)-,(7)如图,正四棱柱1111ABCD A B C D -中,12AA AB =,则异面直线1A B 与1AD 所成角的余弦值为( )A .15B .25C .35D .45(8)设1a >,函数()log a f x x =在区间[]2a a ,上的最大值与最小值之差为12,则a =( ) AB .2C.D .4AB1B1A1D1C CD(9)()f x ,()g x 是定义在R 上的函数,()()()h x f x g x =+,则“()f x ,()g x 均为偶函数”是“()h x 为偶函数”的( ) A .充要条件 B .充分而不必要的条件C .必要而不充分的条件D .既不充分也不必要的条件(10)21nx x ⎛⎫- ⎪⎝⎭的展开式中,常数项为15,则n =( )A .3B .4C .5D .6(11)抛物线24y x =的焦点为F ,准线为l ,经过F 的直线与抛物线在x 轴上方的部分相交于点A ,AK l ⊥,垂足为K ,则AKF △的面积是( )A .4B .C .D .8(12)函数22()cos 2cos 2xf x x =-的一个单调增区间是( ) A .233ππ⎛⎫ ⎪⎝⎭,B .62ππ⎛⎫ ⎪⎝⎭,C .03π⎛⎫ ⎪⎝⎭,D .66ππ⎛⎫- ⎪⎝⎭,第Ⅱ卷注意事项:1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,然后贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.第Ⅱ卷共2页,请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,在试题卷上作答无效.3.本卷共10题,共90分.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在横线上.(13)从班委会5名成员中选出3名,分别担任班级学习委员、文娱委员与体育委员,其中甲、乙二人不能担任文娱委员,则不同的选法共有 种.(用数字作答) (14)函数()y f x =的图像与函数3log (0)y x x =>的图像关于直线y x =对称,则()f x = .(15)等比数列{}n a 的前n 项和为n S ,已知1S ,22S ,33S 成等差数列,则{}n a 的公比为 . (16)一个等腰直角三角形的三个顶点分别在正三棱柱的三条侧棱上.已知正三棱柱的底面边长为2,则该三角形的斜边长为 .三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分10分) 设锐角三角形ABC 的内角A B C ,,的对边分别为a b c ,,,2sin a b A =. (Ⅰ)求B 的大小;(Ⅱ)求cos sin A C +的取值范围. (18)(本小题满分12分)某商场经销某商品,根据以往资料统计,顾客采用的付款期数ξ的分布列为商场经销一件该商品,采用1期付款,其利润为200元;分2期或3期付款,其利润为250元;分4期或5期付款,其利润为300元.η表示经销一件该商品的利润.(Ⅰ)求事件A :“购买该商品的3位顾客中,至少有1位采用1期付款”的概率()P A ; (Ⅱ)求η的分布列及期望E η.(19)(本小题满分12分) 四棱锥S ABCD -中,底面ABCD 为平行四边形,侧面SBC ⊥底面ABCD .已知45ABC = ∠,2AB =,BC =SA SB =(Ⅰ)证明SA BC ⊥;(Ⅱ)求直线SD 与平面SAB 所成角的大小.(20)(本小题满分12分) 设函数()e e xxf x -=-.(Ⅰ)证明:()f x 的导数()2f x '≥;(Ⅱ)若对所有0x ≥都有()f x ax ≥,求a 的取值范围. (21)(本小题满分12分)已知椭圆22132x y +=的左、右焦点分别为1F ,2F .过1F 的直线交椭圆于B D ,两点,过2F 的直线交椭圆于A C ,两点,且AC BD ⊥,垂足为P .(Ⅰ)设P 点的坐标为00()x y ,,证明:2200132x y +<; (Ⅱ)求四边形ABCD 的面积的最小值.(22)(本小题满分12分)已知数列{}n a 中12a =,11)(2)n n a a +=+,123n =,,,…. (Ⅰ)求{}n a 的通项公式;(Ⅱ)若数列{}n b 中12b =,13423n n n b b b ++=+,123n =,,,…,43n n b a -<≤,123n =,,,….2007年普通高等学校招生全国统一考试 理科数学试题(必修+选修Ⅱ)参考答案一、选择题: (1)D (2)B (3)A (4)A (5)C (6)C (7)D (8)D (9)B(10)D (11)C (12)A二、填空题: (13)36(14)3()xx ∈R(15)13(16)三、解答题: (17)解:(Ⅰ)由2sin a b A =,根据正弦定理得sin 2sin sin A B A =,所以1sin 2B =, 由ABC △为锐角三角形得π6B =. (Ⅱ)cos sin cos sin A C A A π⎛⎫+=+π-- ⎪6⎝⎭cos sin 6A A π⎛⎫=++ ⎪⎝⎭1cos cos 22A A A =++3A π⎛⎫=+ ⎪⎝⎭.由ABC △为锐角三角形知,22A B ππ->-,2263B ππππ-=-=. 2336A πππ<+<,所以1sin 23A π⎛⎫+< ⎪⎝⎭.由此有232A π⎛⎫<+< ⎪⎝⎭, 所以,cos sin A C +的取值范围为32⎫⎪⎪⎝⎭,. (18)解:(Ⅰ)由A 表示事件“购买该商品的3位顾客中至少有1位采用1期付款”. 知A 表示事件“购买该商品的3位顾客中无人采用1期付款”2()(10.4)0.216P A =-=,()1()10.2160.784P A P A =-=-=.(Ⅱ)η的可能取值为200元,250元,300元.(200)(1)0.4P P ηξ====,(250)(2)(3)0.20.20.4P P P ηξξ===+==+=,(300)1(200)(250)10.40.40.2P P P ηηη==-=-==--=.η的分布列为2000.42500.43000.2E η=⨯+⨯+⨯240=(元).(19)解法一:(Ⅰ)作SO BC ⊥,垂足为O ,连结AO ,由侧面SBC ⊥底面ABCD ,得SO ⊥底面ABCD .因为SA SB =,所以AO BO =,又45ABC =∠,故AOB △为等腰直角三角形,AO BO ⊥, 由三垂线定理,得SA BC ⊥.(Ⅱ)由(Ⅰ)知SA BC ⊥,依题设AD BC ∥, 故SA AD ⊥,由AD BC ==SA =AO =1SO =,SD =.SAB △的面积112S AB == 连结DB ,得DAB △的面积21sin13522S AB AD == 设D 到平面SAB 的距离为h ,由于D SAB S ABD V V --=,得121133h S SO S = , 解得h =设SD 与平面SAB 所成角为α,则sin h SD α===. 所以,直线SD 与平面SBC 所成的我为arcsin11. 解法二:(Ⅰ)作SO BC ⊥,垂足为O ,连结AO ,由侧面SBC ⊥底面ABCD ,得SO ⊥平面ABCD .因为SA SB =,所以AO BO =.又45ABC =∠,AOB △为等腰直角三角形,AO OB ⊥. 如图,以O 为坐标原点,OA 为x 0)A ,,(0B ,(0C -,,(001)S ,,,(0CB =,0SA CB = ,所以SA BC ⊥. (Ⅱ)取AB 中点E ,022E ⎛⎫⎪ ⎪⎝⎭,,A连结SE ,取SE 中点G ,连结OG,12G ⎫⎪⎪⎝⎭,.12OG ⎫=⎪⎪⎝⎭,,1SE ⎫=⎪⎪⎝⎭,(AB =. 0SE OG = ,0AB OG = ,OG 与平面SAB 内两条相交直线SE ,AB 垂直.所以OG ⊥平面SAB ,OG 与DS 的夹角记为α,SD 与平面SAB 所成的角记为β,则α与β互余.D,(DS =.cos 11OG DS OG DSα==,sin 11β=,所以,直线SD 与平面SAB所成的角为 (20)解:(Ⅰ)()f x 的导数()e e x xf x -'=+.由于e e 2x -x +=≥,故()2f x '≥.(当且仅当0x =时,等号成立). (Ⅱ)令()()g x f x ax =-,则()()e e x x g x f x a a -''=-=+-,(ⅰ)若2a ≤,当0x >时,()e e 20xxg x a a -'=+->-≥,故()g x 在(0)+,∞上为增函数,所以,0x ≥时,()(0)g x g ≥,即()f x ax ≥.(ⅱ)若2a >,方程()0g x '=的正根为1ln 2a x =,此时,若1(0)x x ∈,,则()0g x '<,故()g x 在该区间为减函数.所以,1(0)x x ∈,时,()(0)0g x g <=,即()f x ax <,与题设()f x ax ≥相矛盾.综上,满足条件的a 的取值范围是(]2-∞,.(21)证明:(Ⅰ)椭圆的半焦距1c ==,由AC BD ⊥知点P 在以线段12F F 为直径的圆上,故22001x y +=,所以,222200021132222y x y x ++=<≤.(Ⅱ)(ⅰ)当BD 的斜率k 存在且0k ≠时,BD 的方程为(1)y k x =+,代入椭圆方程22132x y +=,并化简得2222(32)6360k x k x k +++-=. 设11()B x y ,,22()D x y ,,则2122632k x x k +=-+,21223632k x x k -=+21221)32k BD x x k +=-==+ ;因为AC 与BC 相交于点P ,且AC 的斜率为1k-,所以,2222111)12332k k AC k k⎫+⎪+⎝⎭==+⨯+. 四边形ABCD 的面积222222222124(1)(1)962(32)(23)25(32)(23)2k k S BD AC k k k k +24+===++⎡⎤+++⎢⎥⎣⎦≥. 当21k =时,上式取等号.(ⅱ)当BD 的斜率0k =或斜率不存在时,四边形ABCD 的面积4S =. 综上,四边形ABCD 的面积的最小值为9625. (22)解:(Ⅰ)由题设:11)(2)n n a a +=+1)(1)(2n a =+1)(n a =+11)(n n a a +=-.所以,数列{n a是首项为21的等比数列,1)n n a -=,即n a的通项公式为1)1nn a ⎤=+⎦,123n =,,,…. (Ⅱ)用数学归纳法证明.(ⅰ)当1n =2<,112b a ==,所以11b a ≤,结论成立.(ⅱ)假设当n k =43k k b a -<≤,也即430k k b a -<- 当1n k =+时,13423k k k b b b ++-=+k =(3023k k b b --=>+,又1323k b <=-+,所以1(32)2)23k k k b b b +---=+2(3(k b <-4431)(k a -≤41k a +=也就是说,当1n k =+时,结论成立.43n n b a -<≤,123n =,,,….2007年普通高等学校招生全国统一考试理 科 数 学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页.第Ⅱ卷3至4页.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效.3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 参考公式:如果事件A B ,互斥,那么 球的表面积公式 ()()()P A B P A P B +=+ 24πS R =如果事件A B ,相互独立,那么其中R 表示球的半径 ()()()P A B P A P B =球的体积公式如果事件A 在一次试验中发生的概率是p ,那么34π3V R =n 次独立重复试验中事件A 恰好发生k 次的概率其中R 表示球的半径()(1)(012)k kn k n n P k C p p k n -=-=,,,…,一、选择题(1)α是第四象限角,5tan 12α=-,则sin α=( ) A .15B .15-C .513D .513-【解析】根据三角函数定义,不妨取α终边上一点(12,5)P -,2255sin 1312(5)y r α-===-+-,选D . (2)设a 是实数,且1i1i 2a +++是实数,则a =( ) A .12B .1C .32D .2【解析】1i (1)1i 111i 22222a a i a a i +-++-+=+=++,∵1i1i 2a +++是实数,∴102a -=,解得a =1.选B .(3)已知向量(56)=-,a ,(65)=,b ,则a 与b ( )A .垂直B .不垂直也不平行C .平行且同向D .平行且反向【解析】由a ·b =0,得a 与b 垂直,选A . (4)已知双曲线的离心率为2,焦点是(40)-,,(4,0),则双曲线方程为( )A .221412x y -=B .221124x y -=C .221106x y -=D .221610x y -=【解析】由2c a=及焦点是(40)-,,(4,0),得4c =,2a =,24a =,∴22212b c a =-=,∴双曲线方程为221412x y -=.故选A .(5)设a b ∈R ,,集合{}1{0}ba b a b a+=,,,,,则b a -=( )A .1B .-1C .2D .-2【解析】由{}1{0}b a b a b a +=,,,,知0a b +=或0a =.若0a =则ba 无意义,故只有0a b +=,1b =(若1ba=,这与0a b +=矛盾),∴1a =-,2b a -=.故选C . (6)下面给出的四个点中,到直线10x y -+=的距离为22,且位于1010x y x y +-<⎧⎨-+>⎩,表示的平面区域内的点是( )A .(11),B .(11)-,C .(11)--,D .(11)-,【解析】逐一检查,选C .(7)如图,正四棱柱1111ABCD A B C D -中,12AA AB =,则异面直线1A B 与1AD 所成角的余弦值为( D )A .15B .25C .35D .45【解析1】(综合法)不妨设AB=1,则A 1A=2,连结BC 1,A 1C 1,则AD 1∥BC 1,∠A 1BC 1为所求异面直线1A B 与1AD 所成角.在△A 1BC 1中,A 1B= BC 1=5,A 1C 1=2,11cos A BC ∠552255+-=⨯⨯45=.选D . 【解析2】(坐标法)不妨设AB=1,则A 1A=2,以A 为坐标原点建立如图所示的空间直角坐标系,则1(0,1,2)D ,1(0,1,2)AD =,1(0,0,2)A ,(100)B ,,,A 1D 1 C 1B 1AD CBA 1D 1 C 1 B 1A D CB z y x(综合法)(坐标法)A 1C 1 B 1AD CB第(7)题D 11B (1,0,2)A =- .11111144cos ,5||||55AD A B AD A B AD A B -<>===-⨯,∴1A B 与1AD 所成角的余弦值为45,选D .(8)设1a >,函数()log a f x x =在区间[]2a a ,上的最大值与最小值之差为12,则a =( ) A .2 B .2 C .22 D .4【解析】∵1a >,∴函数()log a f x x =在定义域内为增函数.min ()()log 1a f x f a a ===,max ()(2)log 2log 21a a f x f a a ===+,依题意有1log 22a =,4a =.选D . (9)()f x ,()g x 是定义在R 上的函数,()()()h x f x g x =+,则“()f x ,()g x 均为偶函数”是“()h x 为偶函数”的( )A .充要条件B .充分而不必要的条件C .必要而不充分的条件D .既不充分也不必要的条件【解析】若“()f x ,()g x 均为偶函数”则()()f x f x -=,()()g x g x -=当然有()()h x h x -=;反之则未必,故选B .(10)21()n x x-的展开式中,常数项为15,则n =( )A .3B .4C .5D .6【解析】21()n x x-的展开式的通项公式为(22)()(23)1r n r r r n r r n n T C x x C x---+==,若常数项为15,令23015rnn r C -=⎧⎪⎨=⎪⎩,64n r =⎧⎨=⎩,选D . (11)抛物线24y x =的焦点为F ,准线为l ,经过F 且斜率为3的直线与抛物线在x 轴上方的部分相交于点A ,AK l ⊥,垂足为K ,则AKF △的面积是( C)A .4B .33C .43D .8【解析】如图,过A 作AB ⊥x 轴于B ,设准线l 与x 轴交点为C ,直线FA :3(1)y x =-,代入24y x =,解得3A x =,23A y =,∴S 矩形ABCK =23(31)83⨯+=,∴12S =△AFKS 矩形ABCK =43.选C . (12)函数22()cos 2cos 2xf x x =-的一个单调增区间是( ) A .2()33ππ,B .()62ππ,C .(0)3π,D .()66ππ-, 【解析1】222215()cos 2cos cos 1cos (cos )224x f x x x x x =-=--=--,令cos u x =,结合二次函数及余弦函数图像.A BKF OxyC①当1[,1]2u ∈时,y 随u 的增大而增大,故只需求此时u 关于x 的增区间,即[2,2]3x k k πππ∈-.②当1[1,]2u ∈-时,y 随u 的增大而减小,故只需求此时u 关于x 的减区间,即[2,2]3x k k ππππ∈++.∵题目所给选项中,只有2()33ππ,是上述区间的子区间,∴选A .【解析2】222215()cos 2cos cos 1cos (cos )224x f x x x x x =-=--=--,1()2(cos )sin 2f x x x '=--依题意,令()0f x '>,则1cos 02sin 0x x ⎧->⎪⎨⎪<⎩或1cos 02sin 0x x ⎧-<⎪⎨⎪>⎩结合单位圆(如图)解得(2,2)3x k k πππ∈-或(2,2)3x k k ππππ∈++∵题目所给选项中,只有2()33ππ,是上述区间的子区间,∴选A .1Oxy第Ⅱ卷注意事项:1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,然后贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.第Ⅱ卷共2页,请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,在试题卷上作答无效.3.本卷共10题,共90分.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在横线上.(13)从班委会5名成员中选出3名,分别担任班级学习委员、文娱委员与体育委员,其中甲、乙二人不能担任文娱委员,则不同的选法共有 36 种.(用数字作答) 【解析】填36.从班委会5名成员中选出3名,共35A 种;其中甲、乙之一担任文娱委员的1224A A 种,则不同的选法共有35A -1224A A =36种.(14)函数()y f x =的图像与函数3log (0)y x x =>的图像关于直线y x =对称,则()f x = .【解析】()f x =3()xx ∈R .(15)等比数列{}n a 的前n 项和为n S ,已知1S ,22S ,33S 成等差数列,则{}n a 的公比为 . 【解析】填13.设数列的首项为1a ,公比为q ,则41a +41a q =21111(333)a a a q a q +++,(0q ≠)整理得230q q -=,解得13q =(0q =舍去).(16)一个等腰直角三角形的三个顶点分别在正三棱柱的三条侧棱上.已知正三棱柱的底面边长为2,则该三角形的斜边长为 .【解析】填23.如图,作正三棱柱ABC-A 1B 1C 1的直截面A 0B 0C 0,取B 0C 0的中点O ,过O 作直线DE ,分别交AA 1、BB 1于D 、E 两点连结C 0D 、C 0E ,则三角形C 0DE 为等腰三角形,若三角形C 0DE 仍为直角三角形,设B 0 E=x ,应有2202DE C =,即222(4)4(1)x x +=+,解得2x =,这样24(1)23DE x =+=,即等腰直角三角形C 0DE 斜边长为23.ACB B 1C 1A 1 A 0B 0C 0OD E (16)题。
2007年5月济南市高三统一考试数学文

2007年5月济南市高三统一考试数学(文史类)本试卷分第Ⅰ卷(选择题)和第II 卷(非选择题)两部分.第I 卷1至2页,第Ⅱ卷3至8 页.共150分.测试时间120分钟.第Ⅰ卷(选择题 共60分)注意事项:1.答第1卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上.2.选择题为四选一题目,每小题选出答案后,用铅笔把答题卡上对应题日的答案标号涂 黑.如需改动,用橡皮擦干净后,再选涂其它答案,不能答在测试卷上.一、选择题:本大题共12个小题.每小题5分;共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合2{|230},{|M x x x P y y =--<=,则M P 等于A .(0,3)B .[0,3)C .[1,3) D.(-1,3)2.已知复数122,1z i z i =+=-,则12z z z =在复平面上对应的点位于A .第一象限B .第二象限C .第三象限D .第四象限3. 对于平面α和共面的直线m n 、,下列命题中是真命题的是A .,,//m m n n αα⊥⊥若则B . //,//,//m n m n αα若则C .,//,//m n m n αα⊂若则D . //m n m n α若、与所成的角相等,则4.若平面向量a=(1,-2)与b 的夹角是180°,且|b|=,则b 等于A.(6,-3)B.(3,-6)C.(-3,6)D.(-6,3)5.如果数据x 1、x 2、…、x n 的平均值为x ,方差为s 2,则3x 1+2、3x 2+2、…、3x n +2的平均值和方差分别是 A. x 和s 2 B.3x +2和9 s 2 C. 3x +2和4 s 2 D. 3x +2和9 s 26. 下列四个命题,其中正确的命题是A .函数tan()4y x π=+是奇函数B .函数|sin(2)|3y x π=+的最小正周期是π C. 函数tanx 在(,)-∞∞内是减函数D .函数cos y x =在区间7[2,2]()4k k k Z ππππ++∈上是增函数7.一个盒子中装有标号为1,2,3,,4,5的5张标签,随机的选取两张标签,标签的选取是无放回的,则两张标签上的数字为相邻整数的概率是 A. 15 B. 25 C. 35 D. 12258.如右图,该程序运行后输出的结果S 为A.1B.10C.19D.289.在等比数列{a n }中,n n+1a >a ,且711a a =6⋅,414a +a =5,则616a a = A. 32 B.23 C. 16D.610.有关命题的说法错误的是A.若p q ∧为假命题,则p 、q 均为假命题B.“x=1”是“x 2-3x+2=0”的充分不必要条件C.命题“若x 2-3x+2=0则x=1”的逆否命题为:“若x ≠1,则x 2-3x+2≠0”D.对于命题p: x R ∃∈,使得x 2+x+1<0,则2:,10p x R x x ⌝∀∈++≥均有11.32f(1)=-2f(1.5)=0.625 f(1.25)= -0.984 f(1.375)= -0.260 f(1.4375)=0.162 f(1.40625)= -0.054 那么方程x +x -2x-2=0的一个近似根(精确到0.1)为A.1.2B.1.3C.1.4D.1.512.椭圆M :22221(0)x y a b a b+=>>的左、右焦点分别为F 1、F 2,P 为椭圆M 上任一点,且12||||PF PF ⋅的最大值的取值范围是[2c 2,3c 2],其中22c a b =-则椭圆M 的离心率e 的取值范围是 A. 32]2 B. 22 C. 3 D. 32[2二、填空题:本大题共4个小题.每小题4分;共16分.把答案填在题中横线上.13.已知3sin 3a =,α为第二象限角,且tan(α+β)=1,则tan β的值是14.过原点作曲线xy e =的切线,则切点的坐标为_______,切线的斜率为________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
山东省2007年高考样题数学(理工类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共150分.考试时间120分钟.第Ⅰ卷(选择题 共60分)注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目、试卷类型(A 或B )用铅笔涂写在答题卡上.2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上.3.考试结束后,监考人将本试卷和答题卡一并收回.一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,有且只有一项是符合题目要求的)1.设集合{}{}6,4,3,2,12≤+==x x x Q P ,则Q P ⋂等于A.{1,2}B. {3,4}C.{1}D. {-2,-1,0,1,2}本小题主要考查不等式的解法及集合的基本运算,考查实数、集合的运算能力. 解答:A 2.一粒骰子,抛掷一次,得到奇数的概率是 A.21 B. 61 C.32 D. 43 本题主要考查互斥事件的概率.解答:A3.下列函数既是奇函数,又在区间[]1,1-上单调递减的是A.x x f sin )(=B.1)(+-=x x fC.()x x a a x f -+=21)(D.x x x f +-=22ln )( 本小题主要考查基本函数及其复合函数的奇偶性与单调性,考查函数基本性质的应用.解答:D4.如果直线l 将圆04222=--+y x y x 平分且不通过第四象限,那么l 的斜率的取值范围是A .⎥⎦⎤⎢⎣⎡21,0B .[]1,0C .[]2,0D .⎪⎭⎫⎢⎣⎡21,0 本小题主要考查直线与圆的位置关系,考查数形结合的能力.解答:C5.已知⎪⎭⎫ ⎝⎛-∈0,2πx ,()54cos -=-x π,则=x 2tan A .247 B .247- C .724 D .724- 本小题主要考查利用同角三角函数关系式与二倍角公式求值,考查运算能力. 解答:D6.已知向量,,且65,2+-=+=,b a CD 27-=,则一定共线的三点是A. A 、B 、DB. A 、B 、CC. B 、C 、DD. A 、C 、D本小题主要考查平面向量的运算与共线向量的概念,考查运算能力.解答:A7.某公司甲、乙、丙、丁四个地区分别有150 个、120个、180个、150个销售点.公司为了调查产品销售的情况,需从这600个销售点中抽取一个容量为100的样本,记这项调查为①;在丙地区中有20个特大型销售点,要从中抽取7个调查其收入和售后服务等情况,记这项调查为②.则完成①、②这两项调查宜采用的抽样方法依次是A .分层抽样法,系统抽样法B .分层抽样法,简单随机抽样法C .系统抽样法,分层抽样法D .简单随机抽样法,分层抽样法 本小题主要考查随机抽样的三种抽样方法.解答:B8.已知实数a , b 满足等式b a ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛3121,下列五个关系式①0<b<a ②a<b<0 ③0<a<b④b<a<0 ⑤a=b 其中不可能成立的关系式有( ) A .1个 B .2个 C .3个 D .4个本小题主要考查指数式、指对互化以及分类讨论数学思想方法.解答:B9.在x y x y x y y x 2cos ,,log ,222====这四个函数中,当1021<<<x x 时,使()()222121x f x f x x f +>⎪⎭⎫ ⎝⎛+恒成立的函数的个数是 A .0 B .1 C .2 D .3本题主要考查函数的凹凸性,看上去好像超纲,但结合函数的图像准确理解凹凸的含义,不难作出答案.解答:B10.在△ABC 中,若Cc B b A a cos cos cos ==,则ABC ∆是 A.直角三角形 B.等边三角形C.钝角三角形D.等腰直角三角形本题主要考查解三角形的知识,要求对正弦、余弦定理灵活掌握.解答:B11. 变量y x ,满足下列条件:⎪⎪⎩⎪⎪⎨⎧≥≥≤+≥+≥+0,024*********y x y x y x y x ,则使y x z 23+=的值最小的()y x ,是A. ( 4.5 ,3 )B. ( 3,6 )C. ( 9, 2 )D. ( 6, 4 )本小题主要考查一元二次不等式组与平面区域问题以及简单的线性规划问题,考查数形结合的能力.解答:A12.若122=+b a ,222=+c b ,222=+a c ,则ca bc ab ++的最小值为A .213-B .321-C .321--D .321+ 本小题主要考查对代数式的认识,考查综合运用条件解决问题的能力.解答:B第Ⅱ卷(非选择题 共90分)注意事项:1.第Ⅱ卷共7页,用钢笔或圆珠笔直接答在试题卷中.2.答卷前,将密封线内的项目填写清楚.二、填空题(本大题共4小题,每小题4分,共16分.把答案填在题中横线上) 13.()()=-+++-221111i i i i.本小题主要考查复数的代数运算,考查运算能力.解答:-114.求满足100005312222<++++n 的最大整数解的程序框图A 处应为 .本小题主要考查学生对于基本框图逻辑结构的理解,同时考查学生对于数列求和以及不等式等实际数学问题的具体分析的能力.解答:n -215.已知两个圆:122=+y x ①与()1322=-+y x ②,则由①式减去②式可得上述两圆的对称轴方程,将上述命题在曲线仍为圆()()222r b y a x =-+-和()()222r d y c x =-+-的情况下加以推广,即要求得到一个更一般的命题,而已知命题应成为所推广命题的一个特例,推广的命题为 __________.本小题主要考查圆的方程、圆的公共弦方程的概念,考查抽象思维能力和归纳推广数学命题的能力.解答:()()0222222=--++-+-d c b a y b d x a c .16.已知m 、n 是不同的直线,α、β是不重合的平面,命题p :若βαβα⊂⊂n m ,,//,则n m //命题q :若n m n m //,,βα⊥⊥,则βα//下面的命题中,真命题的序号是 (写出所有真命题的序号). ①“p 或q ”为真;②“p 且q ”为真; ③p 真q 假 ; ④“p ⌝”为真本小题主要考查直线与直线、直线与平面、平面与平面的位置关系以及命题的判断,考查逻辑推理能力和空间想象能力.解答:①④三、解答题(本大题共6小题,共74分.解答应写文字说明;证明过程或演算步骤)(17)(本小题满分12分)甲、乙两人参加一次英语口语考试,已知在备选的10道试题中,甲能答对其中的6题,乙能答对其中的8题.规定每次考试都从备选题中随机抽出3题进行测试,至少答对2题才算合格.(Ⅰ)求甲答对试题数ξ的概率分布及数学期望;(Ⅱ)求甲、乙两人至少有一人考试合格的概率.本小题主要考查概率统计的基础知识,运用数学知识解决问题的能力.解:(Ⅰ)依题意,甲答对试题数ξ的概率分布如下:甲答对试题数ξ的数学期望E ξ=5961321210313010=⨯+⨯+⨯+⨯. (Ⅱ)设甲、乙两人考试合格的事件分别为A 、B ,则P (A )=310361426C C C C +=321202060=+,P (B )=15141205656310381228=+=+C C C C . 因为事件A 、B 相互独立,方法一:∴甲、乙两人考试均不合格的概率为 ()()()45115141321=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=⋅=⋅B P A P B A P ∴甲、乙两人至少有一人考试合格的概率为 ()454445111=-=⋅-=B A P P 答:甲、乙两人至少有一人考试合格的概率为4544. 方法二:∴甲、乙两人至少有一个考试合格的概率为 ()()()454415143215143115132=⨯+⨯+⨯=⋅+⋅+⋅=B A P B A P B A P P 答:甲、乙两人至少有一人考试合格的概率为4544. (18)(本小题满分12分) 已知向量()x x cos ,sin 2=,)cos 2,cos 3(x x =,定义函数 ()()1log -⋅=x f a ()1,0≠>a a(I )求函数()x f 的最小正周期;(II )确定函数()x f 的单调递增区间.本小题主要考查平面向量与三角函数的综合运用.解:(I )因为12cos 2sin 3cos 2cos sin 322++=+=⋅x x x x x n m 所以()⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+=62sin 2log πx x f a ,故ππ==22T (II )令()⎪⎭⎫ ⎝⎛+=62sin 2πx x g ,则()x g 的单调递增的正值区间是Z k k k ∈⎪⎭⎫ ⎝⎛+-,6,12ππππ, ()x g 的单调递减的正值区间是Z k k k ∈⎪⎭⎫ ⎝⎛++,125,6ππππ 当10<<a 时,函数()x f 的单调递增区间为Z k k k ∈⎪⎭⎫ ⎝⎛++,125,6ππππ 当1>a 时,函数()x f 的单调递增区间为Z k k k ∈⎪⎭⎫ ⎝⎛+-,6,12ππππ (19) (本小题满分12分)如图,在棱长为1的正方体1111D C B A ABCD -中,点E 是棱BC 的中点,点F 是棱CD 上的动点.(Ⅰ)试确定点F 的位置,使得F D 1⊥平面AB 1F ;(Ⅱ)当D 1E ⊥平面AB 1F 时,求二面角C 1―EF ―A 的余弦值;(III )求异面直线D 1E 与BC 1所成的角.本小题主要考查线面关系和正方体等基础知识,考查空间想象能力、运算能力和推理论证能力.利用两平面的法向量求也可.解:(Ⅰ)连结A 1B ,则A 1B 是D 1E 在面ABE 1A 1上的射影.∵AB 1⊥A 1B ,∴D 1E ⊥AB 1于是D 1E ⊥平面AB 1F , D 1E ⊥AF .连接DE ,则DE 是D 1ED 底面ABCD 内的射影.∴D 1E ⊥AF ,DE ⊥AF .∵ABCD 是正方形,E 是BC 的中点,∴当且仅当F 是CD 的中点时,DE ⊥AF , 既当点F 是CD 的中点时,D 1F ⊥平面AB 1F .(Ⅱ)当D 1E ⊥平面AB 1F 时,由(Ⅰ)知点F 是CD 的中点.又已知点E 是BC 的中点,连结EF ,则EF ∥BD .连接AC ;设AC 与EF 交于点H ,则CH ⊥EF .连结C 1H ,则CH 是C 1H 在底面ABCD 内的影.∴C 1H ⊥EF ,既∠C 1HC 上二面角C 1-EF -C 的平面角.在Rt △C 1CH 中,∵C 1C =1,CH =41,AC =42. ∴22421tan 11===∠CH C C HC C . ∴cos ∠C 1HC =31 故二面角C 1-EF -A 的余弦值为31 (III )连结1BC ,取11D A 的中点G ,连接BG ,因为 B E //1GD ,BE =1GD , 则BG //D 1E ,则直线BG 与BC 1所成的角,即为异面直线D 1E 与BC 1所成的角 在△BC 1G 中,由余弦定理得22cos 1=∠GBC ,则所求角为ο45. (20)(本小题满分12分)(I )已知椭圆C 的方程是()012222>>=+b a b y a x ,设斜率为k 的直线l ,交椭圆C 于A 、B 两点,AB 的中点为M . 证明:当直线l 平行移动时,动点M 在一条过原点的定直线上;(Ⅱ)利用(I )所揭示的椭圆几何性质,用作图方法找出下面给定椭圆的中心,简要写出作图步骤,并在图中标出椭圆的中心.本题主要考查直线与椭圆的位置关系,学生的作图能力.解:(I )设直线l 的方程为m kx y +=,与椭圆C 的交点()11,y x A 、()22,y x B , 则有⎪⎩⎪⎨⎧=++=12222b y ax m kx y , 解得 02)(222222222=-+++b a m a kmx a x k a b , ∵ 0>∆,∴ 2222k a b m +<,即 222222k a b m k a b +<<+-.则 222221212222212,2ka b m b m kx m kx y y k a b km a x x +=+++=++-=+, ∴ AB 中点M 的坐标为⎪⎪⎭⎫ ⎝⎛++-22222222,k a b m b k a b km a .∴ 线段AB 的中点M 在过原点的直线 022=+y k a x b 上. (Ⅱ)如图,作两条平行直线分别交椭圆于A 、B 和C 、D ,并分别取AB 、CD 的中点M 、N ,连接直线MN ;又作两条平行直线(与前两条直线不平行)分别交椭圆于A 1、B 1和C 1、D 1,并分别取A 1B 1、C 1D 1的中点M 1、N 1,连接直线M 1N 1,那么直线MN 和M 1N 1的交点O 即为椭圆中心.21.(本小题满分12分)已知函数()()0,,ln 2≠+-==a bx ax x g x x f(Ⅰ)若2=b ,且()()()x g x f x h -=存在单调递减区间,求a 的取值范围;(Ⅱ)设函数()x f 的图象C 1与函数()x g 图象C 1交于点P 、Q ,过线段PQ 的中点作x 轴的垂线分别交C 1,C 2于点M 、N ,证明C 1在点M 处的切线与C 2在点N 处的切线不平行. 本题综合考察导数在解决函数单调性,函数曲线的切线等问题中的作用.解:(I )x ax x x h b 221ln )(,22--==时,则.1221)(2x x ax ax x x h -+-=--=' 因为函数()x h 存在单调递减区间,所以0)(<'x h 有解.又因为0>x 时,则0122>-+x ax 有0>x 的解.①当0>a 时,122-+=x ax y 为开口向上的抛物线,0122>-+x ax 总有0>x 的解;②当0<a 时,122-+=x ax y 为开口向下的抛物线,而0122>-+x ax 总有0>x 的解;则044>+=∆a ,且方程0122=-+x ax 至少有一正根.此时,01<<-a 综上所述,a 的取值范围为()()+∞⋃-,00,1.(II )证法一 设点P 、Q 的坐标分别是()11,y x P ,()22,y x Q ,210x x <<,则点M 、N 的横坐标为,221x x x += 在C 1点M 处的切线斜率为,2|1212121x x x k x x x +==+= 在C 2点N 处的切线斜率为b x x a b ax k x x x ++=+=+=2)(|212221假设C 1在点M 处的切线与C 2在点N 处的切线平行,则21k k = 即b x x a x x ++=+2)(22121,则)2()(2)()(2)(21212221221222112bx x abx x a x x b x x a x x x x +-+=-+-=+-=1212ln ln x x y y -=- 所以1212121)1(2ln x x x x x x +-= 设12x x t =则1,1)1(2ln >+-=t t t t ① 令1,1)1(2ln )(>+--=t t t t t r ,则22214(1)(),(1)(1)t r t t t t t -'=-=++ 因为1>t 时,0)(>'t r ,所以)(t r 在),1[+∞上单调递增. 故.0)1()(=>r t r 则t t t +->1)1(2ln . 这与①矛盾,假设不成立.故C 1在点M 处的切线与C 2在点N 处的切线不平行. 证法二:同证法一得)(2)ln )(ln (121212x x x x x x -=-+ 因为01>x ,所以)1(2ln )1(121212-=+x x x x x x令12x x t =,得1),1(2ln )1(>-=+t t t t ② 令11ln )(,1),1(2ln )1()(-+='>--+=t t t r t t t t t r 则 因为22111)1(ln t t t t t t -=-='+,所以1>t 时,0)1(ln >'+t t故t t 1ln +在[)+∞,1上单调递增.从而011ln >-+t t ,即0)(>'t r于是)(t r 在[)+∞,1上单调递增.故0)1()(=>r t r 即)1(2ln )1(->+t t t 这与②矛盾,假设不成立. 故C 1在点M 处的切线与C 2在点N 处的切线不平行. 22.(本小题满分14分)已知数列{}n b 是等差数列,100,1103211=+++=b b b b b , (Ⅰ)求数列{}n b 的通项n b ;(Ⅱ)设数列{}n a 的通项⎪⎪⎭⎫ ⎝⎛+=n n ba 11lg ,记n S 是数列{}n a 的前n 项和,试比较n S 与1lg 21+n b 的大小,并证明你的结论. 本题是综合题,主要考查等差数列、数学归纳法、对数函数的性质等基本知识,以及归纳猜想,等价转化和代数式恒等变形的能力,相比之下,对能力的考查,远远高于对知识的考查.解:(Ⅰ)设数列{}n b 的公差为d ,由题意得⎪⎩⎪⎨⎧=-+=1002)110(1010,111d b b 解得⎩⎨⎧==211d b ∴12-=n b n(Ⅱ)由12-=n b n ,知()⎪⎭⎫ ⎝⎛-+++⎪⎭⎫ ⎝⎛+++=1211lg 311lg 11lg n S n()⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛++=121131111lg n ,12lg lg 211+=+n b n .因此要比较n S 与1lg 21+n b 的大小,可先比较与12+n 的大小.取1=n ,有()11+>112+⋅,取2=n ,有(1+1)(1+31)>122+⋅,……由此推测(1+1)(1+31)…(1+121-n )>12+n . ①若①式成立,则由对数函数性质可断定:1lg 21+>n n b S 下面用数学归纳法证明①式. (i )当1=n 时已验证①式成立.(ii )假设当k n =()Z k k ∈≥,1时,①式成立,即(1+1)(1+31)…(1+121-k )>12+k .那么,当1+=k n 时,(1+1)(1+31)…(1+121-k )[1+1)1(21-+k ]>12+k (1+121+k )=1212++k k ()22+k , ∵()2221212⎥⎦⎤⎢⎣⎡+++k k k -2)32(+k=012112)384(48422>+=+++-++k k k k k k ,2)k +>=. 因而 .1)1(2)1211)(1211()311)(11(++>++-+++k k k这就是说①式当1+=k n 时也成立.由(i ),(ii )知①式对任何正整数n 都成立. 由此证得:1lg 21+>n n b S山东省2007年高考样题数学(文史类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共150分.考试时间120分钟.第Ⅰ卷(选择题 共60分)注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目、试卷类型(A 或B )用铅笔涂写在答题卡上.2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上. 3.考试结束后,监考人将本试卷和答题卡一并收回.一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,有且只有一项是符合题目要求的)1.设P 、Q 为两个非空实数集合,定义集合},5,2,0{},,|{=∈∈+=+P Q b P a b a Q P 若}6,2,1{=Q ,则Q P +中元素的个数是A .9B .8C .7D .6本题主要考查集合概念的理解,以及对知识的迁移能力,对基本知识的掌握要准确、牢固. 解答:B2.一粒骰子,抛掷一次,得到奇数的概率是A.21 B.61 C.32 D. 43本题主要考查考生对于古典概型的理解、运用,互斥事件的概率加法公式. 解答:A3.若b a c b a +===,2,1,且a c ⊥,则向量a 与b的夹角为A.30°B.60°C.120°D.150°本题主要考查向量的内积及运算,向量的内积是解决夹角与距离的工具,应灵活掌握. 解答:C4. 为了得到函数)62s i n (π-=x y 的图象,可以将函数x y 2cos =的图象( )A .向右平移6π个单位长度 B .向右平移3π个单位长度C .向左平移6π个单位长度D .向左平移3π个单位长度本题 综合考查三角函数诱导公式,三角函数图象变换的知识,以及逻辑分析能力和直觉思维能力. 答案;B5. 在下列关于直线l 、m 与平面α、β的命题中,真命题是 A.若β⊂l 且βα⊥,则α⊥l B.若β⊥l 且βα//,则α⊥l .C.若β⊥l 且βα⊥,则α//lD. 若m =⋂βα且m l //,则α//l . 本题主要考查立体几何初步的有关知识,包括直线与直线、直线与平面、平面与平面的位置关系的知识,要求学生有很好的空间想象能力. 解答:B6.某初级中学有学生270人,其中一年级108人,二、三年级各81人,现要利用抽样方法抽取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按一、二、三年级依次统一编号为1,2,…,270;使用系统抽样时,将学生统一随机编号1,2,…,270,并将整个编号依次分为10段.如果抽得号码有下列四种情况: ①7,34,61,88,115,142,169,196,223,250; ②5,9,100,107,111,121,180,195,200,265; ③11,38,65,92,119,146,173,200,227,254; ④30,57,84,111,138,165,192,219,246,270; 关于上述样本的下列结论中,正确的是 A .②、③都不能为系统抽样 B .②、④都不能为分层抽样C .①、④都可能为系统抽样D .①、③都可能为分层抽样本题主要考查统计中的抽样方法的有关知识,新课程把这部分只是放到了必修内容里,也就是说对于现代公民应必备的知识,反映了我们整个国家的进步,此类题型应该给予重视. 解答:D7. 若过定点)0,1(-M 且斜率为k 的直线与圆05422=-++y x x 在第一象限内的部分有交点,则k 的取值范围是A.50<<kB.05<<-kC. 130<<kD.50<<k 本题主要考查平面解析几何初步知识,包括圆的一般方程、圆的标准方程、直线与圆的交点等知识,但此题考察的解题方法是数形结合的思想方法. 解答:A8 . 向高为H 的水瓶中注水, 注满为止. 如果注水量V 与水深h 的函数关系的图象如右图所示, 那么水瓶的形状是( )解答:B9 . 在△ABC 中,若CcB b A a cos cos cos ==,则△ABC 是 A.直角三角形. B.等边三角形. C.钝角三角形. D.等腰直角三角形.本题主要考查解三角形的知识, 要求对正弦、余弦定理灵活掌握. 解答:B10.已知实数b a ,满足等式,)31()21(b a =下列五个关系式①a b <<0 ②0<<b a ③b a <<0 ④0<<a b⑤b a =其中不可能...成立的关系式有A .1个B .2个C .3个D .4个本小题综合考查指数式、指数式与对数式互化以及指数函数的有关知识,分类讨论数学思想方法. 解答:BhABCD11.在R 上定义运算).1(:y x y x -=⊗⊗若不等式1)()(<+⊗-a x a x 对任意实数x 成立,则A .11<<-aB .20<<aC .2321<<-a D .2123<<-a 本题以一元二次不等式的有关知识为载体,综合考查考生利用已经获取的信息,处理并解决新问题的能力. 解答:C12.在直角坐标系xoy 中,已知A O B ∆三边所在直线方程分别为3032,0,0=+==y x y x则AOB ∆内部和边上整点(即横、纵坐标均为整数的点)的总数是A .95B .91C .88D .75本题主要考查了解析几何必修内容的线性规划. 解答:B第Ⅱ卷(非选择题 共90分)注意事项:1.第Ⅱ卷共7页,用钢笔或圆珠笔直接答在试题卷中. 2.答卷前,将密封线内的项目填写清楚.二、填空题(本大题共4小题,每小题4分,共16分.把答案填在题中横线上) 13.复数),,,(,R d c b a di c bi a ∈++的积为实数的充要条件是 . 本题主要考查复数和常用逻辑用语的知识. 解答:0=+bc ad14.在一项打鼾与患心脏病的调查中,共调查了1671人,经过计算得63.272=K ,根据这一数据分析,我们有理由认为打鼾与患心脏病是 的(有关,无关)本题主要考查统计案例的有关知识,对828.102>K 就有99.9%理由认为两个量是有关系的.解答:有关.15. 已知n 次多项式()n n n n n a x a x a x a x P ++++=--1110 ,如果在一种算法中,计算kx 0()n k ,4,3,2=的值需要1-k 次乘法,计算()03x P 的值共需要9次运算(6次乘法,3次加法),那么计算()010x P 的值共需要 次运算. 下面给出一种减少运算次数的算法:()()()1100,+++==k k k a x xP x P a x P ,(=k 0, 1,2,…,1-n ).利用该算法,计算()03x P 的值共需要6次运算,计算()010x P 的值共需要 次运算.本题涉及算法的知识,但重在考查考生的合情推理能力和创造性思维能力. 解答:65,2016. 以下四个关于圆锥曲线的命题中:①设A 、B 为两个定点,k 为非零常数,||||PA PB k -=,则动点P 的轨迹为双曲线;②过定圆C 上一定点A 作圆的动点弦AB ,O 为坐标原点,若1(),2OP OA OB =+则动点P 的轨迹为椭圆;③方程02522=+-x x 的两根可分别作为椭圆和双曲线的离心率;④双曲线13519252222=+=-y x y x 与椭圆有相同的焦点.其中真命题的序号为 (写出所有真命题的序号).本题通过多选的开放形势,综合考查椭圆和双曲线的概念、简单几何性质,并结合平面向量的知识,考查学生处理简单轨迹问题的能力 . 解答: ③④三、解答题(本大题共6小题,共74分.解答应写文字说明、证明过程或演算步骤)17.(本小题满分12分)已知232,534cos παππα<≤=⎪⎭⎫ ⎝⎛+.求⎪⎭⎫ ⎝⎛+42cos πα的值.本小题考查两角和正、余弦公式,倍角的正弦、余弦公式,同角三角函数的基本关系式以及诱导公式等基础知识,考查基本运算能力.解:……3分47443ππαπ<+≤且0)4cos(>+πα,∴47423ππαπ<+≤………………………………6分从而,……………8分…………………………10分………………………………12分18.(本题满分12分)某蔬菜基地种植西红柿,由历年市场行情得知,从二月一日起的300天内,西红柿市场售价与上市时间的关系用图一的一条折线表示;西红柿的种植成本与上市时间的关系用图二的抛物线段表示.(I )写出图一表示的市场售价与时间的函数关系P =f (t ); 写出图二表求援 种植成本与时间的函数关系式Q =g (t );(II )认定市场售价减去种植成本为纯收益,问何时上市的西红柿纯收益最大?(注:市场售价和种植成本的单位:元/210kg ,时间单位:天)300本题主要考查由函数图象建立函数关系式和求函数最大值的问题,考查运用所学知识解决实际问题的能力.解:(I )由图一可得市场售价与时间的函数关系为由图二可得种植成本与时间的函数关系为(II )设t 时刻的纯收益为h (t ),则由题意得 h (t )=f (t )-g (t )即当0≤t ≤200时,配方整理得所以,当t =50时,h (t )取得区间[0,200]上的最大值100; 当200< t ≤300时,配方整理得所以,当t =300时,h (t )取得区间[200,300]上的最大值87.5. 综上,由100>87.5可知,h (t )在区间[0,300]上可以取得最大值100,此时t =50,即从二月一日开始的第50天时,上市的西红柿纯收益最大. 19.(本小题满分12分)如图, 在直三棱柱111C B A ABC -中,3=AC ,5AB =,4=BC ,41=AA ,点D 是AB 的中点, (I )求证:1BC AC ⊥; (II )求证:11//CDB AC 平面.本题考察学生对空间图形中直线与直线,直线与平面相互关系的识别能力,综合考查学生的空间想象能力、逻辑推理能力.证明:(I )直三棱柱111C B A ABC -,底面三边长3=AC ,5=AB ,4=BC∴ BC AC ⊥,又ABC CC 平面⊥1,∴1BC 在平面ABC 内的射影为BC ∴1BC AC ⊥;(II )设1CB 与B C 1的交点为E ,连结DE ,∵ D 是AB 的中点,E 是1BC 的中点,∴ 1//AC DE , ∵ 1CDB DE 平面⊂,11CDB AC 平面⊄,∴11//CDB AC 平面 . 20.(本小题满分12分)设数列{}n a 的前项和为22n S n =,{}n b 为等比数列,且11b a =, ()1122b a a b =-, (Ⅰ)求数列{}n a 和{}n b 的通项公式; (Ⅱ)设nnn b a c =,求数列{}n c 的前n 项和n T . 本题主要考查等差数列、等比数列基本知识和数列求和的基本方法以及运算能力.解:(Ⅰ)因为当1=n 时,211==S a ,当2≥n 时, ()24122221-=--=-=-n n n S S a n n n ,故{}n a 的通项公式为24-=n a n ,设{}n b 的公比为q ,则11b qd b =,4=d ,所以41=q 故111412--⎪⎭⎫ ⎝⎛⨯==n n n q b b ,即{}n b 的通项公式为142-=n n b(Ⅱ)∵()114124224---=-==n n nn n n n b a c ,∴121214)12(...45431...--++⨯+⨯+=+++=n n n n c c c T ,n n n n n T 4)12(4)32(...4543414132⨯-+⨯-++⨯+⨯+⨯=-,两式相减得()()]54)56[(314124...4442131321+-=-+++++--=-n n n n n n T , ∴]54)56[(91+-=n n n T . 21.(本小题共12分) 已知函数()a x x x x f +++-=9323,(I )求()x f 的单调递减区间;(II )若()x f 在区间[-2,2]上的最大值为20,求它在该区间上的最小值. 本题主要考查导数在研究函数中的应用,会用导数求函数的单调区间、最值. 解:(I )()9632++-='x x x f ,令()0<'x f ,解得1-<x 或3>x ,所以函数()x f 的单调递减区间为(-∞,-1),(3,+∞).(II )因为()a a f +=+-+=-2181282,()a a f +=+++-=22181282, 所以()()22->f f ,因为在(-1,3)上()0>'x f ,所以()x f 在[-1, 2]上单调递增,又由于()x f 在[-2,-1]上单调递减,因此()2f 和()1-f 分别是()x f 在区间[-2,2]上的最大值和最小值,于是有 2022=+a ,解得 2-=a , 故()29323-++-=x x x x f ,因此72931)1(-=--+=-f ,即函数()x f 在区间[-2,2]上的最小值为-7.22.(本题满分14分)已知抛物线)0(22>=p px y 的焦点为F ,A 是抛物线上横坐标为4,且位于x 轴上方的点,A 到抛物线准线的距离等于5.过A 作AB 垂直于y 轴,垂足为B ,OB 的中点为M ,(I )求抛物线方程;(II )过M 作FA MN ⊥,垂足为N ,求点N 的坐标;(Ⅲ)以M 为圆心,MB 为半径作圆M ,当)0,(m K 是x 轴上一动点时,讨论直线AK 与圆M 的位置关系.本题考查抛物线的标准方程和简单几何性质,直线的方程,直线与抛物线、圆的位置关系,以及点到直线的距离公式的等基本知识,综合考查学生运用解析法处理几何问题的能力.解:(I )抛物线2,524,222=∴=+-==p p p x px y 于是的准线为. ∴抛物线方程为x y 42=.(II )∵点A 的坐标是(4,4), 由题意得()4,0B ,()2,0M ,又∵()0,1F , ∴,43,;34-=∴⊥=MN FA k FA MN k 则FA 的方程为()134-=x y ,MN 的方程为x y 432-=-, 解方程组)54,58(5458,432)1(34N y x x y x y ∴⎪⎪⎩⎪⎪⎨⎧==⎪⎪⎩⎪⎪⎨⎧-=--=得. (Ⅲ)由题意得,圆M 的圆心是点(0,2),半径为2.当4=m 时,直线AK 的方程为4=x ,此时,直线AK 与圆M 相离,当4≠m 时,直线AK 的方程为),(44m x my --=即为04)4(4=---m y m x , 圆心()2,0M 到直线AK 的距离2)4(16|82|-++=m m d ,令1,2>>m d 解得.1>∴m 当时,直线AK 与圆M 相离; 当1=m 时,直线AK 与圆M 相切;当1<m 时,直线AK 与圆M 相交.。