概率知识点总结(实用8篇)

合集下载

概率知识点归纳总结高中

概率知识点归纳总结高中

概率知识点归纳总结高中概率是数学中一个重要的分支,它研究的是随机事件发生的可能性。

概率在日常生活中也有着广泛的应用,比如天气预报、赌博、金融投资等领域都离不开概率的运用。

在高中数学课程中,概率也是一个重要的内容,我们主要学习了基本概率、条件概率、独立事件、贝叶斯定理等知识点。

下面我们将对这些内容进行详细的归纳总结。

一、基本概率1.概率的定义和性质:概率是指一个随机实验的结果符合某种条件的可能性大小。

概率的性质包括非负性、规范性和可列可加性。

2.概率的计算:对于一个随机实验的样本空间S,如果事件A包含n个基本事件,那么事件A的概率P(A)可以用公式P(A)=n/N来计算,其中N为样本空间S中基本事件的总数。

3.事件的互斥与对立事件:互斥事件指两个事件不可能同时发生;对立事件指两个事件中至少有一个发生。

二、条件概率1.条件概率的定义:当事件B已经发生时,事件A发生的概率称为条件概率,记作P(A|B)。

条件概率的计算公式为P(A|B)=P(AB)/P(B)。

2.乘法定理:P(AB)=P(B)P(A|B)=P(A)P(B|A)。

3.全概率公式和贝叶斯定理:全概率公式用于求解事件A的概率,贝叶斯定理用于求解事件B发生的条件下,事件A发生的概率。

三、独立事件1.独立事件的定义和性质:事件A和事件B互相独立的条件是P(A|B)=P(A),P(B|A)=P(B),即事件A的发生与事件B的发生没有任何影响。

2.独立事件的乘法公式:若事件A和事件B是独立事件,则P(AB)=P(A)P(B)。

3.重复独立实验的概率:重复独立实验指多次独立且相同的实验,对于n次独立实验,事件A发生k次的概率为C(n,k)P(A)^k[1-P(A)]^(n-k),其中C(n,k)表示组合数。

四、随机变量及其分布1.随机变量的概念:随机变量是对随机事件结果的数学描述,它可以是离散型随机变量也可以是连续型随机变量。

2.离散型随机变量的分布:包括伯努利分布、二项分布、泊松分布等,每种分布都有其对应的概率质量函数和概率分布函数。

概率知识点总结

概率知识点总结

概率知识点总结概率是数学中一个非常重要的概念,它用来描述事件发生的可能性大小。

在现实生活中,我们经常需要用到概率来评估风险、预测结果,甚至是做决策。

本文将从基本概念、概率计算方法、常见概率分布以及概率在实际应用中的作用等方面对概率知识点进行总结。

一、基本概念 1. 样本空间:指一个随机试验的所有可能结果的集合,用S表示。

2. 事件:样本空间中的一个子集,用A、B、C等来表示。

事件可以分为互斥事件、对立事件、独立事件等。

3. 概率:描述事件发生可能性大小的数值,用P(A)表示事件A发生的概率。

概率的取值范围是0到1之间。

二、概率计算方法 1. 经典概率:对于等可能性试验,事件A发生的概率可以通过计算A中元素个数与样本空间S中元素个数的比值来得到。

2. 频率概率:通过重复进行试验,事件A发生的频率逐渐趋近于概率P(A)。

3. 主观概率:基于主观判断给出的概率,通常用于无法进行实验的情况下。

三、常见概率分布 1. 均匀分布:在一个区间内,各个取值发生的概率相同。

2. 二项分布:适用于只有两个可能结果的试验,如抛硬币、生男生女等。

3. 正态分布:也称为高斯分布,是一种常见的连续概率分布,具有钟形曲线。

4. 泊松分布:用于描述单位时间或单位空间内独立事件发生的次数。

四、概率在实际应用中的作用 1. 风险评估:概率可以用来评估风险的大小,帮助人们做出决策。

例如,保险公司可以根据概率计算出索赔发生的可能性,从而制定保险费率。

2. 统计推断:概率理论是统计学的基础,可以用于从样本中推断总体的性质。

例如,通过样本数据计算出的概率可以用于判断总体的某个特征是否存在。

3. 机器学习:在机器学习领域,概率模型被广泛应用于分类、回归等问题。

通过对数据进行建模,可以计算出不同类别的概率,从而进行分类预测等任务。

4. 决策分析:概率可以用于帮助人们做出最优决策。

通过计算不同决策的预期收益或损失,可以选择具有最大期望效用的决策。

概率与统计知识点总结

概率与统计知识点总结

概率与统计知识点总结一、概率的基本概念概率,简单来说,就是衡量某个事件发生可能性大小的一个数值。

比如抛硬币,正面朝上的概率是 05,意思是在大量重复抛硬币的实验中,正面朝上的次数大约占总次数的一半。

随机事件,就是在一定条件下,可能出现也可能不出现,而在大量重复试验中具有某种规律性的事件。

比如掷骰子得到的点数就是随机事件。

必然事件,就是在一定条件下必然会发生的事件。

比如太阳从东方升起,这就是必然事件。

不可能事件,就是在一定条件下不可能发生的事件。

比如在地球上,水往高处流就是不可能事件。

概率的取值范围在 0 到 1 之间。

0 表示事件不可能发生,1 表示事件必然发生。

二、古典概型古典概型是一种最简单、最基本的概率模型。

它具有两个特点:试验中所有可能出现的基本事件只有有限个;每个基本事件出现的可能性相等。

计算古典概型中事件 A 的概率公式为:P(A) = A 包含的基本事件个数/基本事件的总数。

例如,一个袋子里有 5 个红球和 3 个白球,从中随机摸出一个球是红球的概率,基本事件总数是 8(5 个红球+ 3 个白球),红球的个数是 5,所以摸到红球的概率就是 5/8。

三、几何概型与古典概型不同,几何概型中的基本事件个数是无限的。

比如在一个时间段内等可能地到达某一地点,或者在一个区域内等可能地取点。

几何概型的概率计算公式是:P(A) =构成事件 A 的区域长度(面积或体积)/试验的全部结果所构成的区域长度(面积或体积)。

举个例子,在区间0, 10中随机取一个数,这个数小于 5 的概率就是 5/10 = 05。

四、条件概率条件概率是在已知某个事件发生的条件下,另一个事件发生的概率。

记事件 A 在事件 B 发生的条件下发生的概率为 P(A|B)。

计算公式为:P(A|B) = P(AB) / P(B) ,其中 P(AB) 表示事件 A 和事件 B 同时发生的概率。

比如说,已知今天下雨,明天也下雨的概率就是一个条件概率。

概率的全部知识点总结

概率的全部知识点总结

概率的全部知识点总结一、定义概率是指某一随机现象发生的可能性大小的度量。

通常用P(A)表示事件A发生的概率。

概率的取值范围是0到1之间,即0 ≤ P(A) ≤ 1。

当概率为0时,表示事件不可能发生;当概率为1时,表示事件一定发生;当概率为0.5时,表示事件发生的可能性为50%。

二、事件在概率论中,事件是指随机试验的某一结果,用大写字母A、B、C等表示。

事件可以包含一个或多个基本事件,基本事件是随机试验的最小基本单位,用小写字母a、b、c等表示。

例如,掷一枚硬币的结果可以是正面(基本事件H)或反面(基本事件T),而事件可以是“出现正面”或“出现反面”。

三、概率的性质1. 非负性:对任意事件A,有P(A) ≥ 0。

2. 规范性:对样本空间Ω中的事件,有P(Ω) = 1。

3. 互斥事件的加法规则:对互斥事件A和B,有P(A ∪ B) = P(A) + P(B)。

4. 对立事件的性质:对对立事件A和A',有P(A) + P(A') = 1。

四、古典概率古典概率是指在样本空间有限且等可能的情况下,根据事件发生的可能性来计算概率。

例如,掷一枚硬币得到正面的概率为1/2,掷一个骰子得到点数为3的概率为1/6。

古典概率的计算公式为P(A) = n(A) / n(Ω),其中n(A)表示事件A包含的基本事件个数,n(Ω)表示样本空间Ω中基本事件的总数。

五、条件概率条件概率是指在已知某一事件发生的条件下,另一事件发生的概率。

条件概率的计算公式为P(B|A) = P(A ∩ B) / P(A),表示在事件A发生的条件下,事件B发生的概率。

条件概率的性质包括P(B|A) ≥ 0,P(B|A)P(A) = P(A ∩ B) = P(A|B)P(B),以及全概率公式和贝叶斯公式等。

六、贝叶斯公式贝叶斯公式是根据条件概率和全概率公式推导出来的一种计算概率的方法。

贝叶斯公式的计算公式为P(A|B) = P(B|A)P(A) / P(B),表示在事件B发生的条件下,事件A发生的概率。

概率知识点归纳整理总结

概率知识点归纳整理总结

概率知识点归纳整理总结概率基础知识1. 样本空间和事件概率论的基本概念是样本空间和事件。

样本空间是一个随机试验所有可能结果的集合,通常用Ω表示。

事件是样本空间的一个子集,表示随机试验的一些结果。

事件的概率描述了该事件发生的可能性有多大。

2. 概率的定义在样本空间Ω中,事件A包含n(A)个基本事件,概率P(A)定义为P(A)=n(A)/n(Ω),即事件A的发生可能性是A包含的基本事件数目与样本空间的基本事件数目之比。

3. 概率的性质概率具有以下几个性质:(1)非负性:对于任意事件A,有0≤P(A)≤1;(2)规范性:样本空间的概率为1,即P(Ω)=1;(3)可列可加性:若事件A1,A2,A3,...两两互斥,则P(A1∪A2∪A3∪...)=P(A1)+P(A2)+P(A3)+...。

4. 条件概率条件概率是指在事件B已经发生的条件下,事件A发生的概率,表示为P(A|B),其定义为P(A|B)=P(A∩B)/P(B)。

5. 独立事件两个事件A和B称为独立事件,当且仅当P(A∩B)=P(A)P(B)。

6. 贝叶斯定理贝叶斯定理是用来计算逆概率的定理,它表示为P(A|B)=P(B|A)P(A)/P(B)。

概率的应用1. 排列与组合排列和组合是概率论的一个重要应用。

排列是指从n个不同元素中取出m个元素进行排列的种数,用P(n,m)表示,其公式为P(n,m)=n!/(n-m)!。

组合是指从n个不同元素中取出m个元素进行组合的种数,用C(n,m)表示,其公式为C(n,m)=n!/(m!(n-m)!)。

2. 事件的独立性在概率论中,独立性是一个重要的概念。

事件A和事件B称为独立事件,如果P(A∩B)=P(A)P(B),即事件A的发生与事件B的发生互不影响。

在实际应用中,很多情况下要求两个事件的独立性,以便于计算事情发生的可能性。

3. 随机变量随机变量是概率论中的一个重要概念,它是一个从样本空间到实数的映射。

随机变量可分为离散型和连续型两种。

概率的事件与条件概率知识点总结

概率的事件与条件概率知识点总结

概率的事件与条件概率知识点总结概率是概念中常用到的一个概念,在日常生活中,我们经常会遇到各种概率事件。

概率的研究对象是随机事件,而随机事件又可以分为基本事件和复合事件两种。

本文将围绕概率的事件和条件概率两个知识点进行总结,并探讨它们在实际问题中的应用。

一、概率的事件事件是指样本空间中的某些元素组成的集合,也可以理解为可能发生的某种状态或情况。

概率的事件可以分为基本事件和复合事件。

1. 基本事件基本事件是样本空间的单个元素,它是概率的最小单位。

例如,掷一枚骰子,出现的点数为1、2、3、4、5、6,每个点数都可以看作是一个基本事件。

2. 复合事件复合事件是样本空间的若干个元素的集合。

例如,掷一枚骰子,出现奇数点数或大于4的点数都属于复合事件。

二、条件概率条件概率是指在某个条件下,事件发生的概率。

条件概率的计算方法为:P(A|B) = P(A∩B) / P(B),其中P(A|B)表示在事件B发生的条件下,事件A发生的概率,P(A∩B)表示事件A与事件B同时发生的概率,P(B)表示事件B发生的概率。

条件概率的计算方法在实际问题中具有广泛的应用。

例如,在一批产品中,已知有10%的次品,现从中随机抽取一件产品,如果抽到的产品是次品的话,那它出自某个特定生产线的概率是多少?这个问题就需要使用条件概率来计算。

三、应用举例1. 抛硬币问题假设有一枚硬币,正面和反面出现的概率各为1/2。

现在连续抛掷10次硬币,问至少出现8次正面的概率是多少?解答:这是一个出现次数的概率问题,可以使用二项分布来求解。

根据二项分布的公式,可得至少出现8次正面的概率为P(X≥8) =P(X=8) + P(X=9) + P(X=10)。

代入公式可得:P(X≥8) = C(10, 8) *(1/2)^8 * (1/2)^2 + C(10, 9) * (1/2)^9 * (1/2)^1 + C(10, 10) * (1/2)^10 *(1/2)^0。

大学概率论知识点总结

大学概率论知识点总结

大学概率论知识点总结大学概率论是高等数学中的重要分支之一,它研究的是随机现象和随机事件的规律,是研究不确定性的数学理论。

本文将对大学概率论的知识点进行总结。

1. 概率的基本概念概率是描述随机事件发生可能性大小的数值,通常用一个介于0和1之间的实数表示。

0表示不可能事件,1表示必然事件。

事件的概率越大,其发生的可能性越高。

2. 随机变量与概率分布随机变量是指一种数值上具有不确定性的变量,它的取值由随机试验的结果决定。

概率分布是随机变量所有取值和其相应概率的分布关系,可以用分布函数、概率密度函数或概率质量函数来进行描述。

3. 离散型随机变量离散型随机变量的取值为有限个或可数个,其概率分布可以用概率分布列来表示。

常见的离散型随机变量有伯努利随机变量、二项随机变量、泊松随机变量等。

4. 连续型随机变量连续型随机变量的取值为连续的实数集合,其概率分布可以用概率密度函数来表示。

常见的连续型随机变量有均匀分布、正态分布、指数分布等。

5. 二维随机变量与联合分布二维随机变量是指具有两个未知数的随机变量,其概率分布可以用联合分布函数或联合概率密度函数来描述。

联合分布函数可以用来计算二维随机变量的概率。

6. 随机变量的独立性两个随机变量的独立性是指它们的联合分布等于其边缘分布的乘积,即P(X,Y)=P(X)P(Y)。

独立性是概率论中重要的概念,可以用来简化计算过程。

7. 条件概率和贝叶斯定理条件概率是指在已知一事件发生的条件下,另一事件发生的概率。

贝叶斯定理是利用条件概率计算事件的概率的一种重要方法,常用于统计学和机器学习中。

8. 随机变量的数字特征随机变量的数字特征是对其概率分布进行度量的方式,常见的数字特征有数学期望、方差、标准差等。

数学期望是随机变量取值的平均值,方差是随机变量取值与均值之间的离散程度的平均值。

9. 大数定律和中心极限定理大数定律是指随着试验次数增加,事件发生的频率会趋近于其概率。

中心极限定理是指在一定条件下,大量随机变量的和服从近似于正态分布。

(完整版)高中数学概率统计知识点总结

(完整版)高中数学概率统计知识点总结

高中数学概率统计知识点总结一、抽样方法1.简单随机抽样 2.简单随机抽样常用的方法:(1)抽签法;⑵随机数表法.3.系统抽样:K (抽样距离)=N (总体规模)/n (样本规模)4.分层抽样:二、样本估计总体的方式1、用样本的频率分布估计总体分布(1)频率分布直方图的画法;(2)频率的算法;(3)频率分布折线图;(4)总体密度曲线;(5)茎叶图。

化不大的位作为一个主干(茎),将变化大的位的数作为分枝(叶),列在主干的后面,这样就可以清楚地看到每个主干后面的几个数,每个数具体是多少。

2、用样本的数字特征估计总体的数字特征(1)众数、中位数、平均数的算法;(2)标准差、方差公式.3、样本均值:nx x x x n +++= 21 4、.样本标准差:n x x x x x x s s n 222212)()()(-++-+-==三、两个变量的线性相关1、正相关2、负相关正相关:自变量增加,因变量也同时增加(即单调递增) 负相关:自变量增长,因变量减少(即单调递减)四、概率的基本概念(1)必然事件(2)不可能事件(3)确定事件(4)随机事件(5)频数与频率(6)频率与概率的区别与联系必然事件和不可能事件统称为确定事件1他们都是统计系统各元件发生的可能性大小;2、频率一般是大概统计数据经验值,概率是系统固有的准确值; 3频率是近似值,概率是准确值4、频率值一般容易得到,所以一般用来代替概率进行定量分析,首先要知道系统各元件发生故障的频率或概率.事件的频率与概率是度量事件出现可能性大小的两个统计特征数.频率是个试验值,或使用时的统计值,具有随机性,可能取多个数值。

因此,只能近似地反映事件出现可能性的大小概率是个理论值,是由事件的本质所决定的,只能取唯一值,它能精确地反映事件出现可能性的大小虽然概率能精确反映事件出现可能性的大小,但它通过大量试验才能得到,这在实际工作中往往是难以做到的.所以,从应用角度来看,频率比概率更有用,它可以从所积累的比较多的统计资料中得到需要指出的是用频率代替概率,并不否认概率能更精确、更全面地反映事件出现可能性的大小,只是由于在目前的条件下,取得概率比取得频率更为困难。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

概率知识点总结(实用8篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如计划总结、合同协议、管理制度、演讲致辞、心得体会、条据书信、好词好句、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as plan summaries, contract agreements, management systems, speeches, insights, evidence letters, good words and sentences, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!概率知识点总结(实用8篇)概率知识点总结(1)概率,现实生活中存在着大量的随机事件,而概率正是研究随机事件的一门学科,教学中,首先以一个学生喜闻乐见的摸球游戏为背景,通过试验与分析,使学生体验有些事件的发生是必然的、有些是不确定的、有些是不可能的,引出必然发生的事件、随机事件、不可能发生的事件,然后,通过对不同事件的分析判断,让学生进一步理解必然发生的事件、随机事件、不可能发生的事件的特点,结合具体问题情境,引领学生设计提出必然发生的事件、随机事件、不可能发生的事件,具有相当的开放度,鼓励学生的逆向思维与创新思维,在一定程度上满足了不同层次学生的学习需要。

其次,做游戏是学习数学最好的方法之一、根据课的内容的特点,教师设计了转盘游戏,力求引领学生在游戏中形成新认识,学习新概念,获得新知识,充分调动了学生学习数学的积极性,体现了学生学习的自主性,在游戏中参与数学活动,在游戏中分析、归纳、合作、思考,领悟数学道理,在快乐轻松的学习氛围中,显性目标和隐性目标自然达成,在一定程度上,开创了一个崭新的数学课堂教学模式。

再次,我们教师在上课的时候要理解频率和概率的关系,教材中概率的概念是通过频率建立的,即频率的稳定值及概率,也就是用频率值估计概率的大小。

通过实验,让学生经历“猜测结果一进行实验一分析实验结果”的过程,建立概率的含义。

要建立学生正确的概率含义,必须让他们亲自经历对随机现象的探索过程,引导他们亲自动手实验收集实验数据,分析实验结果,并将所得结果与自己的猜测进行比较,真正树立正确的概率含义。

第四、我们努力让学生在具体情景中体会概率的意义。

由于初中学生的知识水平和理解能力,初中阶段概率教学的基本原则是:从学生熟悉的生活实例出发,创设情境,贴近生活现实的问题情境,不仅易于激发学生的求知欲与探索热情,而且会促进他们面对要解决的问题大胆猜想,主动试验,收集数据,分析结果,为寻求问题解决主动与他人交流合作,在知识的主动建构过程中,促进了教学目标的有效达成,更重要的是,主动参与数学活动的经历会使他们终身受益,在具体情境中体验概率的意义。

第五、通过掷骰子,抽签等游戏,通过具体的实例掌握概率的计算,列举法和树状图是计算概率的重要方法,要和学生一起探讨,并得出结论。

并且联系实际问题,在实践中不断地加深理解,重视概率与统计的联系。

要引导学生把概率与统汁联系起来看问题,数据的统计与处理不应只是纯数字的运算,它们与概率是密不可分的;同时,很多的概率模型是建立在大量数据统计的基础上。

因此,要使学生在随机实验中统计相关的数据,并了解这些数据的概率含义,在数据统计时了解其中所蕴涵的随机性。

在教学中,教师力求向学生提供从事数学活动的时间与空间,为学生的自主探索与同伴的合作交流提供保障,从而促进学生学习方式的转变,使之获得广泛的数学活动经验,教师在学习活动中是组织者、引导者与合作者,应注意评价学生在活动中参与程度、自信心、是否愿意交流等,给学生以适时的引导与鼓励。

相信很多教师也和我一样,全面了解学生的学习状况,因材施教,慢慢的探索教好初中新增的这个内容的好方法概率知识点总结(2)考点1、确定事件和随机事件考核要求:〔 1〕理解必然事件、不可能事件、随机事件的概念,知道确定事件与必然事件、不可能事件的关系;〔 2〕能区分简单生活事件中的必然事件、不可能事件、随机事件。

考点2、事件发生的可能性大小,事件的概率考核要求:〔 1〕知道各种事件发生的可能性大小不同,能判断一些随机事件发生的可能事件的大小并排出大小顺序;〔 2〕知道概率的含义和表示符号,了解必然事件、不可能事件的概率和随机事件概率的取值范围;〔3〕理解随机事件发生的频率之间的区别和联系,会根据大数次试验所得频率估计事件的概率。

〔1〕在给可能性·的大小排序前可先用〝一定发生〞、〝很有可能发生〞、〝可能发生〞、〝不太可能发生〞、〝一定不会发生〞等词语来表述事件发生的可能性·的大小;〔 2〕事件的概率是确定的常数,而概率是不确定的,可是近似值,与试验的次数的多少有关,只有当试验次数足够大时才能更精确。

考点3、等可能试验中事件的概率问题及概率计算考核要求〔1〕理解等可能试验的概念,会用等可能试验中事件概率计算公式来计算简单事件的概率;〔2〕会用枚举法或画〝树形图〞方法求等可能事件的概率,会用区域面积之比解决简单的概率问题;〔3〕形成对概率的初步认识,了解机会与风险、规那么公平性与决策合理性等简单概率问题。

〔1〕计算前要先确定是否为可能事件;〔2〕用枚举法或画〝树形图〞方法求等可能事件的概率过程中要将所有等可能情况考虑完整。

考点4、数据整理与统计图表考核要求:〔1〕知道数据整理分析的意义,知道普查和抽样调查这两种收集数据的方法及其区别;〔2〕结合有关代数、几何的内容,掌握用折线图、扇形图、条形图等整理数据的方法,并能通过图表获取有关信息。

考点5:统计的含义考核要求:〔1〕知道统计的意义和一般研究过程;〔2〕认识个体、总体和样本的区别,了解样本估计总体的思想方法。

考点6:平均数、加权平均数的概念和计算考核要求:〔1〕理解平均数、加权平均数的概念;〔2〕掌握平均数、加权平均数的计算公式。

注意:在计算平均数、加权平均数时要防止数据漏抄、重抄、错抄等错误现象,提高运算准确率。

考点7:中位数、众数、方差、标准差的概念和计算考核要求:〔 1〕知道中位数、众数、方差、标准差的概念;〔 2〕会求一组数据的中位数、众数、方差、标准差,并能用于解决简单的统计问题。

〔1〕当一组数据中出现极值时,中位数比平均数更能反映这组数据的平均水平;〔2〕求中位数之前必须先将数据排序。

考点8:频数、频率的意义,画频数分布直方图和频率分布直方图考核要求:〔 1〕理解频数、频率的概念,掌握频数、频率和总量三者之间的关系式;〔2〕会画频数分布直方图和频率分布直方图,并能用于解决有关的实际问题。

解题时要注意:频数、频率能反映每个对象出现的频繁程度,但也存在差别:在同一个问题中,频数反映的是对象出现频繁程度的绝对数据,所有频数之和是试验的总次数;频率反映的是对象频繁出现的相对数据,所有的频率之和是1、考点9:中位数、众数、方差、标准差、频数、频率的应用考核要求:〔1〕了解基本统计量〔平均数、众数、中位数、方差、标准差、频数、频率〕的意计算及其应用,并掌握其概念和计算方法;〔2〕正确理解样本数据的特征和数据的代表,能根据计算结果作出判断和预测;〔3〕能将多个图表结合起来,综合处理图表提供的数据,会利用各种统计量来进行推理和分析,要练说,得练看。

看与说是统一的,看不准就难以说得好。

练看,就是训练幼儿的观察能力,扩大幼儿的认知范围,让幼儿在观察事物、观察生活、观察自然的活动中,积累词汇、理解词义、发展语言。

在运用观察法组织活动时,我着眼观察于观察对象的选择,着力于观察过程的指导,着重于幼儿观察能力和语言表达能力的提高。

单靠〝死〞记还不行,还得〝活〞用,姑且称之为〝先死后活〞吧。

让学生把一周看到或听到的新鲜事记下来,摒弃那些假话套话空话,写出自己的真情实感,幅可长可短,并要求运用积累的成语、名言警句等,定期检查点评,选择优秀目在班里朗读或展出。

这样,即巩固了所学的材料,又锻炼了学生的写作能力,同时还培养了学生的观察能力、思维能力等等,达到〝一石多鸟〞的效果。

研究解决有关的实际生活中问题,然后作出合理的解决。

一般说来,〝教师〞概念之形成经历了十分漫长的历史。

杨士勋〔唐初学者,四门博士〕春秋谷梁传疏?曰:〝师者教人以不及,故谓师为师资也〞。

这儿的〝师资〞,其实就是先秦而后历代对教师的别称之一、韩非子也有云:“今有不才之子?…师长教之弗为变〃其“师长〃当然也指教师。

这儿的〝师资〞和〝师长〞可称为〝教师〞概念的雏形,但仍说不上是名副其实的〝教师〞,因为〝教师〞必须要有明确的传授知识的对象和本身明确的职责。

概率知识点总结(3)假设你在参加一个由50人组成的婚礼,有人或许会问:“我想知道这里两个人的生日一样的概率是多少?此处的一样指的是同一天生日,如5月5日,并非指出生时间完全相同。

”也许大部分人都认为这个概率非常小,他们可能会设法进行计算,猜想这个概率可能是七分之一、然而正确答案是,大约有两名生日是同一天的客人参加这个婚礼。

如果这群人的生日均匀地分布在日历的任何时候,两个人拥有相同生日的概率是97%。

换句话说就是,你必须参加30场这种规模的聚会,才能发现一场没有宾客出生日期相同的聚会。

相关文档
最新文档