秋葵多糖的提取及单糖组分的分析
黄秋葵花、果、茎叶中有效成分提取和测定

黄秋葵花、果、茎叶中有效成分提取和测定WU Bi;SUN Yuan;WEI Liang;FENG Bing-Yu;JIANG Shou-Gang【摘要】本试验分别采用水提醇沉法和醇提取法对黄秋葵花、果、茎叶中多糖和黄酮进行了提取,并分别采用苯酚-硫酸法和紫外可见分光光度法对提取出的粗多糖和黄酮2种有效成分含量进行了测定.结果表明,黄秋葵花、果、茎叶中多糖含量分别为27.75%、39.05%、43.74%,黄秋葵各器官中多糖含量依次为茎叶>果>花;黄秋葵各器官中黄酮含量分别为26.25%、27.50%、26.93%,黄酮含量依次为果>茎叶>花;黄秋葵茎叶中多糖含量较高,果中黄酮含量较高.这些结论为黄秋葵今后的开发和利用奠定了基础.【期刊名称】《特产研究》【年(卷),期】2018(040)004【总页数】3页(P79-81)【关键词】黄秋葵;多糖;黄酮【作者】WU Bi;SUN Yuan;WEI Liang;FENG Bing-Yu;JIANG Shou-Gang 【作者单位】;;;;【正文语种】中文【中图分类】R284.2黄秋葵(Hibiscus esculentus L.)别名秋葵、羊角豆,为锦葵科秋葵属1年生草本植物[1]。
自20世纪90年代初引入我国,现国内各地均有栽培。
黄秋葵果实具有较高营养价值和保健功能,其茎、叶、花、种子也具有一定的开发利用价值,也可以作为园林绿化观赏植物。
黄秋葵果味甘滑,有健脾益胃、润燥利肠之功效,可治脾虚乏力、肠燥便秘等症,经常食用黄秋葵能帮助消化、健胃、整肠,对胃炎、胃溃疡、肝脏等疾病均有疗效[2]。
此外,黄秋葵还具有增强免疫力、保肝、治疗烧伤和烫伤等其他作用[3~6]。
黄秋葵嫩荚、花中均富含植物黄酮(黄秋葵花中黄酮含量是大豆叶子的300倍左右)。
黄秋葵果实富含蛋白质、脂肪、碳水化合物、维生素、矿物质和膳食纤维,同时还富含黄酮、多糖等有效成分。
黄阿根等[7~10]报道,烘干后的黄秋葵嫩果中含蛋白质22.98%、总糖19.92%(其中多糖占总糖的2.00%)、脂肪9.40%、黄酮2.56%。
落葵果实多糖的提取及含量的测定

e x t r a c t i o n e f f i c i e n c y wa s 6 . 2 4 0 %. T h e c o n t e n t o f p o l y s a c c h a r i d e wa s me a s u r e d b y P h e n o l — s u l f u r i c a c i d a s s a y .
- = = = =2 6
2 0 1 3年 2月 第3 4卷第 4期
品疆究尚辩凝
F o o d R e s e a r c h A n d D e v e l o o m e n t 分 离提取
DOI : 1 0 . 3 9 6 9 0 . i s s n . 1 0 0 5 - 6 5 2 1 . 2 0 1 3 . 0 4 . 0 0 8
S o x h l e t me t h o d a n d wa t e r e x t r a c t i o n me t h o d, r e s p e c t i v e l y, a n d e s t a b l i s h e d a me t h o d t o d e t e r mi n e p o l v s a c c h a r i d e . Th e r e s u l t s s h o we d t h a t u l t r a s o n i c me t h o d wa s mo r e e f i f c i e n t t h a n t h e o t h e r t wo me t h o d s ,t h e
【推荐下载】秋茄多糖的提取及其组成的研究

秋茄多糖的提取及其组成的研究 【编者按】医药论文是科技论文的一种是用来进行医药科学研究和描述研究成果的论说性文章。
论文网为您提供医药论文范文参考,以及论文写作指导和格式排版要求,解决您在论文写作中的难题。
秋茄多糖的提取及其组成的研究近年来,国际上对药用红树植物的化学成分及其药理研究表明,红树植物具有抗艾滋病、抗肿瘤、抗氧化等活性[1]。
秋茄为红树科秋茄属植物,本属只有一种,即为秋茄。
秋茄因其特殊的生长环境,在其化学成分和生理活性方面都具有很多特殊性。
至今为止的秋茄研究资料表明,对秋茄化学成分和生理活性的研究在世界范围内较为分散,缺乏较深入或系统地研究。
虽然人们现已从秋茄中分离出多个鞣质类化合物,但是关于其生物活性方面的研究并没有多少报道。
本实验对红树植物秋茄中的多糖进行提取并对其组成进行了研究。
1 材料与仪器 1.1 原料秋茄叶(采自湛江东海岛),洗净剪碎,置于通风处阴干,备用。
1.2 试剂95%乙醇;无水乙醇;氯仿;正丁醇;丙酮;无水乙醚;硫酸;碳酸钡;吡啶;盐酸羟胺;乙酸酐,以上试剂均为分析纯。
1.3 仪器E-5299旋转蒸发仪(巩义市予华仪器有限责任公司);SHB-B95A型循环水式多用真空泵(郑州长城科工贸有限公司);GCMS-QP2010气相色谱质谱连用仪(岛津制作所);HH-S2系列恒温水浴锅(江苏省全坛市环宇科学仪器厂);FTIR-8400S型红外光谱仪(日本岛津公司);ESJ120-4型电子天平(沈阳市龙腾电子有限公司);202-2型干燥箱(上海市实验仪器总厂);GSP-84-02型磁力恒温搅拌器(山东电讯七厂)。
2 方法 2.1 多糖提取称取粉碎、干燥好的秋茄叶150 g,加入1 500 ml蒸馏水,超声处理20 min后加热到90 ℃,热水浸提3次,过滤,合并,得棕色滤液。
用旋转蒸发仪浓缩滤液至50 ml,抽滤,滤液中加入3倍其体积的95%乙醇沉淀多糖,于冰箱放置过夜,得棕色絮状物,离心收集沉淀。
多糖提取测定实验报告

一、实验目的1. 掌握多糖提取的基本原理和操作流程。
2. 了解不同植物多糖提取方法的优缺点。
3. 学习并掌握多糖含量的测定方法。
4. 通过实验,提高实验操作技能和数据分析能力。
二、实验原理多糖是一类由单糖通过糖苷键连接而成的生物大分子,广泛存在于植物、动物和微生物中。
多糖具有多种生物活性,如免疫调节、抗炎、抗氧化、降血糖等。
本实验采用水提醇沉法提取植物多糖,并利用苯酚-硫酸法测定多糖含量。
三、实验材料1. 实验药品:苯酚、浓硫酸、95%乙醇、无水乙醇、NaOH、盐酸等。
2. 实验仪器:电子天平、电热恒温水浴锅、分光光度计、烧杯、漏斗、玻璃棒等。
3. 实验材料:植物样品(如大蒜、枸杞、人参等)。
四、实验方法1. 植物样品处理:将植物样品干燥、研磨成粉末,过筛,备用。
2. 多糖提取:称取一定量的植物样品粉末,加入适量的水,在80℃水浴中提取2小时,过滤,收集滤液。
3. 醇沉:向滤液中加入等体积的95%乙醇,搅拌,静置过夜,使多糖沉淀。
4. 沉淀处理:将沉淀用无水乙醇洗涤三次,每次洗涤后静置,取上清液,浓缩至一定体积。
5. 多糖含量测定:准确吸取一定量的多糖溶液,加入苯酚试剂,混匀,于沸水中加热5分钟,冷却后,加入浓硫酸,混匀,在分光光度计下测定吸光度。
五、实验结果与分析1. 不同植物样品多糖提取率比较:通过比较不同植物样品多糖提取率,可以了解不同植物多糖的提取效果。
2. 不同提取方法对多糖提取率的影响:通过比较水提醇沉法与其他提取方法(如酸提法、碱提法等)对多糖提取率的影响,可以了解不同提取方法的优缺点。
3. 多糖含量测定结果:根据苯酚-硫酸法测定多糖含量的原理,可以计算出多糖的含量。
六、实验结论1. 水提醇沉法是一种简单、有效的植物多糖提取方法。
2. 不同植物样品多糖提取率存在差异,可能与植物种类、生长环境等因素有关。
3. 苯酚-硫酸法是一种准确、可靠的多糖含量测定方法。
七、实验注意事项1. 提取过程中,注意控制温度和时间,以避免多糖分解。
多糖提取_实验报告

一、实验目的1. 了解多糖的基本性质和提取方法。
2. 掌握水提法、醇沉法、离子交换法等多糖提取方法。
3. 通过实验,提高对多糖提取技术的实际操作能力。
二、实验原理多糖是一类高分子碳水化合物,广泛存在于植物、动物和微生物中。
多糖具有多种生物活性,如免疫调节、抗炎、抗病毒、抗肿瘤等。
多糖的提取方法有水提法、醇沉法、离子交换法等。
本实验采用水提法、醇沉法、离子交换法三种方法提取多糖。
三、实验材料与试剂1. 实验材料:胡萝卜、葡萄糖、淀粉、纤维素酶、DE-23、DE-41、Sepharose(2B、4B、6B)等。
2. 实验试剂:蒸馏水、95%乙醇、95%丙酮、NaCl、NaOH、HCl、氯化钙、蒽酮、十六烷基三甲基溴化铵(CTAB)、葡萄糖、磷酸盐缓冲溶液(PBS)等。
3. 仪器:组织匀浆机、水浴锅、台式高速离心机、分光光度计、磁力搅拌器、抽滤瓶、烧杯、移液管、试管等。
四、实验步骤1. 水提法提取多糖(1)将胡萝卜洗净、去皮、切片,称取适量胡萝卜组织,用组织匀浆机匀浆。
(2)将匀浆液转移到烧杯中,加入适量的蒸馏水,搅拌溶解。
(3)将溶液转移到离心管中,离心分离,取上清液。
(4)将上清液转移到烧杯中,加入95%乙醇,静置过夜。
(5)次日,离心分离,取沉淀。
(6)将沉淀用95%丙酮洗涤,干燥,得到胡萝卜多糖。
2. 醇沉法提取多糖(1)将胡萝卜匀浆液转移到烧杯中,加入适量的蒸馏水,搅拌溶解。
(2)将溶液转移到离心管中,离心分离,取上清液。
(3)将上清液转移到烧杯中,加入适量的95%乙醇,搅拌溶解。
(4)将溶液转移到离心管中,离心分离,取沉淀。
(5)将沉淀用95%丙酮洗涤,干燥,得到胡萝卜多糖。
3. 离子交换法提取多糖(1)将胡萝卜匀浆液转移到烧杯中,加入适量的蒸馏水,搅拌溶解。
(2)将溶液转移到离心管中,离心分离,取上清液。
(3)将上清液转移到烧杯中,加入适量的NaCl,搅拌溶解。
(4)将溶液转移到离子交换柱中,用蒸馏水冲洗至流出液无Cl-。
秋葵功能成分提取及应用研究

秋葵功能成分提取及应用研究作者:来源:《农村经济与科技》2020年第16期[摘要]秋葵营养价值极高,是近年来百姓餐桌的重要食物之一。
秋葵功能成分的提取,对于其营养价值的最大化体现提出了要求与期盼。
文章从秋葵功能成分提取应用的角度,从秋葵的生活餐桌贡献、养生保健贡献、经济贡献、农业贡献等方面,从秋葵的要求、研发、生产、利用等方面,对秋葵的功能成分提取应用,进行了集中阐释和立体化研究,旨在为相关人员,对秋葵的功能成分提取应用进行深层次研究提供参考。
[关键词]秋葵;功能成分提取;应用研究[中图分类号]TS201.2[文献标识码]A秋葵为重要食物,其所含成分,对人体健康十分有利。
近年来,随着农业栽培技术和工业提取技术的发展进步,秋葵的种植率和工业化生产以及日常生活需求大大提升。
从田间地头,到老百姓餐桌,再到工业提取工厂,再到相关食品研发生产,秋葵成了老百姓日常生活和健康养生的重要食物之一,逐渐被重视。
下面,笔者从秋葵的生活贡献、秋葵的养生贡献、秋葵的经济贡献、秋葵的农业贡献等角度,在秋葵功能成分提取应用的语境下,从需求、研发、生产、利用等生活、养生、经济、农业等要求方面,对秋葵进行介绍和研究。
1 秋葵功能成分提取应用背景下的生活应用研究秋葵的主要成分为蛋白质,含人体必需的微量元素,对人体健康起着十分重要的作用。
在日本、美国等发达国家,秋葵已经成为百姓餐桌上不可或缺的重要食物之一。
就国内而言,随着我国秋葵种植面积的不断扩大和人们对秋葵健康作用的深度认识,秋葵在我国百姓餐桌占比呈明显上升态势。
过去,老百姓餐桌饮食结构多为白菜、土豆、葱头等易储存蔬菜,但随着人们饮食结构的改变和调整,秋葵越来越受到人们的钟爱,开始走入寻常百姓家,走上百姓餐桌。
之前,秋葵因为种植面积小,人们不太认识,市场需求为较少,只是官员和有钱人家的餐桌美味,老百姓根本不知道秋葵是什么,无法认识其极高的营养价值。
近年来,随着种植技术和农业发展以及农产品结构的调整,秋葵开始走上普通老百姓家的餐桌。
干燥方式对秋葵挥发性风味物质、多糖的影响及其果皮多糖基本结构、流变特征

干燥方式对秋葵挥发性风味物质、多糖的影响及其果皮多糖基本结构、流变特征论文摘要:本研究研究了不同干燥方式(热风、真空、微波干燥)对秋葵挥发性风味物质、多糖的影响,以及其果皮多糖基本结构、流变特征。
结果表明,微波干燥对秋葵挥发性风味物质和多糖的影响最小,其中微波干燥样品中呈现出芳香醇类、烃类和酯类等挥发性物质的较高含量。
而在多糖含量方面,真空干燥方法得到最优结果。
在秋葵果皮多糖基本结构方面,FT-IR光谱表明果皮多糖主要含有葡萄糖、甘露糖、木糖、半乳糖和鼠李糖等单糖;同时,多糖中含有不同程度的酯基、硫代酯基和羟基。
在流变特征方面,秋葵果皮多糖的黏度值在不同浓度和温度的条件下均表现出非牛顿流体特性,而真空干燥样品的黏度值最高。
本研究对于秋葵果皮多糖的基本结构、流变特性以及对多糖和挥发性物质的影响提供了有价值的参考。
关键词:秋葵;干燥方式;多糖;挥发性风味物质;基本结构;流变特征Abstract:This study investigated the effects of different drying methods (hot air, vacuum, and microwave drying) on the volatile flavor substances and polysaccharides of okra, as well as the basic structure and rheological characteristics of its fruit peel polysaccharides. The results showed that microwave drying had the least effect on the volatile flavor substances and polysaccharides of okra, with a relatively high content of aromatic alcohol, hydrocarbon, and ester volatile substances. Vacuum drying obtained the best result in terms of polysaccharide content. In terms of the basicstructure of okra fruit peel polysaccharides, FT-IR spectra showed that the polysaccharides mainly contained glucose, mannose, xylose, galactose, and rhamnose monosaccharides. At the same time, the polysaccharides contained ester, thioester, and hydroxyl groups of varying degrees. In terms ofrheological characteristics, the viscosity of okra fruit peel polysaccharides showed non-Newtonian fluid characteristics under different concentrations and temperatures, and the viscosity of vacuum-dried samples was the highest. This study provides valuable reference for the basic structure, rheological characteristics, and effects on polysaccharides and volatile substances of okra fruit peel polysaccharides.Keywords: okra;drying method;polysaccharide;volatile flavor substances;basic structure;rheologicalcharacteristics1. IntroductionOkra (Abelmoschus esculentus), is a commonly grown vegetable crop in many countries, particularly in Africa, India, Asia, and the United States. It is rich in dietary fiber, vitamins, and minerals, and has been found to have various health benefits, including improving digestion and reducing the risk of chronic diseases (Pervez et al., 2013; Zhang et al., 2017). The fruit peel of okra is rich in polysaccharides, which have been found to have manybiological activities, such as antioxidant, anti-inflammatory, and immunity-enhancing effects (Shan et al., 2017; Sun et al., 2018; Wu et al., 2020). These bioactive properties arerelated to the polysaccharide structure and molecular weight (Mw).In recent years, various drying methods have been widely used to preserve vegetables and fruits because they caneffectively reduce the water activity and prevent microbial growth (Koutsoumanis et al., 2021). However, different drying methods may have different effects on the quality and composition of the food product. For example, high-temperature and long-time drying methods may cause the degradation of polysaccharides and other bioactive compounds (Deng et al., 2018). On the other hand, modern drying methods, such as microwave and vacuum drying, have been found to have advantages in preserving the flavor and nutritional qualityof food products (Hou et al., 2010). Therefore, it isimportant to investigate the effects of different drying methods on the quality and composition of okra, particularly on the polysaccharide structure and volatile flavor substances.In this study, we investigated the effects of three common drying methods, namely, hot air, vacuum, and microwave drying, on the volatile flavor substances and polysaccharides of okra. We also analyzed the basic structure of the fruitpeel polysaccharides and their rheological characteristics. Our results will provide valuable information for the use and processing of okra products.2. Materials and methods2.1. MaterialsFruits of okra (Abelmoschus esculentus) were purchased from a local market. The fruits were sorted and washed, then harvested, and stored in plastic bags at 4℃ for further analysis.2.2. Drying methodsThe drying methods used in this study included hot air drying, vacuum drying, and microwave drying.Hot air drying: The okra fruits were sliced into pieces(60 mm×60 mm×5 mm) and then dried in a hot air dryer (DHG-9140A, Shanghai Baihui Instrument Co., Ltd., China) at 60℃for 10 h.Vacuum drying: The okra fruits were sliced into pieces (60 mm×60 mm×5 mm) and then dried in a vacuum dryer (DZF-6020, Shanghai Yarong Biochemical Instrument Factory, China)at 60℃ for 10 h.Microwave drying: The okra fruits were sliced intopieces (60 mm×60 mm×5 mm) and then dried in a microwavedryer (MDF-4000, Suzhou Hengyi Electronic Equipment Co.,Ltd., China) for 10 min at 600 W.2.3. Volatile flavor substances analysisThe volatile flavor substances of different drying methods were analyzed by GC-MS. Approximately 5 g of okra powder was extracted by adding 20 mL of distilled water and sonicated for 30 min. The supernatant was then centrifuged at 10,000 g for 10 min. The volatile flavor substances were analyzed using gas chromatography-mass spectrometry (Agilent 6890N-5973, Agilent Technologies, USA) equipped with a DB-5MS capillary column (30 m×0.25 mm×0.25 μm). The oven temperature was programmed to start at 60℃ with a hold of 2 min, then increased by 10℃/min to 220℃, and held for 20 min. The carrier gas was helium with a flow rate of 1.2 mL/min.The injector and d etector temperatures were set at 290℃ and 250℃, respectively.2.4. Polysaccharide extraction and determinationPolysaccharides were extracted according to the methodof Sun et al. (2018). The dried okra powder was extractedwith 70% ethanol for 24 h at room temperature. The extractwas filtered, and the residue was further extracted threetimes with distilled water for 4 h. The water extracts werecombined, concentrated, and precipitated with four volumes of absolute ethanol for 24 h at 4℃. The precipitat es were collected by centrifugation at 10,000 g for 15 min and washed twice with 95% ethanol and once with acetone. The purity of the polysaccharides was determined by the phenol-sulfuric acid method (DuBois et al., 1956). The polysaccharide content was expressed as a percentage of the dry weight.2.5. Fourier transform infrared spectroscopy (FT-IR) analysisThe basic structure of okra fruit peel polysaccharides was analyzed by FT-IR spectroscopy (Perkin Elmer, USA). The polysaccharide powder was mixed with KBr, and pressed into pellets. The spectra were scanned in the range of 4000–400 cm-1.2.6. Rheological measurementRheological measurements were performed on a rotational viscometer (B type, Brookfield, USA). The polysaccharide solutions were prepared with distilled water at concentrations of 0.5%, 1%, and 2% (w/v), and stirred for 6 h at 25℃. The viscosity of the solutions was determined at different shear rates (0.1–100 s-1) and temperatures (10℃, 25℃, and 40℃).3. Results and discussion3.1. Effect of different drying methods on volatile flavor substancesThe effect of different drying methods on the volatile flavor substances of okra is shown in Table 1. Compared with hot air and vacuum drying, microwave drying showed the least effect on the volatile flavor substances of okra. The total ion current (TIC) chromatograms of the GC-MS analysis of different dried samples are shown in Figure 1.Table 1. Effect of different drying methods on the volatile flavor substances of okra (μg/g, dry weight).Drying methodCompounds Hot air Vacuum MicrowaveEsters 1.38±0.12a 0.63±0.06b 1.71±0.11cAlcohols 0.71±0.04a 0.29±0.05b 0.92±0.08cAlkanes 0.22±0.03a 0.22±0.08a 0.39±0.07bKetones 0.29±0.06a 0.26±0.03a 0.31±0.05bAldehydes 0.12±0.02a 0.11±0.02a 0.10±0.01aTotal 2.72±0.15a 1.51±0.12b 3.43±0.23cValues are the means ± SD (n=3). Values with different letters in the same row are significantly different at P<0.05 (LSD test).Figure 1. TIC chromatograms of the GC-MS analysis of different dried samples.Esters are a major group of volatile flavor substances in okra, contributing to its characteristic aroma (Kanatt et al., 2008). In this study, the contents of esters in okra dried by microwave were significantly higher than those in hot air and vacuum drying. The content of alcohols in microwave drying is also significantly higher than those in hot air and vacuum drying. On the other hand, alkanes and ketones had the highest content in microwave drying, whereas the content of aldehydes in all three drying methods showed no significant difference.3.2. Effect of different drying methods on polysaccharidesThe effect of different drying methods on the polysaccharide content of okra is shown in Table 2. The vacuum drying method obtained the highest polysaccharide content, which is significantly higher than the other twodrying methods.Drying method Polysaccharide contentHot air 14.70±1.23aVacuum 21.20±0.78bMicrowave 18.72±2.45cValues are the means ± SD (n=3). Values with different letters in the same row are significantly different at P<0.05 (LSD test).The polysaccharide content of okra is higher than that found in other vegetables, such as sweet potato, carrot, and onion samples (Miller and Lewis, 1997). This may be due to the higher content of water-soluble polysaccharides in okra, which are easier to extract than water-insoluble polysaccharides (Gao and Dong, 2018).3.3. Fourier transform infrared spectroscopy (FT-IR) analysisThe FT-IR spectra of the okra fruit peel polysaccharides are shown in Figure 2. The characteristic absorption bands of the polysaccharides are shown in Table 3.Wave numberFunctional groups (cm-1)3421 O–H stretching vibration2920 and 2852 C–H stretching vibration1638 and 1583 C=O stretching vibration1418 C–H bending vibration and C–OH symmetrical stretching vibration1318 C–N stretching vibration1043 C–O–C asymmetric stretching vibration906 C–H bending vibrationThe FT-IR spectra showed prominent band peaks at around3421 cm-1, 2920 cm-1, and 1638 cm-1, which corresponded to the vibrational bands of the O-H stretching, C-H stretching, and C=O stretching vibrations, respectively. Additionally, the absorption band at around 1043 cm-1 was attributed to the C-O-C asymmetric stretching vibration of the pyranose rings (Gibbs and Mamelak, 1997).3.4. Rheological measurementThe effect of concentration and temperature on the viscosity of okra fruit peel polysaccharides is shown in Figure 3. The results showed that the viscosity of the polysaccharide solutions increased with increasing concentration and decreasing temperature. All the solutions showed non-Newtonian flow behavior, as evidenced by the curve not passing through the origin, and the viscosity decreasing with increasing shear rate. This behavior may be due to the entanglement and aggregation of the polysaccharide chains in the solution (Abdel-Raheem et al., 2015).The viscosity of different samples at the same conditions showed that vacuum drying samples had the highest viscosity compared to the other two drying methods. This may be due to the fact that vacuum drying reduces the water activity, leading to a higher degree of polysaccharide crosslinking and a higher Mw distribution (Brozzi et al., 2011).4. ConclusionIn this study, we investigated the effect of different drying methods on the composition and quality of okra, focusing on the volatile flavor substances and polysaccharides. The results showed that microwave drying had the least effect on the volatile flavor substances of okra,with a relatively high content of aromatic alcohol, hydrocarbon, and ester volatile substances. Vacuum drying obtained the best result in terms of polysaccharide content. The FT-IR spectra showed that the okra fruit peel polysaccharides mainly contained glucose, mannose, xylose, galactose, and rhamnose monosaccharides, and had non-Newtonian flow behavior at different concentrations and temperatures. The viscosity of vacuum drying samples was the highest. These findings provide valuable information for the use and processing of okra products. Future research should focus on further exploring the properties and structural characteristics of the polysaccharides in okra, as well astheir potential applications in functional food development.AcknowledgmentsWe gratefully acknowledge the financial support provided by the National Natural Science Foundation of China (grant no. 31801596), the Jiangsu Provincial Natural Science Foundation (grant no. BK20181077), and the Priority Academic Program Development of Jiangsu Higher Education Institutions.ReferencesAbdel-Raheem, T. A., M. El-Badawy, N. I. Hussien, et al. (2015) Rheological properties of the polysaccharide extracted from Moringa oleifera leaves. J Food Process Preserv 39:2255-2260.Brozzi, C., E. Duranti, and L. Colombo (2011) Effects of thermal and high-pressure treatments on structure andrheology of soybean soluble polysaccharides. Food Hydrocoll 25: 1518-1525.Deng, Y. C., J. P. Ye, X. H. Hou, et al. (2018) Effectsof different drying methods on active ingredients, free amino acids, and antioxidant activity of Rehmannia glutinosa. FoodSci Nutr 6: 930-937.DuBois, M., K. A. Gilles, J. K. Hamilton, et al. (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28: 350-356.Gao, M. X., and Q. L. Dong (2018) Optimization of ultrasonication extraction of polysaccharides from okra using response surface methodology and their characterization. Carbohydr Polym 188: 301-310.Gibbs, B. F., and C. Mamelak (1997) Infrared spectra of carbohydrates. Adv Carbohydr Chem Biochem 52: 189-231.Hou, Y. Q., H. X. Li, and H. H. Zhang (2010) The effects of different drying methods on chemical composition and sensory qualities of sweet potato flour. Food Chem 120: 1017-1022.Kanatt, S. R., A. Chander, P. T. Sharma, et al. (2008) Studies on antioxidant and free radical scavenging activities of commonly consumed Indian foods. J Food Biochem 32: 245-250.Koutsoumanis, K., M. A. Valdramidis, G. Rafael, et al. (2021) Perspectives and challenges for the use of combinedfood preservation methods. Food Control 123: 107794.Miller。
多糖提取实验报告

一、实验目的1. 了解多糖的基本概念、性质和分类;2. 掌握多糖提取的基本原理和实验方法;3. 学习利用水提法、醇沉法等方法提取多糖;4. 掌握多糖的纯化、鉴定和含量测定方法。
二、实验原理多糖是一类由单糖分子通过糖苷键连接而成的天然高分子化合物,广泛存在于植物、动物和微生物中。
多糖具有多种生物活性,如免疫调节、抗肿瘤、降血糖、抗病毒等。
本实验主要采用水提法、醇沉法等方法提取多糖,并对其纯化、鉴定和含量进行测定。
三、实验材料1. 实验材料:植物样品(如玉米、小麦、胡萝卜等);2. 实验试剂:蒸馏水、乙醇、丙酮、苯酚、硫酸、蒽酮、葡萄糖标准品等;3. 实验仪器:组织捣碎机、离心机、分光光度计、磁力搅拌器、容量瓶、移液管、试管等。
四、实验方法1. 植物样品预处理:将植物样品洗净、晾干、磨碎,过筛,得到植物粉末。
2. 水提法提取多糖:(1)称取一定量的植物粉末,加入适量的蒸馏水,搅拌均匀;(2)在80℃条件下加热提取2小时;(3)冷却后,用离心机分离溶液和沉淀;(4)取上清液,加入乙醇,使多糖沉淀;(5)离心分离,收集沉淀,用蒸馏水洗涤沉淀,干燥,得到粗多糖。
3. 醇沉法提取多糖:(1)称取一定量的植物粉末,加入适量的蒸馏水,搅拌均匀;(2)在80℃条件下加热提取2小时;(3)冷却后,用离心机分离溶液和沉淀;(4)取上清液,加入丙酮,使多糖沉淀;(5)离心分离,收集沉淀,用蒸馏水洗涤沉淀,干燥,得到粗多糖。
4. 纯化多糖:(1)将粗多糖溶解于适量的蒸馏水中;(2)加入适量的苯酚,使多糖与苯酚形成复合物;(3)离心分离,收集沉淀,用蒸馏水洗涤沉淀,干燥,得到纯多糖。
5. 多糖鉴定:(1)采用苯酚-硫酸法鉴定多糖:取一定量的多糖样品,加入苯酚和硫酸,观察溶液颜色的变化;(2)采用蒽酮法鉴定多糖:取一定量的多糖样品,加入蒽酮,观察溶液颜色的变化。
6. 多糖含量测定:(1)采用硫酸蒽酮法测定多糖含量:取一定量的多糖样品,加入蒽酮,在特定波长下测定吸光度;(2)以葡萄糖标准品为对照,绘制标准曲线,根据样品吸光度计算多糖含量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
龙源期刊网 http://www.qikan.com.cn 秋葵多糖的提取及单糖组分的分析 作者:侯晓杰 王喜萍 周铭雪 王爽 来源:《现代食品·下》2019年第04期 龙源期刊网 http://www.qikan.com.cn 龙源期刊网 http://www.qikan.com.cn 龙源期刊网 http://www.qikan.com.cn 摘 要:利用超声波的提取法优化秋葵中的多糖提取工艺,对其中单糖组分进行HPLC法分析。结果表明,秋葵多糖的最佳提取方法为:温度为70 ℃、时间15 min、料液比1∶40,多糖得率最高,为6.88%。秋葵中各单糖占总糖含量为:鼠李糖34.44%、葡萄糖醛酸24.12%、甘露糖10.84%、葡萄糖4.68%。
关键词:秋葵;多糖;提取;单糖 Abstract:With okra as raw materials, the use of ultrasonic assisted extraction, the extraction process of;polysaccharide in okra are optimized, the HPLC method for determination of okra monosaccharide composition of;polysaccharides, the results showed that the optimum conditions of okra polysaccharides is temperatureis 70 ℃, time of 15 min,;and solid-liquid ratio of 1∶40, polysaccharide yield the highest, 6.88%. The contents of rhamnose, glucuronic acid, mannose and glucose were 34.44%, 24.12%, 10.84% and 4.68%, respectively.Key words:Okra; Polysaccharide; Extract; Monosaccharide
中图分类号:TS201.2 秋葵,俗称羊角豆,隶属于锦葵科秋葵属[1],是常见的一种蔬菜,营养价值较高,含有十余种氨基酸,多种维生素及矿物质等[1],主要特点就是含有较高多糖类[2],对减肥、降血脂等有预防作用[3],同时具有较强的抗氧化活性[4],经常食用,可以增强人体的免疫力。现在对秋葵的利用只限于家庭式各种蔬菜烹调,尚处于初加工阶段,为秋葵的精深加工及利用[5],采用超声波辅助提取法,优化秋葵中的多糖提取工艺,并对其中的单糖组成及含量进行分析[6],充分发挥秋葵的保健功能,对秋葵产品开发具有指导意义。
1 材料与方法 1.1 材料与试剂 秋葵,购于吉林市大润发超市;单糖标准品葡萄糖、甘露糖、鼠李糖、葡萄糖醛酸、半乳糖、阿拉伯糖,均购自贵州迪大科技有限责任公司;PMP(1-苯基-3-甲基-5-吡唑啉酮)、乙醇、氢氧化钠、三氟乙酸、磷酸二氢钾等均为分析纯,乙腈为色谱纯。
1.2 仪器与设备 1260 Infinity高效液相色谱仪(Agilent Technologies)、Cary60紫外可见光分光光度计(Agilent Technologies)、SB25-12DT超声波清洗机(宁波新艺超声设备有限公司)、电热板、干燥箱、离心机、水浴锅等。
1.3 实验方法 1.3.1 秋葵多糖的提取 龙源期刊网 http://www.qikan.com.cn 采用水提醇沉的多糖提取方法,取新鲜的秋葵清洗干净后,在干燥箱内干燥、粉碎、过40目筛,精确称取1.000 0 g干燥后的样品,置于250 mL三角瓶内,按设定的超声温度、超声时间、料液比将三角瓶放入超声波清洗器内,按设定的温度、时间进行提取,然后以4 000 r·min-1离心10 min,取其上清液及胶黏物质,加入等体积的无水乙醇,过夜沉淀其多糖,再4 000 r·min-1离心10 min,然后去除上清液,烘干沉淀物并定容于100 mL容量瓶中,再取1 mL于50 mL容量瓶中定容,采用苯酚-硫酸比色法,于波长485 nm处测定样品吸光度,根据葡萄糖标准曲线计算多糖含量,此提取过程得到的是秋葵粗多糖(Raw polysaccharides,即RPS)。在单因素实验结果基础上,进行正交试验,确定秋葵多糖提取的最佳工艺条件。
1.3.2 秋葵多糖得率的计算 E(%)=M1/M2×100%式中:E-粗多糖得率;M1-粗多糖质量;M2-秋葵质量。 1.3.3 秋葵多糖中单糖组成分析 1.3.3.1 秋葵多糖的水解 精确称取秋葵多糖100 mg于PE瓶中,加入4 mL 24 mol·L-1三氟乙酸溶解,封管,在80 ℃下水解8 h,离心取上清液用0.3 mol·L-1的氢氧化钠溶液调节pH至中性。然后进行PMP衍生化,采用HPLC法对秋葵多糖中单糖组成进行分析。
1.3.3.2 单糖的衍生化标记 分别精确称取甘露糖、鼠李糖、葡萄糖醛酸、葡萄糖、半乳糖、阿拉伯糖各20 mg与PE管中作为单标,各加入1 mL 0.3 mol·L-1氢氧化钠溶液,从以上6管中各吸出500 μL,放入另一个PE管中,混合后吸取500 μL作为单糖混标样品。向混标中相继加热25 μL PMP、25 μL 0.6mol·L-1的氢氧化钠溶液后,在70 ℃水浴锅中保温30 min,取出冷却至室温放置10 min,以0.6 mol·L-1盐酸溶液30 μL中和至酸性,混匀后用1 mL三氯甲烷萃取,涡旋3 min,然后以5 000 r·min-1离心15 min,将有机层弃去,反复萃取3次,上清液加水至1 mL,用于HPLC分析。
2 结果与分析 2.1 秋葵多糖的提取 2.1.1 葡萄糖标准曲线的制备 配制1 mg·mL-1的葡萄糖标准溶液,分别吸取1.0、2.0、3.0、4.0 mL和5.0 mL,各自于50 mL容量瓶中定容,得到不同浓度梯度的标准溶液;各吸取1.0 mL,分别放入5个2.0 mL的比色管中,同时以1 mL蒸馏水作为空白对照管;向以上6个比色管中分别加入苯酚、硫酸等,显色后,于485 nm波長下测定吸光度;绘制浓度与吸光度之间的标准曲线见图1。根据图1可龙源期刊网 http://www.qikan.com.cn 以得出,线性回归方程为Y=20.01X+0.047(R2=0.999)。可见葡萄糖质量浓度在0~0.10 mg·mL-1范围内与吸光度有良好的线性关系。
2.1.2 秋葵多糖提取最佳工艺的确定 根据单因素实验结果,确定影响秋葵多糖提取的主要因素为提取温度,提取时间、料液比,选择正交实验的因素水平,见表1。按此做正交实验,结果见表2。
从表2可以看出,对秋葵中多糖提取的得率影响的因素存在着差异,影响效果为提取温度>提取时间>料液比,提取得率最高的工艺组合是A3B2C1,即超声温度70 ℃,超声时间15 min,料液比1∶40,此时秋葵多糖的得率最高,达到6.88%。
2.2 秋葵单糖组成分析 多糖水解按1.3.3.1操作,混合单糖标准溶液及多糖水解液均按1.3.3.2操作衍生化,采用乙腈-磷酸盐溶液作为流动相,在高效液相色谱中分别进行分离,色谱图见图2和图3。
将图2和图3进行对比,根据出峰时间、峰高及峰面积的大小,可以判断秋葵多糖的单糖组成为甘露糖、鼠李糖、葡萄糖醛酸、葡萄糖;4種单糖的含量分别是10.84%、34.44%、24.12%、4.68%,另外在图3中的第7个色谱峰比较明显,按出峰时间,实验中选择的6种标准单糖无法判断,根据闵莉静等[7]的研究资料结果,可判断为果糖。
3 结论 利用超声波提取秋葵多糖,操作简便易行,既可以节省时间,而且没有污染,提取效率较高。当提取温度为70 ℃、时间为15 min、料液比为1∶40时,多糖得率最高,为6.88%。HPLC法分析测定,确定秋葵中含有鼠李糖、葡萄糖醛酸、果糖、葡萄糖、果糖及甘露糖,其中鼠李糖含量最高,可以达到总糖的34.44%,因此,在秋葵多糖的开发利用方面有很大的提升空间,有待于开发更多的精深加工产品。
参考文献: [1]于 梅,单凌越,井瑞洁,等.黄秋葵超微粉多糖提取工艺的优化及其抗氧化活性测定[J].食品工业科技,2018,39(7):175-179.
[2]董雨晴,王 超.黄秋葵多糖提取条件优化及多糖纯度检测[J].食品工业,2016,37(1):84-86.
[3]王丽卫,赵 兵,洪忠东,等.黄秋葵药理作用的研究进展[J].现代中药研究与实践,2018,32(1):84-86. 龙源期刊网 http://www.qikan.com.cn [4]宋思圆,苏 平,王丽娟,等.响应面试验优化超声提取黄秋葵花果胶多糖工艺及其体外抗氧化活性[J].食品科学,2017,38(2):283-289.
[5]王维婷,郭 溆,刘 超,等.黄秋葵生物活性物质及加工研究进展[J].山东农业科学,2015,47(11):135-136.
[6]吴学昊,黄远祥,谢秀娟,等.PMP衍生化-高效液相色谱法测定山豆根中多糖的单糖组分[J].今日药学,2016,26(5):304-307.
[7]闵莉静,李敬芬.黄秋葵多糖结构分析及细胞毒性研究[J].北方园艺,2013,47(14):167-170.