多糖单糖组成和甲基化步骤
多糖单糖组成和甲基化步骤

4、单糖组成分析样品的水解乙酸醋酐吡啶甲苯氯仿所需试剂 TFA(三氟乙酸) 甲醇 NaBH4取5mg多糖样品,置于5ml安培管中,加入2mol/L TFA4ml,在110℃下水解2h。
水解完毕后,冷却,溶液于40℃减压浓缩加入3ml甲醇蒸干,重复操作4-5次以除尽TFA。
将完全水解后的样品溶于3ml蒸馏水,加30mgNaBH4,室温下还原3h,期间震荡几次,然后用25%乙酸中和过量的NaBH4,至溶液不再产生气泡为止。
PH应在4-5之间,加甲酸多次,减压蒸干以除去反应副产物及水分,至瓶壁上基本不附固体大颗粒为止,然后置于真空干燥器中过夜。
次日,于110℃烘箱中加热15min,充分除去残留的水分后,加3-5ml醋酐和3ml吡啶,密塞,100℃下反应1h,冷却,加甲苯多次共蒸除去多余醋酐,真空干燥。
将乙酰化产物用适量氯仿溶解,经等体积蒸馏水洗涤次,无水硫酸钠干燥,浓缩至小体积(约0.1ml)后直接进行气相色谱分析。
GC(气相色谱)条件∶载气N2流速20ml∕min,H2流速30ml∕min,空气流速200ml∕min;柱温230℃,检测器温度250℃,气化室温度280℃。
5、糖残基连接方式的确定所需试剂 DMSO NaOH 碘甲烷氮气乙酸甲酸甲醇三氟乙酸 NaBH4 5.1甲基化将样品置于干燥器中80℃处理5h以上,然后置于含有P2O5的真空干燥器中过夜。
分别取18mg干燥后的多糖置于甲基化反应瓶中,加入4ml干燥的DMSO 后超声处理30min使样品完全溶解,然后快速加入20mg预先干燥的NaOH粉末,超声2h使NaOH粉末完全溶解,冰浴甲基化反应瓶5min至反应完全冻结。
取出反应瓶,用移液管分别缓慢加入0.6ml干燥的碘甲烷至冻结的反应完全溶解,充入氮气,再分别超声处理反应液1h。
然后分别加入1ml蒸馏水至反应瓶中使甲基化反应结束。
再加入1mol∕L的乙酸中和反应液。
流水透析至反应液颜色转为无色,冷冻干燥,红外检测多糖羟基是否完全甲基化,若没有则需重复上述操作。
二维核磁共振谱在多糖结构研究中的应用_李波

二维核磁共振谱在多糖结构研究中的应用李 波1,2*,陈海华2,许时婴2(1.河南科技学院食品学院,新乡453003;2.江南大学食品学院,无锡214036)摘 要:二维核磁共振谱(2D NMR )是获取多糖结构信息,尤其是在多糖序列分析方面的有力工具。
本文重点介绍了在多糖结构解析中常用的几种2D NMR 谱以及2D NM R 解析多糖结构的方法。
关键词:核磁共振;二维核磁共振;多糖;结构中图分类号:O65 Application of Two Dimension Nuclear Magnetic Resonance in the StructuralDetermination of PolysaccharideLI Bo 1,2*,C HE N Hai -hua 2,XU Shi -ying 2(1.Food School ,Henan Institute of Science and Technology ,Xinxian g 453003,China ;2.School of Food Science and Technology ,Southern Yangt ze Univers ity ,Wuxi 214036,China )A bstract :Two dimension nuclear magnetic resonance (2D NMR )is a powerful tool acq uiring structural information of pol ysac -charide ,especiall y in the sequence analysis of polysaccharide .Several 2D NM R spectra often used in polysaccharide structural analysis and the method for studying polysaccharide structure usin g 2D NMR are introduced in this paper .Key words :nuclear magnetic resonance ;2D NMR ;polysaccharide ;structure 天然产物研究与开发 2005 Vol .17 No .4NA TUR AL PROD UCT RESEARCH AND DEVELOP M ENT 收稿日期:2004-04-06 接受日期:2004-05-12 *通讯作者Tel :86-373-3040977;E -mail :libowuxi @yahoo .co m .cn 近年来,多糖类化合物由于具有多方面的功能性质,因而成为研究领域的一个热点,多糖的结构及其构效关系也越来越引起人们的重视。
多糖甲基化步骤

多糖甲基化步骤
嘿,咱今儿就来讲讲多糖甲基化步骤这个事儿哈!
你想想看,多糖就像是一群小伙伴手拉手站在一起,而甲基化呢,
就像是给这些小伙伴穿上了特别的小外套。
那这小外套怎么穿上去的呢?
首先啊,得把多糖准备好,就像给小伙伴们排好队一样。
然后呢,
就要请出能让甲基化发生的那些家伙们啦!这就好比一场魔法,需要
特定的魔法道具和魔法师来施展。
在这个过程中,每一步都很关键呢!就像走钢丝一样,稍有偏差可
能就前功尽弃啦。
比如说,要是添加甲基的时机不对,那可就糟糕了,就好像给小伙伴穿外套穿错了时间,那不是乱套了嘛!
而且哦,这个甲基化的步骤还得很精细,不能马虎。
这就跟做一件
精美的工艺品似的,得用心、仔细地去雕琢。
你说要是随随便便搞一下,能行么?那肯定不行呀!
这多糖甲基化步骤可真是个神奇又有趣的过程呢。
你看,通过这一
系列的操作,多糖就有了新的特性和功能。
这就好像原本普普通通的
小伙伴,一下子变得特别厉害、有本事了!
你再想想,要是没有这些精确的步骤,多糖能变得这么特别吗?肯定不能呀!所以说呀,这每一步都得认认真真地对待,不能有丝毫的懈怠。
那在实际操作中,可得小心再小心哦。
一个不小心,可能就全白费功夫啦!这多可惜呀,就跟辛苦搭好的积木一下子全倒了一样。
总之呢,多糖甲基化步骤是个既重要又有趣的事儿,咱可得好好研究研究,把它搞清楚,搞明白!这样才能更好地利用它,让它发挥出更大的作用呀!你说是不是这个理儿?。
花青素糖基化、甲基化修饰的研究现状

花青素糖基化、甲基化修饰的研究现状一、概述花青素是一种广泛存在于植物中的天然色素,具有丰富的生物活性和抗氧化作用。
近年来花青素的研究引起了科学家们的高度关注,特别是在糖基化和甲基化修饰方面取得了显著的进展。
本文将对花青素糖基化和甲基化修饰的研究现状进行综述,以期为花青素的功能性研究提供理论依据和实验指导。
糖基化是生物体内蛋白质和多肽的重要修饰方式,通过与糖分子结合,可以影响蛋白质的结构、功能和稳定性。
花青素作为一种天然色素,其结构和功能与其糖基化修饰密切相关。
研究表明花青素的糖基化修饰主要包括羟基化、酰基化、酰胺化等类型,这些修饰方式会影响花青素的抗氧化活性、细胞信号传导途径以及生物学功能。
此外花青素的糖基化修饰还受到多种酶的影响,如糖基转移酶、磷酸化酶等,这些酶的调控对于花青素的糖基化修饰具有重要意义。
甲基化是生物体内DNA的一种重要修饰方式,通过添加甲基基团(CH,可以改变DNA的碱基序列和结构。
甲基化的DNA可以影响基因的表达水平、转录后修饰等生物学过程。
近年来研究发现花青素也可以通过甲基化修饰影响基因的表达,从而调控花青素相关的生物学功能。
例如花青素甲基化修饰可以影响植物对环境胁迫的反应,提高植物的抗逆性和适应性。
此外花青素甲基化修饰还可以影响植物生长发育、开花时间等生理过程。
花青素糖基化和甲基化修饰的研究现状为深入了解花青素的功能机制提供了重要的理论基础和实验依据。
随着研究的不断深入,相信未来会有更多关于花青素糖基化和甲基化修饰的新发现和技术应用。
1. 背景介绍:花青素是一种天然的色素,具有多种生物活性和保健功能花青素(Anthocyanin)是一类广泛存在于植物中的水溶性色素,包括红、蓝、紫等颜色。
它们在自然界中分布广泛,如水果、蔬菜、茶叶、葡萄酒等。
花青素不仅具有美丽的颜色,还具有多种生物活性和保健功能,因此受到了广泛关注。
近年来花青素的研究已经成为了生命科学领域的热点之一。
花青素的主要存在形式是糖苷配基,这些配基可以与蛋白质、多糖等大分子结合。
dna甲基化的过程和机制

dna甲基化的过程和机制
DNA甲基化的过程和机制如下:
DNA甲基化是指在DNA分子的特定位置上添加甲基基团,甲基化后的DNA序列可能发生某些改变,比如可以调节基因的表达等。
甲基化的机制主要涉及到DNA甲基转移酶(DNMT)的作用。
DNMTs是一类能够将甲基基团从S-腺苷甲硫氨酸(SAM)转移到DNA分子上的酶,是DNA甲基化过程的主要参与者。
在DNA甲基化过程中,DNMT首先将SAM转化为活性中间体,然后将活性中间体的甲基基团转移到DNA分子上。
DNA甲基化的过程可以分为以下几个步骤:
识别和结合:DNMT首先识别DNA分子上的特定序列,通常是富含胞嘧啶的区域。
识别后,DNMT结合到DNA分子上,形成一个复合体。
甲基化反应:在复合体中,SAM的甲基基团被转移到DNA分子上,通常是胞嘧啶残基的5位碳原子上。
这个过程涉及到化学键的转移,需要消耗能量。
释放和去甲基化:完成甲基化反应后,DNMT从DNA分子上释放下来,留下甲基化的DNA序列。
在某些情况下,甲基化的DNA序列可以被去甲基化,即甲基基团被去除,恢复到未甲基化的状态。
去甲基化的过程通常涉及到特定的去甲基化酶的作用。
总之,DNA甲基化是一种重要的表观遗传修饰方式,可以影响基因的表达和功能。
了解DNA甲基化的过程和机制有助于深入理解生物
学和医学中的许多问题,包括发育、疾病和治疗方法等。
多糖的结构研究

苷键的构型有关。一般呋喃糖苷键较吡喃型易水解 ,
水解试剂的不同会影响水解条件。水解之后的多糖经中和、 过滤 , 可采 用纸层析 ( PC) 、 薄 层层析 ( T L C) 、 气相 色谱法( GC) 、 液相色谱法 ( HPL C) [ 8] 和离子色谱 法 [ 9] 进行分 析。多糖水 解产生 物的 GC 分析 , 通常 是先经 衍 生化处理成易挥发组成分 , 常采用的衍生化方 法是硅烷基化和乙酰化处理。高效液相色谱法则 克服了 G C 需 衍生化的缺陷 , 它可直接进样测定。同样离子色谱法不 需要衍生处理 , 而且检测灵敏度甚至比 HPLC 法更高。 离子色谱法的原理是将样品经强碱性物质离子化后 , 通 过离子色谱柱经脉冲安培检测器检测。 ) 部分 酸水 解 : 利用多糖链中部分糖苷键如呋喃型糖苷键 、 位于链末端的糖苷键和支链上的糖苷键易水解脱落 , 而构成糖 链的主链重复结构的部分和糖醛酸等对酸水解则相对稳定的特点 , 对多糖常采用部分酸水解法处理。多糖经 部分酸水解后 , 经醇析、 离心 , 将上清液和沉淀分别进行 分析。多 糖部分酸水解之后的醇析产物往往是多糖的 主链重复性结构片段、 糖醛酸链片段 , 从这些小片段可以推测多糖链的一些结构特点。 ) 乙酰解 : 将多 糖与
第2期
周
鹏等 : 多糖的结构研究
199
乙酐、 冰醋酸、 浓硫酸等混合反应 , 可得到乙酰化单糖 , 目的也是用于单 糖组成分析。 点在于半缩醛被保护起来 , 使异构体物减少 , 有利于分辨。
) 甲 醇解 : 利用 HCl-
CH 3OH 溶液把多糖的半缩醛甲基化 , 形成甲基糖甙后再经衍生或不衍生进 行 GC 或 HPL C 分析 , 甲醇解 的优 高碘酸氧化法 : 高碘酸可以选择性的氧化 断裂糖分子中的连二羟基或连三羟基处 , 生成相应的 多糖醛、 甲 酸 , 反应定量地进行。每开裂一个 C- C 键消耗一分子高碘酸 , 通过测定高碘酸的消耗 量和甲酸的 生成量 , 可 以判断糖苷键的位置、 连接方式、 支链状况和聚合度等结构信息。以葡萄糖为例 , 以 1 2 或 1 成一分子甲酸 ; 以 1 时需做空白试验。 Smith 降解 : Smit h 降解是将 高碘酸氧化产物还原后 进行酸 水解或 部分水解。 由于糖 基之间以 不同的 位 置缩合 , 用高碘酸氧化后则生成不同的产物 , 由降解产物来 获取多糖的 结构信息。以 1 糖基为例 , 其高碘酸氧化、 Smit h 降解反 应如图 2。 4、 1 6 糖苷键的 己 4 键合 的葡萄 糖基经高碘酸氧化后 , 每糖基消耗一分子高碘 酸 , 无甲酸生成 ; 而 1 6 键合的葡萄糖基消耗二分子高碘酸 , 生 3 键合的糖基不被高碘酸氧化。高碘酸的氧化反应必须在控制的条件下进行 , 以避免副 反应的产生 ( 超氧化反应 ) 。一般使多糖与最小量的高碘酸 反应 , 溶液 pH 值控制在 3- 5, 且应 避光、 低温 , 同
多糖单糖组成和甲基化步骤

4、单糖组成分析样品的水解乙酸醋酐吡啶甲苯氯仿所需试剂 TFA(三氟乙酸)甲醇 NaBH4取5mg多糖样品,置于5ml安培管中,加入2mol/L TFA4ml,在110℃下水解2h。
水解完毕后,冷却,溶液于40℃减压浓缩加入3ml甲醇蒸干,重复操作4-5次以除尽TFA。
将完全水解后的样品溶于3ml蒸馏水,加30mgNaBH4,室温下还原3h,期间震荡几次,然后用25%乙酸中和过量的NaBH4,至溶液不再产生气泡为止。
PH应在4-5之间,加甲酸多次,减压蒸干以除去反应副产物及水分,至瓶壁上基本不附固体大颗粒为止,然后置于真空干燥器中过夜。
次日,于110℃烘箱中加热15min,充分除去残留的水分后,加3—5ml醋酐和3ml吡啶,密塞,100℃下反应1h,冷却,加甲苯多次共蒸除去多余醋酐,真空干燥.将乙酰化产物用适量氯仿溶解,经等体积蒸馏水洗涤次,无水硫酸钠干燥,浓缩至小体积(约0.1ml)后直接进行气相色谱分析.GC(气相色谱)条件∶载气N2流速20ml∕min,H2流速30ml∕min,空气流速200ml∕min;柱温230℃,检测器温度250℃,气化室温度280℃。
5、糖残基连接方式的确定所需试剂 DMSO NaOH 碘甲烷氮气乙酸甲酸甲醇三氟乙酸 NaBH4 5.1甲基化将样品置于干燥器中80℃处理5h以上,然后置于含有P2O5的真空干燥器中过夜。
分别取18mg干燥后的多糖置于甲基化反应瓶中,加入4ml干燥的DMSO 后超声处理30min使样品完全溶解,然后快速加入20mg预先干燥的NaOH粉末,超声2h使NaOH粉末完全溶解,冰浴甲基化反应瓶5min至反应完全冻结。
取出反应瓶,用移液管分别缓慢加入0。
6ml干燥的碘甲烷至冻结的反应完全溶解,充入氮气,再分别超声处理反应液1h。
然后分别加入1ml蒸馏水至反应瓶中使甲基化反应结束。
再加入1mol∕L的乙酸中和反应液。
流水透析至反应液颜色转为无色,冷冻干燥,红外检测多糖羟基是否完全甲基化,若没有则需重复上述操作。
多糖成分分析综述

多糖成分分析摘要:对多糖的提取、分离纯化、含量分析以及组分结构分析的研究进展进行了综述,并对其应用前景进行了展望。
多糖的组分分析是多糖质量控制和提供多糖基本信息的重要环节。
关键词:多糖;提取;分离纯化;表征鉴定多糖(polysaccharides,PS)又称多聚糖,由10个以上的单糖分子通过苷键聚合而成,其分子量较大,一般由几百甚至几万个单糖分子组成,是除了蛋白质和核酸以外的一类重要的生物大分子。
虽然糖类的研究并不比蛋白质和核酸晚,但其研究层次与水平还远远落后于蛋白质和核酸。
多糖在自然界高等植物、动物、藻类及细菌类内均有存在,分布极广。
有些多糖无生物活性,如淀粉、树胶和粘液质等,通常被当做杂质除去。
而具有药效作用的多糖大多是活性多糖。
1969年,日本学者千原率先证实了香菇热水提出物的抗肿瘤活性,羽田、佐木进一步研究证实有效成分是香菇多糖。
自此,全世界掀起了从真菌中提取抗肿瘤活性成分的热潮[1]。
尤其近年来,随着生物学、化学等相关学科的飞速发展,多糖化合物也得到了日益深入的研究。
国际科学界视多糖的研究为生命科学的前沿领域,甚至提出21世纪是多糖的世纪。
鉴于多糖研究所具有的学术价值和广阔的应用前景,使得多糖研究成为人们关注的研究热点之一;又目前研究比较多的是植物多糖和微生物多糖,因此本文将就植物多糖和微生物多糖的成分分析研究进行概括、总结,并就存在的问题加以展望。
1 多糖的提取多糖的提取通常要根据多糖的存在形式及提取部位不同决定其提取方法。
一般从植物中提取多糖,先用石油醚、乙醚、丙酮等有机溶剂进行预处理,除去脂溶性杂质[1]。
然后根据不同的溶解度选择一种溶剂进行萃取,常用的为水、稀盐、稀酸、稀碱等溶剂。
传统的提取方法有水提醇沉法、稀碱浸提法、稀酸浸提法和酶法等,随着对多糖研究的不断深入,又出现超滤法、微波辅助浸提法以及超声波法等等。
1.1 溶剂提取法溶剂提取法是提取多糖的常用方法,利用多糖不溶于乙醇的性质在提取液中加入乙醇使多糖沉淀出来。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4、单糖组成分析
样品的水解
乙酸醋酐吡啶甲苯氯仿
所需试剂 TFA(三氟乙酸) 甲醇 NaBH
4
取5mg多糖样品,置于5ml安培管中,加入2mol/L TFA4ml,在110℃下水解2h。
水解完毕后,冷却,溶液于40℃减压浓缩加入3ml甲醇蒸干,重复操作4-5次以除尽TFA。
将完全水解后的样品溶于3ml蒸馏水,加30mgNaBH4,室温
下还原3h,期间震荡几次,然后用25%乙酸中和过量的NaBH4
,至溶液不再产生气泡为止。
PH应在4-5之间,加甲酸多次,减压蒸干以除去反应副产物及水分,至瓶壁上基本不附固体大颗粒为止,然后置于真空干燥器中过夜。
次日,于110℃烘箱中加热15min,充分除去残留的水分后,加3-5ml醋酐和3ml吡啶,密塞,100℃下反应1h,冷却,加甲苯多次共蒸除去多余醋酐,真空干燥。
将乙酰化产物用适量氯仿溶解,经等体积蒸馏水洗涤次,无水硫酸钠干燥,浓缩至小体积(约0.1ml)后直接进行气相色谱分析。
GC(气相色谱)条件∶载气N2流速20ml∕min,H2流速30ml∕min,空气流速200ml∕min;柱温230℃,检测器温度250℃,气化室温度280℃。
5、糖残基连接方式的确定
所需试剂 DMSO NaOH 碘甲烷氮气乙酸甲酸甲醇三氟乙酸 NaBH
4 5.1甲基化
将样品置于干燥器中80℃处理5h以上,然后置于含有P2O5的真空干燥器中过夜。
分别取18mg干燥后的多糖置于甲基化反应瓶中,加入4ml干燥的DMSO 后超声处理30min使样品完全溶解,然后快速加入20mg预先干燥的NaOH粉末,超声2h使NaOH粉末完全溶解,冰浴甲基化反应瓶5min至反应完全冻结。
取出反应瓶,用移液管分别缓慢加入0.6ml干燥的碘甲烷至冻结的反应完全溶解,充入氮气,再分别超声处理反应液1h。
然后分别加入1ml蒸馏水至反应瓶中使甲基化反应结束。
再加入1mol∕L的乙酸中和反应液。
流水透析至反应液颜色转为无色,冷冻干燥,红外检测多糖羟基是否完全甲基化,若没有则需重复上述操作。
5.2样品的水解
将完全甲基化的多糖样品分别溶于4ml 90%的甲酸溶液,密塞后于110℃烘箱中解聚6h。
反应结束后减压蒸干,分别加3ml甲醇重复蒸干4次,以除去过量甲酸。
然后将蒸干后的解聚样品加入4ml 2mol/L三氟乙酸的安培管中,封管后110℃水解2h后减压蒸干,重复加甲酸多次蒸干以除去过量的三氟乙酸。
再
加入3ml蒸馏水充分使样品溶解。
30mg NaBH
还原乙酰化后制得部分甲基化的乙
4
酸衍生物,氯仿-水体系萃取衍生物,回收氯仿层,减压浓缩至约0.1ml后进行GC-MS分析。
5.3 GC-MS分析
设定好GC/MS操作参数, GC-MS测试条件为:毛细管柱HP-5,程序升温50-250℃,10℃∕min,进样口温度260℃;离子源:EI;氦气流速1ml/min.。
当系统提示可以进样时,使用10 μL进样针准确吸取5 μL样品溶液(不能有气泡)加入到进样口,分析开始。
对得到的总离子流色谱图(TIC),在不同位置双击鼠标右键即得到相应的质谱图。
在质谱库中检索后,根据匹配度、置信度可确定各峰的归属。