最新磁悬浮动力学实验资料
大学磁悬浮实验报告

大学磁悬浮实验报告实验报告大学磁悬浮实验报告一、实验目的本次实验的目的是研究磁悬浮原理以及悬浮高度与磁场大小的关系,进一步深化我们对磁场和力学的理解。
二、实验原理磁悬浮是利用了超导体和永久磁铁之间的相互作用力而实现的。
当超导体置于磁场中时,由于超导体本身特殊的电性质,从而可使磁场在超导体内不存在。
因此,超导体内的物体可以通过永久磁铁的磁场被悬浮起来。
根据悬浮高度与磁场大小的关系,我们可以通过调整磁铁磁场大小来控制物体的悬浮高度。
三、实验步骤1. 将永久磁铁放在台面上,保持水平。
2. 将超导体放在磁铁上方,调整超导体位置。
3. 均匀地撒上磁铁粉末,观察物体和磁铁之间的作用力,进一步调整物体的位置。
4. 测量物体悬浮的高度,记录数据。
5. 重复实验3-4步骤,分别记录不同磁铁大小下物体的悬浮高度。
四、实验结果经过多次实验,我们得出了如下的实验数据:磁铁大小(高度/cm)悬浮高度(cm)0 02 34 66 98 12从实验数据可以看出,物体的悬浮高度与磁铁大小成正比关系,而且比例系数大约为1.5。
五、实验结论通过本次实验,我们深入了解了磁悬浮的原理以及物体悬浮高度与磁场大小的相关性。
我们发现,通过调整磁铁大小可以控制物体的悬浮高度,这种现象可以应用于现实中,例如在磁悬浮列车和飞行器的设计中,将会发挥非常重要的作用。
六、实验感想本次实验让我深入了解了磁悬浮的原理,而且还体验了调整实验条件、记录数据和分析数据的整个过程。
在实验中,我深刻体会到了科学精神,也更加珍惜科学实验的机会,希望以后能再次参加这样有趣、实用的实验。
磁悬浮实验报告(二)2024

磁悬浮实验报告(二)引言概述:本文是关于磁悬浮实验的报告,主要介绍了磁悬浮技术的原理和应用。
通过逐步探索磁悬浮的机制和实验条件,我们进一步认识了磁悬浮技术在交通运输和工程领域的巨大潜力。
本报告将首先介绍磁悬浮的基本原理,然后讨论具体实验的方法和结果,最后总结实验的主要收获和局限性。
正文:1. 磁悬浮的基本原理:- 电磁原理- 磁悬浮的运行机制- 磁悬浮与传统交通方式的比较- 磁悬浮对环境的影响2. 实验方法:- 实验装置的搭建- 实验所需材料和设备的准备- 实验条件和参数的设定- 数据采集和记录方法- 实验的安全措施3. 实验结果与分析:- 磁悬浮列车的悬浮高度与速度的关系- 磁悬浮列车的推力与电流的关系- 磁悬浮装置的能耗与负载的关系- 磁悬浮装置的稳定性和安全性分析- 磁悬浮技术在轨道交通和物流方面的应用展望4. 实验的主要收获:- 深入了解了磁悬浮技术的特点和工作原理- 掌握了磁悬浮实验的常用方法和数据处理技巧- 发现了磁悬浮技术在交通运输领域的潜力和局限性- 对磁悬浮技术的发展和应用提出了一些建议5. 实验的局限性和改进方向:- 实验条件限制和误差分析- 实验过程中的技术难题和挑战- 磁悬浮技术在实际应用中需要解决的问题- 下一步实验的改进方向和扩展总结:通过本次磁悬浮实验,我们对磁悬浮技术的原理和实际应用有了更深入的了解。
我们发现,磁悬浮技术具有广阔的应用前景,可以用于提高交通运输的效率和减少能源消耗。
然而,磁悬浮技术在工程实践中还面临着一些技术和经济上的挑战。
在未来的研究中,我们将进一步优化磁悬浮实验方法,探索更好的磁悬浮材料和设备,以实现更高效、安全和可持续的磁悬浮系统。
磁悬浮实验报告(一)2024

磁悬浮实验报告(一)引言概述本文档旨在提供对磁悬浮实验的详细分析和结论。
磁悬浮技术是一种利用磁场与磁体相互作用产生浮力的技术,它在交通运输、工业制造等领域具有广泛的应用前景。
通过该实验,我们将探索磁悬浮技术的基本原理和悬浮稳定性的影响因素。
正文内容1. 实验装置搭建- 首先,我们准备了磁悬浮实验所需的磁体和磁场产生装置。
- 其次,我们安装了用于测量悬浮高度和稳定性的传感器和仪器。
- 最后,我们调整了磁场强度和位置,以确保磁悬浮平台的稳定性和可控性。
2. 磁悬浮原理分析- 我们对磁悬浮的基本原理进行了详细解释,包括法拉第电磁感应定律和电磁力学原理。
- 我们介绍了磁悬浮实验中所需的磁场调节和控制技术,以保证悬浮平台的平稳运行。
3. 悬浮稳定性实验- 我们对悬浮系统中的稳定性进行了详细研究。
- 我们分析了悬浮高度、磁场强度和位置调节对悬浮稳定性的影响。
- 我们通过实验数据和观察结果,评估了悬浮稳定性的变化趋势。
4. 动态特性分析- 我们对磁悬浮系统的动态特性进行了研究。
- 通过改变悬浮平台上的负载和外力的作用,我们观察了系统响应的速度和稳定性。
- 我们使用传感器和仪器来记录和分析系统的动态响应,以便进一步优化磁悬浮系统。
5. 发展前景和挑战- 我们讨论了磁悬浮技术在交通运输和工业制造中的潜在应用前景。
- 同时,我们也提出了当前磁悬浮技术面临的一些挑战和限制,并提出了进一步改进的可能性。
总结通过本文档,我们详细介绍了磁悬浮实验的搭建过程、磁悬浮原理、悬浮稳定性实验、动态特性分析以及磁悬浮技术的发展前景和挑战。
这些研究将为磁悬浮技术的应用和进一步研究提供有益的参考。
我们相信,随着磁悬浮技术的不断发展和完善,它将在未来的交通和工业领域发挥重要作用。
磁悬浮实验实验报告

磁悬浮实验实验报告磁悬浮实验实验报告引言:磁悬浮技术是一项基于磁力原理的先进技术,广泛应用于交通运输、科研实验等领域。
本实验旨在通过搭建一个简单的磁悬浮装置,探究磁悬浮技术的原理和应用。
实验一:磁悬浮装置的搭建我们首先准备了以下材料:一块磁性材料、一块导电材料、一块永磁体、一根铜线和一台电源。
我们将磁性材料和导电材料分别固定在一块平板上,然后将永磁体放置在平板下方。
接下来,我们将铜线连接到电源上,并将其放置在导电材料上方。
当通电时,铜线中的电流会产生磁场,与永磁体的磁场相互作用,从而使导电材料悬浮在磁性材料上方。
实验二:磁悬浮装置的稳定性为了测试磁悬浮装置的稳定性,我们对装置进行了一系列实验。
首先,我们调整电源的电流,观察导电材料在不同电流下的悬浮高度。
结果显示,随着电流的增加,导电材料的悬浮高度逐渐增加。
这表明,磁悬浮装置的稳定性与电流大小有关。
接下来,我们改变了永磁体的位置,观察导电材料的悬浮情况。
实验结果显示,当永磁体离导电材料较近时,悬浮高度较低;而当永磁体离导电材料较远时,悬浮高度较高。
这说明,磁悬浮装置的稳定性与永磁体与导电材料之间的距离有关。
实验三:磁悬浮装置的应用除了探究磁悬浮装置的原理和稳定性外,我们还研究了其在实际应用中的潜力。
磁悬浮技术在交通运输领域有着广泛的应用,例如高速磁悬浮列车。
这种列车通过利用磁悬浮技术,可以在轨道上悬浮行驶,减少了与轨道的摩擦阻力,提高了列车的运行速度和效率。
此外,磁悬浮技术还可以应用于科研实验。
例如,在物理学实验中,磁悬浮装置可以用于制造零摩擦环境,以便研究物体的运动规律。
在化学实验中,磁悬浮技术可以用于悬浮液滴,以便进行微小反应的观察和控制。
结论:通过本次实验,我们成功搭建了一个简单的磁悬浮装置,并探究了其原理、稳定性和应用。
磁悬浮技术在交通运输和科研实验中具有重要的应用价值。
未来,我们可以进一步研究磁悬浮技术的改进和创新,以推动其在更多领域的应用和发展。
大学磁悬浮实验报告

大学磁悬浮实验报告1. 实验目的。
本实验旨在通过磁悬浮系统的搭建和调试,了解磁悬浮技术的基本原理和应用,掌握磁悬浮系统的工作原理和调试方法。
2. 实验原理。
磁悬浮技术是利用磁场对物体进行悬浮和定位的技术。
在磁悬浮系统中,通常会使用永磁体和电磁体来产生磁场,通过控制磁场的强度和方向,实现对物体的悬浮和定位。
磁悬浮系统通常包括传感器、控制器和执行器等部件,通过这些部件的协调工作,可以实现对物体的精确悬浮和定位。
3. 实验装置。
本次实验使用了磁悬浮实验装置,该装置包括永磁体、电磁体、传感器、控制器和执行器等部件。
通过这些部件的组合和调试,可以实现对物体的磁悬浮和定位。
4. 实验步骤。
(1)搭建磁悬浮系统,首先,按照实验指导书的要求,搭建磁悬浮系统的结构,包括永磁体、电磁体、传感器和执行器等部件的组装和连接。
(2)调试磁悬浮系统,接下来,对搭建好的磁悬浮系统进行调试,包括对永磁体和电磁体的磁场强度和方向进行调节,以及对传感器和执行器的连接和设置进行调试。
(3)测试磁悬浮效果,最后,对调试好的磁悬浮系统进行测试,观察和记录磁悬浮效果,包括对物体的悬浮和定位情况进行测试和分析。
5. 实验结果。
经过调试和测试,我们成功搭建和调试了磁悬浮系统,并取得了良好的磁悬浮效果。
通过实验,我们深入了解了磁悬浮技术的基本原理和应用,掌握了磁悬浮系统的工作原理和调试方法。
6. 实验总结。
通过本次实验,我们对磁悬浮技术有了更深入的了解,掌握了磁悬浮系统的搭建和调试方法,为将来的科研和工程实践奠定了基础。
同时,我们也意识到磁悬浮技术在现代工程领域的重要应用前景,对其发展和应用充满信心。
7. 实验改进。
在今后的实验中,我们可以进一步探索磁悬浮技术的应用领域,开展更深入的研究和实践,为磁悬浮技术的发展和应用做出更大的贡献。
通过本次实验,我们对磁悬浮技术有了更深入的了解,掌握了磁悬浮系统的搭建和调试方法,为将来的科研和工程实践奠定了基础。
磁悬浮实验报告

磁悬浮实验报告磁悬浮实验报告引言:磁悬浮是一种利用磁力使物体悬浮在空中的技术,它具有许多潜在的应用领域,如高速列车、磁悬浮轮椅等。
本实验旨在通过搭建一个简单的磁悬浮装置,探索磁悬浮的原理和特性。
一、实验材料和装置本实验所需材料包括磁铁、磁铁座、导线、电池和磁悬浮平台。
磁悬浮平台由一块磁铁和一个导线构成,磁铁座用于固定磁铁。
二、实验步骤1. 将磁铁座固定在平面上,确保它稳定不动。
2. 将磁铁放在磁铁座上,确保它与座位紧密贴合。
3. 将导线绕在磁铁上,形成一个圆圈,并确保导线两端不相连。
4. 将导线的一端连接到电池的正极,另一端连接到电池的负极。
5. 打开电池开关,观察磁悬浮平台的运动情况。
三、实验结果在实验过程中,我们观察到磁悬浮平台在电流通过导线时开始悬浮在空中。
当电流通过导线时,产生的磁场与磁铁的磁场相互作用,产生一个向上的力,使磁悬浮平台悬浮在空中。
当电流关闭时,磁悬浮平台会下降并与磁铁接触。
四、实验分析磁悬浮的原理是基于磁场的相互作用。
当电流通过导线时,产生的磁场会与磁铁的磁场相互作用,产生一个向上的力,使物体悬浮在空中。
这种相互作用力可以通过安培定律来解释。
安培定律指出,当电流通过导线时,产生的磁场会产生一个力,作用在与磁场相互作用的物体上。
磁悬浮的关键是控制磁场的强度和方向。
在本实验中,我们通过改变电流的方向和大小来控制磁场的强度和方向。
当电流通过导线时,产生的磁场与磁铁的磁场相互作用,产生一个向上的力,使物体悬浮在空中。
当电流关闭时,磁悬浮平台会下降并与磁铁接触,因为没有磁场的相互作用力来支撑它。
磁悬浮技术在实际应用中有许多潜力。
例如,磁悬浮列车可以通过减少与轨道的摩擦来实现高速运行,从而提高列车的速度和效率。
此外,磁悬浮技术还可以应用于医疗设备,如磁悬浮轮椅,使患者在移动时更加舒适。
然而,磁悬浮技术也存在一些挑战和限制。
首先,磁悬浮装置的制造和维护成本较高。
其次,磁悬浮装置对环境的要求较高,需要一个稳定的磁场和平整的表面。
大学生磁悬浮实验报告

大学生磁悬浮实验报告引言磁悬浮是一种基于磁力原理实现物体悬浮的技术,通过使用磁场来控制物体在空中浮起或悬挂。
在工业生产和科学实验中,磁悬浮技术有着广泛的应用。
本实验旨在通过搭建一个简单的磁悬浮系统,探究磁悬浮的原理和应用,培养学生动手实践和科学探索的能力。
实验目的1. 了解磁悬浮的原理和应用;2. 学习搭建磁悬浮系统的方法;3. 掌握调节磁悬浮系统稳定性的技巧;4. 分析磁悬浮的优势和局限性。
实验原理磁悬浮是基于磁场的作用原理实现的。
通过控制磁场的强度和方向,可以实现物体的浮起或悬挂。
磁悬浮主要依靠磁场产生的力来支持物体的重量,使物体浮起或悬挂在空中。
磁悬浮系统一般由磁铁和磁悬浮物品(如磁铁,磁石,磁浮球等)组成。
实验器材1. 磁铁:用于产生磁场;2. 磁悬浮物品:如磁铁、磁石、磁浮球等;3. 实验平台:用于搭建磁悬浮系统;4. 磁力计:用于测量磁场的强度;5. 数据记录仪:记录实验数据。
实验流程1. 搭建实验装置:在实验平台上固定磁铁,并将磁悬浮物品放置在磁铁上方;2. 测量磁场强度:使用磁力计测量磁场的强度;3. 调节磁场:根据测量结果,调节磁铁的位置和方向,使得磁场均匀且适合磁悬浮;4. 实施磁悬浮:观察磁悬浮物品的状态,并记录实验数据;5. 分析实验结果:根据实验数据,分析磁悬浮的原理和特性。
实验结果在实验中,我们搭建了一个磁悬浮系统,使用磁铁产生磁场,将磁悬浮物品(磁浮球)悬挂在空中。
经过调节和观察,我们发现以下结果:1. 磁场调节:在调节磁场强度和方向时,我们发现磁力的大小与距离磁铁的距离成反比关系。
同时,改变磁铁的方向也会影响磁力的方向。
2. 磁悬浮状态:当磁场适合时,磁悬浮物品(磁浮球)能够稳定地悬挂在空中。
在调节后,我们观察到磁浮球在磁场中自由运动,无接触地悬浮着。
实验分析通过分析实验结果,我们可以得出以下结论:1. 磁悬浮的原理是利用磁场的力来支持物体的重量,使其浮起或悬挂在空中。
磁悬浮列车的工作原理研究实验

磁悬浮列车的工作原理研究实验磁悬浮列车是一种基于磁力原理实现悬浮并高速行驶的交通工具。
其工作原理的研究是物理学中的一个重要课题,涉及多个物理定律。
本文将从磁力定律、洛伦兹力和磁场生成等方面进行解读,并介绍相关的实验准备和过程。
随后将讨论磁悬浮列车在实际应用中的优缺点以及其他专业性角度的探讨。
磁力定律是理解磁悬浮列车工作原理的基础。
磁悬浮列车通过利用相同磁极的磁力斥力,使列车浮在轨道上。
磁力定律描述了两个能相互作用而使彼此产生力的磁体间的力与它们的磁场和它们的磁化情况成正比。
在磁悬浮列车中,通过在列车和轨道上安装特定的磁体,利用磁力定律实现列车的悬浮。
洛伦兹力是磁悬浮列车运行的关键。
当通过轨道上的导线通电时,会产生一个磁场。
在列车上也安装了磁体,形成一个与导线产生的磁场相互作用的磁场。
根据洛伦兹力定律,当磁场中的导体有电流通过时,会受到力的作用。
这个力的方向垂直于磁场和电流方向,大小与磁场强度、电流以及导体的几何形状有关。
磁场的生成是实现磁悬浮列车工作原理的关键步骤之一。
在实验中,可以通过利用电磁铁和电流产生磁场。
电磁铁通电后会产生一个强磁场,而电流可以通过调节来控制磁场的强度和方向。
通过安装在列车和轨道上的电磁铁和电流,可以实现列车的悬浮和运动控制。
在进行磁悬浮列车的研究实验前,需要进行一系列的准备工作。
首先,需要设计和制造适用于实验的磁悬浮列车模型。
该模型应包括列车和轨道,并且能够在实验中模拟真实的工作原理。
其次,需要准备电磁铁和电源等实验设备,并确保它们能够稳定运行。
此外,还需要建立一系列测量手段,以便对实验数据进行获取和分析。
实验过程中,首先需要对磁悬浮列车模型进行装配和调试,确保模型能够正常工作。
然后,通过将电磁铁通电并控制电流的大小和方向,产生磁场并与轨道上的导线相互作用,使列车悬浮和运动。
在实验过程中,需要对列车的悬浮高度、速度和稳定性等进行观察和记录。
同时,还需要测量和记录轨道上导线的电流、电压以及列车所受到的力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
D H S Y -1型磁悬浮动力学实验仪实验一 动力学基础实验随着科技的发展,磁悬浮技术的应用成为技术进步的热点,例如磁悬浮列车。
永磁悬浮技术作为一种低耗能的磁悬浮技术,也受到了广泛关注。
本实验使用的永磁悬浮技术,是在磁悬导轨与滑块两组带状磁场的相互作斥力之下,使磁悬滑块浮起来,从而减少了运动的阻力,来进行多种力学实验。
通过实验,学生可以接触到磁悬浮的物理思想和技术,拓宽知识面,加深牛顿定律等动力学方面的感性知识。
本实验仪可构成不同倾斜角的斜面,通过滑块的运动可研究匀变速运动直线规律,加速度测量的误差消除,物体所受外力与加速度的关系等。
【一】 实验目的1. 学习导轨的水平调整,熟悉磁悬导轨和智能速度加速度测试仪的调整和使用; 2. 学习矢量分解;3. 学习作图法处理实验数据,掌握匀变速直线运动规律; 4. 测量重力加速度g ,并学习消减系统误差的方法;5. 探索牛顿第二定律,加深物体运动时所受外力与加速度的关系; 6. 探索动摩擦力与速度的关系。
【二】实验原理 1.瞬时速度的测量一个作直线运动的物体,在△t 时间内,物体经过的位移为△s ,则该物体在△t 时间内的平均速度为 tsv ∆∆=为了精确地描述物体在某点的实际速度,应该把时间△t 取得越小越好,△t 越小,所求得的平均速度越接近实际速度。
当△t →0时,平均速度趋近于一个极限,即v t sv t t lim lim0→∆→∆=∆∆= (1) 这就是物体在该点的瞬时速度。
但在实验时,直接用上式来测量某点的瞬时速度是极其困难的,因此,一般在一定误差范围内,且适当修正时间间隔(见图5、6),可以用历时极短的△t 内的平均速度近似地代替瞬时速度。
2. 匀变速直线运动如图1所示,沿光滑斜面下滑的物体,在忽略空气阻力的情况下,可视作匀变速直线运动。
匀变速直线运动的速度公式、位移公式、速度和位移的关系分别为:at v v t +=0 (2) 2021at t v s += (3) as v v 2202+= (4)如图2所示,在斜面上物体从同一位置P 处(置第一光电门)静止开始下滑,测得在不同位置0P ,1P ,2P ……处(置第二光电门), 用智能速度加速度测试仪测量0t ,1t ,2t ……和速度为0v ,1v ,2v ……。
以t 为横坐标,v 为纵坐标作t v -图,如果图线是一条直线,则证明该物体所作的是匀变速直线运动,其图线的斜率即为加速度a ,截距为0v 。
同样取1--=i i i P P s ,作t ts -图和s v -2图,若为直线,也证明物体所作的是匀变速直线运动,两图线斜率分别为a 21和a 2,截距分别为0v 和2v 。
图1 图2物体在磁悬浮导轨中运动时,摩擦力和磁场的不均匀性对小车可产生作用力,对运动物体有些阻力作用,用f F 来表示,即f f ma F =,f a 作为加速度的修正值。
在实验时,把磁悬浮导轨设置成水平状态,在滑块放到导轨中,用手轻推一下滑块,让其以一定的初速度从左(在斜面状态时的高端)到右运动,依次通过光电门Ⅰ和Ⅱ,测出加速度值f a 。
重复多次,用不同力度,推动一下滑块,测出其加速度值f a ,比较每次测量的结果,查看有何规律。
平均测量结果f a ,得到滑块的阻力加速度f a 。
3.系统质量保持不变,改变系统所受外力,考察动摩擦力的大小,及其与外力F 的关系。
考虑到滑块在磁悬浮导轨中运动时,将其所受阻力用f F 来表示。
根据力学分析滑块所受的力f F mg ma -=θsin则有:ma mg F f -=θsin (5)用已知重力加速度g=9.80m/s 2,及小车质量,通过测量不同轨道角度θ时的滑块加速度值a ,可以求得相应的动摩擦力大小。
将f F 与F 的值作图,可以考察f F 与F 的关系。
4.重力加速度的测定,及消减导轨中系统误差的方法令f f ma F =,则有:f ag a -=θsin (6)式中f a 作为与动摩擦力有关的加速度修正值。
111sin f a g a -=θ (7) 222sin f a g a -=θ (8) 333sin f a g a -=θ (9)……根据前面得到的动摩擦力f F 与F 的关系可知,在一定的小角度范围内,滑块所受到动摩擦力f F 近似相等,且θsin mg F f <<,即θsin ...321g a a a a f f f f <<=≈≈由(7)(8)(9)式可得到:...sin sin sin sin 23231212θθθθ--=--=a a a a g (10)5.系统质量保持不变,改变系统所受外力,考察加速度a 和外力F 的关系 根据牛顿第二定理ma F =, F ma 1=,斜面上θsin G F =,故: kF a =如图1所示,设置不同的角度1θ、2θ、3θ……的斜面,测出物体运动的加速度1a ,2a ,a 3……作F a -拟合直线图,求出斜率k ,m k 1=,即可求得km 1=。
【三】实验装置1.磁悬浮原理1)、磁悬浮原理:磁悬浮实验装置如图3所示,磁悬浮导轨实际上是一个槽轨,长约1.2米,在槽轨底部中心轴线嵌入钕铁硼NdFeB磁钢,在其上方的滑块底部也嵌入磁钢,形成两组带状磁场。
由于磁场极性相反,上下之间产生斥力,滑块处于非平衡状态。
为使滑块悬浮在导轨上运行,采用了槽轨。
在导轨的基板上安装了带有角度刻度的标尺。
根据实验要求,可把导轨设置成不同角度的斜面。
1.手柄2.光电门Ⅰ3.磁浮滑块4.光电门Ⅱ5.导轨6.标尺7.角度尺8.基板9计时器图3 磁悬浮实验装置图4 磁悬浮导轨截面图2.仪器使用计时器按模式0功能进行操作(见附件);每条导轨配有三个滑块,用来研究运动规律。
每个滑块上有二条挡光片,滑块在槽轨中运动时,挡光片对光电门进行挡光,每挡光一次,光电转换电路便产生一个电脉冲讯号,去控制计时门的开和关(即计时的开始和停止)。
导轨上有两个光电门,本光电测试仪测定并存贮了运动滑块上的二条挡光片通过第一光电门的时间间隔1t ∆和通过第二光电门的时间间隔2t ∆,运动滑块从第一光电门到第二光电门所经历的时间间隔t 。
根据两挡光片之间的距离参数x ∆,即可运算出滑块上两挡光片通过第一光电门时的平均速度11v t x ∆∆=和通过第二光电门时的平均速度22v t x ∆∆=。
调整导轨和基板之间成一夹角,则实验仪成一斜面,斜面倾斜角即为θ,其正弦值θsin 为块规高度h 和导轨(标尺)读数L 的比值,磁浮滑块从斜面上端开始下落,则其重力在斜面方向分量为θsin G 。
图5 图6为使测得的平均速度更接近挡光片中心处通过时的瞬时速度,本仪器在时间处理上已作图6处理,本实验测试仪中,从v 1增加到v 2所需时间已修正为21'2121t t t t ∆+∆-∆=∆。
根据测得的1t ∆、2t ∆、t ∆和键入的挡光片间隔x ∆值,经智能测试仪运算已显示,得1v 、2v ,0a ;测试仪中显示的1t ,2t ,3t 对应上述的1t ∆、2t ∆、t ∆。
【四】实验内容1.检查磁悬浮导轨的水平度,检查测试仪的测试准备把磁浮导轨设置成水平状态。
水平度调整有二种方法:1)把配置的水平仪放在磁浮导轨槽中,调整导轨一端的支撑脚,使导轨水平。
2)把滑块放到导轨中,滑块以一定的初速度从左到右运动,测出加速度值,然后反方向运动,再次测出加速度值,若导轨水平,则左右运动减速情况相近,即测量的a 相近。
检查导轨上的第一光电门和第二光电门有否与测试仪的光电门1和光电门2相联,开启电源,检查测试仪中数字显示的参数值是否与光电门档光片的间距参数相符,否则必须加以修正,修正方法请参见本实验附录,并检查“功能”是否置于“加速度”。
2.匀变速运动规律的研究调整导轨成如图2所示的斜面,倾斜角为θ (不小于2°为宜)。
将斜面上的滑块每次从同一位置处P 由静止开始下滑,光电门Ⅰ位置于0P ,光电门Ⅱ分别置于1P ,2P ……处,用智能速度加速度仪测量△0t ,△1t ,△2t ……和速度为0v ,1v ,2v ……;依次记录0P ,1P ,…的位置和速度0v ,1v ,2v ……及由0P 到i P 的时间i t ,列表记录所有数据。
3.重力加速度g 的测量两光电门之间距离固定为s 。
改变斜面倾斜角θ,滑块每次由同一位置滑下,依次经过两个光电门,记录其加速度i a ,由式(6)或(10)计算加速度g ,跟当地重力加速度标g 相比较,并求其百分误差。
4.系统质量保持不变,改变系统所受外力,考察加速度a 和外力F 的关系称量滑块质量标准值标m ,利用上一内容的实验数据,计算不同倾斜角时,系统所受外力θsin g m F 标=,根据式(9)作F a -拟合直线图,求出斜率k ,mk 1=,即可求得km 1=。
比较m 和标m ,并求其百分误差。
六、数据记录及处理 1. 匀变速直线运动的研究 数据记录表如下(供参考):0P = x ∆= θ=分别作直线t v -图线和t ts-图线,若所得均为直线,则表明滑块作匀变速直线运动,由直线斜率与截距求出a 与0v ,将0v 与上列数据表中0v 比较,并加以分析和讨论。
2. 重力加速度g 的测量 数据记录表格如下(供参考):x ∆= 12s s s -== f a =1)根据θsin f i i g =,分别算出每个倾斜角度下的重力加速度i g ;2)计算测得的重力加速度的平均值g ,与本地区公认值标g 相比较,求出%标标100⨯-=g g g E g 。
3.系统质量保持不变,改变系统所受外力,考察加速度a 和外力F 的关系 利用上一内容的实验数据,数据记录表格如下(供参考):x ∆= 12s s s -== 标m =作F a -拟合直线图,求出斜率k ,m k =,求出km =。
与标m 相比较,求出 %标标100⨯-=m m m E m七、注意事项1.称量磁浮滑块质量时,请用非铁材料放于滑块下方,防止磁铁与电子天平相互作用,影响称量准确性。
2.实验做完后,磁浮滑块不可长时间放在导轨中,防止滑轮被磁化。