最新磁悬浮动力学实验资料

最新磁悬浮动力学实验资料
最新磁悬浮动力学实验资料

D H S Y -1型磁悬浮动力学实验仪

实验一 动力学基础实验

随着科技的发展,磁悬浮技术的应用成为技术进步的热点,例如磁悬浮列车。永磁悬浮技术作为一种低耗能的磁悬浮技术,也受到了广泛关注。本实验使用的永磁悬浮技术,是在磁悬导轨与滑块两组带状磁场的相互作斥力之下,使磁悬滑块浮起来,从而减少了运动的阻力,来进行多种力学实验。通过实验,学生可以接触到磁悬浮的物理思想和技术,拓宽知识面,加深牛顿定律等动力学方面的感性知识。

本实验仪可构成不同倾斜角的斜面,通过滑块的运动可研究匀变速运动直线规律,加速度测量的误差消除,物体所受外力与加速度的关系等。 【一】 实验目的

1. 学习导轨的水平调整,熟悉磁悬导轨和智能速度加速度测试仪的调整和使用; 2. 学习矢量分解;

3. 学习作图法处理实验数据,掌握匀变速直线运动规律; 4. 测量重力加速度g ,并学习消减系统误差的方法;

5. 探索牛顿第二定律,加深物体运动时所受外力与加速度的关系; 6. 探索动摩擦力与速度的关系。 【二】实验原理 1.瞬时速度的测量

一个作直线运动的物体,在△t 时间内,物体经过的位移为△s ,则该物体在△t 时间内的平均速度为 t

s

v ??=

为了精确地描述物体在某点的实际速度,应该把时间△t 取得越小越好,

△t 越小,所求得的平均速度越接近实际速度。当△t →0时,平均速度趋近于一个极限,即

v t s

v t t lim lim

0→?→?=??= (1) 这就是物体在该点的瞬时速度。

但在实验时,直接用上式来测量某点的瞬时速度是极其困难的,因此,一般在一定误

差范围内,且适当修正时间间隔(见图5、6),可以用历时极短的△t 内的平均速度近似地

代替瞬时速度。 2. 匀变速直线运动

如图1所示,沿光滑斜面下滑的物体,在忽略空气阻力的情况下,可视作匀变速直线运动。匀变速直线运动的速度公式、位移公式、速度和位移的关系分别为:

at v v t +=0 (2) 2

02

1at t v s +

= (3) as v v 22

02+= (4)

如图2所示,在斜面上物体从同一位置P 处(置第一光电门)静止开始下滑,测得在不

同位置0P ,1P ,2P ……处(置第二光电门), 用智能速度加速度测试仪测量0t ,

1t ,2t ……和速度为0v ,1v ,2v ……。以t 为横坐标,v 为纵坐标作t v -图,如果图线是一条直线,则证明该物体所作的是匀变速直线运动,其图线的斜率即为加速度a ,截距为0v 。

同样取1--=i i i P P s ,作t t

s -图和s v -2

图,若为直线,也证明物体所作的是匀变速

直线运动,两图线斜率分别为

a 2

1和a 2,截距分别为0v 和2

v 。

图1 图2

物体在磁悬浮导轨中运动时,摩擦力和磁场的不均匀性对小车可产生作用力,对运动物体有些阻力作用,用f F 来表示,即f f ma F =,f a 作为加速度的修正值。在实验时,把磁悬浮导轨设置成水平状态,在滑块放到导轨中,用手轻推一下滑块,让其以一定的初速度从左(在斜面状态时的高端)到右运动,依次通过光电门Ⅰ和Ⅱ,测出加速度值f a 。重复多次,用不同力度,推动一下滑块,测出其加速度值f a ,比较每次测量的结果,查看有何规律。平均测量结果f a ,得到滑块的阻力加速度f a 。

3.系统质量保持不变,改变系统所受外力,考察动摩擦力的大小,及其与外力F 的关系。

考虑到滑块在磁悬浮导轨中运动时,将其所受阻力用f F 来表示。根据力学分析滑块所受的力

f F m

g ma -=θsin

则有:

ma mg F f -=θsin (5)

用已知重力加速度g=9.80m/s 2,及小车质量,通过测量不同轨道角度θ时的滑块加速度值a ,可以求得相应的动摩擦力大小。

将f F 与F 的值作图,可以考察f F 与F 的关系。 4.重力加速度的测定,及消减导轨中系统误差的方法

令f f ma F =,则有:

f a

g a -=θsin (6)

式中f a 作为与动摩擦力有关的加速度修正值。

111sin f a g a -=θ (7) 222sin f a g a -=θ (8) 333sin f a g a -=θ (9)

……

根据前面得到的动摩擦力f F 与F 的关系可知,在一定的小角度范围内,滑块所受到动摩擦力f F 近似相等,且θsin mg F f <<,即

θsin ...321g a a a a f f f f <<=≈≈

由(7)(8)(9)式可得到:

...sin sin sin sin 2

323121

2θθθθ--=--=

a a a a g (10)

5.系统质量保持不变,改变系统所受外力,考察加速度a 和外力F 的关系 根据牛顿第二定理ma F =, F m

a 1

=

,斜面上θsin G F =,故: kF a =

如图1所示,设置不同的角度1θ、2θ、3θ……的斜面,测出物体运动的加速度1a ,2a ,a 3……作F a -拟合直线图,求出斜率k ,m k 1=

,即可求得k

m 1=。

【三】实验装置

1.磁悬浮原理

1)、磁悬浮原理:磁悬浮实验装置如图3所示,磁悬浮导轨实际上是一个槽轨,长约1.2米,在槽轨底部中心轴线嵌入钕铁硼NdFeB磁钢,在其上方的滑块底部也嵌入磁钢,形成两组带状磁场。由于磁场极性相反,上下之间产生斥力,滑块处于非平衡状态。为使滑块悬浮在导轨上运行,采用了槽轨。

在导轨的基板上安装了带有角度刻度的标尺。根据实验要求,可把导轨设置成不同角度的斜面。

1.手柄

2.光电门Ⅰ

3.磁浮滑块

4.光电门Ⅱ

5.导轨

6.标尺

7.角度尺

8.基板9计时器

图3 磁悬浮实验装置

图4 磁悬浮导轨截面图

2.仪器使用

计时器按模式0功能进行操作(见附件);

每条导轨配有三个滑块,用来研究运动规律。每个滑块上有二条挡光片,滑块在槽轨中运动时,挡光片对光电门进行挡光,每挡光一次,光电转换电路便产生一个电脉冲讯号,去控制计时门的开和关(即计时的开始和停止)。

导轨上有两个光电门,本光电测试仪测定并存贮了运动滑块上的二条挡光片通过第

一光电门的时间间隔1t ?和通过第二光电门的时间间隔2t ?,运动滑块从第一光电门到第二光电门所经历的时间间隔t 。根据两挡光片之间的距离参数x ?,即可运算出滑块上两挡光片通过第一光电门时的平均速度11v t x ??=和通过第二光电门时的平均速度2

2v t x ??=。

调整导轨和基板之间成一夹角,则实验仪成一斜面,斜面倾斜角即为θ,其正弦值

θsin 为块规高度h 和导轨(标尺)读数L 的比值,磁浮滑块从斜面上端开始下落,则其

重力在斜面方向分量为θsin G 。

图5 图6

为使测得的平均速度更接近挡光片中心处通过时的瞬时速度,本仪器在时间处理上已作图6处理,本实验测试仪中,从v 1增加到v 2所需时间已修正为21'2121t t t t ?+?-?=?。

根据测得的1t ?、2t ?、t ?和键入的挡光片间隔x ?值,经智能测试仪运算已显示,得1v 、

2v ,0a ;测试仪中显示的1t ,2t ,3t 对应上述的1t ?、2t ?、t ?。

【四】实验内容

1.检查磁悬浮导轨的水平度,检查测试仪的测试准备

把磁浮导轨设置成水平状态。水平度调整有二种方法:1)把配置的水平仪放在磁浮导轨槽中,调整导轨一端的支撑脚,使导轨水平。2)把滑块放到导轨中,滑块以一定的初速度从左到右运动,测出加速度值,然后反方向运动,再次测出加速度值,若导轨水平,则左右运动减速情况相近,即测量的a 相近。

检查导轨上的第一光电门和第二光电门有否与测试仪的光电门1和光电门2相联,开启电源,检查测试仪中数字显示的参数值是否与光电门档光片的间距参数相符,否则必须加以修正,修正方法请参见本实验附录,并检查“功能”是否置于“加速度”。 2.匀变速运动规律的研究

调整导轨成如图2所示的斜面,倾斜角为θ (不小于2°为宜)。将斜面上的滑块每次从同一位置处P 由静止开始下滑,光电门Ⅰ位置于0P ,光电门Ⅱ分别置于1P ,2P ……处,用智能速度加速度仪测量△0t ,△1t ,△2t ……和速度为0v ,1v ,2v ……;依次记录0P ,1P ,…的位置和速度0v ,1v ,2v ……及由0P 到i P 的时间i t ,列表记录所有数据。

3.重力加速度g 的测量

两光电门之间距离固定为s 。改变斜面倾斜角θ,滑块每次由同一位置滑下,依次经过两个光电门,记录其加速度i a ,由式(6)或(10)计算加速度g ,跟当地重力加速度标g 相比较,并求其百分误差。

4.系统质量保持不变,改变系统所受外力,考察加速度a 和外力F 的关系

称量滑块质量标准值标m ,利用上一内容的实验数据,计算不同倾斜角时,系统所受

外力θsin g m F 标=,根据式(9)作F a -拟合直线图,求出斜率k ,m

k 1

=,即可求得k

m 1

=

。比较m 和标m ,并求其百分误差。 六、数据记录及处理 1. 匀变速直线运动的研究 数据记录表如下(供参考):

0P = x ?= θ=

分别作直线t v -图线和t t

s

-图线,若所得均为直线,则表明滑块作匀变速直线运动,由

直线斜率与截距求出a 与0v ,将0v 与上列数据表中0v 比较,并加以分析和讨论。 2. 重力加速度g 的测量 数据记录表格如下(供参考):

x ?= 12s s s -== f a =

1)根据θ

sin f i i g =

,分别算出每个倾斜角度下的重力加速度i g ;

2)计算测得的重力加速度的平均值g ,与本地区公认值标g 相比较,求出

%标

标100?-=

g g g E g 。

3.系统质量保持不变,改变系统所受外力,考察加速度a 和外力F 的关系 利用上一内容的实验数据,数据记录表格如下(供参考):

x ?= 12s s s -== 标m =

作F a -拟合直线图,求出斜率k ,m k =

,求出k

m =。与标m 相比较,求出 %标

标100?-=

m m m E m

七、注意事项

1.称量磁浮滑块质量时,请用非铁材料放于滑块下方,防止磁铁与电子天平相互作用,影响称量准确性。

2.实验做完后,磁浮滑块不可长时间放在导轨中,防止滑轮被磁化。

磁悬浮列车例题

例题.(2004?江苏模拟)如图所示为磁悬浮列车的原理图,在水平面上,两根平行直导轨间有竖直方向且等距离的匀强磁场B1和B2,导轨上有金属框abcd.当匀强磁场B1和B2同时以v 沿直轨道向右运动时,金属框也会沿直轨道运动.设直轨道间距为L=0.4m,B1=B2=1T,磁场运动的速度为v=5m/s.金属框的电阻R=2Ω.试求: (1)金属框为什么会运动?若金属框不受阻力时,金属框如何运动? (2)当金属框始终受到f=1N的摩擦阻力时,金属框最大速度是多少? (3)当金属框始终受到1N阻力时,要使金属框维持最大速度,每秒钟需要消耗多少能量? 这些能量是谁提供的? 【解答】 解:(1)当匀强磁场B1和B2向右运动时,金属框相对磁场向左运动,于是在金属框abcd中产生逆时针方向的感应电流,同时受到向右方向的安培力,所以金属框跟随匀强磁场 向右运动.金属框开始受到安培力作用,做加速运动,当速度增大到5m/s时,金属框 相对匀强磁场静止,于是后来金属框将处于匀速运动状态. (2)当金属框受到1N的阻力且稳定时有:2BIL=f V m=1.9m/s (3)消耗能量由两部分组成,一是转化为abcd金属框中的电能,(最终也转化为内能)一定克服摩擦阻力做功产生内能∴P=I2R+fV m=5W 这些能量是由磁场提供的. 例题.(2019?江岸区校级模拟)某兴趣小组设计制作了一种磁悬浮列车模型,原理如图所示,PQ 和MN是固定在水平地面上的两根足够长的平直导轨,导轨间分布着竖直(垂直纸面)方向等间距的匀强磁场B1和B2,二者方向相反。矩形金属框固定在实验车底部(车厢与金属框绝缘)。其中ad边宽度与磁场间隔相等,当磁场B1和B2同时以速度v0=10m/s沿导轨向右匀速运动时,金属框受到磁场力,并带动实验车沿导轨运动。已知金属框垂直导轨的ab边长L= 0.1m、总电阻R=0.8Ω,列车与线框的总质量m=4.0kg,B1=B2=2.0T,悬浮状态下,实验 车运动时受到恒定的阻力f=0.4N。 (1)求实验车所能达到的最大速率; (2)实验车达到的最大速率后,某时刻让磁场立即停止运动,实验车运动20s之后也停止运动,求实验车在这20s内的通过的距离; (3)假设两磁场由静止开始向右做匀加速运动,当时间为t=24s时,发现实验车正在向右做匀加速直线运动,此时实验车的速度为v=2m/s,求由两磁场开始运动到实验车开始运 动所需要的时间。

磁悬浮列车技术 论文

磁悬浮列车技术 苏州科技学院天平学院陈耀1330117102 【摘要】:磁悬浮列车是一种靠磁悬浮力(即磁的吸力和排斥力)来推动的列车。由于其轨道的磁力使之悬浮在空中,行走时不需接触地面,因此其阻力只有空气的阻力。磁悬浮技术的研究源于德国,早在1922年德国工程师赫尔曼·肯佩尔就提出了电磁悬浮原理,并于1934年申请了磁悬浮列车的专利。1970年代以后,随着世界工业化国家经济实力的不断加强,为提高交通运输能力以适应其经济发展的需要,德国、日本等发达国家相继开始筹划进行磁悬浮运输系统的开发。磁悬浮列车是一种采用无接触的电磁悬浮、导向和驱动系统的磁悬浮高速列车系统。不同于传统列车利用车轮与钢轨之间的粘着力使列车前进。磁悬浮列车运行时与轨道保持10mm或者100mm的间隙,从根本上克服了传统列车轮轨黏着限制、机械噪声和磨损等问题,是一种新型的运载工具,其时速远远超过传动列车。 【关键词】:悬浮、推进、导向、创新 【正文】 一、工作原理 磁悬浮列车利用电磁体“同名磁极相互排斥,异名磁极相互吸引”的原理,让磁铁具有抗拒地心引力的能力,使车体完全脱离轨道,悬浮在距离轨道约1厘米处,腾空行驶,创造了近乎“零高度”空间飞行的奇迹磁悬浮列车主要由悬浮系统、推进系统和导向系统三大部分组成,尽管可以使用与磁力无关的推进系统,但在目前的绝大部分设计中,这三部分的功能均由磁力来完成。下面分别对这三分所采用的技术进行介绍。 导向系统

导向系统是一种测向力来保证悬浮的机车能够沿着导轨的方向运动。必要的推力与悬浮力相类似,也可以分为引力和斥力。在机车底板上的同一块电磁铁可以同时为导向系统和悬浮系统提供动力,也可以采用独立的导向系统电磁铁。悬浮系统 目前悬浮系统的设计,可以分为两个方向,分别是德国所采用的常导型和日本所采用的超导型。从悬浮技术上讲就是电磁悬浮系统(EMS)和电力悬浮系统(EDS)。图4给出了两种系统的结构差别。(EMS)是一种吸力悬浮系统,是结合在机车上的电磁铁和导轨上的铁磁轨道相互排斥产生悬浮。常导磁悬浮列车工作时,首先调整车辆下部的悬浮和导向电磁铁的电磁排斥力,与地面轨道两侧的绕组发生磁铁反作用将列车浮起。在车辆下部的导向电磁铁与轨道磁铁的反作用下,使车轮与轨道保持一定的侧向距离,实现轮轨在水平方向和垂直方向的无接触支撑和无接触导向。车辆与行车轨道之间的悬浮间隙为10毫米,是通过一套高精度电子调整系统得以保证的。此外由于悬浮和导向实际上与列车运行速度无关,所以即使在停车状态下列车仍然可以进入悬浮状态。(EDS)将磁铁使用在运动的机车上以在导轨上产生电流。由于机车和导轨的缝隙减少时电磁斥力会增大,从而产生的电磁斥力提供了稳定的机车的支撑和导向。然而机车必须安装类似车轮一样的装置对机车在“起飞”和“着陆”时进行有效支撑,这是因为EDS在机车速度低于大约25英里/小时无法保证悬浮。EDS系统在低温超导技术下得到了更大的发展。超导磁悬浮列车的最主要特征就是其超导元件在相当低的温度下所具有的完全导电性和完全抗磁性。超导磁铁是由超导材料制成的超导线圈构成,它不仅电流阻力为零,而且可以传导普通导线根本无法比拟的强大电流,这种特性使其能够制成体积小功率强大的电磁铁。

磁悬浮列车发展史

磁悬浮列车发展史 磁悬浮列车 2003-12-31 磁悬浮列车是自大约200年前斯蒂芬森的“火箭”号蒸气机车问世以来铁路技术最根本的突破。磁悬浮列车在今天看似乎还是一个新鲜事物,其实它的理论准备已有很长的历史。磁悬浮技术的研究源于德国,早在1922年德国工程师赫尔曼·肯佩尔就提出了电磁悬浮原理,并于1934年申请了磁悬浮列车的专利。进入70年代以后,随着世界工业化国家经济实力的不断加强,为提高交通运输能力以适应其经济发展的需要,德国、日本、美国、加拿大、法国、英国等发达国家相继开始筹划进行磁悬浮运输系统的开发。而美国和前苏联则分别在七八十年代放弃了这项研究计划,目前只有德国和日本仍在继续进行磁悬浮系统的研究,并均取得了令世人瞩目的进展。下面把各主要国家对磁浮铁路的研究情况作一简要介绍。 日本于1962年开始研究常导磁浮铁路。此后由于超导技术的迅速发展,从70年代初开始转而研究超导磁浮铁路。1972年首次成功地进行了2.2吨重的超导磁浮列车实验,其速度达到每小时50公里。1977年12月在宫崎磁浮铁路试验线上,最高速度达到了每小时204公里,到1979年12月又进一步提高到517公里。1982年11月,磁浮列车的载人试验获得成功。1995年,载人磁浮列车试验时的最高时速达到411公里。为了进行东京至大阪间修建磁浮铁路的可行性研究,于1990年又着手建设山梨磁悬浮铁路试验线,首期18.4公里长的试验线已于1996年全部建设完成。 德国对磁浮铁路的研究始于1968年(当时的联邦德国)。研究初期,常导和超导并重,到1977年,先后分别研制出常导电磁铁吸引式和超导电磁铁相斥式试验车辆,试验时的最高时速达到400公里。后来经过分析比较认为,超导磁浮铁路所需的技术水平太高,短期内难以取得较大进展,遂决定以后只集中力量发展常导磁浮铁路。1978年,决定在埃姆斯兰德修建全长31.5公里的试验线,并于1980年开工兴建,1982年开始进行不载人试验。列车的最高试验速度在1983年底达到每小时300公里,1984年又进一步增至400公里。目前,德国在常导磁浮铁路研究方面的技术已趋成熟。 与日本和德国相比,英国对磁浮铁路的研究起步较晚,从1973年才开始。但是,英国则是最早将磁浮铁路投入商业运营的国家之一。1984年4月,伯明翰机场至英特纳雄纳尔车站之间一条600米长的磁浮铁路正式通车营业。旅客乘坐磁浮列车从伯明翰机场到英特纳雄纳尔火车站仅需90秒钟。令人遗憾的是,在1995年,这趟一度是世界上唯一从事商业运营的磁浮列车在运行了

近 代 物 理 实 验 报 告 -高温超导

近代物理实验报告 实验题目:高温超导材料的特性与表征作者:李健 时间:2015-09-17

高温超导材料的特性与表征 【摘要】本实验主要通过对高温超导材料Y-Ba-Cu-O特性的测量,理解超导体的两个基本特性,即完全导电性和完全抗磁性,了解超导磁悬浮的原理。本实验利用液氮将高温超导材料Y-Ba-Cu-O降温,用铂电阻温度计测量温度,通过测量铂电阻的大小及查询铂电阻-温度对照表得出相应的温度,再电压表测得超导体电阻,即能得到超导体电阻温度曲线,测得该样品的超导转变温度约为93K;再通过超导磁悬浮实验验证了高温超导材料的磁特性,得到分别在零场冷却,有场冷却下的超导体的磁悬浮力与超导磁体间距的关系曲线。 【关键词】高温超导零电阻现象MEISSNER效应低温恒温器四引线法磁悬浮 【引言】 从1991年荷兰物理学家卡默林·翁纳斯(H.K.Onnes)发现低温超导体,超导科技发展大体经历了三个阶段:1911年到1957年BCS超导微观理论问世,是人类对超导电性的基本探索和认识阶段,核心是提出库珀电子对;第二阶段是从1958年到1985年是超导技术应用的准备阶段,成功研制强磁场超导材料,发现约瑟夫森效应;第三阶段是1986年发现高于30K的超导材料,进入超导技术开发时代。超导研究领域的系列最新进展,为超导技术在更方面的应用开辟了十分广阔的前景。 超导电性的应用十分广泛,例如超导磁悬浮列车、超导重力仪、超导计算机、超导微波器件等,超导电性还可以用于计量标准,在991年1月1日开始生效的伏特和欧姆的新实验基准中,电压基准就是以超导电性为基础。 本实验目的是通过对氧化物高温超导材料的测量与演示、加深理解超导体两个基本特性;了解超导磁悬浮原理;了解金属和半导体的电阻随温度变化以及温差电效应;掌握低温物理实验的基本方法:低温的获得、控制和测量。 【正文】 一、实验原理 1.超导现象、临界参数及实用超导体 (1)零电阻现象 将物体冷却到某一临界温度Tc以下时电阻突然降为零的现象,称为超导体的零电阻现象。不同的超导体的临界温度各不相同。如下图,用电阻法测量临界温度,把降温过程中电阻温度曲线开始从直线偏离处的温度称为起始转变温度Tc,onset,临界温度Tc定义为待测样品电阻从起始转变处下降到一半对应的温度,也称作超导转变的中点温度Tcm。电阻变化10%到90%所对应的温度间隔定义为转变宽度△Tc,电阻全降到零时的温度为零电阻温度Tc。通常说的超导转变温度Tc指Tcm。

中国磁悬浮列车原理

磁悬浮列车 1.磁悬浮技术的原理 磁悬浮技术的系统,是由转子、传感器、控制器和执行器4部分组成,其中执行器包括电磁铁和功率放大器两部分。假设在参考位置上,转子受到一个向下的扰动,就会偏离其参考位置,这时传感器检测出转子偏离参考点的位移,作为控制器的微处理器将检测的位移变换成控制信号,然后功率放大器将这一控制信号转换成控制电流,控制电流在执行磁铁中产生磁力,从而驱动转子返回到原来平衡位置。因此,不论转子受到向下或向上的扰动,转子始终能处于稳定的平衡状态。 2.磁悬浮技术的应用 国际上对磁悬浮轴承的研究工作也非常活跃。1988年召开了第一届国际磁悬浮轴承会议,此后每两年召开一次。1991年,美国航空航天管理局还召开了第一次磁悬浮技术在航天中应用的讨论会。现在,美国、法国、瑞士、日本和中国都在大力支持开展磁悬浮轴承的研究工作。国际上的这些努力,推动了磁悬浮轴承在工业上的广泛应用。 国内对磁悬浮轴承的研究工作起步较晚,尚处于实验室阶段,落后外国约20年。1986年,广州机床研究所与哈尔滨工业大学首先对“磁力轴承的开发及其在FMS中的应用”这一课题进行了研究。此后,清华大学、西安交通大学、天津大学、山东科技大学、南京航空航天大学等都在进行这方面的研究工作。 目前在工业上得到广泛应用的基本上都是传统的磁悬浮轴承(需要位置传感器的磁悬浮轴承),这种轴承需要5个或10个非接触式位置传感器来检测转子的位移。由于传感器的存在,使磁悬浮轴承系统的轴向尺寸变大、系统的动态性能降低,而且成本高、可靠性低。此外,由于传感器的价格较高,从而导致磁悬浮轴承的售价很高,大大限制了它在工业上的推广应用。 2009年8月,参观者在北京看磁悬浮列车轨道,北京城建设计研究总院的总工杨秀仁透露,北京正在做一条磁悬浮线的长期规划———通往门头沟的S1轨道线路正在筹划,计划采用中国自主研发的磁悬浮技术。而由北京控股磁悬浮技术发展有限公司和国防科技大学合作的中低速磁浮列车,是中国唯一具有完全自主知识产权的磁悬浮列车。 3.磁悬浮技术的前景 随着电子元件的集成化以及控制理论和转子动力学的发展,经过多年的研究工作,国内外对该项技术的研究都取得了很大的进展。但是不论是在理论还是在产品化的过程中,该项技术都存在很多的难题,其中磁悬浮列车的技术难题是悬浮与推进以及一套复杂的控制系统,它的实现需要运用电子技术、电磁器件、直线电机、机械结构、计算机、材料以及系统分析等方面的高技术成果。需要攻关的是组成系统的技术和实现工程化。 磁悬浮轴承面向电力工程的应用也具有广阔的前景,根据磁悬浮轴承的原理,研制大功率的磁悬浮轴承和飞轮储能系统以减少调峰时机组启停次数;进行以磁悬浮轴

哈工大_控制系统实践_磁悬浮实验报告

研究生自动控制专业实验 地点:A区主楼518房间 姓名:实验日期:年月日斑号:学号:机组编号: 同组人:成绩:教师签字:磁悬浮小球系统 实验报告 主编:钱玉恒,杨亚非 哈工大航天学院控制科学实验室

磁悬浮小球控制系统实验报告 一、实验内容 1、熟悉磁悬浮球控制系统的结构和原理; 2、了解磁悬浮物理模型建模与控制器设计; 3、掌握根轨迹控制实验设计与仿真; 4、掌握频率响应控制实验与仿真; 5、掌握PID控制器设计实验与仿真; 6、实验PID控制器的实物系统调试; 二、实验设备 1、磁悬浮球控制系统一套 磁悬浮球控制系统包括磁悬浮小球控制器、磁悬浮小球实验装置等组成。在控制器的前部设有操作面板,操作面板上有起动/停止开关,控制器的后部有电源开关。 磁悬浮球控制系统计算机部分 磁悬浮球控制系统计算机部分主要有计算机、1711控制卡等; 三、实验步骤 1、系统实验的线路连接 磁悬浮小球控制器与计算机、磁悬浮小球实验装置全部采用标准线连接,电源部分有标准电源线,考虑实验设备的使用便利,在试验前,实验装置的线路已经连接完毕。 2、启动实验装置 通电之前,请详细检察电源等连线是否正确,确认无误后,可接通控制器电源,随后起动计算机和控制器,在编程和仿真情况下,不要启动控制器。 系统实验的参数调试

根据仿真的数据及控制规则进行参数调试(根轨迹、频率、PID 等),直到获得较理想参数为止。 四、实验要求 1、学生上机前要求 学生在实际上机调试之前,必须用自己的计算机,对系统的仿真全部做完,并且经过老师的检查许可后,才能申请上机调试。 学生必须交实验报告后才能上机调试。 2、学生上机要求 上机的同学要按照要求进行实验,不得有违反操作规程的现象,严格遵守实验室的有关规定。 五、系统建模思考题 1、系统模型线性化处理是否合理,写出推理过程? 合理,推理过程: 由级数理论,将非线性函数展开为泰勒级数。由此证明,在平衡点)x ,(i 00对 系统进行线性化处理是可行的。 对式2x i K x i F )(),(=作泰勒级数展开,省略高阶项可得: )x -)(x x ,(i F )i -)(i x ,(i F )x ,F(i x)F(i,000x 000i 00++= )x -(x K )i -(i K )x ,F(i x)F(i,0x 0i 00++= 平衡点小球电磁力和重力平衡,有 (,)+=F i x mg 0 |,δδ===00 i 00 i i x x F(i,x) F(i ,x )i ;|,δδ===00x 00i i x x F(i,x)F (i ,x )x 对2 i F(i,x )K()x =求偏导数得:

磁悬浮列车主要由悬浮系统

磁悬浮列车主要由悬浮系统、推进系统和导向系统三大部分组成,见图3。尽管可以使用与磁力无关的推进系统,但在目前的绝大部分设计中,这三部分的功能均由磁力来完成。下面分别对这三部分所采用的技术进行介绍。 悬浮系统:目前悬浮系统的设计,可以分为两个方向,分别是德国所采用的常导型和日本所采用的超导型。从悬浮技术上讲就是电磁悬浮系统(EMS)和电力悬浮系统(EDS)。图4给出了两种系统的结构差别。 电磁悬浮系统(EMS)是一种吸力悬浮系统,是结合在机车上的电磁铁和导轨上的铁磁轨道相互吸引产生悬浮。常导磁悬浮列车工作时,首先调整车辆下部的悬浮和导向电磁铁的电磁吸力,与地面轨道两侧的绕组发生磁铁反作用将列车浮起。在车辆下部的导向电磁铁与轨道磁铁的反作用下,使车轮与轨道保持一定的侧向距离,实现轮轨在水平方向和垂直方向的无接触支撑和无接触导向。车辆与行车轨道之间的悬浮间隙为10毫米,是通过一套高精度电子调整系统得以保证的。此外由于悬浮和导向实际上与列车运行速度无关,所以即使在停车状态下列车仍然可以进入悬浮状态。 电力悬浮系统(EDS)将磁铁使用在运动的机车上以在导轨上产生电流。由于机车和导轨的缝隙减少时电磁斥力会增大,从而产生的电磁斥力提供了稳定的机车的支撑和导向。然而机车必须安装类似车轮一样的装置对机车在“起飞”和“着陆”时进行有效支撑,这是因为EDS在机车速度低于大约25英里/小时无法保证悬浮。EDS系统在低温超导技术下得到了更大的发展。 超导磁悬浮列车的最主要特征就是其超导元件在相当低的温度下所具有的完全导电性和完全抗磁性。超导磁铁是由超导材料制成的超导线圈构成,它不仅电流阻力为零,而且可以传导普通导线根本无法比拟的强大电流,这种特性使其能够制成体积小功率强大的电磁铁。

磁悬浮技术原理

磁悬浮技术原理 磁悬浮技术原理 空间电磁悬浮技术简介随着航天事业的发展,模拟微重力环境下的空间悬浮技术已成为进行相关高科技研究的重要手段。目前的悬浮技术主要包括电磁悬浮、光悬浮、声悬浮、气流悬浮、静电悬浮、粒子束悬浮等,其中电磁悬浮技术比较成熟。电磁悬浮技术(electromagnetic levitation )简称EML技术。它的主要原理是利用高频电磁场在金属表面产生的涡流来实现对金属球的悬浮。 目录 起源 概述 空间电磁悬浮技术 发展历史 国际 中国 中国磁悬浮技术 原理 应用 前景 磁悬浮列车 磁悬浮列车的优点 磁悬浮列车的缺点 起源 概述 空间电磁悬浮技术 发展历史 国际 中国 中国磁悬浮技术 原理 应用 前景 磁悬浮列车 磁悬浮列车的优点 磁悬浮列车的缺点

展开 编辑本段起源 磁悬浮技术的研究源于德国,早在1922年德国工程师赫尔曼·肯佩尔就提出了电磁悬浮原理,并于1934年申请了磁悬浮列车的专利。1970年代以后,随着世界工业化国家经济实力的不断加强,为提高交通运输能力以适应其经济发展的需要,德国、日本、美国、加拿大、法国、英国等发达国家相继开始筹划进行磁悬浮运输系统的开发。 编辑本段概述 利用磁力使物体处于无接触悬浮状态的设想是人类一个古老的梦。但实现起来并不容易。因为磁悬浮技术是集电磁学、电子技术、控制工程、信号处理、机械学、动力学为一体的典型的机电一体化技术(高新技术)。随着电子技术、控制工程、信号处理元器件、电磁理论及新型电磁材料的发展和转子动力学的进展,磁悬浮技术得到了长足的发展。 磁悬浮列车原理示意图 . 目前(2009年)国内外研究的热点是磁悬浮轴承和磁悬浮列车,而应用最广泛的是磁悬浮轴承。它的无接触、无摩擦、使用寿命长、不用润滑以及高精度等特殊的优点引起世界各国科学界的特别关注,国内外学者和企业界人士都对其倾注了极大的兴趣和研究热情。编辑本段空间电磁悬浮技术 随着航天事业的发展,模拟微重力环境下的空间悬浮技术已成为进行相关高科技研究的重要手段。目前的悬浮技术主要包括电磁悬浮、光悬浮、声悬浮、气流悬浮、静电悬浮、粒子束悬浮等,其中电磁悬浮技术比较成熟。 电磁悬浮技术(electromagnetic levitation )简称EML技术。它的主要原理是利用高频电磁场在金属表面产生的涡流来实现对金属球的悬浮。 磁悬浮列车工作示意图 将一个金属样品放置在通有高频电流的线圈上时,高频电磁场会在金属材料表面产生一高频涡流,这一高频涡流与外磁场相互作用,使金属样品受到一个洛沦兹力的作用。在合适的空间配制下,可使洛沦兹力的方向与重力方向相反,通过改变高频源的功率使电磁力与重力相

磁悬浮实验报告67796

实验报告 课程名称: 工程电子场与电磁波 指导老师:________熊素铭________ 成绩:__________________ 实验名称:_ 磁悬浮 _实验类型: 动手操作及仿真 同组学生姓名: 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得 一、实验目的和要求 1、观察自稳定的磁悬浮物理现象; 2、了解磁悬浮的作用机理及其理论分析的基础知识; 3、在理论分析与实验研究相结合的基础上,力求深化对磁场能量、电感参数和电磁力等知识点的理解。 二、实验内容 1、观察自稳定的磁悬浮物理现象 2、实测对应于不同悬浮高度的盘状线圈的激磁电流 3、观察不同厚度的铝板对自稳定磁悬浮状态的影响 实验原理 专业: 姓名: 学号: 日期: 地点:

1、自稳定的磁悬浮物理现象 由盘状载流线圈和铝板相组合构成磁悬浮系统的实验装置,如图2-6所示。该系统中可调节的扁平盘状线圈的激磁电流由自耦变压器提供,从而在50 Hz正弦交变磁场作用下,铝质导板中将产生感应涡流,涡流所产生的去磁效应,即表征为盘状载流线圈自稳定的磁悬浮现象。 2、基于虚位移法的磁悬浮机理的分析 在自稳定磁悬浮现象的理想化分析的前提下,根据电磁场理论可知,铝质导板应被看作为完纯导体,但事实上当激磁频率为50 Hz时,铝质导板仅近似地满足这一要求。为此,在本实验装置的构造中,铝质导板设计的厚度b 还必须远大于电磁波正入射平表面导体的透入深度d(b )。换句话说,在理想化的理论分析中,就交变磁场的作用而言,此时,该铝质导板可被看作为“透不过的导体”。 对于给定悬浮高度的自稳定磁悬浮现象,显然,作用于盘状载流线圈的向上的电磁力必然等于该线圈的重量。本实验中,当通入盘状线圈的激磁电流增大到使其与铝板中感生涡流合成的磁场,对盘状载流线圈作用的电磁力足以克服线圈自重时,线圈即浮离铝板,呈现自稳定的磁悬浮物理现象。现应用虚位移法来求取作用于该磁悬浮系统的电动推斥力。

浙江大学球形线圈和磁悬浮仿真实验报告

装订线 实验报告 课程名称:工程电磁场与波指导老师:姚缨英成绩:__________________ 实验名称:环形载流线圈和磁悬浮实验类型:__分析验证__ 同组学生姓名:___________ 一、实验目的和要求(必填)二、实验内容和原理(必填) 三、主要仪器设备(必填)四、操作方法和实验步骤 五、实验数据记录和处理六、实验结果与分析(必填) 七、讨论、心得 实验一:球形载流线圈的场分布与自感 一、实验目的和要求 1.研究球形载流线圈(磁通球)的典型磁场分布及其自感系数 2.掌握工程上测量磁场的两种基本方法——感应电势法和霍耳效应法 3.在理论分析与实验研究相结合的基础上,力求深化对磁场边值问题、自感参数和磁场测量方法等知识点的理解,熟悉霍耳效应以及高斯计的应用 二、实验内容和原理 (一)实验内容 1.理论分析 对于磁场B的求解的主要工作是对下面的边值问题方程组进行求解 其中的泛定方程均为拉普拉斯方程,定解条件由球表面处的辅助边界条件、标量磁位的参考点,以及离该磁通球无限远处磁场衰减为零的物理条件所组成。 ()() ()() () () 2 m1 2 m2 t1t212n n1n20102 m10 2m2 ,0 ,0 sin 2 r r r r r r r R r r R N H H H H K i r R R B B H H r R θθ ?θ ?θ θ μμ ? ? = →∞→∞ ? ? ?=< ? ??=> ? ? ? ? ? ? ?-=-=== ? ?? ?? =→== ? ? ?= ? ?=-?= ? 泛定方程: BC: H 这个方程看起来简单,实际求解过程并没有想象的轻松 本题中场域是呈现球对称场的分布,我们选择球坐标系,待求场函数只与球坐标变量r与θ有关,我们先采用分离变量法 1

磁浮列车模型一

親子DIY磁浮列車更加明白科學的原理 作者﹕文/ 攝影蕭世鴻 要讓小朋友更加明瞭高科技下的產物,動手做不失為一個好方法。要完成磁浮列車浮模型的材料並不多樣,原理也不太複雜。是利用列車上磁鐵與鐵軌上磁鐵的不同磁極性之間的磁吸引力而浮起而進前,前進時沒有接觸地面,因此只有空氣是其阻力。磁浮列車的最高速度可以達每小500公里,比走在鐵軌上高速列車的300多公里還要快,因此可成為飛機的競爭對手。動手做會提高孩子對科學觀查能力理解能力。 製做磁浮列車所需工具與材料: 工具:美工刀、熱熔膠槍、尺、剪刀、樹質白膠(膠水)、薄雙面膠帶。 回收類材料:空的牙膏盒 一般類材料:圓型磁鐵26個、珍珠板、蠟燭。 材料一材料二 貼上圍牆軌道完成了,使用20個磁鐵 列車頭在底部,使用六個磁鐵看一看,列車有沒有浮起來

完成圖由於只有浮力,沒有推進力,所以只要輕輕的一推,車子就會前進 當車子放在軌道你會發現車子是浮起了但歪一邊,真正的磁鐵必須有二排,才會平衡,但模型只有一排軌道,只好加高圍牆的高度了。圍牆的內側與車子接觸面可以用蠟燭條來減少摩擦力。 簡易磁浮列車 壹、前言 偶而看見上海磁浮列車的網路影片(https://www.360docs.net/doc/ae5161670.html,),想想看有什麼樣的簡單教具可以讓學生了解磁浮列車的原理,於是就展開腦力大作戰,跟著也是同科的老婆相互討論著,終於想出了利用簡易材料製作一個簡易的磁浮列車,雖然只是一個很小的創意點子,真正的磁浮原理也未能全數道盡,但畢竟「它」花了我幾乎一個週五晚上到週日晚上不眠不休的假日,跑了電子材料行不下二十趟,嘗試更換最適合的電子零件,最後終於做出還可以動的「簡易磁浮列車」,希望藉由K12的分享平台,給予同好們指教的機會,也希望夥伴們不吝惜提供新的創意點子,製作更精良的教具,歡迎大家一起來。 貳、磁浮列車的產生 上圖顯示我們無法使一塊磁鐵穩定地浮在另一塊磁鐵上 人類日常生活中所使用到的交通工具,有自行車、公車、電車、汽車、火車、船、飛機等,我們把這些運送人或物品從一個地方到另外一個地方的東西,稱為運輸工具。這些運輸工具為了要移動,有些車子加的是汽油、有些車子加柴油,也有一部分的車子使用的是天然氣或電力。然而,在地面上的這些交通工具,主要靠輪子與地面的摩擦力行走,但是也因為摩擦力,使得它們的速度有一個上限(約300公里)。為了要有更快速、廉價、安全且不製造污染的交通工具。磁浮列車,這種完全符合未來要求的新交通工具,正由幾個國家很努力的發展當中。 叁、磁浮原理 磁浮火車是利用磁力使火車懸浮於路軌之上。磁浮列車是利用磁力使車體浮起來,因為並沒有與軌道直接接觸,因此能將阻力減到最小,在前進的時候,利用電與磁的交互作用,可以使磁浮列車前進及後退。磁浮列車使用了許多的電磁鐵,電磁鐵的好處就是可以用電流方向來改變磁極,不但方便而且容易控制。 一、電流的磁效應原理 在螺旋形的導線上通電,就會在螺旋形導線的中間產生感應磁場,而此感應磁場的大小和導線圈數及電流成正比,當電流斷路時感應磁場也會同時消失。磁場方向可由安培右手定則決定:右手四指的方向依照導線電流方向握起則姆指方向則為感應磁場的N極。

大学物理实验:电磁感应与磁悬浮实验报告

一、电机频率与磁牵引力的关系 1、实验测得数据 2、拟合函数 由MATLAB进行数据拟合得到电机频率与牵引力符合以下函数:f(x) = 3.31e-05*x + 0.01282(95%置信度) 3、拟合函数图像 二、电机频率与磁悬浮力的关系 1、实验测得数据

2、拟合函数 由MATLAB进行数据拟合得到电机频率与牵引力符合以下函数:f(x) = 5.736e-06*x - 0.06576(95%置信度) 3、拟合函数图像 三、(1)磁牵引力随距离变化曲线 1、实验测得数据 2、数据拟合函数

由MATLAB进行数据拟合得到电机频率与牵引力符合以下函数:f(x) = 0.6908 * x ^ -0.8036 + -0.1516(95%置信度)3、拟合函数图像 (2)磁悬浮力随距离变化曲线 1、实验测得数据 2、实验数据拟合函数

由MATLAB进行数据拟合得到电机频率与牵引力符合以下函数:f(x) = -0.08735 * x ^ 0.2204 + 0.1266(95%置信度) 3、实验数据拟合函数图像 四、电机频率与转速的关系 1、实验测得数据 2、实验数据拟合函数

由MATLAB进行数据拟合得到电机频率与牵引力符合以下函数:f(x) = 0.009542 * x + -37.85(95%置信度) 3、实验数据拟合函数图像 五、电机频率与发电电压的关系 1、实验测得数据 2、实验数据拟合函数

由MATLAB进行数据拟合得到电机频率与牵引力符合以下函数:f(x) = 0.0001191 * x + 0.05747(95%置信度)3、实验数据拟合函数图像

磁悬浮列车演示实验报告

磁悬浮列车演示实验报 告 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

磁悬浮列车演示实验报告 【实验目的】 1.利用超导体对永磁体的排斥作用演示磁悬浮; 【实验器材】 1.超导磁悬浮列车演示仪,如下图所示。由两部分组成:磁导轨支架、磁导轨。其中磁导轨是用550?×?240?×?3椭圆形低碳钢板作磁轭,按图70-2所示的方式铺以18?×?10×6?mm的钕铁硼永磁体,形成磁性导轨,两边轨道仅起保证超导体周期运动的磁约束作用。 2.高温超导体,是用熔融结构生长工艺制备的,含Ag的YBacuo系高温超导体。之所以称为高温超导体是因为它在液氮温度77KC(-196℃)下呈现出超导性,以区别于以往在液氦温度42K(-269℃)以下呈现超导特性的低温材料。样品形状为:圆盘状,直径18?mm?左右,厚度为6?mm?,其临界转变温度为90K左右(-183℃)。 3.液氮。 上图:实验装置图? 下图:磁导轨

【实验原理】 实验原理: 超导是超导电性的简称.它是指金属或合金在极低温度下(接近绝对零度)电阻变为零的性质.它是一种宏观量子现象,只有依据量子力学才能给与正确的微观解释.这就是BCS理论. 这是一台高临界温度超导磁悬浮的动态演示装置.该装置为一个盛放高临界温度超导体的简易列车模型,在具有磁束缚的封闭磁轨道上方,利用超导体对永磁体的排斥作用,演示磁悬浮;;并可在旋转磁场加速装置作用下,沿轨道以悬浮或倒挂悬浮状态无磨擦地连续运转. 当将一个永磁体移近钇钡铜氧YBaCuO超导体表面时,磁通线从表面进入超导体内,在超导体内形成很大的磁通密度梯度,感应出高临界电流,从而对永 磁体产生排斥,排斥力随相对距离的减小而逐渐增大,它可以克服永磁体的重力使其悬浮在超导体上方一定的高度上;高温超导体是用熔融结构生长工艺制备的含Ag的YBaCuO系高温超导体,所以称为高温超导体是因为它在液氮温度 77k(-196°C)下呈现出超导性,以区别于以往在液氦温度42k(-269°C)下呈现出超导性的低温材料.它的形状为圆盘形,其临界转变温度为90k(-183°C).超导体样品放在一铝制的列车模型中,四周包有起热屏蔽作用的铝箔,这样可使超导体在移开液氮后仍能在一段时间内保持自身温度在其临界温度以下,以延长演示时间. 磁性轨道是用钢板加工成椭圆形轨道用作磁轭,上面铺以钕铁硼(NdFeB)永磁块(表磁为形成磁性导轨.两边轨道起保证超导体周期运动的磁约束作用. 加速装置是使永磁体绕水平轴旋转在竖直面内产生旋转磁场的方法来实现的.在扁圆柱形的尼龙轮上, 镶有四块钕铁硼(NdFeB)磁块,尼龙轮固定在玩具电机

磁悬浮列车原理

第九篇磁悬浮列车原理 §9.1磁悬浮列车综述 你一定听说过磁悬浮列车吧,最近它的上镜率可是居高不下,大家都在密切地关注着它的发展态势。我们一直都在盼望着火车的提速,可经过几轮的努力,却总是达不到心中理想的标准,如果你家住在西安,距北京1000多公里,原先回家要17个小时,现在要14个小时,唉,只减少了区区3个小时,还要有难熬的一宿呀!可是你知道吗?普通磁悬浮列车的时速就可以达到500公里/小时,那么,回家就只需要不到3个小时,跟飞机差不多了! 其实,在本世纪五、六十年代,铁路曾经被认为是一个夕阳运输产业。因为面对航空、高速公路等运输对手的强劲挑战,它蜗牛般的爬行速度,已越来越不适应现代工业社会物流和人流的快速流动需要了。但七十年代以来,特别是近几年,随着铁路高速化成为世界的热点和重点,铁路重新赢回了它在各国交通运输格局中举足轻重的地位。法国、日本、俄国、美国等国家列车时速由200公里向300公里飞速发展。据1995年举行的国际铁路会议预测,到本世纪末,德国、日本、法国等国家的高速铁路运营时速将达到360公里。 但要使列车在如此高的速度下持续行驶,传统的车轮加钢轨组成的系统,已经无能为力了。这是因为传统的轮轨粘着式铁路,是利用车轮与钢轨之间的粘着力使列车前进的。它的粘着系数随列车速度的增加而减小,走行阻力却随列车速度的增加而增加,当车速增至粘着系数曲线和走行阻力曲线的交点时,就达到了极限。据科研人员推算,普通轮轨列车最大时速为350-400公里左右。如果考虑到噪音、震动、车轮和钢轨磨损等因素,实际速度不可能达到最大时速。所以,欧洲、日本现在正运行的高速列车,在速度上已没有多大潜力。要进一步提高速度,必须转向新的技术,这就是超常规的列车--磁悬浮列车。 尽管我们还将磁悬浮列车的轨道称为"铁路",但这两个字已经不够贴切了。

磁悬浮实验报告

开放性试验: 《磁悬浮原理实验仪制作及PID控制》 试验报告 实验内容:学生通过磁悬浮有关知识的学习,根据已有的试验模型,设计出磁悬浮实验仪器,并进行制作,进而在计算机上用PID技术进行调节和控制。 难点:PID控制程序的编写及调试。 创新点:该实验以机械学院数控所得科研成果为依托,以一种新颖的方式,用磁悬浮小球直观的展示了PID控制理论的应用。该仪器构造简单,成本低廉。此实验综合应用了电磁场、计算机、机械控制等相关知识,具有一定的研究创新性特点。该仪器有望成为中学物理实验仪器,和高校PID 控制实验仪器。 关键问题 1.悬浮线圈的优化设计 2.磁悬浮小球系统模型 3.磁悬浮小球的PID控制 电磁绕组优化设计 小球质量:钢 小球质量:15~20g 小球直径:15mm 悬浮高度:3mm 要求:根据悬浮高度、小球大小、小球重量设计悬浮绕组

绕组铁芯尺寸、线圈匝数、额定电流、线径。 电磁绕组优化设计: 由磁路的基尔霍夫定律、毕奥-萨格尔定律和能量守恒定律,可得电磁吸力为: 式中:μ0——空气磁导率,4πX10-7H/m ; A ——铁芯的极面积,单位m2; N ——电磁铁线圈匝数; z ——小球质心到电磁铁磁极表面的瞬时气隙,单位m ; i ——电磁铁绕组中的瞬时电流,单位A 。 功率放大器中放大元器件的最大允许电压为15V 。为了降低功率放大器件上的压力差,减少功率放大器件的发热,设定悬浮绕组线圈电压该值为12V 。 约束条件:U =12V 电流、电压与电阻的关系 电阻: L ——漆包线的总长度/m S ——漆包线的横截面积/m2 d ——线径的大小/m ε是漆包线线的电阻率,查表可知: ε=1.5*1.75*e-8,单位:Ω*m 根据线圈的结构,可以得出漆包线的总长度为: 2 202??? ??-=z i AN F μU i R =L R S ε=2 14S d π=

磁悬浮实验报告

实验报告 课程名称: 工程电子场与电磁波 指导老师:________熊素铭________成绩:__________________ 实验名称:_ 磁悬浮 _实验类型: 动手操作及仿真 同组学生姓名: 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得 一、实验目的和要求 1、观察自稳定的磁悬浮物理现象; 2、了解磁悬浮的作用机理及其理论分析的基础知识; 3、在理论分析与实验研究相结合的基础上,力求深化对磁场能量、电感参数和电磁力等知识点的理解。 二、实验内容 1、观察自稳定的磁悬浮物理现象 2、实测对应于不同悬浮高度的盘状线圈的激磁电流 3、观察不同厚度的铝板对自稳定磁悬浮状态的影响 实验原理 1、自稳定的磁悬浮物理现象 由盘状载流线圈和铝板相组合构成磁悬浮系统的实验装置,如图2-6所示。该系统中可调节的扁 平盘状线圈的激磁电流由自耦变压器提供,从而在50 Hz 正弦交变磁场作用下,铝质导板中将产生感 专业: 姓名: 学号: 日期: 地点:

应涡流,涡流所产生的去磁效应,即表征为盘状载流线圈自稳定的磁悬浮现象。 2、基于虚位移法的磁悬浮机理的分析 在自稳定磁悬浮现象的理想化分析的前提下,根据电磁场理论可知,铝质导板应被看作为完纯导体,但事实上当激磁频率为50 Hz时,铝质导板仅近似地满足这一要求。为此,在本实验装置的构造中,铝质导板设计的厚度b还必须远大于电磁波正入射平表面导体的透入深度d(b )。换句话说,在理想化的理论分析中,就交变磁场的作用而言,此时,该铝质导板可被看作为“透不过的导体”。 对于给定悬浮高度的自稳定磁悬浮现象,显然,作用于盘状载流线圈的向上的电磁力必然等于该线圈的重量。本实验中,当通入盘状线圈的激磁电流增大到使其与铝板中感生涡流合成的磁场,对盘状载流线圈作用的电磁力足以克服线圈自重时,线圈即浮离铝板,呈现自稳定的磁悬浮物理现象。现应用虚位移法来求取作用于该磁悬浮系统的电动推斥力。 首先,将图2-1所示盘状载流线圈和铝板的组合看成一个磁系统,则其对应于力状态分析的磁场能量 式中,I为激磁电流的有效值。其次,取表征盘状载流线圈与铝板之间相对位移的广义坐标为h(即给定的悬浮高度),则按虚位移法可求得作用于该系统的电动推斥力,也就是作用于盘状载流线圈的向上的电磁悬浮力 (2-1) 在铝板被看作为完纯导体的理想化假设的前提下,应用镜像法,可以导得该磁系统的自感为 (2-2) 式中,a——盘状线圈被理想化为单匝圆形线圈时的平均半径;N——线匝数;R——导线被看作圆形导线时的等效圆半径。从而,由稳定磁悬浮状态下力的平衡关系,即 式中,M ——盘状线圈的质量(kg);g——重力加速度 m/s2);进一步代入关系式(2-2),稍加整理,便可解出对于给定悬浮高度h的磁悬浮状态,系统所需激磁电流为 三、主要仪器设备 磁悬浮装置 铝板:b=14mm,b=2mm,γ= S/m 盘状线圈:N=250,R1=31mm,R2=195mm,h=,M=

磁悬浮列车运行原理

磁悬浮列车运行原理 磁悬浮列车是现代高科技发展的产物。其原理是利用电磁力抵消地球引力,通过直线电机进行牵引,使列车悬浮在轨道上运行(悬浮间隙约1厘米)。其研究和制造涉及自动控制、电力电子技术、直线推进技术、机械设计制造、故障监测与诊断等众多学科,技术十分复杂,是一个国家科技实力和工业水平的重要标志。它与普通轮轨列车相比,具有低噪音、无污染、安全舒适和高速高效的特点,有着“零高度飞行器”的美誉,是一种具有广阔前景的新型交通工具,特别适合城市轨道交通。磁悬浮列车按悬浮方式不同一般分为推斥型和吸力型两种,按运行速度又有高速和中低速之分,这次国防科大研制开发的磁悬浮列车属于中低速常导吸力型磁悬浮列车。 磁悬浮列车的种类 磁悬浮列车分为常导型和超导型两大类。常导型也称常导磁吸型,以德国高速常导磁浮列车transrapid为代表,它是利用普通直流电磁铁电磁吸力的原理将列车悬起,悬浮的气隙较小,一般为10毫米左右。常导型高速磁悬浮列车的速度可达每小时400~500公里,适合于城市间的长距离快速运输。而超导型磁悬浮列车也称超导磁斥型,以日本MAGLEV为代表。它是利用超导磁体产生的强磁场,列车运行时与布置在地面上的线圈相互作用,产生电动斥力将列车悬起,悬浮气隙较大,一般为100毫米左右,速度可达每小时500公里以上。这两种磁悬浮列车各有优缺点和不同的经济技术指标,德国青睐前者,集中精力研制常导高速磁悬浮技术;而日本则看好后者,全力投入高速超导磁悬浮技术之中。 德国和日本是世界上最早开展磁悬浮列车研究的国家,德国开发的磁悬浮列车Transrapid于1989年在埃姆斯兰试验线上达到每小时436公里的速度。日本开发的磁悬浮列车MAGLEV (Magnetically Levitated Trains)于1997年12月在山梨县的试验线上创造出每小时550公里的世界最高纪录。德国和日本两国在经过长期反复的论证之后,均认为有可能于下个世纪中叶以前使磁悬浮列车在本国投入运营。

磁悬浮动力学实验

DHSY- 1型磁悬浮动力学实验仪 实验一动力学基础实验 随着科技的发展,磁悬浮技术的应用成为技术进步的热点,例如磁悬浮列车。永磁悬浮技术作为一种低耗能的磁悬浮技术,也受到了广泛关注。本实验使用的永磁悬浮技术,是在磁悬导轨与滑块两组带状磁场的相互作斥力之下,使磁悬滑块浮起来,从而减少了运动的阻力,来进行多种力学实验。通过实验,学生可以接触到磁悬浮的物理思想和技术,拓宽知识面,加深牛顿定律等动力学方面的感性知识。 本实验仪可构成不同倾斜角的斜面,通过滑块的运动可研究匀变速运动直线规律,加速度测量的误差消除,物体所受外力与加速度的关系等。 【一】实验目的 1.学习导轨的水平调整,熟悉磁悬导轨和智能速度加速度测试仪的调整和使用; 2.学习矢量分解; 3.学习作图法处理实验数据,掌握匀变速直线运动规律; 4.测量重力加速度g,并学习消减系统误差的方法; 5.探索牛顿第二定律,加深物体运动时所受外力与加速度的关系; 6.探索动摩擦力与速度的关系。 【二】实验原理 1.瞬时速度的测量 一个作直线运动的物体,在△ t时间内,物体经过的位移为△ s,则该物体在△ t时间内的平均速度为 △s v 二 为了精确地描述物体在某点的实际速度,应该把时间△t取得越小越好, △t越小,所求得的平均速度越接近实际速度。当△t T0时,平均速度趋近于一个极 限,即即 =li m^f =li m o v⑴ v 这就是物体在该点的瞬时速度。 但在实验时,直接用上式来测量某点的瞬时速度是极其困难的,因此,一般在一定误 差范围内,且适当修正时间间隔(见图5、6),可以用历时极短的△ t内的平均速度近似 地代替瞬时速度。

磁悬浮列车设计方案

自制教具 磁悬浮列车 设计方案 一、制作材料:53cm × 20cm×3cm的木料、2cm×1cm×3mm的强力磁铁一百多块、小型铁钉一包、几片10厘米×5厘米的薄木片、53厘米×20厘米、21厘米×20厘米的玻璃各两快、若干装饰彩纸等材料。 二、制作工具:老虎钳、羊角锤、剪刀、尺子等。 三、制作过程: 1. 准备一块长方体木料,大小大致53cm×20cm×3cm,在53cm ×20cm长方形面上横向留出2条宽2厘米磁铁轨道槽,磁铁轨道槽上方用薄木片盖上,并用铁钉加以固定(这样可以防止强力磁铁在拼装过程中向外挤压,可以使强力磁铁的拼装更加方便。) 2. 磁铁轨道槽钉上薄木片以后,把磁铁按排列单位进行横向组合连续磁铁拼装,并将两条磁铁轨道槽拼装完整。两条轨道的磁铁排列呈左右对称方式。 3. 准备一块厚2cm的木料板,木料板宽度略小于53cm ×20cm×3cm长方体木料,长度自定。留出方式和53cm × 20cm×3cm 长方体木料相同。列车上的底面磁铁轨道拼装方式和53cm ×20cm×3cm长方体木料类似,磁铁方向也横向组合连续拼装,以

增强列车悬浮滑行的稳定性,列车上的两条底面磁铁轨道呈左右对称方式,宽度和53cm × 20cm×3cm长方体木料磁铁轨道相同。 4、依据53cm × 20cm×3cm长方体木料,制作底座,用以安放53cm × 20cm×3cm长方体木料。 5. 准备4块玻璃,长53厘米、宽20厘米,长21厘米、宽20厘米的玻璃各两块,再将这4块玻璃固定到长方体底座木料的前后左右四侧,玻璃下面部分和长方体底座木料对齐,成为列车防滑护栏板。为防止悬浮列车滑出两侧,在列车防滑护栏板左右两侧再固定几块小型防滑玻璃。这样即能保证磁悬浮列车的稳定性,又能保障高效的演示性。 6. 最后在根据个人喜好对磁悬浮列车模型进行装饰,模型即宣告制作完成。 注意:1、拼装要紧密; 2、磁铁片的同极向上; 3、拼装时,钉一次薄木片拼装一次,并钉钉抵住磁铁,防止磁铁向外挤压,用相同方法直至拼装完四条磁铁轨道槽。 使用说明: 1. 将磁悬浮列车模型的列车部分,磁铁面朝下横放入列车底座防滑护栏板之间,即能实现列车的有效悬浮,悬浮高度大约是3厘米。

相关文档
最新文档