磁悬浮实验报告67796

合集下载

大学磁悬浮实验报告

大学磁悬浮实验报告

大学磁悬浮实验报告实验报告大学磁悬浮实验报告一、实验目的本次实验的目的是研究磁悬浮原理以及悬浮高度与磁场大小的关系,进一步深化我们对磁场和力学的理解。

二、实验原理磁悬浮是利用了超导体和永久磁铁之间的相互作用力而实现的。

当超导体置于磁场中时,由于超导体本身特殊的电性质,从而可使磁场在超导体内不存在。

因此,超导体内的物体可以通过永久磁铁的磁场被悬浮起来。

根据悬浮高度与磁场大小的关系,我们可以通过调整磁铁磁场大小来控制物体的悬浮高度。

三、实验步骤1. 将永久磁铁放在台面上,保持水平。

2. 将超导体放在磁铁上方,调整超导体位置。

3. 均匀地撒上磁铁粉末,观察物体和磁铁之间的作用力,进一步调整物体的位置。

4. 测量物体悬浮的高度,记录数据。

5. 重复实验3-4步骤,分别记录不同磁铁大小下物体的悬浮高度。

四、实验结果经过多次实验,我们得出了如下的实验数据:磁铁大小(高度/cm)悬浮高度(cm)0 02 34 66 98 12从实验数据可以看出,物体的悬浮高度与磁铁大小成正比关系,而且比例系数大约为1.5。

五、实验结论通过本次实验,我们深入了解了磁悬浮的原理以及物体悬浮高度与磁场大小的相关性。

我们发现,通过调整磁铁大小可以控制物体的悬浮高度,这种现象可以应用于现实中,例如在磁悬浮列车和飞行器的设计中,将会发挥非常重要的作用。

六、实验感想本次实验让我深入了解了磁悬浮的原理,而且还体验了调整实验条件、记录数据和分析数据的整个过程。

在实验中,我深刻体会到了科学精神,也更加珍惜科学实验的机会,希望以后能再次参加这样有趣、实用的实验。

磁悬浮实验报告

磁悬浮实验报告

磁悬浮实验报告磁悬浮技术是一种利用磁场来使物体悬浮的技术。

它有多种用途,包括高速列车、制冷系统、工业机械和高精度测量仪器等。

在本次实验中,我们将探究磁悬浮技术的原理和应用。

实验步骤首先,我们需要准备一个磁悬浮装置。

这个装置由一组磁铁和一个带有铜导线的磁悬浮盘组成。

当我们通电时,电流会在铜导线中产生磁场,这个磁场会与磁铁产生互斥力,导致磁悬浮盘悬浮在磁铁上。

接下来,我们需要测试磁悬浮盘的悬浮高度和稳定度。

我们将磁悬浮盘悬浮在磁铁上,然后使用尺子测量磁悬浮盘与磁铁之间的距离。

为了测试稳定度,我们会将磁悬浮盘轻轻推动并观察它是否在悬浮状态下保持稳定。

在实验过程中,我们还将更改电流和磁铁的位置,以测试它们对磁悬浮盘的影响。

我们会记录不同条件下磁悬浮盘的悬浮高度和稳定性,以便了解磁悬浮技术的应用性能。

实验结果我们发现,当电流增加时,磁悬浮盘的悬浮高度也会增加。

这是因为电流的增加会增强铜导线中的磁场,使磁悬浮盘与磁铁之间的互斥力变得更强,从而使磁悬浮盘上升。

我们还发现,当我们改变磁铁的位置时,磁悬浮盘的稳定性也会受到影响。

当磁铁放置在磁悬浮盘下面时,磁悬浮盘更加稳定,因为磁铁可以提供更强的互斥力。

但当磁铁放置在磁悬浮盘上方时,磁悬浮盘会变得不稳定,因为磁铁提供的互斥力不够强。

应用与前景磁悬浮技术有广泛的应用前景,特别是在交通运输领域。

磁悬浮列车是一种高速、少摩擦、低环境污染的交通方式。

它的速度可以达到时速600公里,比当前任何高速列车都要快。

由于磁悬浮列车可以悬浮在轨道上,所以它的能耗也比传统列车低。

此外,磁悬浮技术还可用于其他领域,比如磁悬浮制冷系统可以实现零排放,磁悬浮机械能够提供高度精确的运动控制,磁悬浮测量仪器可以用于高精度的测量和检测。

总结在本次实验中,我们了解了磁悬浮技术的原理和应用。

我们测试了磁悬浮盘的悬浮高度和稳定性,并记录了不同条件下的数据。

我们发现,磁悬浮技术具有广泛的应用前景,特别是在交通运输领域。

磁悬浮实验实验报告

磁悬浮实验实验报告

磁悬浮实验实验报告磁悬浮实验实验报告引言:磁悬浮技术是一项基于磁力原理的先进技术,广泛应用于交通运输、科研实验等领域。

本实验旨在通过搭建一个简单的磁悬浮装置,探究磁悬浮技术的原理和应用。

实验一:磁悬浮装置的搭建我们首先准备了以下材料:一块磁性材料、一块导电材料、一块永磁体、一根铜线和一台电源。

我们将磁性材料和导电材料分别固定在一块平板上,然后将永磁体放置在平板下方。

接下来,我们将铜线连接到电源上,并将其放置在导电材料上方。

当通电时,铜线中的电流会产生磁场,与永磁体的磁场相互作用,从而使导电材料悬浮在磁性材料上方。

实验二:磁悬浮装置的稳定性为了测试磁悬浮装置的稳定性,我们对装置进行了一系列实验。

首先,我们调整电源的电流,观察导电材料在不同电流下的悬浮高度。

结果显示,随着电流的增加,导电材料的悬浮高度逐渐增加。

这表明,磁悬浮装置的稳定性与电流大小有关。

接下来,我们改变了永磁体的位置,观察导电材料的悬浮情况。

实验结果显示,当永磁体离导电材料较近时,悬浮高度较低;而当永磁体离导电材料较远时,悬浮高度较高。

这说明,磁悬浮装置的稳定性与永磁体与导电材料之间的距离有关。

实验三:磁悬浮装置的应用除了探究磁悬浮装置的原理和稳定性外,我们还研究了其在实际应用中的潜力。

磁悬浮技术在交通运输领域有着广泛的应用,例如高速磁悬浮列车。

这种列车通过利用磁悬浮技术,可以在轨道上悬浮行驶,减少了与轨道的摩擦阻力,提高了列车的运行速度和效率。

此外,磁悬浮技术还可以应用于科研实验。

例如,在物理学实验中,磁悬浮装置可以用于制造零摩擦环境,以便研究物体的运动规律。

在化学实验中,磁悬浮技术可以用于悬浮液滴,以便进行微小反应的观察和控制。

结论:通过本次实验,我们成功搭建了一个简单的磁悬浮装置,并探究了其原理、稳定性和应用。

磁悬浮技术在交通运输和科研实验中具有重要的应用价值。

未来,我们可以进一步研究磁悬浮技术的改进和创新,以推动其在更多领域的应用和发展。

大学磁悬浮实验报告

大学磁悬浮实验报告

大学磁悬浮实验报告1. 实验目的。

本实验旨在通过磁悬浮系统的搭建和调试,了解磁悬浮技术的基本原理和应用,掌握磁悬浮系统的工作原理和调试方法。

2. 实验原理。

磁悬浮技术是利用磁场对物体进行悬浮和定位的技术。

在磁悬浮系统中,通常会使用永磁体和电磁体来产生磁场,通过控制磁场的强度和方向,实现对物体的悬浮和定位。

磁悬浮系统通常包括传感器、控制器和执行器等部件,通过这些部件的协调工作,可以实现对物体的精确悬浮和定位。

3. 实验装置。

本次实验使用了磁悬浮实验装置,该装置包括永磁体、电磁体、传感器、控制器和执行器等部件。

通过这些部件的组合和调试,可以实现对物体的磁悬浮和定位。

4. 实验步骤。

(1)搭建磁悬浮系统,首先,按照实验指导书的要求,搭建磁悬浮系统的结构,包括永磁体、电磁体、传感器和执行器等部件的组装和连接。

(2)调试磁悬浮系统,接下来,对搭建好的磁悬浮系统进行调试,包括对永磁体和电磁体的磁场强度和方向进行调节,以及对传感器和执行器的连接和设置进行调试。

(3)测试磁悬浮效果,最后,对调试好的磁悬浮系统进行测试,观察和记录磁悬浮效果,包括对物体的悬浮和定位情况进行测试和分析。

5. 实验结果。

经过调试和测试,我们成功搭建和调试了磁悬浮系统,并取得了良好的磁悬浮效果。

通过实验,我们深入了解了磁悬浮技术的基本原理和应用,掌握了磁悬浮系统的工作原理和调试方法。

6. 实验总结。

通过本次实验,我们对磁悬浮技术有了更深入的了解,掌握了磁悬浮系统的搭建和调试方法,为将来的科研和工程实践奠定了基础。

同时,我们也意识到磁悬浮技术在现代工程领域的重要应用前景,对其发展和应用充满信心。

7. 实验改进。

在今后的实验中,我们可以进一步探索磁悬浮技术的应用领域,开展更深入的研究和实践,为磁悬浮技术的发展和应用做出更大的贡献。

通过本次实验,我们对磁悬浮技术有了更深入的了解,掌握了磁悬浮系统的搭建和调试方法,为将来的科研和工程实践奠定了基础。

磁悬浮实验报告

磁悬浮实验报告

磁悬浮实验报告磁悬浮实验报告引言:磁悬浮是一种利用磁力使物体悬浮在空中的技术,它具有许多潜在的应用领域,如高速列车、磁悬浮轮椅等。

本实验旨在通过搭建一个简单的磁悬浮装置,探索磁悬浮的原理和特性。

一、实验材料和装置本实验所需材料包括磁铁、磁铁座、导线、电池和磁悬浮平台。

磁悬浮平台由一块磁铁和一个导线构成,磁铁座用于固定磁铁。

二、实验步骤1. 将磁铁座固定在平面上,确保它稳定不动。

2. 将磁铁放在磁铁座上,确保它与座位紧密贴合。

3. 将导线绕在磁铁上,形成一个圆圈,并确保导线两端不相连。

4. 将导线的一端连接到电池的正极,另一端连接到电池的负极。

5. 打开电池开关,观察磁悬浮平台的运动情况。

三、实验结果在实验过程中,我们观察到磁悬浮平台在电流通过导线时开始悬浮在空中。

当电流通过导线时,产生的磁场与磁铁的磁场相互作用,产生一个向上的力,使磁悬浮平台悬浮在空中。

当电流关闭时,磁悬浮平台会下降并与磁铁接触。

四、实验分析磁悬浮的原理是基于磁场的相互作用。

当电流通过导线时,产生的磁场会与磁铁的磁场相互作用,产生一个向上的力,使物体悬浮在空中。

这种相互作用力可以通过安培定律来解释。

安培定律指出,当电流通过导线时,产生的磁场会产生一个力,作用在与磁场相互作用的物体上。

磁悬浮的关键是控制磁场的强度和方向。

在本实验中,我们通过改变电流的方向和大小来控制磁场的强度和方向。

当电流通过导线时,产生的磁场与磁铁的磁场相互作用,产生一个向上的力,使物体悬浮在空中。

当电流关闭时,磁悬浮平台会下降并与磁铁接触,因为没有磁场的相互作用力来支撑它。

磁悬浮技术在实际应用中有许多潜力。

例如,磁悬浮列车可以通过减少与轨道的摩擦来实现高速运行,从而提高列车的速度和效率。

此外,磁悬浮技术还可以应用于医疗设备,如磁悬浮轮椅,使患者在移动时更加舒适。

然而,磁悬浮技术也存在一些挑战和限制。

首先,磁悬浮装置的制造和维护成本较高。

其次,磁悬浮装置对环境的要求较高,需要一个稳定的磁场和平整的表面。

超导磁悬浮实验报告

超导磁悬浮实验报告

超导磁悬浮实验报告本实验旨在通过超导磁悬浮技术,研究超导体在低温下的磁性特性,并探索其在磁悬浮领域的应用潜力。

在实验中,我们使用了液氮冷却系统,将超导体冷却至临界温度以下,观察其在外加磁场下的悬浮效应,同时测量其磁化曲线和临界电流等参数,以期获得有关超导体磁悬浮性能的实验数据。

首先,我们准备了液氮冷却系统和超导体样品,并将超导体样品置于液氮中进行冷却。

随着温度的逐渐下降,我们观察到超导体表面开始出现磁悬浮效应,即超导体在外加磁场下产生的抗磁性使其悬浮于磁场中,呈现出稳定的悬浮状态。

这一现象与超导体的迈斯纳效应密切相关,表明超导体在临界温度以下具有完全抗磁性。

随后,我们对超导体样品在不同外加磁场下的悬浮效应进行了观察和测量。

实验结果显示,随着外加磁场的增加,超导体的悬浮高度呈现出非线性变化,这与迈斯纳效应的特性相符合。

同时,我们还测量了超导体在不同温度下的临界电流值,结果表明临界电流随温度的降低而增加,这也与超导体的抗磁性质相关。

在实验过程中,我们还发现了一些问题和挑战。

例如,超导体样品的制备和冷却过程需要严格控制,以确保样品能够达到超导态并保持稳定的悬浮状态。

此外,超导体在外界振动和扰动下容易失去稳定悬浮状态,因此需要在实验环境中进行有效的隔振和稳定控制。

综合以上实验结果和分析,我们得出了以下结论,超导体在临界温度以下具有完全抗磁性,并能够在外加磁场下实现稳定的磁悬浮效应;超导体的悬浮高度和临界电流受外加磁场和温度的影响,呈现出特定的非线性变化规律。

这些结论为超导磁悬浮技术的应用提供了重要的实验数据和理论基础。

总之,本实验通过超导磁悬浮技术的研究,深入探讨了超导体在低温下的磁性特性和磁悬浮效应,并取得了一系列有意义的实验结果。

这些结果对于超导磁悬浮技术的发展和应用具有重要的理论和实验价值,也为相关领域的进一步研究提供了有益的参考和借鉴。

有趣的物理实验报告

有趣的物理实验报告标题:磁悬浮列车实验报告摘要:本实验旨在通过设计一种磁悬浮列车模型,探索磁悬浮原理和应用。

通过搭建实验装置和进行实验操作,我们观察到磁悬浮列车在磁力作用下悬浮并运动的现象,并探讨了磁悬浮列车的悬浮机理和运行原理。

通过实验,我们深入了解了磁悬浮技术的发展和应用前景。

引言:磁悬浮是一种利用磁力使物体悬浮并运动的技术。

由于无接触地悬浮,磁悬浮列车具有高速、低摩擦和低能耗的优势,被认为是未来城市交通的发展方向之一、本实验通过设计一个小型磁悬浮列车模型,以直观、实际的方式展示磁悬浮技术的原理和应用。

材料和方法:1.磁悬浮列车模型:包括轨道、磁悬浮装置和电动驱动装置。

2.磁铁:用于制造轨道和磁悬浮装置。

3.直流电源:用于提供电动驱动装置所需的电能。

4.测量仪器:包括计时器和测距器,用于测量磁悬浮列车的运动速度和行程。

实验步骤:1.搭建磁悬浮列车模型:将磁铁安装在轨道上,并在磁悬浮装置下方制作一定的悬浮间隙。

2.进行实验操作:将磁悬浮列车放置在轨道上,并将直流电源连接到电动驱动装置上。

3.观察实验现象:当直流电流通过电动驱动装置时,磁悬浮列车在磁力的作用下悬浮并开始运动。

4.记录数据和测量结果:使用计时器测量磁悬浮列车从起点到终点所需的时间,并使用测距器测量其行程。

结果与讨论:通过实验观察和数据记录分析,我们得出以下结果和结论:1.磁悬浮列车在磁力作用下成功悬浮并运动,证明磁悬浮技术的可行性。

2.磁力的大小与直流电流的大小成正比,在一定范围内增大电流可以提高磁悬浮列车的悬浮高度和运动速度。

3.磁悬浮列车在悬浮高度达到一定值后,不能再进一步增加,说明存在磁力饱和现象。

4.磁悬浮列车的运动速度与轨道的倾角和电流大小有关,存在最佳运行条件。

结论:通过设计磁悬浮列车模型并进行实验操作,我们深入了解了磁悬浮技术的工作原理和应用前景。

磁悬浮列车作为一种高速、低能耗的交通工具,可能会对未来城市交通产生重大的影响和变革。

磁悬浮演示实验报告

磁悬浮演示实验报告磁悬浮演示实验报告引言:磁悬浮技术是一种基于磁力原理的悬浮系统,通过利用磁场的相互排斥或吸引作用,使物体悬浮在空中。

这项技术在交通运输、能源、医疗等领域具有广泛的应用前景。

本实验旨在通过磁悬浮演示实验,展示磁悬浮技术的原理和应用。

实验设备:本次实验所需的设备包括磁悬浮装置、磁悬浮轨道、演示物体等。

磁悬浮装置由电磁铁和磁铁组成,通过调节电流大小可以改变磁场的强度。

磁悬浮轨道则是由一系列磁铁排列而成,形成一个磁场梯度。

实验过程:首先,我们将磁悬浮轨道放置在实验台上,并将磁悬浮装置悬挂在轨道上方。

然后,我们选择一个合适的演示物体,如一个小球,将其放置在磁悬浮装置的悬浮位置上。

接下来,我们通过调节电流大小,使磁悬浮装置产生一个与演示物体相互作用的磁场。

当电流通过电磁铁时,会产生一个磁场,与磁悬浮轨道上的磁场相互作用,从而实现演示物体的悬浮。

实验结果:通过实验观察,我们可以清楚地看到演示物体在磁悬浮装置的悬浮位置上悬浮起来。

这是因为磁悬浮轨道上的磁场与磁悬浮装置产生的磁场相互作用,产生了一个向上的磁力,使演示物体克服重力而悬浮在空中。

当我们调节电流大小时,可以改变磁场的强度,从而调整演示物体的悬浮高度。

实验讨论:磁悬浮技术的应用非常广泛。

在交通运输领域,磁悬浮列车可以通过磁场的相互作用,实现车辆的悬浮和运行,具有高速、低噪音和低能耗的特点。

在能源领域,磁悬浮发电机可以通过磁场的相互作用,实现转子的悬浮和旋转,提高发电机的效率和稳定性。

在医疗领域,磁悬浮手术器械可以通过磁场的相互作用,实现器械的悬浮和精确操作,减少手术创伤和恢复时间。

然而,磁悬浮技术也存在一些挑战和限制。

首先,磁悬浮装置的制造成本较高,限制了其在大规模应用中的推广。

其次,磁悬浮系统对环境的要求较高,需要在无磁性材料和低温环境下运行,增加了系统的复杂性和成本。

此外,磁悬浮系统的稳定性和安全性也是需要考虑的因素,特别是在高速运行和复杂工况下。

磁悬浮实验实验报告

1. 了解磁悬浮技术的原理和基本操作。

2. 掌握磁悬浮实验的步骤和方法。

3. 通过实验,观察磁悬浮现象,分析磁悬浮系统的稳定性和悬浮高度与激磁电流的关系。

二、实验原理磁悬浮技术是利用磁力使物体悬浮在空中,避免物体与支撑面接触,从而减少摩擦和能量损耗。

实验中,通过改变激磁电流的大小,观察磁悬浮系统在不同悬浮高度下的稳定性。

三、实验器材1. 磁悬浮实验装置一套(包括磁悬浮盘、磁悬浮支架、激磁电流线圈、电源等)。

2. 测量工具(如尺子、万用表等)。

四、实验步骤1. 搭建实验装置,将磁悬浮盘放置在磁悬浮支架上,确保磁悬浮盘与支架平行。

2. 将激磁电流线圈绕在磁悬浮盘上,确保线圈与磁悬浮盘紧密贴合。

3. 连接电源,调整激磁电流的大小。

4. 观察磁悬浮盘在不同激磁电流下的悬浮状态,记录悬浮高度和激磁电流的对应关系。

5. 改变激磁电流的大小,重复步骤4,观察磁悬浮盘的悬浮状态。

五、实验结果与分析1. 观察到当激磁电流较小时,磁悬浮盘处于悬浮状态,但悬浮高度较低;随着激磁电流的增大,悬浮高度逐渐升高。

2. 当激磁电流过大时,磁悬浮盘开始接触支架,悬浮状态不稳定。

3. 通过实验数据可知,悬浮高度与激磁电流之间存在一定的关系,具体表现为:在一定范围内,激磁电流越大,悬浮高度越高。

1. 磁悬浮技术是一种利用磁力实现物体悬浮的技术,具有减少摩擦和能量损耗的优点。

2. 磁悬浮系统的稳定性与激磁电流的大小有关,在一定范围内,激磁电流越大,悬浮高度越高,系统越稳定。

3. 通过本实验,掌握了磁悬浮实验的步骤和方法,为后续研究磁悬浮技术奠定了基础。

七、实验总结本次实验成功地实现了磁悬浮现象的观察,通过实验数据的分析,得出了悬浮高度与激磁电流的关系。

在实验过程中,我们了解到磁悬浮技术的原理和应用,提高了对磁悬浮系统的认识。

同时,通过实际操作,锻炼了我们的动手能力和实验技能。

在今后的研究中,我们可以进一步探讨磁悬浮系统的优化设计,提高磁悬浮技术的稳定性和悬浮高度,为磁悬浮技术的发展和应用提供有力支持。

大学磁悬浮实验报告

1. 了解磁悬浮列车的原理和结构。

2. 通过实验演示磁悬浮现象,验证超导体对永磁体的排斥作用。

3. 掌握磁悬浮列车的运行机制和影响因素。

二、实验原理磁悬浮列车利用超导体在低温下的特性,实现列车与轨道之间的无接触悬浮。

当超导体冷却至一定温度时,其电阻降为零,形成超导态。

此时,超导体内的电流产生强大的磁场,与轨道上的永磁体相互作用,产生排斥力,使列车悬浮于轨道之上。

三、实验器材1. 超导磁悬浮列车演示仪(含磁导轨支架、磁导轨)2. 高温超导体(含Ag的YBacuo系高温超导体)3. 液氮四、实验步骤1. 将超导磁悬浮列车演示仪放置在平稳的工作台上。

2. 使用液氮将高温超导体冷却至临界温度(约90K)。

3. 将冷却后的高温超导体放置在磁导轨上,确保其与轨道平行。

4. 打开电源,使磁导轨产生磁场。

5. 观察高温超导体在磁场中的悬浮状态。

五、实验结果与分析1. 当高温超导体冷却至临界温度时,其在磁场中悬浮,证实了超导体对永磁体的排斥作用。

2. 通过调整磁导轨的磁场强度,可以观察到悬浮高度的变化。

当磁场强度增大时,悬浮高度也随之增大。

3. 实验过程中,高温超导体在磁场中的悬浮稳定性较好,但受到外界温度、磁场强度等因素的影响。

1. 磁悬浮列车利用超导体在低温下的特性,实现列车与轨道之间的无接触悬浮。

2. 超导体对永磁体的排斥作用是实现磁悬浮的关键因素。

3. 磁悬浮列车的悬浮高度和稳定性受到外界因素的影响。

七、实验注意事项1. 实验过程中,操作人员需穿戴防护用品,如手套、护目镜等。

2. 使用液氮时,注意防止泄漏和低温冻伤。

3. 调整磁导轨磁场强度时,需缓慢进行,避免对高温超导体造成损伤。

八、思考题1. 磁悬浮列车在实际应用中,如何解决高温超导体冷却问题?2. 磁悬浮列车在高速运行时,如何保证其稳定性和安全性?3. 除了磁悬浮技术,还有哪些新型高速轨道交通技术?九、实验总结本次磁悬浮实验成功演示了超导体对永磁体的排斥作用,验证了磁悬浮列车的原理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2-1) 在铝板被看作为完纯导体的理想化假设的前提下,应用镜像法,可以导 得该磁系统的自感为
(2-2) 式中,a——盘状线圈被理想化为单匝圆形线圈时的平均半径;N——线 匝数;R——导线被看作 圆形导线时的等效圆半径。从而,由稳定磁悬浮状 态下力的平衡关系,即
式中,M —— 盘状线圈的质量(kg);g—— 重力加速度(9.8 m/s2); 进一步代入关系式(2-2),稍 加整理,便可解出对于给定悬浮高度 h 的磁 悬浮状态,系统所需激磁电流为
五、实验数据记录和处理
六、实验结果与分析(必填)
七、讨论、心得
一、实验目的和要求
1、观察自稳定的磁悬浮物理现象;
2、了解磁悬浮的作用机理及其理论分析的基础知识;
3、在理论分析与实验研究相结合的基础上,力求深化对磁场能量、电感参
数和电磁力等知识点的理解。
二、实验内容
1、观察自稳定的磁悬浮物理现象
2、实测对应于不同悬浮高度的盘状线圈的激磁电流
逐点测量稳定磁悬浮 状态下盘状线圈中的激磁电流,记录其悬浮高度 h 与激
磁电流 I 的相应读数。
3、观察不同厚度的铝板对自稳定磁悬浮状态的影响
分别在厚度为 14 mm 和厚度为 6 mm 的两种铝板情况下,对应于相同的激
磁电流(如 I = 20 A), 观察并读取相应的悬浮高度 h 的读数,且用手直接
三、 主要仪器设备 磁悬浮装置
3 / 10
盘状线圈:N=250,R1=31mm,R2=195mm,h=12.5mm,M=3.1kg
自耦变压器:0~100V,0~30A,50Hz
电流表
四、 操作方法和实验步骤
1、观察自稳定的磁悬浮物理现象
在自稳定磁悬浮现象的理想化分析的前提下,根据电磁场理论可知,铝 质导板应被看作为完纯导 体,但事实上当激磁频率为 50 Hz 时,铝质导板仅 近似地满足这一要求。为此,在本实验装置的构造 中,铝质导板设计的厚度 b 还必须远大于电磁波正入射平表面导体的透入深度 d(b )。换句话说,在 理 想化的理论分析中,就交变磁场的作用而言,此时,该铝质导板可被看作为“透 不过的导体”。
小偏大越明显。 实际磁场并不能忽略边缘效应,而且漏磁不可忽略,也造成了一定的
实测电流偏大。
10 / 10下载文档可编辑
2 / 10下载文档可编辑
首先,将图 2-1 所示盘状载流线圈和铝板的组合看成一个磁系统,则其 对应于力状态分析的磁场 能量
式中,I 为激磁电流的有效值。其次,取表征盘状载流线圈与铝板之间相对 位移的广义坐标为 h(即 给定的悬浮高度),则按虚位移法可求得作用于该系 统的电动推斥力,也就是作用于盘状载流线圈的 向上的电磁悬浮力
课程名称:
专业:
姓名:
实验报告
学号: 日期:
工程电子场与电磁波
地点:
指导老师:________熊素铭________
成绩:__________________
实验名称:_
磁悬浮
_实验类型: 动手操作及仿真
同组学生姓名:
一、实验目的和要求(必填)
二、实验内容和原理(必填)
三、主要仪器设备(必填)
四、操作方法和实验步骤
当悬浮高度 1.0cm 激磁电流实测值为 19.1A 时的求解
当悬浮高度 0.6cm 激磁电流实测值为 18.2A 时的求解
3、分析与讨论
9 / 10下载文档可编辑
在悬浮高度与激励电流关系中,实验实测数据和理论值的偏差很大,只是总 体趋势相同,都是随着高度增加而增大。
误差应该是由多方面原因造成的,主要原因应该有 在等效半径的估计上,a 取(R1+R2)/2 是偏大的,而且悬浮高度越
对于给定悬浮高度的自稳定磁悬浮现象,显然,作用于盘状载流线圈的 向上的电磁力必然等于该 线圈的重量。本实验中,当通入盘状线圈的激磁电 流增大到使其与铝板中感生涡流合成的磁场,对盘 状载流线圈作用的电磁力 足以克服线圈自重时,线圈即浮离铝板,呈现自稳定的磁悬浮物理现象。现
应用虚位移法来求取作用于该磁悬浮系统的电动推斥力。
Y 方向磁场 2.数据求解结果 当悬浮高度为 2.8cm 激磁电流实测值为 24A 时的求解
当悬浮高度 2.5cm 激磁电流实测值为 23.1A 时的求解
当悬浮高度 2.1cm 激磁电流实测值为 21.7A 时的求解
8 / 10下载文档可编辑
当悬浮高度 1.8cm 激磁电流实测值为 20.3A 时的求解
感觉在该两种铝板情况下铝板底面的温度
五、实验结果与结论
1、悬浮高度与激励电流 I 的相应关系
序 悬浮高度 实测电流值
理论值
(A)
号 h(cm)
I(A)
1
2.8
24
22.6
4 / 10下载文档可编辑
2
2.5
23.1
3
2.1
21.7
4
1.8
20.3
5
1.0
19.1
6
0.6
18.2
2、铝板的透入深度 d
在给定厚度为 14 mm 的铝板情况下,通过调节自耦变压器以改变输入盘
状线圈的激磁电流,从 而观察在不同给定悬浮高度 h 的条件下,起因于铝板表
面层中涡流所产生的去磁效应,而导致的自稳 定的磁悬浮物理现象
2、实测对应于不同悬浮高度的盘状线圈的激磁电流
在厚度为 14 mm 的铝板情况下,以 5 mm 为步距,对应于不同的悬浮高度,
d=1.883E-2 m
六、实验仿真结果
1.磁场分布图像
(1)需部结果对应的磁场图
21.3 19.6 18.15 13.5 10.47
5 / 10下载文档可编辑
X 方向磁场 Y 方向磁场 (2)实部结果 对应的磁场情况 (h=2.5cm I=23.1A)
6 / 10下载文档可编辑
X 方向磁场
7 / 10下载文档可编辑
3、观察不同厚度的铝板对自稳定磁悬浮状态的影响
实验原理
1 / 10下载文档可编辑
1、自稳定的磁悬浮物理现象 由盘状载流线圈和铝板相组合构成磁悬浮系统的实验装置,如图 2-6 所
示。该系统中可调节的扁 平盘状线圈的激磁电流由自耦变压器提供,从而在 50 Hz 正弦交变磁场作用下,铝质导板中将产生感 应涡流,涡流所产生的去磁 效应,即表征为盘状载流线圈自稳定的磁悬浮现象。 2、基于虚位移法的磁悬浮机理的分析
相关文档
最新文档