灰色关联分析方法

合集下载

灰色关联度分析

灰色关联度分析
灰色关联度评价法
1.灰色关联理论

1982年,华中理工大学邓聚龙教 授首先提出灰色系统的概念,并建立了 灰色系统理论。 灰色系统理论认为,人们对客观 事物的认识具有广泛的灰色性,就是信 息的不完全性和不确定性,因而有客观 事物所形成的是一种灰色系统,即部分 信息已知、部分信息未知的系统。例如: 社会系统、经济系统、生态系统等都可 以看作是灰色系统。

\\
(min) (max) 0i (k ) 0i (k ) (max)

最后分别对各产业与GDP的关联系数求 平均可得: r01= (0.4191+0.3796+0.5808+0.7055+0.3696 +0.2881)/6 =0.4571 同样求出: r02=0.5760, r03=0.7209 r0i称为序列x0和xi(i=1,2,3)的灰 色关联。由于r03˃r02˃ r01,因而第三 产业产值与GDP的关联度最大,其次是 第二产业,第一次去农业。
5.用GRA进行综合评价

灰色关联分析的目的是揭示因素间 关系的强弱,其操作对象是因素的时间 序列,最终的结果表现为通过关联度对 各比较序列做出排列。综合评价的对象 也可以看作是时间序列(每个被评价事 物对应的各项指标值),并且往往需要 对这些时间序列做出排序,因而也可以 借助灰色关联分心来进行。
01 (1) 02 (1) ... 0 n (1) (2) (2) ... (2) 01 02 0n ... ... ... 01 ( N ) 02 ( N ) ... 0 n ( N ) N n 其中 0i (k ) x0 (k ) xi (k ) (05式) i 1,2,...n; k 1,2,..., N 绝对差矩阵中最大数和 最小数就是最大差和最 小差: max 0i (k ) (max)( 式) 06

灰色关联分析法

灰色关联分析法

灰色关联分析法灰色关联分析法是一种用于研究多个指标之间相关性的统计方法。

它通过计算不同指标之间的关联度来确定它们之间的关系强度。

本文将介绍灰色关联分析法的原理、应用领域以及优点和局限性。

灰色关联分析法最早由中国科学家陈进才于1981年提出,并广泛应用于工程和管理学科领域。

它的核心思想是通过将不同的指标序列转化为灰色级数形式,然后计算各指标之间的关联系数,以揭示它们之间的关系。

灰色关联分析法的基本步骤包括:首先,将各指标序列归一化,使得数据位于相同的量纲范围内;其次,构建灰色级数模型,将指标序列转化为灰色级数;然后,计算各指标之间的关联系数,确定关联度;最后,利用关联度进行综合评价,得出最终的结论。

灰色关联分析法在许多领域具有广泛的应用。

在经济管理领域,它可以用于评估企业绩效、判断市场趋势、研究产业发展等。

在工程领域,它可以用于分析工艺参数对产品质量的影响、评估设备可靠性等。

在环境科学领域,它可以用于评估生态环境质量、分析污染物传输和扩散等。

灰色关联分析法具有一些优点。

首先,它可以对多指标间的关联进行定量分析,较为客观地反映指标之间的关系。

其次,它适用于小样本数据的分析,不依赖于大样本假设。

此外,它对序列变化的敏感性较高,能够较好地发现序列间的规律性或趋势。

然而,灰色关联分析法也存在一些局限性。

首先,它对数据的要求较高,需要有较为完整的时间序列数据。

其次,它假设指标之间的关系是线性的,对非线性关系的分析有一定局限性。

此外,灰色关联分析法对指标权重的确定也有一定的主观性,可能引入一定的误差。

综上所述,灰色关联分析法作为一种多指标关联分析方法,在多个领域得到了广泛应用。

它通过计算不同指标之间的关联程度,为决策提供了科学的依据。

然而,使用灰色关联分析法时需要充分考虑相关因素,避免误导决策。

未来,随着数据技术的不断发展,灰色关联分析方法也将继续完善和应用于更多的领域中。

灰色关联分析法与TOPSIS评价法

灰色关联分析法与TOPSIS评价法


3.对指标数据进行无量纲化 无量纲化后的数据序列形成如下矩阵:

x0 1 x0 2 X 0 , X 1 , , X n x m 0 x1 2 x1 1 x n 1 x n 2 x n m


maxmax x0 (k ) xi (k )
i 1 k 1
n
m
6.计算关联系数 由(12-5)式,分别计算每个比较序列 与参考序列对应元素的关联系数.

i (k )
min min x 0 (k ) xi (k ) max max x0 ( k ) xi ( k )
03 (t )
0.8687 0.7257 0.5213 0.7338 1.000 0.4758
最后分别对各产业与GDP的关联系数序列求算术 平均可得
1 r01 (0.4191 0.3796 0.5808 0.7055 6 0.3696 0.2881) 0.4571 1 r02 (0.6067 0.5178 0.4903 0.8761 6 0.6141 0.3510) 0.5760 1 r03 (0.8687 0.7257 0.5213 0.7338 6 1.000 0.4758) 0.7209
两序列变化的态势是表现在其对应点的间距上.如果 各对应点间距均较小,则两序列变化态势的一致性强,否 则,一致性弱.分别计算各产业产值与GDP在对应期的间 距(绝对差值),结果见表所示. 年份t
x0 (t ) x1 (t )
0.1044 0.1231 0.0547 0.0319 0.1284 0.1857
一个自然的想法就是分别将三次产业产值的时间序列 与GDP的时间序列进行比较,为了能够比较,先对各序列进 行无量纲化,这里采用均值化法.各序列的均值分别为: 2716,461.5,1228.83,1025.67,上表中每列数据除以其均值可 得均值化序列(如表所示) 年份t GDP x0(t) 一产业 x1(t) 二产业 x2(t) 三产业 x3(t) 2000 0.7320 0.8364 0.6828 0.7440 2001 0.7588 0.8819 0.6885 0.7878 2002 0.8597 0.9144 0.7812 0.9291 2003 1.0125 1.0444 1.0237 0.9847 2004 1.2356 1.1073 1.2833 1.2363 2005 1.4013 1.2156 1.5405 1.3182

运用灰色关联分析法分析烟支重量稳定性的影响因素

运用灰色关联分析法分析烟支重量稳定性的影响因素

运用灰色关联分析法分析烟支重量稳定性的影响因素灰色关联分析法是一种通过对比分析样本间的相似性和相关性来确定影响因素重要性的方法。

在研究烟支重量稳定性的影响因素时,可以运用灰色关联分析法来确定相关因素的重要程度。

下面将分析烟支重量稳定性的影响因素,并运用灰色关联分析法进行分析。

1. 烟草品质烟草的质量是影响烟支重量稳定性的关键因素之一。

优质的烟草具有较好的粘合性和稳定性,可以保证烟支重量的稳定性较高。

2. 烟支工艺烟支的制作工艺也会对烟支重量稳定性产生影响。

工艺参数的合理调节可以使得烟支在制作过程中保持较低的重量波动,从而提高烟支重量的稳定性。

3. 包装材料烟支的包装材料对烟支重量稳定性也有一定影响。

包装材料的质量和密封性可以影响烟支在储存和运输过程中的重量变化。

4. 烟支储存条件烟支在储存过程中可能受到温度、湿度等因素的影响,从而影响烟支重量的稳定性。

合适的储存条件可以减少烟支的重量波动。

1. 收集相关数据收集烟支重量以及可能的影响因素的数据。

这些数据可以是历史数据,也可以是实验数据或调查数据。

2. 数据归一化处理对于不同量级的数据,需要进行归一化处理,将数据映射到相同的尺度上。

可以使用最大-最小归一化方法将数据映射到0到1之间。

3. 确定评价序列确定评价序列,将烟支重量作为评价对象,其他因素作为评价因素。

4. 计算关联系数计算评价因素与评价对象之间的关联系数。

计算方法可以是欧氏距离、平均差或相关系数等。

5. 计算关联度对每个评价序列,计算关联系数的均值,得到各个评价序列的关联度。

6. 确定重要因素根据关联度的大小,确定评价序列中的重要因素。

关联度越大,表示该因素对于评价对象的影响越大。

通过上述步骤,可以运用灰色关联分析法对烟支重量稳定性的影响因素进行排序,确定各个因素的重要程度,从而为烟支重量稳定性的改善提供依据。

两因素三水平用灰色关联法

两因素三水平用灰色关联法

灰色关联分析法是一种用于比较多个因素之间关联程度的分析方法,其基本思想是通过比较各因素之间的相似程度来评估它们之间的关联程度。

在两因素三水平的情境下,可以使用灰色关联分析法来比较三个水平之间的关联程度。

具体步骤如下:1.确定参考序列和比较序列。

参考序列是用于比较的基准序列,通常选择一个固定值或者已知的最佳水平作为参考序列。

比较序列是待比较的各个因素在不同水平下的观测值序列。

2.数据预处理。

对参考序列和比较序列进行数据预处理,包括数据清洗、缺失值处理、异常值处理等。

3.计算灰色关联度。

根据灰色关联分析法的原理,计算参考序列与各个比较序列之间的灰色关联度。

灰色关联度的计算公式为:(\gamma(x_0, x_i) = \frac{\min_i |x_0(k) - x_i(k)| + \rho \max_i |x_0(k) -x_i(k)|}{|x_0(k) - x_i(k)| + \rho \max_i |x_0(k) - x_i(k)|})其中,(x_0(k))表示参考序列在时刻k的值,(x_i(k))表示第i个比较序列在时刻k 的值,(\min_i |x_0(k) - x_i(k)|)和(\max_i |x_0(k) - x_i(k)|)分别表示第k时刻所有比较序列与参考序列的差的绝对值的最小值和最大值,(\rho)是一个分辨系数,通常取0.5。

4. 判断关联程度。

根据计算出的灰色关联度,判断各个比较序列与参考序列的关联程度。

灰色关联度越接近于1,表示关联程度越高。

通过以上步骤,可以得出各个水平之间的关联程度,从而为决策提供依据。

需要注意的是,灰色关联分析法只是一种定性的分析方法,其结果具有一定的主观性,因此在具体应用时需要根据实际情况进行合理的解释和判断。

灰色关联分析

灰色关联分析

灰色关联分析简介灰色关联分析是一种用于评估多个因素之间相关性的统计分析方法。

它可以帮助我们理解一组因素对于某个指标的影响程度,并且可以用来预测未来的趋势。

原理灰色关联分析基于灰色理论,其核心思想是将样本数据转化为灰色数列,然后通过计算灰色相关度来评估因素之间的关联性。

在灰色关联分析中,我们首先需要确定一个参考数列和一个比较数列,然后根据数列的发展趋势和规律性对它们进行排序。

最后,通过计算两个数列之间的关联度来评估它们之间的关联程度。

灰色关联度的计算方法灰色关联度可以通过以下公式计算:$$ \\rho(i,j) = \\frac{{\\min(\\Delta^*+(k-1)\\Delta^*,\\Delta^*+\\delta^*+(k-1)\\Delta^*,\\Delta^*-\\delta^*+(k-1)\\Delta^*)}}{{\\max(\\Delta^*+(k-1)\\Delta^*,\\Delta^*+\\delta^*+(k-1)\\Delta^*,\\Delta^*-\\delta^*+(k-1)\\Delta^*)}} $$其中,$\\Delta^*$表示相邻数据的差值绝对值的最大值,$\\delta^*$表示数列中数据的最大值与最小值之差。

灰色关联分析步骤1.数据预处理:将原始数据进行标准化处理,使其具有可比性。

2.建立关联矩阵:根据参考数列和比较数列计算灰色关联度,并构建关联矩阵。

3.确定权重:根据关联矩阵的行列和大小确定各因素的权重,权重越大表示因素对目标的影响越大。

4.计算综合关联度:将灰色关联度与权重相乘并求和,得到各个因素的综合关联度。

5.分析结果:根据综合关联度的大小对因素进行排序和评估,得出各因素对目标的贡献程度。

适用领域灰色关联分析在许多领域都有广泛的应用,包括经济、环境、工程等。

它可以用于评估多个因素对某个现象的影响程度,帮助决策者制定合理的决策和策略。

优势与局限灰色关联分析具有以下优势:•可以在样本数据不完整或不完全的情况下进行分析。

《灰色关联分析法》课件

《灰色关联分析法》课件
3
计算关联度
4
确定各个因素对评估对象的贡献程度。
5
确定因素集合和影响因素
精确定义评估的因素及其关联程度。
计算关联系数
衡量因素之间的关联程度。
排序、评价和综合比较
综合评价并排序所得的关联度。
灰色关联分析法 实例分析
案例1 :消费者购买行为分析
研究消费者购买决策中的因素关联性,指导 市场策略制定。
案例2 :市场竞争态势分析
灰色关联分析法 PPT课件
灰色关联分析法是一种综合多因素、多层次、多角度的综合评判方法,用于 处理数据量小、不完备、不确定的问题。
灰色关联分析法 简介
1 灰色关联分析法
2 基本原理
综合评判方法,处理不完备、不确定的问题。
灰色系统理论,关联度的测度。
灰色关联分析法 步骤
1
数据标准化处理
2
使不同类型的数据具备可比性。
分析市场上不同竞争因素之间的关联程度。
灰色关联分析法 应用领域
经济管理
用于分析经济发展中的关联因素。
生态环境
评估环境因素对生态系统的和优化。
市场分析
研究市场竞争态势和市场需求。
灰色关联分析法 优缺点
优点
• 有效分析多层次、多因素的问题 • 适用于小样本、不完备数据的分析
缺点
• 无法对因果关系进行分析 • 灰色关联度的确定较为主观
灰色关联分析法 总结
灰色关联分析法是一种有效的综合评判方法,应用广泛,但也存在一些局限性。在具体应用中需要根据 问题特点和数据情况进行调整和优化。

灰色关联分析法与TOPSIS评价法

灰色关联分析法与TOPSIS评价法
i 1 ,2 , 3 ; t 2 0 0 0 ,,2 0 0 5
0 i ( t ) 称为序列xi和序列x0在第t期的灰色关联系 数(或简称为关联系数).
由(6.1)式可以看出, 取 值的大小可以控制 (max)
对数据转化的影响, 取较小的值,可以提高关联系
数间差异的显著性,因而 称为 分辨系数.
利用(6.1)对表6-3中绝对差值 进0 i行( t规) 范化,取
结0.果4,见表6-4,以
计0算1(2为00例0):
( m i n ) 0 .0 0 0 6 , ( m a x ) 0 .1 8 5 7
0 1 (2 0 0 0 ) 0 0 ..0 1 0 0 0 4 6 4 0 0 ..4 4 0 0 ..1 1 8 8 5 5 7 7 0 .4 1 9 1
18987529
27875738
39796647
46888436
58669838
68957648
3.确定参考数据列:
{ x 0 } { 9 , 9 , 9 , 9 , 8 , 9 , 9 }
4.计算 x0(k)xi(k) , 见下表
编号 专业 外语 教学 科研 论文 著作 出勤 量
1
1
0
1
2
参考数据列应该是一个理想的比较标准, 可以以各指标的最优值 (或最劣值)构 成参考数据列,也可根据评价目的选择 其它参照值.记作
X 0 x 0 ( 1 ) , x 0 2 , , x 0 m
3.对指标数据进行无量纲化 无量纲化后的数据序列形成如下矩阵:
X0,X1, ,Xnxx001 2 x0m
年份t GDP x0(t) 一产业 x1(t) 二产业 x2(t) 三产业 x3(t)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

过去采用分析方法的主要是统计的方法,如回 归分析,回归分析虽然是一种较通用的方法,但 大都只用于少因素的、线性的。对于多因素的,
非线性的则难以处理。
二、概念
对于两个系统之间的因素,其随时间或不同对 象而变化的关联性大小的量度,称为关联度。
在系统发展过程中,若两个因素变化的趋势具 有一致性,即同步变化程度较高,即可谓二者 关联程度较高;反之,则较低。
2.确定参考数据列 参考数据列应该是一个理想的比较标准,
可以以各指标的最优值(或最劣值)构 成参考数据列,也可根据评价目的选择 其它参照值.记作
X 0 x0 (1) , x0 2 , , x0 m
3.对指标数据进行无量纲化
由于系统中各因素的物理意义不同,导 致数据的量纲也不一定相同,不便于比 较,或在比较时难以得到正确的结论。 因此在进行灰色关联度分析时,一般都 要进行无量纲化的数据处理。
二、灰色系统的基本概念
灰色系统区分白色系统的重要标志是系统内 各元素之间是否具有确定的关系
运动学中物体运动的速度,加速度与其所受到 的外力有关,其关系可用牛顿定律以明确的定量 来阐明,因此。物体的运动便是一个白色系统。二、灰色系 Nhomakorabea的基本概念
作为实际系统,灰色系统在世界中是大量存在的,绝对的 白色或黑色系统是很少的,尤其在社会经济领域,如粮食 作物的生产等。
灰色关联分析方法
第一部分 灰色系统理论 第二部分 灰色关联分析
一、灰色系统理论的产生和发展动态
1982我国学者邓聚龙教授发表第一篇中文 论文《灰色控制系统》标志着灰色系统这 一学科诞生。
1985灰色系统研究会成立,灰色系统相关 研究迅速发展。
一、灰色系统理论的产生和发展动态
1989海洋出版社出版英文版《灰色系统论文集》, 同年,英文版国际刊物《灰色系统》杂志正式创 刊。目前,国际、国内200多种期刊发表灰色系统 论文,许多国际会议把灰色系统列为讨论专题。 国际著名检索已检索我国学者的灰色系统论著500 多次。
一、关联分析概述
社会系统、经济系统、农业系统、生态系统等抽象系统 包含有多种因素,这些因素哪些是主要的,哪些是次要的, 哪些影响大,哪些影响小,那些需要抑制,那些需要发展, 那些事潜在的,哪些是明显的,这些都是因素分析的内容。
例如在社会系统中,人口是一种重要的子系统。影响人 口发展变化的有社会因素,如计划生育、社会治安、社会 道德风尚、社会的生活方式等。影响人口发展变化的因素 还有经济的,如社会福利、社会保险;还有医疗的,如医 疗条件、医疗水平等。总之,人口是多种因素互相关联、 互相制约的子系统。这些因素的分析对于控制人口、发展 生产是必要的。
灰色系统理论的关联度分析与回归分析是不同的,两 者的区别在于:
第一,它们的理论基础不同。关联度分析基于灰色系 统的灰色过程,而回归分析则基于概率论的随机过程;
第二,分析方法不同。关联分析是进行因素间时间序 列的比较,而回归分析是因素间数组的比较;
第三,数据量要求不同。关联分析不要求数据太多, 而回归分析则需有足够的数据量;
三、灰色系统的应用范畴
灰色系统的应用范畴大致分为以下几方面: (1)灰色关联分析。 (2)灰色预测:人口预测;初霜预测;灾变预
测….等等。 (3)灰色决策。 (4)灰色预测控制。
灰色系统理论是人们认识客观系统改造客观系统 的一个新型的理论工具。
第一部分 灰色系统理论 第二部分 灰色关联分析
集分析数据。
设n个数据序列形成如下矩阵:
X 1,
X 2
,
X n



x11 x12

x1m
x2 1 x2 2

x2 m

xn xn
1 2

xn m
其中m为指标的个数,.Xi xi1 , xi2 , , xim T , i 1, 2 , , n
第四,研究重点不同。关联度分析主要研究动 态过程,而回归分析则以静态研究为主。
因此,关联度分析适应性更广,在用于社会经 济系统中的应用更有其独到之处。
灰色系统理论考虑到回归分析方法的种种弊病
和不足,采用关联分析的方法来作系统分析。 作为一个发展变化的系统,关联度分析事实上 是动态过程发展态势的量化分析。即发展态势 的量化比较分析。
三、灰色关联分析的基本特征 (1)总体性 灰色关联度虽是数据序列几何形状的接近程度
的度量,但它一般强调的是若干个数据序列对 一个既定的数据序列接近的相对程度,即要排 出关联度大小的顺序,这就是总体性,其将各 因素统一置于系统之中进行比较与分析。
(2)非对称性
在同一系统中,甲对乙的关联度,并不 等于乙对甲的关联度,这较真实地反映 了系统中因素之间真实的灰关系。
(3)非唯一性 关联度随着参考序列不同、因素序列不同、原
始数据处理方法不同、数据多少不同而不同。
(4)动态性 因素间的灰色关联度随着序列的长度不同而变
化,表明系统在发展过程中,各因素之间的关 联关系也随着时间不断变化。
四、灰色关联分析法的步骤
利用灰色关联分析的步骤是: 1.根据分析目的确定分析指标体系,收
灰色系统理论应用范围已拓展到工业、农业、社 会、经济、能源、地质、石油等众多科学领域, 成功地解决了生产、生活和科学研究中的大量实 际问题,取得了显著成果。
二、灰色系统的基本概念
• 白色系统是指一个系统的内部特征是完全已知 的,即系统的信息是完全充分的。
• 黑色系统是指一个系统的内部信息对外界来说 是一无所知的,只能通过它与外界的联系来加 以观测研究。 • 灰色系统内的一部分信息是已知的,另一部分 信息是未知 的,系统内各因素间有不确定的关系。
因此,灰色关联分析方法,是根据因素之间发 展趋势的相似或相异程度,亦即“灰色关联 度”,作为衡量因素间关联程度的一种方法。
其基本思想是:以因素的数据序列为依据,用 数学的方法研究因素间的几何对应关系,即序 列曲线的几何形状越接近,则它们之间的灰关 联度越大,反之越小。
应用举例
问题:对该地区总收入影响较直接的是养猪业还是养 兔业?
相关文档
最新文档