转子-轴承-密封系统的多因素动力行为研究
转子动力学

转子动力学转子动力学(Rotordynamics)是一个在机械工程中有着广泛应用的学科,它研究的是转子的运动模式和旋转的动态行为。
它主要包括对转子的结构,刚度,形状,质量及其动态响应的研究,它也可以研究转子系统中出现的振动现象。
转子动力学被广泛应用于一些重要的工程应用,其中,汽轮机,离心机,风力发电机和电机等系统都可以利用转子动力学进行模拟研究,以便于计算转子系统的运动性质和性能。
转子动力学的研究主要分为两个部分:静态和动态分析。
静态分析是指只考虑转子的静力学性质,即转子的位移,速度和加速度,而不考虑其在轴承振动中的动态特性。
动态分析则是指考虑转子在轴承振动中的动态特性,包括振动模式、振动频率、振动幅值及衰减。
转子动力学的静态分析方法很多,其中,应用频繁的有建立结构方程和有限元方法,它们分别用于研究转子结构的位移,形变和应力分布,及轴承摩擦耦合下转子的动态行为。
动态分析方法也有很多,例如建立模态方程和复结构动力学方法等,它们都有助于研究转子系统的动态行为,包括振动模式、振动频率、振动的位移、形变和应力分布。
转子动力学的应用非常广泛,它可以被用于传动系统,机床,风机,汽轮机,离心机,风力发电机等系统中,以改善其设计和性能。
由于转子动力学完备及计算量大,现代转子断面设计工具和分析工具均已经发展趋于成熟,可以实现转子的3D的模拟分析,并可以实现转子的断面设计改善。
转子动力学是实施转子系统设计,并实现转子系统性能改善的重要手段,它给转子系统提供了科学的基础,使得转子系统设计及性能改善更接近设计者的实际需求,从而达到节省成本,提高效率,提升产品性能的目的。
总之,转子动力学研究是机械工程中一个重要的学科,它在机械系统安全可靠运行方面发挥着非常重要的作用。
通过使用转子动力学,可以更好地分析和理解转子系统的结构,刚度,形状,质量及其动态响应,从而实现设计的优化,提高转子系统的性能,改善转子系统的安全可靠性。
文献翻译-非线性动力学的实验和转子轴承系统支持的行为的数值研究

附录A英文原文Experimental and Numerica Studies on Nonlinear Dynam Behavior of Rotor System Supported by Ball BearingsBall bearings are important mechanical components in high-speed turbomachinery that is liable for severe vibration and noise due to the inherent nonlinearity of ball ing experiments and the numerical approach, the nonlinear dynamic behavior of a flexible rotor supported by ball bearings is investigated in this paper. An experimental ball bearing-rotor test rig is presented in order to investigate the nonlinear dynamic performance of the rotor systems, as the speed is beyond the first synchroresonance frequency. The finite element method and two-degree-of-freedom dynamic model of a ball bearing are employed for modeling the flexible rotor s ystem. The discrete model of a shaft is built with the aid of the finite element technique, and the ball bearing model includes the nonlinear effects of the Hertzian contact force, bearing internal clearance, and so on.The nonlinear unbalance response is observed by experimental and numerical analysis.All of the predicted results are in good agreement with experimental data, thus validating the proposed model. Numerical and experimental results show that the resonance frequency is provoked when the speed is about twice the synchroresonance frequency, while the subharmonic resonance occurs due to the nonlinearity of ball bearings and causes severe vibration and strong noise. The results show that the effect of a ball bearing on the dynamic behavior is noticeable in optimum design and failure diagnosis of high-speed turbomachinery. [DOI: 10.1115/1.4000586]Keywords: ball bearing, rotor, experiment, nonlinear vibrationA.1 IntroductionBall bearings are one of the essential and important components in sophisticated turbomachinery such as rocket turbopumps, aircraft jet engines, and so on. Because of the requirement of acquiring higher performance in the design and operation of ballbearings-rotor systems, accurate predictions of vibration characteristics of the systems, especially in the high rotational speed condition, have become increasingly important.Inherent nonlinearity of ball bearings is due to Hertzian contact forces and the internal clearance between the ball and the ring.Many researchers have devoted themselves to investigating the dynamiccharacteristics associated with ball bearings. Gustafsson et al. [1] studied the vibrations due to the varying compliance of ball bearings. Saito [2] investigated the effect of radial clearance in an unbalanced Jeffcott rotor supported by ball bearings using the numerical harmonic balance technique. Aktürk et al. [2] used a three-degree-of-freedom system to explore the radial and axial vibrations of a rigid shaft supported by a pair of angular contact ball bearings. Liew et al. [4] summarized four different dynamic models of ball bearings, viz., two or five degrees of freedom, with or without ball centrifugal force, which could be applied to determine the vibration response of ball bearing-rotor systems. Bai and Xu [5] presented a general dynamic model to predict dynamic properties of rotor systems supported by ball bearings. De Mul et al. [6] presented a five-degree-of-freedom (5DOF) model for the calculation of the equilibrium and associated load distribution in ball bearings. Mevel and Guyader [7] described different routes to chaos by varying a control parameter. Jang and Jeong [8] proposed an excitation model of ball bearing waviness to investigate the bearing vibration. Then, considering the centrifugal force and gyroscopic moment of ball, they developed an analytical method to calculate the characteristics of the ball bearing under the effect of waviness in Ref. [9]. Tiwari et al. [10,11] employed a two-degree-of-freedom model to analyze the nonlinear behaviors and stability associated with the internal clearance of a ball bearing.Harsha [12-14], taking into account different sources of nonlin-earity, investigated the nonlinear dynamic behavior of ball bearing-rotor systems. Gupta et al. [15] studied the nonlinear dynamic response of an unbalanced horizontal flexible rotor supported by a ball bearing. With the aid of the Floquet theory, Bai et al. [16] investigated the effects of axial preload on nonlinear dynamic characteristics of a flexible rotor supported by angular contact ball bearings. Using the harmonic balance method, Sinou [17]performed a numerical analysis to investigate the nonlinear unbalance response of a flexible rotor supported by ball bearings.In the abovementioned studies, main attention has been paid to the ball bearing modeling and the dynamic properties analysis according to simple bearing-rotor models. With theoretical analysis and experiment, Yamamoto et al. [18] studied a nonlinear forced oscillation at a major critical speed in a rotating shaft,which was supported by ball bearings with angular clearances.Ishida and Yamamoto [19] studied the forced oscillations of a rotating shaft with nonlinear spring characteristics and internal damping. They found that a self-excited oscillation appears in the wide range above the major critical speed. A dynamic model was derived, and experiments are carried out with a laboratory test rig for studying the misaligned effect of misaligned rotor-ball bearing systems in Ref. [20]. Tiwari et al. [21] presented an experimental analysis to study the effect of radial internal clearance of a ball bearing on the bearingstiffness of a rigid horizontal rotor. These experimental results validated theoretical results reported in their literatures [10,11]. Recently, Ishida et al. [22] investigated theoretically and experimentally the nonlinear forced vibrations and parametrically excited vibrations of an asymmetrical shaft supported by ball bearings. Mevel and Guyader [23] used an experimental test bench to confirm the predicted routes to chaos in their previous paper [7]. It is noticeable of lack of experiments on nonlinear dynamic behavior of flexible rotor systems supported by ball bearings. In Ref. [24], the finite element method was used to model a LH2 turbopump rotor system supported by ball bearings. Numerical results show that the subharmonic resonance, as well as synchroresonance, occurs in the start-up process. It is found that the subharmonic resonance is an important dynamic behavior and should be considered in engineering ball bearing-rotor system design. But, the experimental and numerical studies of the subharmonic resonance in ball bearing-rotor systems are very rare.With respect to the above, the present study is intended to cast light on the subharmonic resonance characteristics in ball bearing-rotor systems using experiments and numerical approach. An experiment on an offset-disk rotor supported by ball bearings is carried out, and the finite element method and two-degree-of-freedom model of a ball bearing are employed for modeling this rotor system. The predicted results are compared with the test data, and an investigation is conducted in the nonlinear dynamic behavior of the ball bearings-rotor system.2 Experimental InvestigationAn experimental rig is employed for studying the nonlinear dynamic behavior of ball bearing-rotor systems, as shown in Fig.1. The horizontal shaft is supported by two ball bearings at both ends, and the diskis mounted unsymmetrically. The shaft is coupled to a motor with a flexible coupling. The motor speed is controlled with a feedback controller, which gets the signals from an eddy current probe. Four eddy current probes, whose resolution is 0.5 m, are mounted close to the disk and bearing at the right end in the horizontal and vertical directions, respectively. The displacement signals, obtained with the help of probes, are input into an oscilloscope to describe the motion orbit, and a data acquisition and processing system were used to analyze the effects of ball bearings on the nonlinear dynamic behavior. The data acquisition and processing system utilizes a full period sampling as the data acquisition method. Its sampling rate is 500 kHz maximum, and sample size is 12 bits. The system provides eight channels for vibratory response acquisition and 1 channel for rotational speed acquisition. All channels are simultaneous.The limitation with the presented experimental setup is that the maximum attainable speed is 12,000 rpm. The first critical speed of the rotor system falls in the speed span, as the shaft is flexible and its fist synchroresonance frequency is near 66 Hz (3960rpm).Thus, the dynamic behavior can be studied as the speed is beyond twice the synchroresonance frequency.3 Rotor Dynamic ModelThe bearing-rotor system combines an offset-disk and two ball bearings, which support the rotor at both ends. The sketch map of the system is described in Fig. 2, where the frame oxyz is the inertial frame. The corresponding experiment assembly is shown in Fig. 3.3.1 Equations of Motion . Define ux and uy as the transverse deflections along the ox and oy directions, and x θ and y θ as the corresponding bending angles in the oxz and oyz planes, respectively. When x u 1, y u 1,x 1θ , and y 1θ denote the displacements of the ball bearing center location at the left end, the complex variables 1u and 1θ can be assumed asDenote the displacements of the disk center by 2u and 2θ, and the displacements of the ball bearing center location at the right end by 3u and 3θ. Using the finite element method, the equations of motion for the rotor system can be written as [25,26]where []M , []C , []K , and []G are the mass, damping, stiffness, and gyroscopic matrix of the rotor system, respectively, ω is the rotational speed, and {}u is the displacement vector{}g F and {}u F are the vectors of gravity load and unbalance forces.{}bF is the vector of nonlinear forces associated with ball bearings.3.2 Ball Bearing Forces. A ball bearing is depicted in a frame of axes oxyz in Fig.4. The contact deformation for the j-th rolling element j δis given aswhere i c and o c are the internal radial clearance between the inner,outer race, and rolling elements, respectively, in the direction of contact, and ubx and uby are the relative displacements of the inner and outer race along the x and y directions, respectively. As shown in Fig. 4, the angular location of the j-th rolling element j ϕ can be obtained fromWhere N , c ω, t , and 0ϕ are the number of rolling elements, cage angular velocity, time, and initial angular location, respectively. The cage angular velocity can be expressed as [27]where b D and p D are the ball diameter and bearing pitch diam- eter,respectively. α is the contact angle, which is concerned with the clearance and can be obtained as follows:Referring to Fig. 4, i r and o r are the inner and outer groove radius,respectively.If the contact deformation j δ is positive, the contact force could be calculated using the Hertzian contact theory; otherwise, no load is transmitted. The contact force j Q between the j-th ball and race can be expressed as follows:where b k is the contact stiffness that can be given bywhere bi k and bo k are the load-deflection constants between the inner and outer ball race, respectively[28]. Summing the contact forces for each rolling element, the total bearing reaction fb in a complex form is4 Experimental and Numerical AnalysisAs shown in Fig. 2, the experimental assembly and the finite element model used in the dynamic analysis represent the ball bearing-rotor system with the following geometrical properties:length between the disk center and left end bearing center mm L 1201=; length between the disk center and right end bearing center mm L 1202=; and the shaft diameter mm D 10=. In addition, the elastic shaft material is steel of density 37950m kg =ρ,Young’s modulus GPa E 211=, and Poisson’s ratio 3.0=v . The ball bearings at both ends are the same model, 7200AC, and its parameters are listed in Table 1.The unbalance load is acted wit h the aid of the mass fixed on the disk. By virtue of this act, the mass eccentricity of the disk can be definitely ascertained. As the mass eccentricity of the disk is 0.032 mm, the vibratory response at different rotational speed is determined via a numerical integration and Newton –Raphson iterations of the nonlinear differential equation (2). Note that the clearances used to simulate the bearings are measured ones. The horizontal and vertical displacements signals near the disk are acquired at different times, along with the increased rotational speed. Thus, the amplitudes of vibration at different speeds are determined according to the test data, and overall amplitudes are illustrated in Fig. 5, as the rotor system is run from 2000=ω rpm to 10,000 rpm. The prediction results compared with experimental data are shown in Fig. 5. It can be found that all of the predicted results are in good agreement with experimental data, thus validating the proposed model. The first predicted resonance peak—the so called forward critical speed in linear theory,located at3960=ω rpm, matches the experimental date near 3960=ω rpm quite well. Moreover, the other amplitude peak appearing in the rotational speedrange7700=ω rpm to 8100 rpm can be found in both experimental and numerical analysis results.The corresponding frequency value of this peak is just the frequency doubling of the system critical speed.The Floquet theory can be used for analyzing the stability and topological properties of the periodic solution of the ball bearingrotor system. If the gained Floquet multipliers are less than unity,the periodic solution of the system is stable. If at least one Floquet multiplier exists with the absolute value higher than unity, the periodic solution is unstable and the topological properties of response alter into nonperiodic motion [29]. The leading Floquet multipliers and its absolute value at 7600=ω rpm, 8029 rpm, and 8200 rpm are shown in Table 2. It is found that the leading Floquet multiplier of the system remains in the unit circle, which indicates a synchronous response, as the rotational speed is less than 7700 rpm. Stability analysis shows that the imaginary part of the two leading Floquet multipliers move in opposite directions along the real axis near 7700=ω rpm. When the speed exceeded 7700=ω rpm, the leading Floquet multiplier crosses the unit circle through -1, as shown in Table 2. The periodic solution loses stability and undergoes a period-doubling bifurcation to a period-2 response, which indicates that a subharmonicresonance occurs. The subharmonic resonance keeps on from 7700=ω rpm to 8100 rpm. At 8100=ω rpm, the leading Floquet multiplier moves inside the unit circle through -1. Imply that the subharmonic resonance vanishes and the synchronous response returns. The synchronous response then continues to exist forspeeds above 8100=ω rpm.The waterfall map of frequency spectrums comparisons for prediction and experiment results are illustrated in Fig. 6. It can be found that agreement between the prediction and the experimental data is remarkable. The frequency component 66.9 Hz, near the forward resonance frequency, emerges and its amplitude rises significant when the rotational speed is near 8029 rpm. It is shown that the resonance frequency is provoked when the speed is about twice the critical speed of the ball bearing-rotor system, and the subharmonic resonance occurs. The experimental and numerical analysis indicate that the representative nonlinear behavior and the subharmonic resonance arise from the nonlinearity of ball bearings, Hertzian contact forces, and internal clearance.The orbit and frequency spectrum at 8029=ω rpm are plotted in Fig. 7. Not only the prediction orbit but also the experiment results imply that the response is a period-2 motion, which is illustrated in Fig. 7(a). The predicted frequency components, consisting of 8.133=ω Hz (8029 rpm) and 9.662=ω Hz (4014rpm), coincide with experimental data. It indicates that the periodic response loses stability through a period-doubling bifurcation to a period-2 response. Thus, the subharmonic resonance occurs due to the effects of ball bearings. It can cause severe vibration and strong noise. Moreover, the subharmonic resonance could couple with other destabilizing effects on engineering rotor systems such as Alford forces, internal damping, and so on, and induce the rotor to lose stability and damage.5 ConclusionsAn experimental rig is employed to investigate the nonlinear dynamic behavior of ball bearing-rotor systems. The corresponding dynamic model is established wi th the finite element method and 2DOF dynamic model of a ball bearing, which includes the nonlinear effects of the Hertzian contact force and bearing internal clearance. All of the predicted results are in good agreement with experimental data, thus validating the proposed model. Numerical and experimental results show that the resonance frequency is provoked, and the subharmonic resonance occurs due to the nonlinearity of ball bearings when the speed is about twice the synchroresonance frequency. The subharmonic resonance cannot only cause severe vibration and strong noise, but also induce the rotor to lose stability and damage, once coupled with other destabilizing effects on high-speed turbomachinery such as Alford forces, internal damping, and so on. It is found that the effect of the Hertzian contact forces could also induce a subharmonic resonance, even if the internal clearance was not present. But, the response amplitude and subharmonic component of the rotor system without internal clearance are less than that with both Hertzian contact forces and internal clearance. Otherwise, the clearance may be unavoidable under high-speed operations, where the bearings are axially preloaded since the effect of unbalanced load is significant at high speed. Thus, the nonlinearity of ball bearings,Hertzian contact forces, and internal clearance should be taken into account in ball bearing-rotor system design and failure diagnosis.AcknowledgmentThe authors would like to acknowledgment the support of the National Natural Science Foundation of China (Grant No.10902080) and Natural Science Foundation of Shaanxi Province(Grant Nos. SJ08A19 and 2009JQ1008).References[1] Gutafsson, O., and Tallian, T., 1963, “Resear ch Report on Study of the Vibration Characteristics of Bearings,” SKF Ind. Inc. Technical Report No.AL631023.[2] Saito, S., 1985, “Calculation of Non-Linear Unbalance Response of Horizontal Jeffcott Rotors Supported by Ball Bearings With Radial Clearances,” ASME J.Vib., Acou st., Stress, Reliab. Des., 107(4), pp. 416–420.[3] Aktürk, N., Uneeb, M., and Gohar, R., 1997, “The Effects of Number of Balls and Preload on Vibrations Associated With Ball Bearings,” ASME J. Tribol.,119, pp. 747–753.[4] Liew, A., Feng, N., and Hahn, E., 2002, “Transient Rotordynamic Modeling of Rolling Element Bearing Systems,” ASME J. Eng. Gas Turbines Power,124(4), pp. 984–991.[5] Bai, C. Q., and Xu, Q. Y., 2006, “Dynamic Model of Ball Bearing With Internal Clearance and Waviness,” J. Sound Vib., 294(1-2), pp. 23–48.[6] De Mul, J. M., Vree, J. M., and Maas, D. A., 1989, “Equilibrium and Associated Load Distribution in Ball and Roller Bearings Loaded in Five Degrees of Freedom While Neglecting Friction—Part I: General Theory and Application to Ball Be arings,” ASME J. Tribol., 111, pp. 142–148.[7] Mevel, B., and Guyader, J. L., 1993, “Routes to Chaos in Ball Bearings,” J.Sound Vib., 162, pp. 471–487.[8] Jang, G. H., and Jeong, S. W., 2002, “Nonlinear Excitation Model of Ball Bearing Waviness in a Rigid Rotor Supported by Two or More Ball Bearings Considering Five Degrees of Freedom,” ASME J. Tribol., 124, pp. 82–90.[9] Jang, G. H., and Jeong, S. W., 2003, “Analysis of a Ball Bearing With Waviness Considering the Centrifugal Force and Gyroscopic Moment of the Ball,”ASME J. Tribol., 125, pp. 487–498.[10] Tiwari, M., Gupta, K., and Prakash, O., 2000, “Effect of Radial Internal Clearance of a Ball Bearing on the Dynamics of a Balanced Horizontal Rotor,” J.Sound Vib., 238(5), pp. 723–756.[11] Tiwari, M., Gupta, K., and Prakash, O., 2000, “Dynamic Response of an Unbalanced Rotor Supported on Ball Bearings,” J. Sound Vib., 238(5), pp.757–779.[12] Harsha, S. P., 2005, “Non-Linear Dynamic Response of a Balanced Rotor Supported on Rolling Element Bearings,” Me ch. Syst. Signal Process., 19(3),pp. 551–578.[13] Harsha, S. P., 2006, “Rolling Bearing Vibrations—The Effects of Surface Waviness and Radial Internal Clearance,” Int. J. Computational Methods in Eng Sci. and Mech., 7(2), pp. 91–111.[14] Harsha, S. P., 2006, “Nonlinear Dynamic Analysis of a High-Speed Rotor Supported by Rolling Element Bearings,” J. Sound Vib., 290(1–2), pp. 65–100.[15] Gupta, T. C., Gupta, K., and Sehqal, D. K., 2008, “Nonlinear Vibration Analysis of an Unbalanced Flexible Rotor Supported by Ball Bearings With Radial Internal Clearance,” Proceedings of the ASME Turbo Expo, Vol. 5, pp. 1289–1298.[16] Bai, C. Q., Zhang, H. Y., and Xu, Q. Y., 2008, “Effects of Axial Preload of Ball Bearing on theNonlinear Dynamic Characteristics of a Rotor-Bearing System,” Nonlinear Dyn., 53(3), pp. 173–190. [17] Sinou, J. J., 2009, “Non-Linear Dynamics and Contacts of an Unbalanced Flexible Rotor Supported on Ball Bearings,” Mech. Mach. Theory, 44(9), pp.1713–1732.[18] Yamamoto, T., Ishida, Y., and Ikeda, T., 1984, “Vibrations of a Rotating Shaft With Rotating Nonlinear Restoring Forces at the Major Critical Speed,” Bull.JSME, 27(230), pp. 1728–1736.[19] Ishida, Y., and Yamamoto, T., 1993, “Forced Oscillations of a Rotating Shaft With Nonlinear Spring Characteristics and Internal Damping (1/2 Order Subharmonic Oscillations and Entrainment),” Nonlinear Dyn., 4(5), pp. 413–431.[20] Lee, Y. S., and Lee, C. W., 1999, “Modeling and Vibration Analysis of Misaligned Rotor-Ball Bearing Systems,” J. Sound Vib., 224(1), pp. 17–32.[21] Tiwari, M., Gupta, K., and Prakash, O., 2002, “Experimental Study of a Rotor Supported by Deep Groove Ball Bearing,” Int. J. Rotating Mach., 8(4), pp.243–258.[22] Ishida, Y., Liu, J., Inoue, T., and Suzuki, A., 2008, “Vibrations of an Asymmetrical Shaft With Gravity and Nonlinear Spring Characteristics (IsolatedResonances and Internal Resonances),” ASME J. Vib. Acoust., 130(4),p.041004.[23] Mevel, B., and Guyader, J. L., 2008, “Experiments on Routes to Chaos in Ball Bearings,” J. S ound Vib., 318, pp. 549–564.[24] Bai, C. Q., Xu, Q. Y., and Zhang, X. L., 2006, “Dynamic Properties Analysis of Ball Bearings—Liquid Hydrogen Turbopump Used in Rocket Engine,”ACTA Aeronaut. Astronaut. Sinica, 27(2), pp. 258–261. [25] Nelson, H., 1980, “A Finite Rotating Shaft Element Using Timoshenko Beam Theory,” ASME J. Mech. Des., 102(4), pp. 793–803.[26] Zhang, W., 1999, Basis of Rotordynamic Theory, Science Press, Beijing,China, Chap. 3.[27] Harris, T. A., 1984, Rolling Bearing Analysis, 2nd ed., Wiley, New York.[28] Aktürk, N., 1993, “Dynamics of a Rigid Shaft Supported by Angular Contact Ball Bearings,” Ph.D. thesis, Imperial College of Science, Technology and Medicine, London, UK.[29] Zhou, J. Q., and Zhu, Y. Y., 1998, Nonlinear Vibrations, Xi’an Jioatong University Press, Xi’an, China.附录B英文翻译非线性动力学的实验和转子轴承系统支持的行为的数值研究深沟球轴承在高速流体机械部件承担严重的振动和噪声的固有的非线性是很重要的。
船舶增压器静压气体轴承-转子系统动力学特性研究

第3 0卷第 1 2期
动
与
冲
击
J OURNAL OF VI RAT ON AND H0C B I S K
船舶 增 压 器静 压 气体 轴 承 一转子 系统动 力 学特 性研 究
于贺春 ,马文琦 ,赵 广。 ,王祖 温 ,陈龙兴 ,刘海艳
162 ;. 1062 中原工学院 机电学院 , 郑州
3 col f n r n o e E gneig D l nU ie i f eh o g , a a 104 C ia .S ho o e adP w r nier , a a nvr t o T cnly D ln16 2 , hn ) E g y n i sy o i
Ab t a t An a r sai e r g r t rs s m i h p t r o h r e s su id O e q a i y a c i tr ci n sr c : e o tt b a i —oo y t w t a s i u b c a g rwa t d e . n u s— n mi n e a t c n e h d o me h d b t e n f w f l n oo y a c sp o o e .C D s f r su e ac lt o ed wi a ain o t o ew e o e d a d r t r n mi s l i d wa r p s d F o t ewa s d t c l ua ef w f l t v r t f wa o l i h i o e c n rct n o o p e .B s d o h ac l t n r s l ,o e n n i e rf t g f n t n o e b a i g l a a a i c e t i a d r tr s e d i y a e n t e c lu ai e u t o s n o l a t n u c i ft e r o d c p ct n i i o h n y r lt d t c e t ct n oo p e s d r e .T ef i l me t t o n h o p i g a ay i meh d wee u e e ae o e c n r i a d r t rs e d wa e v d h n t ee n h d a d t e c u l n l s t o r s d i y i i e me n s r s e t ey t u l h y a c mo e f h oo y tm n o c c lt t d n mi e p n e u d r t e i f e c so e p c i l o b i t e d n mi v d d l e r trs se a d t a u ae i y a c r s o s n e h n u n e f o t l s l g a i ,u b ln e o c n a l fr e T e c i c l s e d a d t e r s o s h r ce sis w r b a n d T e rvt y n aa c d fr e a d g s f m o c . h rt a p e n h e p n e c a a t r t e e o t i e . h i i i c c mp td n me c l r s l e e v r e t e t . T e su yn e u t s o d t a h r p s d meh d b s d o o u e u r a e u t w r e i d wi tss i s i f h h t d i g r s l h we h t t e p o o e t o a e n s c c lt n r s l f C D a d s r e d n mi h r c e i i s o n e o tt b a i g r t r s se etr t a h l a u ai e u t o F c n e c i y a c c a a trs c f a a r s i e r —oo y t m b t h n t e o s b t a c n e t dt n l to o s r i o a h d d e . a i me
对挤压油膜阻尼器轴承和旋转机械转子_挤压油膜阻尼器轴承系统动力特性研究的回顾与展

对挤压油膜阻尼器轴承和旋转机械转子—挤压油膜阻尼器轴承系统动力特性研究的回顾与展望ΞRETROSPECT AN D PROSPECT TO THE RESEARCH ON SQUEEZE FI LM DAMPER BEARING (SFDB)AN D ON DY NAMIC CHARACTERISTICSOF ROTATING MACHINER Y ROTOR —SFDB SYSTEM夏 南ΞΞ1 孟 光1,2(1.上海交通大学振动、冲击、噪声国家重点实验室,上海200030) (2.佛山大学思源研究所,佛山528000)XI A Nan 1 MEN G Guang 1,2(1.State K ey Laboratory o f Vibration ,Shock and Noise ,Shanghai Jiaotong Univer sity ,Shanghai 200030,China )(2.Siyuan Institute ,Foshan Univer sity ,Foshan 528000,China )摘要 简要介绍挤压油膜阻尼器轴承及其基本分类,介绍各种挤压油膜阻尼器轴承的动力学特性研究和建立阻尼器流体动力模型与挤压油膜力的进展情况,总结了支承在挤压油膜阻尼器轴承上的旋转机械转子系统的动态响应特性和稳定性的研究结果及对这类强非线性的转子—阻尼器支承系统的非线性响应特性研究的进展情况,并对该类减振结构的未来发展进行了展望。
关键词 转子动力学 挤压油膜阻尼器轴承 油膜惯性力 回顾与展望中图分类号 TH113 T B535.1 O328Abstract Squeeze film dam per bearing (SFDB )is now widely used in aeroengine and other rotating machineries due to its advantages of obvious is olating effect ,sim ple structure ,small space and easy manu facturing.In this paper ,different kinds of SFDB and the research results on the dynamic characteristics of these SFDB and on the m odels of fluid dynamic and squeeze film force were introduced.The research achievements on the dynamic response characteristics and stability of the rotating machinery rotor supported on SFDB were reviewed.Als o the progressing on the nonlinear responses analysis of such strong nonlinear rotor —dam per support system was introduced.The future development of and research on the SFDB was prospected.K ey w ords R otordynamics;Squeeze film d amper bearing;F luid inertia force ;R etrospect and prospect Correspondent :MENG Guang ,E 2mail :gmeng @mail ,Fax :+862212629322212804The project supported by the National Defense Pre 2Research Project and the University K ey T eacher Support Program of China.Manuscript received 20010128,in revised form 20010412.1 引言自从第一篇有关转子动力学的论文由Rankine [1]发表以来,转子动力学作为动力学的一个独立分支得到了极大的发展。
航空发动机滚动轴承及其双转子系统共振问题研究综述

航空发动机滚动轴承及其双转子系统共振问题研究综述作者:李轩来源:《科技风》2022年第11期摘要:针对航空燃气涡轮发动机滚动轴承及其双转子系统存在的复杂振动问题,综述了近年来国内外该领域的主要研究成果。
首先,概述了双转子系统动力学建模与分析的研究成果。
其次,综述了双转子系统动力学响应分析研究的现状与主要进展。
最后对现有研究工作进行了展望,对该领域的发展趋势进行了说明。
关键词:转子动力学;双转子系统;共振;非线性;滚动轴承滚动轴承及其双转子系统作为航空燃气涡轮发动机的主要结构,存在着大量复杂振动现象,能够引发系统复杂故障甚至灾难性的事故,其产生机理十分复杂。
所以人们针对相关系统进行了大量研究,从不同角度研究并阐述了多种复杂共振现象的触发机制,对进一步改善航空燃气涡轮发动机等相关滚动轴承—双转子系统机械的安全性、稳定性、可靠性具有重要的理论与实际工程意义。
为了缓解航空燃气涡轮发动机滚动轴承及其双转子系统运行时的高频小幅度不规则运动,防止系统在特定运行条件下产生有害共振,并仍能保持良好的动力学性能。
学者们需要深入研究航空发动机滚动轴承—双转子系统的运动学与造成其运动的力学特点,从而分析解决实际系统存在的各种共振问题。
为此,研究创建适合于剖析滚动轴承—双转子系统动力学特性的模型很有必要。
本文对航空发动机滚动轴承—双转子系统动力学建模以及双转子系统的动力学响应特性的研究现状进行了归纳,并对滚动轴承及其双转子系统共振研究的发展趋势进行了预测。
1 航空发动机双转子系统的动力学建模与分析实际双转子航空燃气涡轮发动机工况十分复杂,为了准确研究航空燃气涡轮发动机滚动轴承—双转子系统运行中的动力学行为,航空燃气涡轮发动机双转子系统的动力学建模问题被学者们广泛研究。
路振勇等[1]依据某真实航空发动机的双转子系统,创建了较为复杂的非连续化动力学模型。
并在对该模型进行了降维后,计算了系统发生共振的对应转速,发现依据复杂非连续化动力学模型计算得到的结果与采用传统方法计算得到的结果相比差异极小,证明了降维模型能很好反映双转子系统的实际共振特性。
磁悬浮轴承稳定性分析

磁悬浮轴承稳定性分析磁悬浮轴承(Magnetic Bearing)是利用磁力作用将转子悬浮于空中,使转子与定子之间没有机械接触。
与传统的滚珠轴承,滑动轴承以及油膜轴承相比,磁轴承不存在机械接触,转子的转速可以运行到很高,具有机械磨损小,能耗低,噪声小、寿命长、无需润滑,无油污染等优点,特别适用于高速、真空、超净等特殊环境。
这项技术是20世纪60年代中期在国际上开始研究的一项新的支撑技术。
在各个领域都有着广泛的应用。
本文主要分析磁悬浮轴承的稳定性问题。
文章的第一部分介绍了磁悬浮轴承在国际和国内的发展与研究现状,并分析了磁悬浮轴承的一些特点。
文章的第二部分对磁悬浮轴承的稳定性进行了讨论,先论证了永磁轴承无法实现自稳定,然后对电磁轴承的稳定性进行了分析。
关键词:磁悬浮,轴承,电磁轴承,永磁轴承,稳定性第一章引言第一节磁悬浮轴承的研究背景国际上很早就有了利用磁力使物体处于无接触悬浮状态的设想, 但其实现却经历了很长的一段时间。
1842 年, Earnshow 证明: 单靠永磁体不能将一个铁磁体在所有 6 个自由度上都保持在自由稳定的悬浮状态.真正意义上的磁悬浮研究开始于20世纪初的利用电磁相吸原理的悬浮车辆研究,1937 年, Kenper 申请了第一个磁悬浮技术专利, 他认为,要使铁磁体实现稳定的磁悬浮, 必须根据物体的悬浮状态不断的调节磁场力的大小,因此必须采用可控电磁铁,这也是以后开展磁悬浮列车和磁悬浮轴承研究的主导思想。
随着现代控制理论和电子技术的飞跃发展, 20世纪 60 年代中期对磁悬浮技术的研究跃上了一个新台阶。
日本、英国、德国都相继开展了对磁悬浮列车的研究。
资料记载: 1969 年, 法国军部科研实验室(LRBA ) 开始对磁悬浮轴承的研究; 1972 年,第一个磁悬浮轴承用于卫星导向轮的支撑上, 从而揭开了磁悬浮轴承发展的序幕。
此后, 磁悬浮轴承很快被应用到了国防、航天等各个领域。
1983年11月,美国在搭载在航天飞机上的欧洲空间试验仓里采用了磁悬浮轴承真空泵; 同年,日本将磁悬浮轴承列为 80 年代新的加工技术之一, 1984 年, S2M 公司与日本精工电子工业公司联合成立了日本电磁轴承公司, 在日本生产、销售涡轮分子泵和机床电磁主轴等。
滚动轴承-转子系统非线性动力响应分析

第1 期
《 燃
气
轮
机
技
术》
V0 1 . 26 No .1 Ma r .,201 3
2 0 1 3年 3月
GAS TUR BI NE I ECHNoL0GY
滚 动 轴 承一 转 子 系统 非线 性 动 力 响应 分 析
陶海亮 , 潘 波 , 高 庆 。 , 郭 宝亭 , 谭春 青 ,
剪切效应 、 回转效应 、 转子 几何 参数等影 响 因素 , 对滚 动轴 承模 型考虑 了非线 性赫兹 接触及 由滚 动轴承 支承
刚度变化而产生 的 V C ( V a r y i n g C o m p l i a n e e ) 振 动。运用 N e w m a r k—B法 获得 了连续转 子 的系统响应 , 利 用时
域波形 、 分岔 图、 P o i n c a r e映射 图和频谱 图分析 了该 转子系统 的非线 性动力 学行为 。结 果表明 : 由于不 同参数
的影响 , 转 子碰摩 系统具有 丰富 的非线 性现 象 。本模 型 考虑 了更 多 的影 响 因素 , 可 为复 杂转子 的非 线性 设
计、 故 障诊 断提供 更为准确合理 的理论参 考。 关 键 词: 转子 ; 滚动轴 承 ; 连续模型 ; 非线性 ; 分 岔
基 金项 目: 国家 8 6 3计划重点项 目( 2 0 0 7 A A 0 5 0 5 0 2 ) 作者简 介 : 陶海亮 ( 1 9 8 6一 ) 男, 博士生 , E - m a i l : t a o h i a l i a n g @m a i l . e t p . a c . c a 。
1 6
燃气轮机技术
l Y
考虑螺栓松脱特性的航空发动机转子动力学研究

张庆山裴世源洪军(西安交通大学现代设计与转子轴承系统教育部重点实验室)摘要:为了研究螺栓松脱对航空发动机转子动力学特性的影响,本文以航空发动机模拟转子为研究对象,建立了具有螺栓松动特性的有限元模型,利用螺栓松脱-横向裂纹等效法分析了螺栓连接结合面的开闭变化规律以及螺栓松脱单元的时变刚度特性,采用谐波平衡法求解了系统的运动方程,通过时域、频域和三维频谱图对比分析了有无螺栓松脱两种工况下系统的振动响应。
研究表明,当存在螺栓松脱时,结合面的开闭区域与旋转角度有关,具体变化过程为完全闭合到完全张开再到完全闭合;当螺栓松脱数量较大时,主刚度随分界线位置的变化幅度较大,且会产生轴向-剪切、轴向-扭转、弯曲-扭转等耦合刚度;系统在一阶临界转速以及1/2,1/3,1/4临界转速附近出现峰值,在三维频谱图中除了基频成分还出现了二倍频成分2×、三倍频成分3×和四倍频4×成分。
研究结果为航空发动机转子螺栓松脱的故障诊断提供了理论依据。
关键词:航空发动机;螺栓松脱;转子动力学;动力学特性;时变刚度特性中图分类号:TK474.7+2文章编号:1006-8155-(2021)01-0056-09文献标志码:ADOI:10.16492/j.fjjs.2021.01.0008Research on Aero-engine Rotor Dynamics ConsideringBolt Loosening CharacteristicsQing-shan ZhangShi-yuan PeiJun Hong(Key Laboratory of Education Ministry for Modern Design and Rotor-Bearing System )Abstract:In order to study the influence of bolt loosening on the dynamic characteristics of aero-engine rotors,this paper takes the aero-engine simulated rotor as the research object,establishes a finite element model of bolt loosening characteris-tic.The loosening-transverse crack method is used to analyze the changes of the joint surface and the stiffness characteristics of bolt.The harmonic balance method is used to solve equation,and the system vibration response under two working condi-tions is analyzed through the comparison of time domain,frequency domain and three-dimensional spectrogram.Research shows that when there is a bolt loosening,the opening and closing area of the joint surface is related to the rotation angle.The specific change process is from closed to opened and then closed.When the number of loosening bolts is large,the main stiff-ness varies with the position of the dividing line is large,and it will produce axial-shear,axial-torsion ,cure-torsion and other coupling stiffness.The system has peaks near the first-order critical speed and the 1/2,1/3,and 1/4critical speeds.In the spectrogram,in addition to the fundamental frequency component,there are also the double frequency component,the triple frequency component and the quadruple frequency component.The research results provide a theoretical basis for the fault di-agnosis of aero-engine rotor bolt loosening.Keywords:Aero-engine,Bolt Loosening,Rotor Dynamics,Dynamic Characteristics,Stiffness Characteristics考虑螺栓松脱特性的航空发动机转子动力学研究**基金项目:国家自然科学基金资助项目(51975456)Chinese Journal of Turbomachinery Vol.63,2021,No.10引言航空发动机作为飞机的心脏,是飞机工作性能的决定因素之一,而航空发动机转子作为航空发动机的核心部件,其可靠性直接影响飞机的安全性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 转 子一 承一 轴 密封 系 统 动 力 学 方 程
、
_ —s 厂 x 町
j
I
^ 一s 町
() 2
0
一 — — -
采 用 短 轴 承 支 撑 的 刚 性 Jf ot 子. 1 ef t 转 c 图
为转子 一 圆盘 机 械 密封 系统 , 定 转 子 为 单 圆 盘 假 系统 , 端 支撑在 滑动 轴 承上 , 两 油膜 力 , 作 用
y
、
n
)
“
2
一
2
一
[+ t 号 眦a n
一
]
-
0 08P S 圆盘左侧转 轴刚度 k 为 1 0 N/ . 1 a・ , ×i m; 右侧转 轴 刚度 k 为 1 0 ×1 N/ m. 以右轴 承为 例分 析 , 2为 轴颈 中心 分岔 图 , 图 当转速 过低 时 , 子作 周期运 动 , 转 叫一1 0rd s时 5 a / 的轴 心 轨 迹 图 , on ae映 射 图 如 图 3所 示. p icr 当
关 键 词 : 力 传 动 系统 ; 力 学 模 型 ; 动 稳 定 性 ; 动 动 动 运 振
中 图 法 分 类 号 : 6 . U6 4 2 d i 1 . 9 3 jis . 0 53 4 . 0 2 0 . 4 o : 0 3 6 /.sn 2 9 8 4 2 1 . 4 0 1
转子一 轴承一 密封 系统 中, 多影 响转 子 系统 的 诸 动力学行为及其振动状态 的因素 已经逐渐得 到人 们
摘 要 : 立 了转 子 一 承一 封 动 力 学 模 型 , 过 数 值 积分 模 拟 方 法 , 究 了轴 系 对 中偏 心 、 承 支 承 建 轴 密 通 研 轴 润滑特性 、 密封 力 等 动 态 因 素 对 系 统 振 动 的影 响 , 运 动 行 为 和 各 因 素 对 系 统 运 动 稳 定 性 的影 响 , 其 得 出 了 各 种 因 素 与 系 统 运 动 行 为 之 间 的相 互 关 系 .
程 版 , O 1,5 3 :5 55 8 2 1 3 ( ) 9— 9 .
定 性 和 Ho f 岔 [] p分 J .振 动 工 程 学 报 , 9 7 1 ( ) 1 9 ,0 3 :
m3 + C + lY — Y ) ^ + F — m3 1 (a 2一 r g
收 稿 日期 :0 20 —5 2 1 32 王 } 1 7一) 讲 师 , 要 研 究 领 域 为 船 舶 机 械 与 油 气 运 输 等 叟( 9 0 : 主 国 家 自然 科 学 基 金 项 目资 助 ( 准 号 :0 7 12 批 5 65 6 )
S
1
C 一 + y, V( x, a)一
0 S
/
(
S, (y x, a
一
备
×
轴 颈 问隙为 0 2mm; . 圆盘质量 偏 心 为 0 0 . 6mm; 轴 承结 构阻 尼 c 为 50 0N ・ 0 S・m ; 圆盘结 构 阻尼 c 为 20 0N ・S・r ; 滑 介 质 粘 度 为 0 n 润
的重视 , 对于诸 如发 电机组 、 船舶推 进轴系等 旋转机 械, 其中的动密封 装置 , 如迷 宫密 封 、 例 机械 端 面密
式 中 : 为 左 轴 承 处轴 颈 质 量 ;
为圆盘质量 ;
m。 为右 轴承 处 轴 颈 质 量 .1 c 别 是 轴 承 与 圆 f, 分 盘处 结 构阻 尼 ; ,。分 别 为 圆 盘 两 侧 转 轴 的刚 是
[] J.航 空 动 力 学 报 , 0 7 2 ( ) 13 2 0 , 2 5 :-.
[ ] 陈予 恕 , 3 于 千 , 书 军 .非 线 性 转 子一 封 系 统 的 稳 侯 密
[ 2 杨 令 康 , 汉 华 , 立 峰 .转 子 一 承 系 统 的 润 滑 与 碰 7 朱 贺 轴
摩特性分析[] J.武 汉 理 工 大 学 学 报 : 通 科 学 与 工 交
第 3 卷 第 4期 6
2 2年 8月 01
武 汉理 工大 学学 报 ( 交通科 学 与工 程版 )
J u n lo u a ie st fTe h o o y o r a fW h n Un v riy o c n lg
( a s o t t n S in e & En ie rn ) Tr n p rai ce c o gn eig
一
[r 一。 2 f O
.
2
)T / /f
D
l 1 I. 儿.J
( 5)
图 3 轴 颈 中 心轨 迹 图 、on ae 射 图 ( p icr 映
・
82 3 ・
武汉理工大学学报( 通科 学与工程版) 交
21 年 02
第 3 6卷
[]徐 4
参 考 文 献
,
,
I/ | ]
;
—7 7
■
l
\
I
在 左轴 承处 轴颈 上 , 油膜 力 , , 封 力 F , 密 xF
作 用在 右轴 承处轴 颈 上.
m l + CX l Xl 1 + l X1 X2 ( 一 )一 f x
I
f . 一
, g’ 1 r
( 一
2c o
餐
7 2 n
一
:
+ 南
z一 一 如
一
+
。
+
一 寺+
l
‘ 一 z 一
s
f一l 2 Jl ㈥一[ D Km 。J 【 L 一 二 一 l F K J — ) — L l—
∞ ( l L
一
7 2o n A
0 20 40 60 80 )l00 0 0 0 ( 0
篝 薹
o 2 4 60 8 10 00 00 0 00 00
∞/(a ¥1 rd・-)
z
s
一
寺 + k (一 + 2。
一 c 2
—
10 . 05 . 0 05 . 1( .)
m 1c J o
上
+— ( 一 ) z 一 :
1 。
一
_ _
心 轨迹 图 , on ae映 射 图 如 图 8所 示 , p icr 当 一
m 1J o
6 5rd s时 , 2 a / 转子 进入 拟周 期运 动 , 心轨 迹 图 , 轴
p icr on ae映射 图如 图 9所示 .
. .
m2
2
+ C 2
+ 1 Y2一 Y1 ( )+
( 1)
式 : 为。 el S c () 中 w smf W s mr e d, L ×
( ) .
×
( y2一 Y3 )一 m2 w sn ( )一 m2 i c r ot
Ⅲ3 + C X3 X3 1 + 1 X3一 X2 ( )一 x+ Fx
Vo . 6 No 4 13 .
A ug. 2 2 01
转 子一 承一 封 系统 的 多 因素 动力 行 为研 究 * 轴 密
王 瞍 。 帅 健
( 汉 理 工 大 学 能 源 与 动 力 工 程 学 院” 武 汉 武
刘 焰 明”
北京 1 24 ) 0 2 9
4 0 6 ) ( 国 石 油 大 学 机 电学 院 3 0 3 中
为 圆盘位 移 ; 。 z, 。为 右 侧 轴 颈 位 移 ; r为 圆盘 质
量偏 心距 ; 为转 子转 动角 速 度. , 为动 静 环 F
之 间液膜 对转 轴 x , Y方 向 的合力 .
本文 中, 密封力 采用 Mu z n k 模 型. sy s a 油膜力 , 采 用 短 轴 承 非 线 性 油 膜 力 模 - 厂 型 , 达式 为 表
・
80 3 ・
武汉理工大学学报( 通科学与工程版) 交
21 0 2年
第3 6卷
3
3
数 值 计 算 结 果 分 析
z
其中: n Ⅱ
.
假定 系统 的参 数 : 为 1 0k ; 为 8 g m1 0 g m2 Ok m。为 3 0 k ; 轴 承 半 径 为 4 0 g 右 0 mm、 度 为 长 2 0mm; 轴 承 半 径 为 6 0 左 0 mm、 度 为 6 长 0 mm;
1 221 1 4. — 22
[] 李 松 涛 , 庆 余 .迷 宫 密 封 一 动 轴 承 一 子 系 统 的 非 1 许 滑 转 线 性 动 力 稳 定 性 [] J .航 空 学 报 ,0 3 2 ( ) 15 20 ,4 3 :-.
[] 叶建槐 , 占生. 2 刘 非线 性转子一 密封系统稳定性 与分岔
华, 朱
均 . 械 密 封 对 转 子 轴 承 系统 动 力 学 性 机
能 的 影 响 [] 西 安 交 通 大 学 学 报 ,0 4 3 ( ) l3 J. 2 0 ,8 7 :_.
E ] 李 永 . 子 轴 承 一 封 系 统 的 非 线 性 振 动 与 分 岔 5 转 密 [ ] 大 连 : 连 理 工 大 学 ,0 7 D. 大 20. []武新华 , 6 张新 江 , 小 平 , . 性 转 子 一 承 系 统 的 非 薛 等 弹 轴 线性动力 学研 究 E] 中国机 械 工程 ,01 1( 1 : J. 2 0 , 2 1 )
10 .
0. 5
一
Z z— )一 C  ̄ _ + k ( l 1
c ) o .
2
2一 c sr+ — o
C II T2
( 3一 2 )+
— —
0 0. 5
10 .
:
c/(a s 。 【 rd・。) )