基于FPGA的QPSK调制解调器的设计

合集下载

基于FPGA的QPSK OFDM调制解调器设计与实现

基于FPGA的QPSK OFDM调制解调器设计与实现

基于FPGA的QPSK OFDM调制解调器设计与实现OFDM(正交频分多路复用)是一种高效的调制解调技术,常用于无线通信系统中。

本文将介绍基于FPGA的QPSK(四相移键控)OFDM调制解调器的设计与实现。

一、引言OFDM技术在无线通信领域有着广泛的应用,其通过将高速数据流分成多个低速子载波进行传输,有效提高了系统的传输效率和频谱利用率。

而QPSK调制方式在OFDM系统中常被使用,能够传输两个比特的信息。

二、系统设计1. 系统框架基于FPGA的QPSK OFDM调制解调器主要包括信号生成、调制、多载波复用、通道传输、接收、解调等模块。

其中,信号生成模块负责产生待发送的信息信号;调制模块将信息信号进行QPSK调制;多载波复用模块将调制后的信号进行串行-并行转换;通道传输模块将并行数据通过多个子载波进行传输;接收模块接收并处理接收到的信号;解调模块将接收到的信号进行QPSK解调,得到原始信息信号。

2. 信号生成在信号生成模块中,我们可以使用伪随机序列发生器生成随机的数字信号作为待发送的信息源。

这里我们选择使用16位的二进制数字信号。

3. QPSK调制QPSK调制模块将二进制信号映射到复平面上的四个相位,即正弦信号与余弦信号共同构成的星座图。

通过将两个比特的输入分别映射到正弦信号与余弦信号的相位上,得到QPSK调制信号。

4. 多载波复用多载波复用模块将QPSK调制信号进行串行-并行转换,将多个并行的调制信号通过并行数据总线发送到通道传输模块。

5. 通道传输通道传输模块将并行的调制信号通过多个子载波进行传输。

在传输过程中,可能会出现信道衰落、噪声等问题,需要引入信道估计和均衡技术进行处理。

6. 接收与解调接收模块接收到经过信道传输后的信号,并进行信道估计和均衡处理,将接收到的信号进行QPSK解调,得到原始的二进制信息。

三、系统实现本文使用基于FPGA的开发板进行系统的实现。

通过使用硬件描述语言进行电路的设计,将各个模块进行逻辑连接,实现QPSK OFDM 调制解调器的功能。

基于FPGA的QPSK系统设计

基于FPGA的QPSK系统设计

目录摘要:本文 (1)关键字: (2)1设计分析 (2)1.1设计目的 (2)1.2 设计任务与要求 (2)1.3 设计原理分析 (3)2系统控制器模块分析 (3)2.1 VHDL简介 (3)2.1.1VHDL具有以下特点: (3)2.1.1.1功能强大、设计灵活 (3)2.1.1.2支持广泛、易于修改 (4)2.1.1 .3强大的系统硬件描述能力 (4)2.1.1.4独立于器件的设计、与工艺无关 (4)2.1.1.5很强的移植能力 (4)2.1.1.6编辑本段优势 (4)2.2 FPGA简介 (5)2.2.1FPGA工作原理 (5)2.2.2FPGA芯片结构 (6)2.2.3基本特点 (7)2.3 QPSK简介 (8)2.3.1QPSK正交调制器原理图 (8)2.3.2QPSK相干解调原理图 (9)2.4 QPSK调制电路的FPGA实现及仿真 (9)2.4.1 基于FPGA的QPSK调制电路方框图 (9)24.2 调制电路VHDL程序及仿真结果 (10)2.5 QPSK解调电路的FPGA实现及仿真 (12)2.5.1 基于FPGA的QPSK解调电路方框图 (12)2.5.2解调电路VHDL程序及仿真结果 (12)3结论 (15)4参考文献 (16)摘要:本文采用FPGA设计芯片技术对多进制数字通信技术的QPSK调制器实现进行了研究与分析,将调制器中原有多种专用芯片的功能集成在一片大规模可编程逻辑器件FPGA芯片上,实现了高度集成化、小型化、实际研究仿真表明,该方案具有突出的灵活性和高效性,为设计者提供了多种可自由选择的设计方法和工具。

关键字:FPGA、QPSK、数字通信随着电子技术的不断发展与进步,电子设计系统设计方法发生了很大的变化,传统的设计方法正在退出历史的舞台,而基于EDA技术的芯片设计正在成为电子系统设计的主流。

随着现代信息技术的发展,模拟调制技术越来越不能满足日益发展的移动通信、视频信号传输以及卫星通信的要求,数字调制技术日益得到重视。

如何实现一种基于FPGA全数字高码率QPSK调制设计?

如何实现一种基于FPGA全数字高码率QPSK调制设计?

如何实现一种基于FPGA全数字高码率QPSK调制设计?1 ** 全数字高码率QPSK调制解调软件设计**1.1 QPSK调制1.1.1 QPSK调制原理1.1.2 QPSK并行调制实现调制(信号)的符号速率达到500Mbps,根据奈奎斯特采样定理,DA的采样频率采用2Gbps。

由于数据速率比较的高,对(FPGA)运算要求太高,因此在设计过程中,采用并行处理的方式,来减轻对FPGA运算的压力。

图1-1为高码率500M QPSK调制实现框图。

其实现的原理为将二进制数据流经过QPSK映射后形成I、Q两路基带信号,在经过8倍成型(滤波器)后,分别与两路正交的数字本振混频后相加输出至(DAC)即可。

图1-1 并行QPSK调制实现框图1.1.2.1 QPSK符号映射QPSK信号的每个码元包含两个比特(信息),可用ab表示。

ab 序列有四种排列,即00,01,10,11。

每种排列对应4种不同的调制相位。

通常各种排列的相位关系按照格雷码进行编码,其符号映射关系如图1-2所示。

图1-2 QPSK映射星座图在实现过程中,将每个符号所包含的两比特二进制信息,分别对应为I、Q两路,先到的信息比特映射为I路,后到的信息比特映射为Q路。

其中二进制0对应正值(逻辑高+1),二进制1对应负值(逻辑低-1)。

图1-3为500Mbps QPSK调制(MATLAB)(仿真)映射星座图,从图中可以看出基带数据严格聚集在[-1,-1],[-1,1],[1,-1],[1,1]四个相位点上。

图1-3 500MbpsQPSK调制MATLAB仿真映射星座图1.1.2.2数字基带成型滤波由于现代无线电(通信)及卫星通信中,频带和功率一般均受限。

一方面,为了有效利用信道,节约频谱资源,需要对发射信号进行带限;另一方面,当矩形脉冲通过带限信道时,脉冲会在时间上扩展,每个符号的脉冲将扩展到相邻符号的码元内,这会造成码间串扰(ISI),并导致接收机在(检测)码元时发生错误的概率增大。

基于FPGA的QPSK解调技术的设计与实现的开题报告

基于FPGA的QPSK解调技术的设计与实现的开题报告

基于FPGA的QPSK解调技术的设计与实现的开题报告一、选题背景及意义随着现代通信技术的发展,频谱资源越来越紧张,为提高频谱利用效率,射频通信系统中使用数字调制技术是一种可有效降低带宽能量占用和提高信道容量的方式。

其中一种常用的数字调制技术是QPSK调制,它可以将两路单极性NRZ数据分别调制在正弦波和余弦波载波上,实现带宽利用率的提高。

在接收端,解调器需要对QPSK调制信号进行还原,提取出原始的信息数据。

因此,本课题选取了基于FPGA的QPSK解调技术的设计与实现作为研究方向,旨在探索一种高效实现数字信号解调的方法,为提高现代通信技术的发展水平做出贡献。

二、研究内容1. 系统总体设计本课题设计的QPSK解调系统包括射频前端的载频同步、时序同步、均衡、解调等模块,还包括数字信号处理相关的滤波器、采样率变换等模块。

通过这些模块的协同作用,将接收到的QPSK调制信号解调还原成原始的数字信号数据流。

2. 载频同步模块该模块负责完成载频的同步,用于去除接收端的时移影响和相位偏差。

常用的载频同步算法有Costas算法、DDS算法、ZT算法等。

3. 时序同步模块该模块用于解决接收数据中时序抖动的问题,采用软判决算法实现。

4. 均衡模块该模块用于抑制信道传输时产生的干扰,提高系统的抗干扰性能。

常用的均衡算法有线性均衡算法、决策反馈均衡算法等。

5. 解调模块该模块用于将QPSK调制信号还原成原始数字信号。

该模块通常包括滤波器、采样率变换器等子模块。

三、研究计划第一年:我们将完成系统的总体设计,并完成载频同步模块和时序同步模块的算法研究和验证。

同时进行硬件平台的搭建和仿真测试。

第二年:我们计划完成均衡模块和解调模块的算法研究和验证,并将这些模块集成到硬件平台上。

在验证完成后,完善系统的功能和性能,并进行实际场景测试。

第三年:在系统的测试和实际应用中不断完善和优化,提高系统的性能和稳定性,并探索将该技术应用到更广泛领域的可能性,为现代通信技术的发展做出更大的贡献。

基于FPGA的QPSK高速数字调制系统的研究与实现

基于FPGA的QPSK高速数字调制系统的研究与实现

基于FPGA的QPSK高速数字调制系统的研究与实现摘要:介绍了一种基于FPGA的QPSK的高速数字调制系统的实现方案。

先从调制系统的基本框图入手,简要介绍其实现原理及流程;然后着重介绍FPGA功能模块的软件编程、优化及整个系统的性能。

关键词:FPGA QPSK 直接序列扩频高速调制1 系统实现原理及流程本调制系统的设计目的是实现高速数字图像传输。

系统的硬件部分主要包括FPGA、A/D转换器、D/A转换器、正交调制器、输出电路等。

根据数字图像传输的特点,采用扩频调制技术。

这是因为扩频方式的抗干扰、抗衰落及抗阻塞能力强,而且扩频信号的功率谱密度很低,有利于隐蔽。

同时,为了提高数据传输的可靠性和有效性,降低信号失真度,减少码间干扰,在调制系统中还加入编码、交比例中项及匹配滤波。

这些处理都在FPGA中实现,使整个调制系统具有可编程的特点,易于根据实际要求进行功能上的扩展和缩减。

系统的原理框图如图1所示。

电路的具体工作过程为:图像信号经过A/D转换器AD9214完成模/数转换,输出信号送入FPGA。

由FPGA对信号进行编码、交织、串/并变换、扩频调制及匹配滤波。

FPGA输出两路数字信号,经过双D/A转换器AD9763实现数/模转换,输出两路模拟信号。

这两路信号经过正交调制器AD8346正交调制输出,实现QPSK调制。

因为正交调制器输出的信号功率较小,所以将其经过模拟放大器放大和带通滤波,之后再送到输出。

在整个调制系统中,FPGA模块的软件设计是最为重要的,也是进行系统优化的主要部分,它的优劣会直接影响整个系统的性能。

下面对这部分进行详细的介绍。

2 软件部分实现原理FPGA模块的软件设计部分包括以下几个方面:编码、交织、串并变换、扩频、匹配滤波以及复位和时钟。

2.1 编码和交织数字通信中经常使用信道编码加交织模块来提高数据传输的可靠性和有效性。

为了达到一定的增益要求,选择卷积码中纯编码增益为3.01的(1,1,6)码(在大信噪比下),并对其进行增信删余。

QPSK调制解调技术的设计与仿真

QPSK调制解调技术的设计与仿真

摘要本文主要阐述的是QPSK调制与解调电路的设计。

数字调制解调技术在数字通信中占有非常重要的地位。

为了使数字信号在带通信道中传输,必须用数字信号对载波进行调制。

根据所处理的基带信号的进制不同分为二进制和多进制调制(M进制)。

多进制数字调制与二进制相比,其频谱利用率更高,在有限的信道频带内,能够传输高速数据。

数字通信技术与FPGA的结合是现代通信系统发展的一个必然趋势。

多进制数字调制技术与FPGA的结合使得通信系统的性能得到了迅速的提高。

文中介绍了QPSK调制解调的原理,并基于FPGA实现了QPSK调制解调电路。

MUXPLUSⅡ环境下进行编译、综合仿真,验证了设计的正确性。

此外,本方案采用了相位选择法,与常用的调相解调法相比,设计更简单,更适合于FPGA实现,系统的可靠性也更高。

通过对仿真波形的分析可知,该方案很好的实现了QPSK调制与解调功能。

关键词:PSK FPGA QPSK调制解调AbstractThis article mainly deals with the design of QPSK modulation and demodulation circuit. Technology of digital modulation and demodulation plays an important role in digital communication system.In order to transmit digital signal in band-pass channel,digital signal must be used on the carrier modulation..According to the different bands of digital signal that is handled,there are binary and multi-band pared with binary modulation ,multi-band modulation has higher specrum utilization rate,and it could transmit high-speed data in limited-band channel.The combination of digital communication technology and FPGA is a certainly trend of the development of modern communication system.The combination of multi-band modulation and FPGA makes the performance of communication system a rapid increase.The paper introduces the principle of QPSK modulation and demodulation, the circuits are also be realized based on FPGA. The complier and simulation under MAX+PLUSII environment provides the correction of the design..In addition, this design employs phase selection ,compared with the PM demodulation method,phase selection is simpler,more suitable for FPGA implementation,the reliability of the system is higher.The analysis of simulation waveform indicates that the programme achieves QPSK modulation and demodulation functions well.Keywords:PSK FPGA QPSK modulation demodulation目录摘要 (I)ABSTRACT.................................................... I I 前言 (1)1.绪论 (2)1.1QPSK的简介 (2)1.2FPGA和CPLD简介 (2)1.3VHDL简介 (3)1.4MAX+PLUS II简介 (3)2.调制与解调电路的基本设计原理 (4)2.1QPSK调制的电路原理图 (5)2.2QPSK解调的电路原理图 (5)3.QPSK调制与解调电路的设计 (6)3.1调制电路的设计 (6)3.1.1 设计思路 (6)3.1.2 调制电路的程序 (7)3.1.3 调制电路仿真结果 (8)3.2解调电路的设计 (9)3.2.1 设计思路 (9)3.2.2 解调电路的程序 (10)3.2.3 解调电路的仿真结果 (10)3.3仿真分析 (11)3.3.1 BPSK调制解调的实现及其仿真波形 (11)3.3.2 BPSK和QPSK的区别 (16)3.3.3 QPSK仿真波形的分析 (18)4.总结 (20)参考文献 (21)附录 (22)前言现代通信系统要求通信距离远、通信容量大、传输质量好。

基于FPGA的QPSK调制解调的系统仿真

基于FPGA的QPSK调制解调的系统仿真

基于FPGA的QPSK调制解调的系统仿真摘要:本文针对传统的四相移键控(QPSK)的调制解调方式提出一种基于高速硬件描述语言(VHDL)的数字式QPSK调制解调模型。

这种新模型便于在目标芯片FPGA/CPLD上实现QPSK调制解调功能。

文中介绍了QPSK调制解调的原理,并基于FPGA实现了QPSK 调制解调电路。

并给出了可编程逻辑器件FPGA的最新一代集成设计环境QuartusⅡ进行系统仿真的仿真结果。

关键词:QPSK FPGA 调制解调仿真无线通信在现代社会中起着举足轻重的作用。

作为数字通信技术中重要组成部分的调制解调技术一直是通信领域的热点课题。

在众多调制方式中,四相相移键控(QPSK)信号由于抗干扰能力强而得到了广泛的应用,具有较高的频谱利用率和较好的误码性能,并且实现复杂度小,解调理论成熟。

现场可编程门阵列(FPGA)具有功能强大,开发过程投资小、周期短,可反复编程修改,保密性能好,开发工具智能化等特点,用FPGA实现调制解调电路,不仅降低了产品成本,减小了设备体积,满足了系统的需要,而且比专用芯片具有更大的灵活性和可控性。

本课题主要研究了基于FPGA的QPSK调制解调的系统仿真,并给出了QuartusII环境下的仿真结果[1]。

1 QPSK调制的原理四相绝对移相键控QPSK是MPSK的一种特殊情况,它利用载波的四种不同相位来表征数字信息。

由于每一种载波相位代表两个比特信息,故每个四进制码元又被称为双比特码元。

我们把组成双比特码元的前一信息比特用a表示,后一比特信息用b表示。

双比特码元中两个信息比特ab通常是按格雷码(即反射码)排列的,当ab为00时,载波相位为0°,当ab为01时,载波相位为90°,当ab为11时,载波相位为180°,当ab为10时,载波相位为270°。

2 QPSK信号的产生与解调2.1 QPSK信号的产生QPSK信号的产生分为调相法和相位选择法。

基于FPGA的QPSK调制器的设计与实现

基于FPGA的QPSK调制器的设计与实现
第8 卷第 4期
20 0 8年 l 2月
湖南 冶金 职 业技 术 学院 学 报
Ju a fHu a tl ria rfsin l e h oo yC U g o r lo n nMeal gc l oe s a c n lg o ee n u P o T
V0. No4 1 8 .
率 、 强 的抗干 扰性 、 电路 上 实现也 较 为简单 , 较 在 本 文研 究 了基 于 F G P A的 Q S P K调制 电路 的实现
【a)^万 i相 系统 c
图 1QP SK信 号Q atsI 境 下 的仿 真 结 ur l环 u
内部 的 P L直 接产 生 Ck L l0和 Ck ll两 路 频 率 相
l F G 0 l / : PA I -l 2 3 xl
一 | 4 "/ r4 r
种 : 幅 键 控 (S ) 频 移 键 控 (s )相 移 键 控 振 A K、 FK、 (S ) P K 。根据 所处 理 的基 带信 号 的进 制不 同 , 它们
可 分 为二进 制 和多进 制 调制( 进制 ) M 。多进制 数


一r 12 /
中图 分 类号 : M7 文 献标 识 码 : 文章 编号 :62 7 1 ( 0)4 0 9 0 T 6 A 17 — 422 8 — 9— 3 0 0
0 引 言
于a b通常是按格 雷码 的规 则排 列的 , 它与 载波 故 相位的对应关 系如表 1 示 ,相 应的 向量关 系如 所
种不 同相位的载波 。按串饼 变换 器的双 比特码元 的不 同 , 逻辑选相 电路输 出相 应相位 的载波 , 虚线
11 四相 绝对移 相键控 ( P K . QS )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档