2011年广东省高考数学试卷A(理科)
2011年高考数学理科试卷(全国1卷)(含答案)(新课标卷卷)

2012年普通高等学校招生全国统一考试理科数学一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)复数212ii+-的共轭复数是 (A )35i - (B )35i (C )i - (D )i(2)下列函数中,既是偶函数哦、又在(0,)单调递增的函数是 (A )2y x = (B) 1y x =+ (C )21y x =-+ (D) 2xy -=(3)执行右面的程序框图,如果输入的N 是6,那么输出的p 是 (A )120 (B )720(C )1440 (D )5040(4)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为 (A )13 (B )12 (C )23 (D )34(5)已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线2y x =上,则cos 2θ=(A )45-(B )35- (C )35 (D )45(6)在一个几何体的三视图中,正视图和俯视图如右图所示, 则相应的俯视图可以为(7)设直线l 过双曲线C 的一个焦点,且与C 的一条对称轴垂直,l 与C 交于 A,B 两点,AB 为C 的实轴长的2倍,则C 的离心率为(A (B (C )2 (D )3(8)512a x x x x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭的展开式中各项系数的和为2,则该展开式中常数项为(A )-40 (B )-20 (C )20 (D )40(9)由曲线y ,直线2y x =-及y 轴所围成的图形的面积为(A )103 (B )4 (C )163(D )6 (10)已知a 与b 均为单位向量,其夹角为θ,有下列四个命题12:10,3P a b πθ⎡⎫+>⇔∈⎪⎢⎣⎭ 22:1,3P a b πθπ⎛⎤+>⇔∈ ⎥⎝⎦3:10,3P a b πθ⎡⎫->⇔∈⎪⎢⎣⎭ 4:1,3P a b πθπ⎛⎤->⇔∈ ⎥⎝⎦其中的真命题是(A )14,P P (B )13,P P (C )23,P P (D )24,P P (11)设函数()sin()cos()(0,)2f x x x πωϕωϕωϕ=+++><的最小正周期为π,且()()f x f x -=,则(A )()f x 在0,2π⎛⎫⎪⎝⎭单调递减 (B )()f x 在3,44ππ⎛⎫⎪⎝⎭单调递减 (C )()f x 在0,2π⎛⎫⎪⎝⎭单调递增(D )()f x 在3,44ππ⎛⎫⎪⎝⎭单调递增 (12)函数11y x =-的图像与函数2sin (24)y x x π=-≤≤的图像所有焦点的横坐标之和等于(A )2 (B) 4 (C) 6 (D)8第Ⅱ卷本卷包括必考题和选考题两部分。
2011年高考真题(河北省)——理科数学(河北省) Word版含答案

绝密 ★ 启用前2011年普通高等学校招生全国统一考试理科数学(必修+选修II )本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分。
第I 卷1至2页。
第II 卷3至4页。
考试结束后,讲本试卷和答题卡一并交回。
第I 卷注意事项:1、 答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。
请认真核准条形码上的准考证号、姓名和科目。
2、 每小题选出答案后,用2B 铅笔吧答题卡上对应题目的答案标号涂黑,如需改动,用橡皮 擦干净后,再选涂 其他答案标号。
3、 第I 卷红12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
一、 选择题(1)复数z =1+i ,z 为z 的共复数,则z z -z -1=(A )-2i (B )-I (C )I (D )2i(2) 函数)0(2y ≥=x x 的反函数为(A ))(42R x x y ∈= (B ))0(42≥=x x y (C ))(42R x x y ∈= (D ))0(42≥=x x y (3)下面四个条件中,使b a >成立的充分而不必要的条件是(A )1+>b a (B )1->b a(C )22b a > (D )33b a >(4)设πS 为等差数列}{πa 的前n 项和,若11=a ,公差2=d ,242=-+k k S S ,则k =(A )8 (B )7 (C )6 (D )5(5)设函数)0(cos )(>=ωωx x f ,将)(x f y =的图像向右平移3π个单位长度后 ,所得的图像与原图像重合,则ω的最小值等于(A )31 (B )3 (C )6 (D )9(6)已知直二面角,点βια--,ι⊥AC ,C 为垂足,β∈B ,ι⊥BD ,D 为垂足,若2=AB ,1==BD AC ,则D 到平面ABC 的距离等于()(A) 32 (B) 33 (C) 36(D) 1(7) 某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友,每位朋友1本,则不同的赠送方法共有()(A)4种 (B) 10种 (C) 18种 (D)20种(8)曲线12+=-x e y 在点(0,2)处的切线与直线0=y 和x y =围成的三角形的面积为 (A )31 (B )21 (C )32(D )1(9)设f(x)是周期为2的奇函数,当0≤x ≤1时,f(x)=2x(1-x),则(A ) (B ) (C ) (D )(10)已知抛物线C :的焦点为F ,直线y=2x-4与C 交与A ,B 两点,则cos ∠AFB=(A ) (B ) (C ) (D )(11)已知平面截一球面得圆M ,过圆心M 且与成二面角的平面截该球面得圆N.若该球面得半径为4,圆M 的面积为4π,则圆N 的面积为(A )7π (B )9π (C )11π (D )13π(12)设向量a ,b ,c 满足|a|=|b|=1,a b=,<a-c,b-c>=,则|c|的最大值等于 (A )2 (B )(C ) (D )1第II 卷注意事项:1. 答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,然后贴好条形码,请认真核准条形码上的准考证号,姓名和科目。
2011年全国高考文科数学试题及答案-广东

2011年普通高等学校招生全国统一考试(广东卷)数学(文科)本试卷共4页,21小题,满分150分。
考试用时120分钟。
注意事项: 1.答卷前,考生务必用黑色字迹的钢笔或签字笔将字迹的姓名和考生号、实施号、座位号填写在答题卡上用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。
将条形码横贴在答题卡右上角“条形码粘贴处”。
2.选择题每小题选出答案后,用2B 铅笔把大题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。
3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须卸载答题卡个题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
4.作答选做题时,请先用2B 铅笔填涂选作题地题号对应的信息点,再作答,漏凃,错涂、多涂。
答案无效。
5.考生必须保持答题卡的整洁,考试结束后,将试卷和答题卡一并交回。
参考公式:锥体体积公式V=13Sh,其中S 为锥体的底面积,h 为锥体的高。
线性回归方程^^^y b x a =+中系数计算公式^^^121(1)(1),(1)ni ni x x y y b a y b x x ==--==--∑∑样本数据x 1,x 2, (x)21()2(2)()n x x x x x x -+-+- 其中,x y 表示样本均值。
N 是正整数,则1221()(ab )n n n n n n a b a b a a b b -----=-+++……一、选择题:本大题共10小题,每小题5分,满分50分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设复数z 满足iz=1,其中i 为虚数单位,则 A .-i B .i C .-1 D .12.已知集合A=(,),x y x y 为实数,且221x y +=,B=(,),x y x y 为实数,且1x y +=则A ⋂B 的元素个数为A .4B .3C .2D .13.已知向量a=(1,2),b=(1,0),c=(3,4)。
2011高考广东卷(文科数学)

2011年普通高等学校招生全国统一考试(广东卷)数学(文科) 试卷类型:A参考公式:锥体的体积公式 sh V 31=,其中s 为锥体的底面积,h 为锥体的高 线性回归方程 y bxa =+ 中系数计算公式121()()ˆˆˆ,()nii i nii xx y y b ay b x xx ==--==--∑∑, 样本数据n x x x ,,,21 的标准差])()()[(122221x x x x x x ns n -++-+-=其中y x ,表示样本均值。
n 是正整数,则()n n a b a b -=-12(n n a a b --++…21n n ab b --+)一、选择题:本大题共10小题,每小题5分,满分50分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设复数z 满足iz=1,其中i 为虚数单位,则z= A .-i B .i C .-1 D .12.已知集合},1,|),{(22=+=y x y x y x A 为实数,且},1,|),{(=+=y x y x y x B 为实数,且则A ∩B 的元素个数为A .4B .3C .2D .13.已知向量a=(1,2),b=(1,0),c=(3,4).若λ为实数,()a b λ+∥c ,则λ= A .14 B .12C .1D .2 4.函数)1lg(11)(x xx f ++-=的定义域是 A .)1,(--∞ B .(1,+∞) C . ),1()1,1(+∞⋃- D .(-∞,+∞) 5.不等式0122>--x x 的解集是A .1(,1)2-B .(1,+∞)C .(-∞,1)∪(2,+∞)D .1(,)(1,)2-∞-⋃+∞6.在平面直角坐标系xoy 上的区域D 由不等式组⎪⎩⎪⎨⎧≤≤≤≤yx y x 2220给定.若M(x,y)为D 上的动点,点A 的坐标为)1,2(,则OA OM z ∙=的最大值为A .3B .4CD 7.正五棱柱中,不同在任何侧面且不同在任何底面的两顶点的连线称为它的对角线,那么一个正五棱柱对角线的条数共有A .20B .15C .12D .10 8.设圆C 与圆1)3(22=-+y x 外切,与直线y =0相切,则C 的圆心轨迹为A .抛物线B .双曲线C .椭圆D .圆 9.如图1-3,某几何体的正视图(主视图),侧视图(左视图)和俯视图分别是等边三角形, 等腰三角形和菱形,则该几何体体积为A .34B .4C .32D .210.设)(),(),(x h x g x f 是R 上的任意实值函数,如下定义两个函数))(())((x g f x g f o ∙和;对任意))(())((,x g f x g f R x o =∈;)()())((x g x f x g f =∙,则下列恒等式成立的是 )))(()(())().((x h g h f x h g f A o o ∙∙=∙ )))(()(())().((x h g h f x h g f B o o o ∙=∙ )))(()(())().((x h g h f x h g f C o o o o o = )))(()(())().((x h g h f x h g f D ∙∙∙=∙∙ 二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分。
2011年普通高等学校高中数学招生全国统一考试模拟试题(二) 理(广东卷)

绝密★启用前2011年普通高等学校招生全国统一考试模拟试题(二)理科数学(必修+选修II) 第I 卷注意事项:1.答第I 卷前,考生务必将自己的某某、某某号、考试科目涂写在答题卡上。
2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
不能答在试题卷上。
3.本卷共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
参考公式:如果事件A B 、互斥,那么球的表面积公式()()()P A B P A P B +=+24S R π=如果事件A B 、相互独立,那么其中R 表示球的半径()()()P A B P A P B =球的体积公式如果事件A 在一次试验中发生的概率是p ,那么343V R π=n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径()(1)(0,1,2,)k kn k n n P k C p p k n -=-=…一.选择题(1).设i 为虚数单位,复数121,21z i z i =+=-,则复数21Z Z •在复平面上对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限(2).设(1)xy a =-与1()x y a=(1a >且a ≠2)具有不同的单调性,则13(1)M a =-与31()N a=的大小关系是 ( )A .M<NB .M=NC .M>ND .M ≤N(3).若实数x ,y 满足⎪⎩⎪⎨⎧≤+≥≥,1234,0,0y x y x 则132+++=x y x z 的取值X 围是 ( )A .]11,23[B .⎪⎭⎫⎢⎣⎡11,23C .[3,11]D .[)11,3(4).已知n S 是等差数列{}n a 的前n 项和,且63S =,1118S =,则9a 等于( )A .3B .5C .8D .15(5).已知)(x f 是R 上的增函数,点A (-1,1),B (1,3)在它的图象上,)(1x f -为它的反函数,则不等式1|)(log |21<-x f的解集是()A .(1,3)B .(2,8)C .(-1,1)D .(2,9) (6).2011年哈三中派出5名优秀教师去大兴安 岭地区的三所中学进行教学交流,每所中学至少派一名教师,则不同的分配方法有( ) A .80 B .90 C .120 D .150 (7).已知函数a x f x x x f =∈=)(),3,2(,cos )(若方程ππ有三个不同的根,且三个根从小到大依次成等比数列,则a 的值可能是 ( ) A .21B .22 C .21-D . -22 (8)ABC ∆中,60,A A ∠=︒∠的平分线AD 交边BC 于D ,已知AB=3,且1()3AD AC AB R λλ=+∈,则AD 的长为( ) A .1BC.D .3(9).已知球O 是棱长为1的正方体ABCD —A 1B 1C 1D 1的内切球,则平面ACD 1截球O 所得的截面面积为( )A .36πBC .9π D .6π (10).设3()f x x x =+,x R ∈. 若当02πθ≤≤时,0)1()sin (>-+m f m f θ恒成立,则实数m 的取值X 围是 ( ) A .(0,1) B .)0,(-∞ C .)21,(-∞ D .)1,(-∞(11).定义在),(+∞-∞上的偶函数)(x f 满足)()1(x f x f -=+,且)(x f 在]0,1[-上是增函数,下面五个关于)(x f 的命题中:①)(x f 是周期函数;②)(x f 图像关于1=x 对称;③)(x f 在]1,0[上是增函数;④)(x f 在]2,1[上为减函数;⑤)0()2(f f =,正确命题的个数是 ( )A . 1个 B. 2个 C. 3个 D. 4个(12).已知1F 、2F 为双曲线C:221x y -=的左、右焦点,点P 在C 上,∠1F P 2F =060,则P 到x 轴的距离为 ( )第Ⅱ卷注意事项:1.用0.5毫米的黑色字迹签字笔在答题卡上作答。
2011年广东省高考理科数学模拟试题(三)

2011年广东高考全真模拟试卷理科数学(三)本试卷共4页,21小题, 满分150分. 考试用时120分钟.一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.若将复数ii-+11表示为a + bi (a ,b ∈R ,i 是虚数单位)的形式,则a + b =A .0B .1C .-1D .22.已知p :14x +≤,q :256x x <-,则p 是q 成立的A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分又不必要条件 3.已知{}n a 是等差数列,154=a ,555=S ,则过点34(3,(4,),)P a Q a 的直线的斜率 A .4B .41 C .-4D .-144.已知()xf x a b =+的图象如图所示,则()3f =A .2B 3C .3D .3或3-5.已知直线l 、m ,平面βα、,则下列命题中假命题是A .若βα//,α⊂l ,则β//lB .若βα//,α⊥l ,则β⊥lC .若α//l ,α⊂m ,则m l //D .若βα⊥,l =⋂βα,α⊂m ,l m ⊥,则β⊥m6.2010年广州亚运会组委会要从小张、小赵、小李、小罗、小王五名志愿者中选派四人分别从事翻译、导游、礼仪、司机四项不同工作,若其中小张和小赵只能从事前两项工作,其余三人均能从事这四项工作,则不同的选派方案共有A.36种 B .12种 C .18种 D .48种 7.设向量a 与b 的夹角为θ,定义a 与b 的“向量积”:a b ⨯是一个向量,它的模sin a b a b θ⨯=⋅⋅,若()()3,1,1,3a b =--=,则a b ⨯=A .2C .D .48.已知函数:c bx x x f ++=2)(,其中:40,40≤≤≤≤c b ,记函数)(x f 满足条件:(2)12(2)4f f ≤⎧⎨-≤⎩为事件为A ,则事件A 发生的概率为A .14 B . 58 C .38 D .12二、填空题:本大题共7小题,其中9~13题是必做题,14~15题是选做题,每小题5分,满分30分.9.52)1)(1(x x -+展开式中x 3的系数为_________.10.两曲线x x y y x 2,02-==-所围成的图形的面积是_________.11.以点)5,0(A 为圆心、双曲线191622=-y x 的渐近线为切线的圆的标准方程是_________.12.已知函数)8(,)0)(3()0(2)(-⎩⎨⎧≤+>=f x x f x x f x 则=_________.13.已知3444815=,…若=(,a t 均为正实数),则类比以上等式,可推测,a t 的值,a t += .▲选做题:在下面两道小题中选做一题,两题都选的只计算前两题的得分. 14.(坐标系与参数方程选做题)若直线112,:()2.x t l t y kt =-⎧⎨=+⎩为参数与直线2,:12.x s l y s =⎧⎨=-⎩(s 为参数)垂直,则k = .15.(几何证明选讲选做题)点,,A B C 是圆O 上的点, 且04,45AB ACB =∠=,则圆O 的面积等于_____.三、解答题:本大题共6小题,共80分.解答应写出文字说明、演算步骤或推证过程.16.(本小题满分12分)已知向量)3,cos 2(2x a =→-,)2sin ,1(x b =→-,函数()f x a b =⋅,2)(→-=b x g . (Ⅰ)求函数)(x g 的最小正周期;(Ⅱ)在∆ABC 中,c b a ,,分别是角C B A ,,的对边,且3)(=C f ,1=c ,32=ab ,且b a >,求b a ,的值.17.(本小题满分12分)某食品厂为了检查一条自动包装流水线的生产情况,随机抽取该流水线上40件产品作为样本,称出它们的重量(单位:克),重量的分组区间为(]495,490,(]500,495,…,(]515,510,由此得到样本的频率分布直方图,如右图所示.(1)根据频率分布直方图,求重量超过505克的产品数量.(2)在上述抽取的40件产品中任取2件,设Y 为重量超过505克的产品数量,求Y 的分布列.(3)从流水线上任取5件产品,求恰有2件产品的重量超过505克的概率.18.(本小题满分14分)如图,四面体ABCD 中,O 、E 分别是BD 、BC2,CA CB CD BD AB AD ======(1) 求证:AO ⊥平面BCD ;(2) 求异面直线AB 与CD 所成角余弦的大小; (3) 求点E 到平面ACD 的距离. 19.(本小题满分14分)已知椭圆2221(01)y x b b+=<<的左焦点为F ,左右顶点分别为A,C 上顶点为B ,过F,B,C 三点作P ,其中圆心P 的坐标为(,)m n .(1) 若椭圆的离心率2e =,求P 的方程; (2)若P 的圆心在直线0x y +=上,求椭圆的方程.20.(本小题满分14分)已知向量2(3,1),(,)a x b x y =-=-,(其中实数y 和x 不同时为零),当||2x <时,有a b ⊥,当||2x ≥时,//a b .(1) 求函数式()y f x =;(2)求函数()f x 的单调递减区间; (3)若对(,2]x ∀∈-∞-[2,)+∞,都有230mx x m +-≥,求实数m 的取值范围.21.(本小题满分14分)设数列{n a }的前n 项和为n S ,并且满足n a S n n +=22,0>n a (n ∈N*). (Ⅰ)求1a ,2a ,3a ;(Ⅱ)猜想{n a }的通项公式,并加以证明; (Ⅲ)设0>x ,0>y ,且1=+y x , 证明:11+++y a x a n n ≤)2(2+n .CE。
2011年北京高考数学理科试卷(带详解)
2011年普通高等学校招生全国统一考试(北京卷)数学(理)第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合{}{}2|1,P x x M a ==….若P M P = ,则a 的取值范围是( )A .(], 1-∞-B .[1, +∞)C .[11]?-,D .][1 1-∞-+∞ (,,)【测量目标】集合的基本运算,并集.【考查方式】描述法,列举法表示出集合,根据两集合并集为其中一集合,求参数取值范围. 【难易程度】容易 【参考答案】C【试题解析】2{|1}{|11}P x x x x ==-剟?,[1,1]P M P a =⇒∈- ,选C.2.复数i 212i-=+( )A .iB .i -C .43i 55-- D .43i 55-+ 【测量目标】复数的代数运算.【考查方式】直接求复数的代数式的值. 【难易程度】容易 【参考答案】A【试题解析】22i 2(i 2)(12i)2i i i 242(1)2412i (12i)(12i)141i ii i 4(1)-----+---+====++----,选A. 3.在极坐标系中,圆2sin ρθ=-的圆心的极坐标是( )A .π(1,)2B .π(1,)2-C .()1,0D .(1π),【测量目标】坐标系和参数方程.【考查方式】给出参数方程,化为圆的标准方程得到圆心,进而得到圆心极坐标. 【难易程度】容易 【参考答案】B【试题解析】222sin (1)1x y ρθ=-⇒++=,圆心直角坐标为0,1-(),极坐标为π(1,)2-,选B.4.执行如图所示的程序框图,输出的s 值为( )第4题图A .3-B .12- C .13 D .2【测量目标】循环结构的程序框图. 【考查方式】看懂程序框图内的逻辑,代数关系,求值. 【难易程度】容易 【参考答案】D【试题解析】循环操作4次时S 的值分别为11,,3,232--,选D. 5.如图,,,AD AE BC 分别与圆O 切于点,,D E F 延长AF 与圆O 交于另一点G .给出下列三个结论: ①CA BC AB AE AD ++=+; ②AF AG AD AE = ③ADG AFB ∽△△ 其中正确结论的序号是( )第5题图A .①②B .②③C .①③D .①②③【测量目标】圆的性质.【考查方式】给出图形,根据圆的性质,判断命题的正确性. 【难易程度】中等 【参考答案】A【试题解析】①正确.由条件可知BD BF =,CF CE =,可得CA BC AB AE AD ++=+. ②正确.通过条件可知AD AE =.由切割定理可得2AF AG AD AD AE == . ③错误.连接FD ,若ADG AFB ∽△△,则有ABF DGF ∠=∠.通过图像可知 2ABF BFD BDF DGF ∠=∠+∠=∠,因而错误.答案选A.6.根据统计,一名工作组装第x 件某产品所用的时间(单位:分钟)为,()x A f x x A <=…(A ,c 为常数).已知工人组装第4件产品用时30分钟,组装第A 件产品用时15分钟,那么c 和A的值分别是 ( ) A .75,25 B .75,16 C .60,25 D .60,16 【测量目标】分段函数,函数的应用.【考查方式】将分段函数应用到实际问题中,进行分段求解. 【难易程度】中等 【参考答案】D【试题解析】由条件可知,x A …时所用时间为常数,所以组装第4件产品用时必然满足第一个分段函数,即(4)3060f c ==⇒=,()1516f A A ==⇒=,选D. 7.某四面体的三视图如图所示,该四面体四个面的面积中,最大的是( )第7题图A .8 B. C .10 D.【测量目标】空间三视图的表面积.【考查方式】已知四面体的三视图,通过三视图还原几何体,求最大面的面积. 【难易程度】容易 【参考答案】C【试题解析】由三视图还原几何体如下图,该四面体四个面的面积中最大的是PAC △,面积为10,选C.第7题图8.设()0,0A ,()4,0B ,()4,4C t +,()(),4D t t ∈R .记()N t 为平行四边形ABCD 内部(不含边界)的整点的个数,其中整点是指横、纵坐标都是整数的点,则函数()N t 的值域为 ( )A .{}9,10,11B .{}9,10,12C .{}9,11,12D .{}10,11,12【测量目标】平行四边形的定义,直角坐标系.【考查方式】根据已给的两点和含参的两点,在直角坐标系中确定平行四边形,得到坐标,求出参数.【难易程度】较难 【参考答案】C【试题解析】如下图,分别对应点为12,9,11,选C.第8题图第二部分 (非选择题 共110分)二、填空题共6小题,每小题5分,共30分. 9.在ABC △中.若b =5,π4B ∠=, tan A =2,则sin A =____________;a =_______________. 【测量目标】正弦定理,同角三角函数的基本关系.【考查方式】给出一角和其对应边的大小以及另一角的正切值,根据正弦定理和同角关系求角A 正弦值和对应边长. 【难易程度】中等【参考答案】5,【试题解析】由tan 2A =⇒sin 12cos sin cos 2A A A A =⇒=,又22sin cos 1A A +=所以 221sin sin 14A A +=解得sin A =55,πsin 4a ==a =10.已知向量a =1),b =(0,-1),c =(k.若2-a b 与c 共线,则k =________. 【测量目标】向量的坐标和线性运算.【考查方式】给出两向量的具体坐标和一向量参数坐标,根据共线关系,求参数值. 【难易程度】容易 【参考答案】1【试题解析】2-=a b 由2-a b 与c31k k =⇒= 11.在等比数列{n a }中,1a =12,44a =-,则公比q =______________;12...n a a a +++=____________.【测量目标】等比数列通项以及前n 项和.【考查方式】给出等比数列两项,利用等比数列的通项求公比,继而求出前n 绝对值的和. 【难易程度】中等 【参考答案】2-,1122n --【试题解析】由{}n a 是等比数列得341a a q =,又141,4,2a a ==- 所以31422q q -=⇒=-,{||}n a 是以12为首项,以2为公比的等比数列,1121||||||22n n a a a -+++=- .12.用数字2,3组成四位数,且数字2,3至少都出现一次,这样的四位数共有__________个.(用数字作答)【测量目标】排列,组合及其应用. 【考查方式】通过排列组合计算个数. 【难易程度】容易 【参考答案】14【试题解析】个数为42214-=.13.已知函数32,2()(1),2x f x x x x ⎧⎪=⎨⎪-<⎩… 若关于x 的方程()f x k =有两个不同的实根,则实数k 的取值范围是_______【测量目标】利用函数单调性求参数的范围.【考查方式】已知函数的解析式和条件,求参数的取值范围. 【难易程度】中等 【参考答案】(0,1) 【试题解析】2()(2)f x x x=…单调递减且值域为(0,1],3()(1)(2)f x x x =-<单调递增且值域为(,1)-∞,()f x k =有两个不同的实根,则实数k 的取值范围是(0,1).14.曲线C 是平面内与两个定点1(1,0)F -和2(1,0)F 的距离的积等于常数2(1)a a >的点的轨迹.给出下列三个结论: ① 曲线C 过坐标原点; ② 曲线C 关于坐标原点对称;③若点P 在曲线C 上,则12F PF △的面积不大于212a . 其中,所有正确结论的序号是 . 【测量目标】命题的正确性.【考查方式】给出已知条件,判断命题的正确性. 【难易程度】较难 【参考答案】②③【试题解析】①曲线C 经过原点,这点不难验证是错误的,如果经过原点,即么1a =,与条件不符;②曲线C 关于原点对称,这点显然正确,如果在某点处212||||,PF PF a =关于原点的对称点处也一定符合212||||;PF PF a =③三角形12F F P 的面积invm S 12=12||||PF PF 121sin 2F PF ∠…12||||PF PF =22a三、解答题共6小题,共80分,解答应写出文字说明,演算步骤或证明过程. 15.(本小题共13分) 已知函数π()4cos sin()16f x x x =+-.(Ⅰ)求()f x 的最小正周期:(Ⅱ)求()f x 在区间ππ,64⎡⎤-⎢⎥⎣⎦上的最大值和最小值. 【测量目标】函数sin()y A x ωϕ=+的图像及其变换,两角和的正弦.【考查方式】将已给的解析式通过两角和的正弦化为sin()y A x ωϕ=+形式,得到周期; 根据函数图像及性质求最值.【难易程度】中等【试题解析】(Ⅰ)因为π()4cos sin()16f x x x =+-1)cos 21sin 23(cos 4-+=x x x (步骤1) 1cos 22sin 32-+=x x x x 2cos 2sin 3+=π2sin(2)6x =+(步骤2)所以)(x f 的最小正周期为π(步骤3)(Ⅱ)因为ππππ2π,2.64663x x --+所以剟剟 于是,当πππ2,626x x +==即时,)(x f 取得最大值2;(步骤4)当πππ2,,()666x x f x +=-=-即时取得最小值1-.(步骤5)16.(本小题共14分)如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,底面ABCD 是菱形,2,60AB BAD =∠= . (I )求证:BD ⊥平面;PAC(Ⅱ)若,PA AB =求PB 与AC 所成角的余弦值;(Ⅲ)当平面PBC 与平面PDC 垂直时,求PA 的长.第16题图【测量目标】空间中线线,线面,面面的位置关系,二面角,空间向量及其运算. 【考查方式】建立合适的空间直角坐标系,得到各个点的坐标,使立体几何问题成为代数问题,从而证明线面垂直,二面角的余弦值,以及空间内长度. 【难易程度】中等 【试题解析】(Ⅰ)因为四边形ABCD 是菱形,所以AC BD ⊥.(步骤1)又因为PA ABCD ⊥平面. 所以PA BD ⊥.所以BD PAC ⊥平面.(步骤2) (Ⅱ)设AC BD O = .因为602BAD PA PB ∠=︒==,,所以1BO AO CO ===,3.(步骤3)如图,以O 为坐标原点,建立空间直角坐标系O xyz -,则(0,(0,(1,0,0),P A B C .(步骤4)所以 设PB 与AC 所成角为θ,则cos ||||PB AC PB AC θ=== . (步骤5)(Ⅲ)由(Ⅱ)知).0,3,1(-=设(0,),P t (0t >),则(1,)BP t =-设平面PBC 的法向量(,,)x y z =m ,则0,0BC BP ==m m (步骤6)所以0,0x x tz ⎧-+⎪⎨--+=⎪⎩令,3=y 则.6,3t z x ==所以6)t=m (步骤7)同理,平面PDC的法向量6()t=-n因为平面PCB PDC ⊥平面, 所以0 m n =,即03662=+-t , 解得6=t ,所以PA =6(步骤8)第16题图17.本小题共13分以下茎叶图记录了甲、乙两组个四名同学的植树棵树.乙组记录中有一个数据模糊,无法确认,在图中以X 表示.第17 题图 (Ⅰ)如果8X =,求乙组同学植树棵树的平均数和方差; (Ⅱ)如果9X =,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵树Y 的分布列和数学期望. (注:方差()()()2222121n s x x x x x x n⎡⎤=-+-++-⎢⎥⎣⎦ ,其中x 为1x ,2x ,…… n x 的平均数) 【测量目标】茎叶图,离散型随机事件的分布列和期望.【难易程度】中等【考查方式】直接根据茎叶图求平均数和方差;继而求事件的分布列和期望.【试题分析】当8X =时,由茎叶图可知,乙组同学的植树棵数是:8,8,9,10,所以平均数为 8891035;44x +++==(步骤1)方差为 .1611])43510()4359()4358()4358[(4122222=-+-+-+-=s (步骤2) (Ⅱ)当9X =时,由茎叶图可知,甲组同学的植树棵树是:9,9,11,11;乙组同学的植树棵数是:9,8,9,10.分别从甲、乙两组中随机选取一名同学,共有4×4=16种可能的结果,这两名同学植树总棵数Y 的可能取值为17,18,19,20,21事件“17Y =”等价于“甲组选出的同学植树9棵,乙组选出的同学植树8棵”所以该事件有2种可能的结果,因此((17)P Y =)=.81162=(步骤3) 同理可得;41)18(==Y P ;41)19(==Y P .81)21(;41)20(====Y P Y P (步骤4)(步骤5)17171818191920202121EY P Y P Y P Y P Y P Y =⨯=+⨯=+⨯=+⨯=+⨯=()()()()()1111117181920211984448=⨯+⨯+⨯+⨯+⨯=(步骤6)18.(本小题共13分) 已知函数2()()e xkf x x k =-. (Ⅰ)求()f x 的单调区间;(Ⅱ)若对于任意的(0,)x ∈+∞,都有1()ef x …,求k 的取值范围. 【测量目标】利用导数求函数的单调区间,利用导数解决不等式问题.【考查方式】给出含参数的函数解析式,利用导数求其单调区间;根据最值和不等式解出参数的取值范围.【难易程度】较难【试题解析】(Ⅰ)221()()e .xk f x x k k'=-(步骤1)令()0f x '=,得k x ±=.当0k >时,)()(x f x f '与的情况如下所以,)(x f 的单调递增区间是(k -∞-,)和),(+∞k ;单调递减区间是),(k k -当0k <时,)()(x f x f '与的情况如下所以,)(x f 的单调递减区间是(k -∞-,)和),(+∞k ;单调递增区间是(,)k k -(步骤3)(Ⅱ)当0k >时,因为11(1)e ek kf k ++=>所以不会有1(0,),().e x f x ∀∈+∞…(步骤4)当0k <时,由(Ⅰ)知)(x f 在(0,+∞)上的最大值是24().e k f k -= 所以1(0,),()e x f x ∀∈+∞…等价于241().e ek f k -=…(步骤5) 解得102k -<…. 故当1(0,),()e x f x ∀∈+∞…时,k 的取值范围是).0,21[-(步骤6) 19.(本小题共14分) 已知椭圆22:14x G y +=过点,0m ()作圆221x y +=的切线l 交椭圆G 于A B ,两点. (I )求椭圆G 的焦点坐标和离心率;(II )将AB 表示为m 的函数,并求AB 的最大值.【测量目标】椭圆的简单几何性质,直线与圆的位置关系,两点间的距离公式.【考查方式】已知椭圆的标准方程,求椭圆的焦点和离心率;过定点的直线与圆相切,与椭圆有两个交点,求两交点距离的最大值. 【难易程度】较难【试题解析】(Ⅰ)由已知得,1,2==b a 所以c ==(步骤1)所以椭圆G 的焦点坐标为)0,3(),0,3(-,离心率为.23==a c e (步骤2) (Ⅱ)由题意知,||1m ….当1=m 时,切线l 的方程1=x ,点A B 、的坐标分别为),23,1(),23,1(- 此时3||=AB (步骤3)当1m =-时,同理可得3||=AB当1||>m 时,设切线l 的方程为),(m x k y -=(步骤4) 由0448)41(.14),(2222222=-+-+⎪⎩⎪⎨⎧=+-=m k mx k x k y x m x k y 得 设A B 、两点的坐标分别为),)(,(2211y x y x ,则2222122214144,418km k x x k m k x x +-=+=+(步骤5) 又由l 与圆.1,11||,1222222+==+=+k k m k km y x 即得相切 所以212212)()(||y y x x AB -+-=]41)44(4)41(64)[1(2222242k m k k m k k +--++=2 .3||342+=m m (步骤6) 由于当3±=m 时,,3||=AB 所以),1[]1,(,3||34||2+∞--∞∈+= m m m AB .(步骤7)因为||2,||||AB m m ==+ 且当3±=m 时,||2AB =,所以||AB 的最大值为2. (步骤8)20.(本小题共13分)若数列12,,...,(2)n n A a a a n =…满足111(1,2,...,1)n a a k n +-==-,数列n A 为E 数列,记()n S A =12...n a a a +++.(Ⅰ)写出一个满足150a a ==,且5()S A >0的E 数列n A ;(Ⅱ)若112a =,2000n =,证明:E 数列n A 是递增数列的充要条件是n a =2011; (Ⅲ)对任意给定的整数2n n ()…,是否存在首项为0的E 数列n A ,使得()n S A =0?如果存在,写出一个满足条件的E 数列n A ;如果不存在,说明理由.【测量目标】数列的概念和通项公式,等差数列的综合应用,归纳推理.【考查方式】已知数列的的条件,写出符合该条件的一般数列;知道首项和项数利用归纳推理判断充要条件;探究深层次的数列问题.【难易程度】较难【试题解析】(Ⅰ)0,1,2,1,0是一具满足条件的E 数列5A .(步骤1) (答案不唯一,0,1,0,1,0也是一个满足条件的E 的数列5A )(Ⅱ)必要性:因为E 数列5A 是递增数列,所以)1999,,2,1(11 ==-+k a a k k .所以5A 是首项为12,公差为1的等差数列. (步骤2)所以2000122000112011a =+-⨯=().充分性,由于20001999211,1a a a a -⋯⋯-……,所以200012000119991999a a a a -+,即剟.(步骤3)又因为12000122011a a ==,,所以200011999a a =+.故n n n A k a a 即),1999,,2,1(011 =>=-+是递增数列. (步骤4)综上,结论得证.(Ⅲ)令.1),1,,2,1(011±=-=>=-=+A k k k c n k a a c 则 (步骤5)因为2111112c c a a c a a ++=++=… ,1211+++++=n n c c c a a所以13211)3()2()1()(-++-+-+-+=n n c c n c n c n na A S)].1()2)(1()1)(1[(2)1(121--++--+----=n c n c n c n n (步骤6) 因为1,1k k c c =±-所以为偶数(1,,1).k n =-所以12(1)(1)(1)(2)(1)n c n c n c --+--++- 为偶数,所以要使()0,n S A =必须使(1)2n n -为偶数, 即4整除(1),n n -亦即4n m =或*41()n m m =+∈N .(步骤7)当*41(),n m m =+∈N 时E 数列n A 的项满足4141420,1,k k k a a a +--===-14=k a ),,2,1(m k =时,有;0)(,01==n A S a;0)(,0,0),,,2,1(11144=====+n k k A S a a m k a 有时当*41(),n n m m E A =+∈N 时数列的项满足,,1,0243314-===---k k k a a a当*4243(),(1)n m n m m n m =+=+∈-N 或时不能被4整除,此时不存在E 数列n A , 使得.0)(,01==n A S a (步骤8)。
【高考试卷】2011年高考数学试题(广东卷文)及答案
【高考试卷】2011年普通高等学校招生全国统一考试(广东B 卷)数学(文科)本试卷共4页,21小题,满分150分。
考试用时120分钟。
注意事项:1. 答卷前,考生务必用黑色字迹的钢笔或签字笔将字迹的姓名和考生号、实施号、座位号填写在答题卡上用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。
将条形码横贴在答题卡右上角“条形码粘贴处”。
2. 选择题每小题选出答案后,用2B 铅笔把大题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。
3. 非选择题必须用黑色字迹钢笔或签字笔作答,答案必须卸载答题卡个题目指定区域内相 应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
4. 作答选做题时,请先用2B 铅笔填涂选作题地题号对应的信息点,再作答,漏凃,错涂、 多涂。
答案无效。
5. 考生必须保持答题卡的整洁,考试结束后,将试卷和答题卡一并交回。
参考公式:锥体体积公式V=13Sh,其中S 为锥体的底面积,h 为锥体的高。
线性回归方程^^^y b x a =+中系数计算公式^^^121(1)(1),(1)ni ni x x y y b a y b x x ==--==--∑∑样本数据x 1,x 2,……,xa 的标准差,211()2(2)()n x x x x x x n+-+-+- 其中,x y 表示样本均值。
N 是正整数,则1221()(ab )n n n n n n a b a b a a b b -----=-+++……一、 选择题:本大题共10小题,每小题5分,满分50分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)设复数z 满足iz=1,其中i 为虚数单位,则 A.-i B.i C.-1 D.1(2).已知集合A=(,),x y x y 为实数,B=(,),x y x y 为实数,且1x y +=则A ⋂B 的元素个数为A.4B.3C.2D.1(3)已知向量a=(1,2),b=(1,0),c=(3,4)。
2011年广东高职高考数学真题试卷
2011年广东省高等职业院校招收中等职业学校毕业生考试一、选择题:本大题共15小题,每小题5分,满分75分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合M={x||x|=2},N={-3,1},则M ∪N=( )A. ¢B.{-3,-2,1}C.{-3,1,2}D.{-3,-2,1,2}2.下列等式中,正确的是( )A.(32-)23=-27 B. [(32-)] 23=-27 C.lg20-lg2=1 D.lg5*lg2=13.函数y=x x +-1)1(lg 的定义域是( )A.[-1,1]B.(-1,1)C.( -∞,1)D.(-1,+ ∞)4.设α为任意角,则下列等式中,正确的是( )A.sin(α-2π)=cos αB.cos(α-2π)=sin α C.sin(α+π)=sin α D.cos(α+π)=cos α 5.在等差数列{a n }中,若a 6=30,则a =+93a ( )A.20B.40C.60D.806.已知三点O(0,0),A(k,-2),B(3,4),若,→→AB ⊥OB 则k=( ) A.-317 B. 38 C.7 D.11 7.已知函数y=f(x)是函数y=a x 的反函数,若f(8)=3,则a=( )A.2B.3C.4D.88.已知角θ终边上一点的坐标为(x,) (cos θ*tan θ0),)(x 3=则<x A.-3 B.-23 C. 33 D. 23 9.已知向量AB (||),13()4,1(==-=→→→AC BC 则,,向量 ) A.10- B. 17 C.29 D.5 10.函数f(χ)=(sin2χ-cos2x)2的最小正周期及最大值分别是( )A.π,1B.π,2C.2π,2 D. 2π,3 11.不等式1≥1x 2+的解集是( ) A.{x|-1<x ≤1} B.{x|x ≤1} C.{x|x >-1} D.{x|x ≤1或x >-1}12.“x=7”是“x ≤7”的( )A.充分非必要条件B.必要非充分条件C.充分必要条件D.既非充分,也非充要条件Log x 21,x >113.已知函数f(x)= sinx , 0≤x ≤1 ,则下列结论中,正确的是( )3x , x <0A.f(x)在区间(1,+∞)上是增函数B.f(x)在区间(-∞,1]上是增函数C.f(1)2=π D. f(2)=114.一个容量为n 的样本分成若干组,若其中一组的频数和频率分别是40和0.25,则n=( )A.10B.40C.100D.16015.垂直于x 轴的直线l 交抛物线y 2=4x 于A 、B 两点,且|AB|=43,则该抛物线的焦点到直线l 的距离是( ) A.1 B.2 B.3 D.4二、填空题:本大题共5小题,每小题5分,满分25分。
2011年广东高考全真模拟试卷理科数学
19.(本小题满分14分)已知直线与椭圆相交于、两点,是线段上的一点,,且点M 在直线上,(1)求椭圆的离心率;(2)若椭圆的焦点关于直线的对称点在单位圆上,求椭圆的方程. 20.(本小题满分14分)已知函数. (I )当的单调区间;(II )若函数的最小值;…(III )若求证:.21.(本小题满分14分)设单调递增函数的定义域为,且对任意的正实数x,y 有:且.⑴、一个各项均为正数的数列满足:其中为数列的前n 项和,求数列的通项公式;.⑵、在⑴的条件下,是否存在正数M 使下列不等式:对一切成立?若存在,求出M 的取值范围;若不存在,请说明理由..10x y +-=22221(0)x y a b a b+=>>A BM AB AM BM =-1:2l y x=2c e a ∴==l 221x y +=2212x y +=()(2)(1)2ln f x a x x =---1,()a f x =时求[)2,+∞单调增区间为1()(0,),2f x a 在上无零点求24ln 2.a -则的最小值为,0m n <<m nm nm 2ln ln <--()f x ()0,+∞()()()f xy f x f y =+1()12f =-{}n a ()()(1)1n n n f s f a f a =++-n S {}n a {}n a n a n ∴=1212221(21)(21)(21)n n n aa a M n a a a ⋅≥+---*n N ∈∴03M <≤(第20题)19.(本小题满分14分)已知a ∈R ,函数()ln 1af x x x=+-,()()ln 1x g x x e x =-+(其中e 为自然对数的底数).(1)求函数()f x 在区间(]0,e 上的最小值;(2)是否存在实数(]00,x e ∈,使曲线()y g x =在点0x x =处的切线与y 轴垂直? 若存在,求出0x 的值;若不存在,请说明理由.(1)综上可知,当a ≤0时,函数()f x 在区间(]0,e 上无最小值; 当0a e <<时,函数()f x 在区间(]0,e 上的最小值为ln a ;当a e ≥时,函数()f x 在区间(]0,e 上的最小值为ae.(2) 故不存在(]00,x e ∈,使曲线()y g x =在点0x x =处的切线与y 轴垂直.20.(本小题满分14分)如图,直线y kx b =+与椭圆2214x y +=交于A B ,两点,记AOB △的面积为S .(I )求在0k =,01b <<的条件下,S 的最大值;(II )当2AB =,1S =时,求直线AB 的方程. (1)当且仅当22b =S 取到最大值1. (2) 2622y x =+或2622y x =-或2622y x =-+,或2622y x =-- 21.(本小题满分14分)设数列{}n a 的前n 项和为n S ,且对任意的*n ∈N ,都有0n a >,33312n n S a a a =+++.(1)求1a ,2a 的值;(2)求数列{}n a 的通项公式n a ;(3)证明:21221n n nn n n a a a +-+≥.(1) 22a =. (2) n a n =.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2011年广东省高考数学试卷A(理科) 本试题共4页,21小题,满分150分,考试用时120分钟。 注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上。用2B铅笔将试卷类型(A)填涂在答题卡相应位置上。将条形码横贴在答题卡右上角“条形码粘贴处”。 2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑。如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。 3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。不按以上要求作答的答案无效。 4.作答选做题时,请先用2B铅笔填涂选做题的题号对应的信息点,再作答。漏涂、错涂、多涂的,答案无效。 5.考生必须保持答题卡的整洁。考试结束后,将试卷和答题卡一并交回。
参考公式:柱体的体积公式VSh,其中S为柱体的底面积,h为柱体的高.
线性回归方程ybxa中系数计算公式121()()()niiiniixxyybxx,aybx,其中x,y表示样本均值. n是正整数,则1221()()nnnnnnababaababb.
一、选择题(共8小题,每小题5分,满分40分) 1.(2011•广东)设复数Z满足(1+i)Z=2,其中i为虚数单位,则Z=( ) A.1+i B.1﹣i C.2+2i D.2﹣2i 知识考点:复数代数形式的乘除运算。 考点题型:计算题。 解题思路:我们可以利用待定系数法求出Z,我们设Z=x+yi,结合已知中(1+i)Z=2,结合复数相等的充要条件,我们易构造出一个关于x,y的方程组,解方程组即可求出满足条件的复数Z的值. 解题步骤:解:设Z=x+yi则 (1+i)Z=(1+i)(x+yi)=x﹣y+(x+y)i=2
即 解得x=1,y=﹣1 故Z=1﹣i 故选B 慧众贴士:本题考查的知识点是复数代数形式的乘除运算,其中利用复数相等的充要条件,构造出一个关于x,y的方程组,是解题步骤本题的关键. 2.(2011•广东)已知集合A={(x,y)|x,y为实数,且x2+y2=1},B={(x,y)|x,y为实数,且y=x},则A∩B的元素个数为( ) A.0 B.1 C.2 D.3 知识考点:交集及其运算。 考点题型:计算题。 解题思路:据观察发现,两集合都表示的是点集,所以求两集合交集即为两函数的交点,则把两集合中的函数关系式联立求出两函数的交点坐标,交点有几个,两集合交集的元素就有几个. 解题步骤:解:联立两集合中的函数解析式得:
,把②代入①得:2x2=1,解得x=±,
分别把x=±代入②,解得y=±, 所以两函数图象的交点有两个,坐标分别为(,)和(﹣,﹣), 则A∩B的元素个数为2个. 故选C 慧众贴士:此题考查学生理解两个点集的交集即为两函数图象的交点个数,是一道基础题.
3.(2011•广东)若向量,,满足∥且⊥,则•(+2)=( ) A.4 B.3 C.2 D.0 知识考点:数量积判断两个平面向量的垂直关系;平面向量数量积的运算。 考点题型:计算题。
解题思路:利用向量共线的充要条件将用表示; 垂直的充要条件得到;将的值代入,利用向量的分配律求出值. 解题步骤:解:∵
∴存在λ使 ∵ ∴=0 ∴=2=0 故选D 慧众贴士:本题考查向量垂直的充要条件|考查向量共线的充要条件、考查向量满足的运算律. 4.(2011•广东)设函数f(x)和g(x)分别是R上的偶函数和奇函数,则下列结论恒成立的是( ) A.f(x)+|g(x)|是偶函数 B.f(x)﹣|g(x)|是奇函数 C.|f(x)|+g(x)是偶函数 D.|f(x)|﹣g(x)是奇函数 知识考点:函数奇偶性的判断。 考点题型:阅读型。 解题思路:由设函数f(x)和g(x)分别是R上的偶函数和奇函数,我们易得到|f(x)|、|g(x)|也为偶函数,进而根据奇+奇=奇,偶+偶=偶,逐一对四个结论进行判断,即可得到答案. 解题步骤:解:∵函数f(x)和g(x)分别是R上的偶函数和奇函数, 则|g(x)|也为偶函数, 则f(x)+|g(x)|是偶函数,故A满足条件; f(x)﹣|g(x)|是偶函数,故B不满足条件; |f(x)|也为偶函数, 则|f(x)|+g(x)与f(x)|﹣g(x)的奇偶性均不能确定 故选A 慧众贴士:本题考查的知识点是函数奇偶性的判断,其中根据已知确定|f(x)|、|g(x)|也为偶函数,是解题步骤本题的关键.
5.(2011•广东)已知平面直角坐标系xOy上的区域D由不等式组给定.若M(x,y)为D上的动点,点A的坐标为(,1),则z=•的最大值为( ) A.4 B.3 C.4 D.3 知识考点:二元一次不等式(组)与平面区域。 考点题型:计算题;作图题。
解题思路:首先画出可行域,z=•代入坐标变为z=x+y,即y=﹣x+z,z表示斜率为的直线在y轴上的截距,故求z的最大值,即求y=﹣x+z与可行域有公共点时在y轴上的截距的最大值. 解题步骤:解:如图所示:
z=•=x+y,即y=﹣x+z 首先做出直线l0:y=﹣x,将l0平行移动,当经过B点时在y轴上的截距最大,从而z最大. 因为B(,2),故z的最大值为4. 故选C. 慧众贴士:本题考查线形规划问题,考查数形结合解题. 6.(2011•广东)甲、乙两队进行排球决赛,现在的情形是甲队只要在赢一次就获冠军,乙队需要再赢两局才能得冠军,若两队胜每局的概率相同,则甲队获得冠军的概率为( )
A. B. C. D. 知识考点:相互独立事件的概率乘法公式。 考点题型:计算题。 解题思路:根据已知中的比赛规则,我们可得甲要获得冠军可分为甲第一场就取胜,或甲第一场失败,第二场取胜,由分类事件加法公式,我们分别求出两种情况的概率,进而即可得到结论. 解题步骤:解:甲要获得冠军共分为两个情况
一是第一场就取胜,这种情况的概率为
一是第一场失败,第二场取胜,这种情况的概率为×= 则甲获得冠军的概率为 故选D 慧众贴士:本题考查的知识点是相互独立事件的概率乘法公式,要想计算一个事件的概率,首先我们要解题思路这个事件是分类的(分几类)还是分步的(分几步),然后再利用加法原理和乘法原理进行求解.
7.(2011•广东)如某几何体的正视图(主视图)是平行四边形,侧视图(左视图)和俯视图都是矩形,则几何体的体积为( ) A.6 B.9 C.12 D.18 知识考点:由三视图求面积、体积。 考点题型:计算题。 解题思路:由已知中三视图我们可以确定,该几何体是以正视图为底面的直四棱柱,根据已知三视图中标识的数据,求出棱柱的底面积和高,代入棱柱体积公式 即可得到答案. 解题步骤:解:由已知中三视图该几何体为四棱柱,
其底面底边长为3,底边上的高为:=, 故底面积S=3×=3, 又因为棱柱的高为3, 故V=3×3=9, 故选B. 慧众贴士:本题考查的知识点是由三视图求体积,其中根据三视图判断出几何体的形状及相应底面面积和高是解题步骤本题的关键.
8.(2011•广东)设S是整数集Z的非空子集,如果∀a,b∈S有ab∈S,则称S关于数的乘法是封闭的,若T,V是Z的两个不相交的非空子集,T∪V=Z,且∀a,b,c∈T,有abc∈T;∀x,y,z∈V,有xyz∈V,则下列结论恒成立的是( ) A.T,V中至少有一个关于乘法是封闭的 B.T,V中至多有一个关于乘法是封闭的 C.T,V中有且只有一个关于乘法是封闭的 D.T,V中每一个关于乘法都是封闭的 知识考点:元素与集合关系的判断。 考点题型:阅读型;新定义。 解题思路:本题从正面解比较困难,可运用排除法进行作答.考虑把整数集Z拆分成两个互不相交的非空子集T,V的并集,如T为奇数集,V为偶数集,或T为负整数集,V为非负整数集进行解题思路排除即可. 解题步骤:解:若T为奇数集,V为偶数集,满足题意,此时T与V关于乘法都是封闭的,排除B、C; 若T为负整数集,V为非负整数集,也满足题意,此时只有V关于乘法是封闭的,排除D; 从而可得T,V中至少有一个关于乘法是封闭的,A正确 故选A. 慧众贴士:此题考查学生理解新定义的能力,会判断元素与集合的关系,是一道比较难的考点题型.
二、填空题(共7小题,每小题5分,其中14、15只能选做一题。满分30分) 9.(2011•广东)不等式|x+1|﹣|x﹣3|≥0的解集是 {x|x≥1} . 知识考点:绝对值不等式。 考点题型:分类讨论;转化思想。
解题思路:不等式等价于 ①,或 ②,
或 ③, 分别解出①②③的解集,再把各个解集取并集.
解题步骤:解:不等式|x+1|﹣|x﹣3|≥0等价于 ①,或
②, 或 ③. 解 ①得 无解,解②得{ x|3>x≥1},解③得 {x|x≥3}. 综上,不等式|x+1|﹣|x﹣3|≥0的解集是 {x|3>x≥1,或 x≥3},即 {x|x≥1}. 故答案为 {x|x≥1}或[1,+∞). 慧众贴士:本题考查绝对值不等式的解法,体现了分类讨论的数学思想,以及等价转化的数学思想.
10.(2011•广东)x(x﹣)7的展开式中,x4的系数是 84 (用数字作答) 知识考点:二项式系数的性质。 考点题型:计算题。
解题思路:将问题转化为展开式的x3的系数,利用二项展开式的通项求出展开式的通项,令x的指数为3求出x4的系数. 解题步骤:解:的展开式中x4的系数即求展开式的x3的系数
∵展开式的通项为Tr+1=(﹣2)rC7rx7﹣2r 令7﹣2r=3得r=2 ∴展开式中x4的系数是4C72=84 故答案为:84