2021年九年级中考数学 专题训练 等腰三角形(含答案)

合集下载

2021年九年级数学中考一轮复习与相似三角形有关的综合性解答题专项训练(含答案)

2021年九年级数学中考一轮复习与相似三角形有关的综合性解答题专项训练(含答案)

2021年九年级数学中考一轮复习与相似三角形有关的综合性解答题专项训练(含答案)1.如图,△ABC和△BEC均为等腰直角三角形,且∠ACB=∠BEC=90°,AC=4,点P为线段BE延长线上一点,连接CP以CP为直角边向下作等腰直角△CPD,线段BE 与CD相交于点F(1)求证:;(2)连接BD,请你判断AC与BD有什么位置关系?并说明理由;(3)设PE=x,△PBD的面积为S,求S与x之间的函数关系式.2.如图,△ADE由△ABC绕点A按逆时针方向旋转90°得到,且点B的对应点D恰好落在BC的延长线上,AD,EC相交于点P.(1)求∠BDE的度数;(2)F是EC延长线上的点,且∠CDF=∠DAC.①判断DF和PF的数量关系,并证明;②求证:=.3.如图,在矩形ABCD中,AB=20,点E是BC边上的一点,将△ABE沿着AE折叠,点B刚好落在CD边上点G处;点F在DG上,将△ADF沿着AF折叠,点D刚好落在AG 上点H处,此时S△GFH:S△AFH=2:3,(1)求证:△EGC∽△GFH;(2)求AD的长;(3)求tan∠GFH的值.4.如图1,矩形ABCD中,点E为AB边上的动点(不与A,B重合),把△ADE沿DE翻折,点A的对应点为A1,延长EA1交直线DC于点F,再把∠BEF折叠,使点B的对应点B1落在EF上,折痕EH交直线BC于点H.(1)求证:△A1DE∽△B1EH;(2)如图2,直线MN是矩形ABCD的对称轴,若点A1恰好落在直线MN上,试判断△DEF的形状,并说明理由;(3)如图3,在(2)的条件下,点G为△DEF内一点,且∠DGF=150°,试探究DG,EG,FG的数量关系.5.如图1所示,在四边形ABCD中,点O,E,F,G分别是AB,BC,CD,AD的中点,连接OE,EF,FG,GO,GE.(1)证明:四边形OEFG是平行四边形;(2)将△OGE绕点O顺时针旋转得到△OMN,如图2所示,连接GM,EN.①若OE=,OG=1,求的值;②试在四边形ABCD中添加一个条件,使GM,EN的长在旋转过程中始终相等.(不要求证明)6.在四边形ABCD中,点E为AB边上的一点,点F为对角线BD上的一点,且EF⊥AB.(1)若四边形ABCD为正方形.①如图1,请直接写出AE与DF的数量关系;②将△EBF绕点B逆时针旋转到图2所示的位置,连接AE,DF,猜想AE与DF的数量关系并说明理由;(2)如图3,若四边形ABCD为矩形,BC=mAB,其它条件都不变,将△EBF绕点B 顺时针旋转α(0°<α<90°)得到△E'BF',连接AE',DF',请在图3中画出草图,并直接写出AE'与DF'的数量关系.7.如图,在Rt△ABC中,∠ACB=90°,AC=5cm,∠BAC=60°,动点M从点B出发,在BA边上以每秒2cm的速度向点A匀速运动,同时动点N从点C出发,在CB边上以每秒cm的速度向点B匀速运动,设运动时间为t秒(0≤t≤5),连接MN.(1)若BM=BN,求t的值;(2)若△MBN与△ABC相似,求t的值;(3)当t为何值时,四边形ACNM的面积最小?并求出最小值.8.在△ABC中,P为边AB上一点.(1)如图1,若∠ACP=∠B,求证:AC2=AP•AB;(2)若M为CP的中点,AC=2.①如图2,若∠PBM=∠ACP,AB=3,求BP的长;②如图3,若∠ABC=45°,∠A=∠BMP=60°,直接写出BP的长.9.阅读理解:我们知道,四边形具有不稳定性,容易变形,如图1,一个矩形发生变形后成为一个平行四边形,设这个平行四边形相邻两个内角中较小的一个内角为α,我们把的值叫做这个平行四边形的变形度.(1)若矩形发生变形后的平行四边形有一个内角是120度,则这个平行四边形的变形度是.猜想证明:(2)设矩形的面积为S1,其变形后的平行四边形面积为S2,试猜想S1,S2,之间的数量关系,并说明理由;拓展探究:(3)如图2,在矩形ABCD中,E是AD边上的一点,且AB2=AE•AD,这个矩形发生变形后为平行四边形A1B1C1D1,E1为E的对应点,连接B1E1,B1D1,若矩形ABCD的面积为4(m>0),平行四边形A1B1C1D1的面积为2(m>0),试求∠A1E1B1+∠A1D1B1的度数.10.如图,在△ABC中,AB=AC=10cm,BD⊥AC于点D,BD=8cm.点M从点A出发,沿AC的方向匀速运动,速度为2cm/s;同时直线PQ由点B出发,沿BA的方向匀速运动,速度为1cm/s,运动过程中始终保持PQ∥AC,直线PQ交AB于点P、交BC于点Q、交BD于点F.连接PM,设运动时间为t秒(0<t<5).(1)当t为何值时,四边形PQCM是平行四边形?(2)设四边形PQCM的面积为ycm2,求y与t之间的函数关系式;(3)是否存在某一时刻t,使S四边形PQCM=S△ABC?若存在,求出t的值;若不存在,说明理由;(4)连接PC,是否存在某一时刻t,使点M在线段PC的垂直平分线上?若存在,求出此时t的值;若不存在,说明理由.11.(1)模型探究:如图1,D、E、F分别为△ABC三边BC、AB、AC上的点,且∠B=∠C=∠EDF=a.△BDE与△CFD相似吗?请说明理由;(2)模型应用:△ABC为等边三角形,其边长为8,E为AB边上一点,F为射线AC上一点,将△AEF沿EF翻折,使A点落在射线CB上的点D处,且BD=2.①如图2,当点D在线段BC上时,求的值;②如图3,当点D落在线段CB的延长线上时,求△BDE与△CFD的周长之比.12.如图,在矩形ABCD中,点P是BC边上任意一点(点P不与B、C重合),连接AP,作PQ⊥AP,交CD于点Q,若AB=6,BC=8.(1)试证明:△ABP∽△PCQ;(2)当BP为多少时,CQ最长,最长是多少?(3)试探究,是否存在一点P,使△APQ是等腰直角三角形?13.如图,在平面直角坐标系中,点O为坐标原点,A点的坐标为(3,0),以OA为边作等边三角形OAB,点B在第一象限,过点B作AB的垂线交x轴于点C.动点P从O点出发沿着OC向点C运动,动点Q从B点出发沿着BA向点A运动,P,Q两点同时出发,速度均为1个单位/秒.当其中一个点到达终点时,另一个点也随之停止.设运动时间为t秒.(1)求线段BC的长;(2)过点Q作x轴垂线,垂足为H,问t为何值时,以P、Q、H为顶点的三角形与△ABC相似;(3)连接PQ交线段OB于点E,过点E作x轴的平行线交线段BC于点F.设线段EF 的长为m,求m与t之间的函数关系式,并直接写出自变量t的取值范围.14.课外兴趣小组活动时,老师提出了如下问题.如图1,△ABC中,若AB=12,AC=8,求BC边上的中线AD的取值范围.小颖在组内经过合作交流,得到了如下的解决方法:如图2,延长AD到点E,使DE=AD,连结BE.请根据小颖的方法思考:(1)由已知和作图能得到△ADC≌△EDB,依据是;A.SSS B.SAS C.AAS D.HL(2)由“三角形的三边关系”可求得AD的取值范围是.解后反思:题目中出现“中点”“中线”等条件,可考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集合到同一个三角形中.完成上题之后,小颖善于探究,她又提出了如下的问题,请你解答.(3)在△ABC中,D是BC上一点,连结AD,E是AD上一点,连结BE并延长交边AC 于点F.①如图3,若AD是△ABC的中线,且AF=EF,求证:AC=BE.②如图4,若E是BF的中点,求证:AF•CD=AC•BD15.如图,平面直角坐标系中,菱形OABC的边OA在x轴正半轴上,OA=10,cos∠COA =.一个动点P从点O出发,以每秒1个单位长度的速度沿线段OA方向运动,过点P作PQ⊥OA,交折线段OC﹣CB于点Q,以PQ为边向右作正方形PQMN,点N在射线OA上,当P点到达A点时,运动结束.设点P的运动时间为t秒(t>0).(1)C点的坐标为,当t=时N点与A点重合;(2)在整个运动过程中,设正方形PQMN与菱形OABC的重合部分面积为S,直接写出S与t之间的函数关系式和相应的自变量t的取值范围;(3)如图2,在运动过程中,过点O和点B的直线将正方形PQMN分成了两部分,请问是否存在某一时刻,使得被分成的两部分中有一部分的面积是菱形面积的?若存在,请求出对应的t的值;若不存在,请说明理由.16.如图,四边形ABCD是矩形.(1)如图1,E、F分别是AD、CD上的点,BF⊥CE,垂足为G,连接AG.①求证:;②若G为CE的中点,求证:sin∠AGB=;(2)如图2,将矩形ABCD沿MN折叠,点A落在点R处,点B落在CD边的点S处,连接BS交MN于点P,Q是RS的中点.若AB=2,BC=3,直接写出PS+PQ的最小值为.17.如图,四边形ABCD是正方形,点E、F分别是BC、CD上的点,且BE=CF,连接AE、BF交于点P.(1)如图①,判断AE和BF之间的数量关系和位置关系,并证明;(2)如图②,连接AF,点M是AF中点,若BE=2,CE=3,求线段PM的长度;(3)如图③,作CQ⊥BF于点Q,若△QAB∽△QEC,求证:点E是BC中点.参考答案:1.(1)证明:∵△BCE和△CDP均为等腰直角三角形,∴∠ECB=∠PCD=45°,∠CEB=∠CPD=90°,∴△BCE∽△DCP,∴;(2)解:AC∥BD,理由:∵∠PCE+∠ECD=∠BCD+∠ECD=45°,∴∠PCE=∠BCD,又∵=,∴△PCE∽△DCB,∴∠CBD=∠CEP=90°,∵∠ACB=90°,∴∠ACB=∠CBD,∴AC∥BD;(3)解:如图所示:作PM⊥BD于M,∵AC=4,△ABC和△BEC均为等腰直角三角形,∴BE=CE=4,∵△PCE∽△DCB,∴=,即=,∴BD=x,∵∠PBM=∠CBD﹣∠CBP=45°,BP=BE+PE=4+x,∴PM=sin45°•(4+x)=,∴△PBD的面积S=BD•PM=×x×=x2+2x.2.解:(1)∵△ADE由△ABC绕点A按逆时针方向旋转90°得到,∴AB=AD,∠BAD=90°,△ABC≌△ADE,在Rt△ABD中,∠B=∠ADB=45°,∴∠ADE=∠B=45°,∴∠BDE=∠ADB+∠ADE=90°.(2)①DF=PF.证明:由旋转的性质可知,AC=AE,∠CAE=90°,在Rt△ACE中,∠ACE=∠AEC=45°,∵∠CDF=∠CAD,∠ACE=∠ADB=45°,∴∠ADB+∠CDF=∠ACE+∠CAD,即∠FPD=∠FDP,∴DF=PF.②证明:过点P作PH∥ED交DF于点H,∴∠HPF=∠DEP,,∵∠DPF=∠ADE+∠DEP=45°+∠DEP,∠DPF=∠ACE+∠DAC=45°+∠DAC,∴∠DEP=∠DAC,又∵∠CDF=∠DAC,∴∠DEP=∠CDF,∴∠HPF=∠CDF,又∵FD=FP,∠F=∠F,∴△HPF≌△CDF(ASA),∴HF=CF,∴DH=PC,又∵,∴.3.(1)证明:∵四边形ABCD是矩形,由折叠对称知:∠AGE=∠B=90°,∠AHF=∠D=90°,∴∠GHF=∠C=90°,∠EGC+∠HGF=90°,∠GFH+∠HGF=90°,∴∠EGC=∠GFH,∴△EGC∽△GFH.(2)解:∵S△GFH:S△AFH=2:3,且△GFH和△AFH等高,∴GH:AH=2:3,∵将△ABE沿着AE折叠,点B刚好落在CD边上点G处,∴AG=AB=GH+AH=20,∴GH=8,AH=12,∴AD=AH=12.(3)解:在Rt△ADG中,DG===16,由折叠的对称性可设DF=FH=x,则GF=16﹣x,∵GH2+HF2=GF2,∴82+x2=(16﹣x)2,解得:x=6,∴HF=6,在Rt△GFH中,tan∠GFH=.4.解:(1)证明:由折叠的性质可知:∠DAE=∠DA1E=90°,∠EBH=∠EB1H=90°,∠AED=∠A1ED,∠BEH=∠B1EH,∴∠DEA1+∠HEB1=90°.∴∠DEA1=∠EHB1,∴△A1DE∽△B1EH;(2)结论:△DEF是等边三角形;理由如下:∵直线MN是矩形ABCD的对称轴,∴点A1是EF的中点,即A1E=A1F,在△A1DE和△A1DF中,∴△A1DE≌△A1DF(SAS),∴DE=DF,∠FDA1=∠EDA1,又∵△ADE≌△A1DE,∠ADF=90°.∴∠ADE=∠EDA1=∠FDA1=30°,∴∠EDF=60°,∴△DEF是等边三角形;(3)DG,EG,FG的数量关系是DG2+GF2=GE2,理由如下:由(2)可知△DEF是等边三角形;将△DGE顺时针旋转60°到△DG'F位置,如解图(1),∴G'F=GE,DG'=DG,∠GDG'=60°,∴△DGG'是等边三角形,∴GG'=DG,∠DGG'=60°,∵∠DGF=150°,∴∠G'GF=90°,∴G'G2+GF2=G'F2,∴DG2+GF2=GE2.5.解:(1)如图1,连接AC,∵点O、E、F、G分别是AB、BC、CD、AD的中点,∴OE∥AC、OE=AC,GF∥AC、GF=AC,∴OE∥GF,OE=GF,∴四边形OEFG是平行四边形;(2)①∵△OGE绕点O顺时针旋转得到△OMN,∴OG=OM、OE=ON,∠GOM=∠EON,∴=,∴△OGM∽△OEN,∴==.②添加AC=BD,如图2,连接AC、BD,∵点O、E、F、G分别是AB、BC、CD、AD的中点,∴OG=EF=BD、OE=GF=AC,∵AC=BD,∴OG=OE,∵△OGE绕点O顺时针旋转得到△OMN,∴OG=OM、OE=ON,∠GOM=∠EON,∴OG=OE、OM=ON,在△OGM和△OEN中,∵,∴△OGM≌△OEN(SAS),∴GM=EN.6.解:(1)①∵四边形ABCD为正方形,∴△ABD为等腰直角三角形,∴BD=AB,∵EF⊥AB,∴△BEF为等腰直角三角形,BF=BE,∴BD﹣BF=AB﹣BE,即DF=AE;故答案为DF=AE;②DF=AE.理由如下:∵△EBF绕点B逆时针旋转到图2所示的位置,∴∠ABE=∠DBF,∵=,=,∴=,∴△ABE∽△DBF,∴==,即DF=AE;(2)如图3,∵四边形ABCD为矩形,∴AD=BC=mAB,∴BD==AB,∵EF⊥AB,∴EF∥AD,∴△BEF∽△BAD,∴=,∴==,∵△EBF绕点B顺时针旋转α(0°<α<90°)得到△E'BF',∴∠ABE′=∠DBF′,BE′=BE,BF′=BF,∴==,∴△ABE′∽△DBF′,∴==,即DF′=AE′.7.解:(1)∵在Rt△ABC中,∠ACB=90°,AC=5,∠BAC=60°,∴∠B=30°,∴AB=2AC=10,.由题意知:BM=2t,,∴,∵BM=BN,∴,解得:.(2)分两种情况:①当△MBN∽△ABC时,则,即,解得:.②当△NBM∽△ABC时,则,即,解得:.综上所述:当或时,△MBN与△ABC相似.(3)过M作MD⊥BC于点D,则MD∥AC,∴△BMD∽△BAC,∴,即,解得:MD=t.设四边形ACNM的面积为y,∴y===.∴根据二次函数的性质可知,当时,y的值最小.此时,.8.解:(1)∵∠ACP=∠B,∠A=∠A,∴△ACP∽△ABC,∴,∴AC2=AP•AB;(2)①取AP的中点G,连接MG,设AG=x,则PG=x,BG=3﹣x,∵M是PC的中点,∴MG∥AC,∴∠BGM=∠A,∵∠ACP=∠PBM,∴△APC∽△GMB,∴,即,∴x=,∵AB=3,∴AP=3﹣,∴PB=;②过C作CH⊥AB于H,延长AB到E,使BE=BP,设BP=x.∵∠ABC=45°,∠A=60°,∴CH=,HE=+x,∵CE2=()2+(+x)2,∵PB=BE,PM=CM,∴BM∥CE,∴∠PMB=∠PCE=60°=∠A,∵∠E=∠E,∴△ECP∽△EAC,∴,∴CE2=EP•EA,∴3+3+x2+2x=2x(x++1),∴x=﹣1,∴PB=﹣1.9.解:(1)∵平行四边形有一个内角是120度,∴α=60°,∴==;故答案为:;(2)=,理由:如图1,设矩形的长和宽分别为a,b,变形后的平行四边形的高为h,∴S1=ab,S2=ah,sinα=,∴==,∵=,∴=;(3)∵AB2=AE•AD,∴A1B12=A1E1•A1D1,即=,∵∠B1A1E1=∠D1A1B1,∴△B1A1E1∽△D1A1B1,∴∠A1B1E1=∠A1D1B1,∵A1D1∥B1C1,∴∠A1E1B1=∠C1B1E1,∴∠A1E1B1+∠A1D1B1=∠C1B1E1+∠A1B1E1=∠A1B1C1,由(2)知=可知==2,∴sin∠A1B1C1=,∴∠A1B1C1=30°,∴∠A1E1B1+∠A1D1B1=30°.10.解:(1)假设四边形PQCM是平行四边形,则PM∥QC,∴AP:AB=AM:AC,∵AB=AC,∴AP=AM,即10﹣t=2t,解得:t=,∴当t=时,四边形PQCM是平行四边形;(2)∵PQ∥AC,∴△PBQ∽△ABC,∴△PBQ为等腰三角形,PQ=PB=t,∴,即,解得:BF=t,∴FD=BD﹣BF=8﹣t,又∵MC=AC﹣AM=10﹣2t,∴y=(PQ+MC)•FD=(t+10﹣2t)(8﹣t)=t2﹣8t+40;(3)不存在;∵S△ABC==×10×8=40,当S四边形PQCM=S△ABC时,y=t2﹣8t+40=40,解得:t=0,或t=20,都不合题意,因此不存在;(4)假设存在某一时刻t,使得M在线段PC的垂直平分线上,则MP=MC,过M作MH⊥AB,交AB于H,如图所示:∵∠A=∠A,∠AHM=∠ADB=90°,∴△AHM∽△ADB,∴,又∵AD==6,∴,∴HM t,AH=t,∴HP=10﹣t﹣t=10﹣t,在Rt△HMP中,MP2=+=t2﹣44t+100,又∵MC2=(10﹣2t)2=100﹣40t+4t2,∵MP2=MC2,∴t2﹣44t+100=100﹣40t+4t2,解得,t2=0(舍去),∴t=s时,点M在线段PC的垂直平分线上.11.解:(1)△BDE∽△CFD,理由:∠B=∠C=∠EDF=a,在△BDE中,∠B+∠BDE+∠BED=180°,∴∠BDE+∠BED=180°﹣∠B=180°﹣α,∵∠BDE+∠EDF+∠CDF=180°,∴∠BDE+∠CDF=180°﹣∠EDF=180°﹣α,∴∠BED=∠CDF,∵∠B=∠C,∴△BDE∽△CFD;(2)①设AE=x,AF=y,∵△ABC是等边三角形,∴∠A=∠B=∠C=60°,AB=BC=AC=8,由折叠知,DE=AE=x,DF=AF=y,∠EDF=∠A=60°,在△BDE中,∠B+∠BDE+∠BED=180°,∴∠BDE+∠BED=180°﹣∠B=120°,∵∠BDE+∠EDF+∠CDF=180°,∴∠BDE+∠CDF=180°﹣∠EDF=120°,∴∠BED=∠CDF,∵∠B=∠C=60°,∴△BDE∽△CFD,∴∵BE=AB﹣AE=8﹣x,CF=AC﹣AF=8﹣y,CD=BC﹣BD=6,∴,∴,∴,∴;②设AE=x,AF=y,∵△ABC是等边三角形,∴∠A=∠ABC=∠ACB=60°,AB=BC=AC=8,由折叠知,DE=AE=x,DF=AF=y,∠EDF=∠A=60°,在△BDE中,∠ABC+∠BDE+∠BED=180°,∴∠BDE+∠BED=180°﹣∠ABC=120°,∵∠BDE+∠EDF+∠CDF=180°,∴∠BDE+∠CDF=180°﹣∠EDF=120°,∴∠BED=∠CDF,∵∠ABC=∠ACB=60°,∴∠DBE=∠DCF=120°,∴△BDE∽△CFD,∴∵BE=AB﹣AE=8﹣x,CF=AF﹣AC=y﹣8,CD=BC+BD=10,∴,∴,∴=.∵△BDE∽△CFD,∴△BDE与△CFD的周长之比为==.12.解:(1)∵PQ⊥AP,∴∠APB+∠QPC=90°,而∠QPC+∠PQC=90°,∴∠APB=∠PQC,∵∠ABP=∠PCQ=90°,∴△ABP∽△PCQ;(2)∵△ABP∽△PCQ,∴,即,则CQ=﹣x2+x=﹣(x﹣4)2+≥,故当x=4时,CQ的最大值为,即BP为4时,CQ最长,最长是;(3)∵△APQ是等腰直角三角形,则P A=PQ,而△ABP∽△PCQ,则△ABP≌△PCQ(AAS),∴AB=PC=6,则BP=8﹣6=2,即BP=2时,△APQ是等腰直角三角形.13.(1)解:如图1,∵△AOB为等边三角形,∴∠BAC=∠AOB=60°.∵BC⊥AB,∴∠ABC=90°,∴∠ACB=30°,∠OBC=30°∴∠ACB=∠OBC,∴CO=OB=AB=OA=3,∴AC=6,∴BC=AC=;(2)如图2,过点Q作x轴垂线,垂足为H,则QH=AQ•sin60°=.需要分类讨论:当△PHQ∽△ABC时,=,即==,解得,t=0.同理,当△QHP∽△ABC时,t=1.综上所述,t=0或t=1;(3)解:如图1,过点Q作QN∥OB交x轴于点N.∴∠QNA=∠BOA=60°=∠QAN,∴QN=QA∴△AQN为等边三角形,∴NQ=NA=AQ=3﹣t,∴ON=3﹣(3﹣t)=t,∴PN=t+t=2t,∴OE∥QN.∴△POE∽△PNQ∴,∴,∴∵EF∥x轴,∴∠BFE=∠BCO=∠FBE=30°∴EF=BE,∴m=BE=OB﹣OE=(0<t<3).14.(1)解:在△ADC和△EDB中,,∴△ADC≌△EDB(SAS),故选:B;(2)解:∵△ADC≌△EDB,∴BE=AC,在△ABE中,AB﹣BE<AE<AB+BE,∴4<2AD<20,∴2<AD<10,故答案为:2<AD<10;(3)①证明:如图③,延长AD到点G,使DG=AD,连接BG.∵AD=DG,∠ADC=∠GDB,CD=DB,∴△ADC≌△GDB(SAS),∴AC=BG,∠DAC=∠G,∴BG∥AC,∴∠F AE=∠G,∵AF=EF,∴∠F AE=∠AEF,∴∠BEG=∠G,∴BE=BG,∴AC=BE.②证明:延长AD到H,使得EH=AE,连接BH.∵AE=EH,∠AEF=∠BEH,EF=EB,∴△AEF≌△HEB(SAS),∴BH=AF,∠H=∠EAF,∴BH∥AC,∴△BDH∽△CDA,∴=,∴=,∴AF•CD=AC•BD.15.解:(1)∵菱形OABC中,OA=10,∴OC=10,∵cos∠COA=,∴点C的坐标为:(6,8),∵动点P从点O出发,以每秒1个单位长度的速度沿线段OA方向运动,∵cos∠COA==,OP=t,∴OQ=t,∴QP=t,∵OA=10,N点与A点重合,∴t+t=10,∴t=∴t=时,N点与A点重合;(2)①,②,③,④8<t≤10,S=104﹣8t;(3)S菱形=80,直线OB过原点(0,0),B点(16,8),故直线OB解析式为,直线OB与PQ、MN分别交于E、F点,如图:①当0<t≤6,,,,,若,则,,若,则,,②当6<t≤8,,,,,若则,t=0(舍),若,则,t3=8;③8<t≤10,不存在符合条件的t值.16.(1)①证明:如图1中,∵四边形ABCD是矩形,∴∠CDE=∥BCF=90°,∵BF⊥CE,∴∠BGC=90°,∴∠BCG+∠FBC=∠BCG+∠ECD=90°,∴∠FBC=∠ECD,∴△FBC∽△ECD,∴=.②证明:如图1中,连接BE,GD.∵BF⊥CE,EG=CG,∴BF垂直平分线段EC,∴BE=CB,∠EBG=∠CBG,∵DG=CG,∴∠CDG=∠GCD,∵∠ADG+∠CDG=90°,∠BCG+∠ECD=90°,∴∠ADG=∠BCG,∵AD=BC,∴△ADG≌△BCG(SAS),∴∠DAG=∠CBG,∴∠DAG=∠EBG,∴∠AEB=∠AGB,∴sin∠AGB=sin∠AEB====.(2)如图2中,取AB的中点T,连接PT,CP.∵四边形MNSR与四边形MNBA关于MN对称,T是AB中点,Q是SR中点,∴PT=PQ,MN垂直平分线段BS,∴BP=PS,∵∠BCS=90°,∴PC=PS=PB,∴PQ+PS=PT+PC,当T,P,C共线时,PQ+PS的值最小,最小值===,∴PQ+PS的最小值为.故答案为.17.解:(1)AE=BF,AE⊥BF,证明:∵四边形ABCD是正方形,∴AB=BC,∠ABC=∠BCD=90°,∵BE=CF,∴△ABE≌△BCF(SAS),∴AE=BF,∠BAE=∠CBF,∵∠ABP+∠CBF=90°∴∠BAE+∠ABP=90°∴∠APB=90°,∴AE⊥BF;(2)∵四边形ABCD是正方形,∴BC=DC=AD,由(1)知,AE=BF,∵BE=2,CE=3,BE=CF,∴DF=DC﹣CF=BC﹣BE=CE=3,AD=BC=BE+CE=2+3=5,在Rt△ADF中,由勾股定理得,AF===,在Rt△APF中,∠APF=90°,点M是AF中点,∴;(3)∵CQ⊥BF,∴∠BQC=∠BCF=90°,又∠CBQ=∠FBC,∴△CBQ~△FBC,∴,∵AB=BC,BE=CF,∴,∵△QAB~△QEC,∴,∴,∴,∴BE=CE,∴点E是BC中点。

--2021年春人教版数学九年级中考专题复习课件 等腰三角形

--2021年春人教版数学九年级中考专题复习课件 等腰三角形

【对应训练1】如图,在△ABC中,CD是∠ACB的平分线, DE∥BC交AC于点E,若AC=15 cm,AE=7 cm,则DE=__8_cm.
等边三角形 【例2】(2020·营口)如图,△ABC为等边三角形,边长为6,AD⊥BC, 垂足为点D,点E和点F分别是线段AD和AB上的两个动点, 连接CE,EF,则CE+EF的最小值为_3___3_.
∴EC=4,AB=AC=12,∴AE= AC2+EC2 = 122+42 =4 10 , ∴DP=PA=PE=12 AE=2 10 ,∵EF=13 AF,AP=PE, ∴PF=EF=12 PE= 10 ,∵∠DPF=90°,∴DF= DP2+PF2 =5 2
A.3
3 4
B.3 8 3
C.
3 4
D.
3 8
20.(2020·眉山)如图,等腰△ABC中,AB=AC=10,
边AC的垂直平分线交BC于点D,交AC于点E. 若△ABD的周长为26,则DE的长为___1_45_.
21.(2020·襄阳)在△ABC中,∠BAC=90°,AB=AC, 点D在边BC上,DE⊥DA且DE=DA,AE交边BC于点F,连接CE. (1)特例发现:如图①,当AD=AF时, ①求证:BD=CF; ②推断:∠ACE=90°; (2)探究证明:如图②,当AD≠AF时,请探究∠ACE的度数是否为定值,并 说明理由;
∴△ADM∽△AEC,∴∠ACE=∠AMD=90°,
即∠ACE的度数为定值90°
(3)连接EK.∵∠BAC+∠ACE=180°,∴AB∥CE,∴AECB =AEFF =13 , 设EC=a,则AB=AC=3a,AK=3a-136 ,∵DA=DE,DK⊥AE, ∴AP=PE,∴AK=KE=3a-136 ,∵EK2=CK2+EC2, ∴(3a-136 )2=(136 )2+a2,解得a=4或0(舍去),

备战2021年九年级中考数学考点提升训练——专题:《三角形综合:全等与相似》(五)

备战2021年九年级中考数学考点提升训练——专题:《三角形综合:全等与相似》(五)

备战2021年九年级中考数学考点提升训练——专题:《三角形综合:全等与相似》(五)1.在学习全等三角形知识时、数学兴趣小组发现这样一个模型:它是由两个共顶点且顶角相等的等腰三角形构成.在相对位置变化的同时,始终存在一对全等三角形.通过资料查询,他们得知这种模型称为“手拉手模型”,兴趣小组进行了如下操作:(1)如图1、两个等腰三角形△ABC和△ADE中,AB=AC,AE=AD,∠BAC=∠DAE,连接BD、CE、如果把小等腰三角形的腰长看作小手,大等腰三角形的腰长看作大手,两个等腰三角形有公共顶点,类似大手拉着小手,这个就是“手拉手模型”,在这个模型中,和△ADB全等的三角形是,此时BD和CE的数量关系是;(2)如图2、两个等腰直角三角形△ABC和△ADE中,AB=AC,AE=AD,∠BAC =∠DAE=90°,连接BD,CE,两线交于点P,请判断线段BD和CE的数量关系和位置关系,并说明理由;(3)如图3,已知△ABC,请完成作图:以AB、AC为边分别向△ABC外作等边△ABD 和等边△ACE(等边三角形三条边相等,三个角都等于60°),连接BE,CD,两线交于点P,并直接写出线段BE和CD的数量关系及∠PBC+∠PCB的度数.2.如图,△ABC为等边三角形,点D、E分别是边AB、BC所在直线上的动点,若点D、E以相同的速度,同时从点A、点B出发,分别延AB、BC方向运动,直线AE、CD交于点O.(1)如图1,求证:△ABE≌△CAD;(2)在点D、点E运动过程中,∠COE=°;(3)如图2,点P为边AC中点,连接BO,PO,当点D、E分别在线段AB、BC上运动时,判断BO与PO的数量关系,并证明你的结论.3.如图,△ABC是等边三角形,△ADC与△ABC关于直线AC对称,AE与CD垂直交BC的延长线于点E,∠EAF=45°,且AF与AB在AE的两侧,EF⊥AF.(1)依题意补全图形.(2)①在AE上找一点P,使点P到点B,点C的距离和最短;②求证:点D到AF,EF的距离相等.4.在△ABC中,AB=AC,D是直线BC上一点,以AD为一条边在AD的右侧作△ADE,使AE=AD,∠DAE=∠BAC,连接CE.(1)如图,当点D在BC延长线上移动时,若∠BAC=40°,则∠ACE=,∠DCE=,BC、DC、CE之间的数量关系为;(2)设∠BAC=α,∠DCE=β.①当点D在BC延长线上移动时,α与β之间有什么数量关系?请说明理由;②当点D在直线BC上(不与B,C两点重合)移动时,α与β之间有什么数量关系?请直接写出你的结论.(3)当CE∥AB时,若△ABD中最小角为15°,试探究∠ACB的度数(直接写出结果,无需写出求解过程).5.在学习了“等边对等角”定理后.某数学兴趣小组的同学继续探究了同一个三角形中边与角的数量关系,得到了一个正确的结论:“在同一个三角形中,较长的边所对的角较大”.简称:“在同一个三角形中,大边对大角”.即,如图:当AB>AC时,∠C>∠B.该兴趣小组的同学在此基础上对等腰三角形“三线合一”性质的一般情况,继续进行了深入的探究,请你补充完整:(1)在△ABC中,AD是BC边上的高线.①如图1,若AB=AC,则∠BAD=∠CAD;②如图2,若AB≠AC,当AB>AC时,∠BAD∠CAD.(填“>”,“<”,“=”)证明:∵AD是BC边上的高线,∴∠ADB=∠ADC=90°.∴∠BAD=90°﹣∠B,∠CAD=90°﹣∠C.∵AB>AC,∴(在同一个三角形中,大边对大角).∴∠BAD∠CAD.(2)在△ABC中,AD是BC边上的中线.①如图1,若AB=AC,则∠BAD=∠CAD;②如图3,若AB≠AC,当AB>AC时,∠BAD∠CAD.(填“>”,“<”,“=”)证明:6.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,动点P从点A出发沿线段AB以每秒3个单位长的速度运动至点B,过点P作PQ⊥AB射线AC于点Q.设点P 的运动时间为t秒(t>0).(1)线段CQ的长为(用含t的代数式表示)(2)当△APQ与△ABC的周长的比为1:4时,求t的值.(3)设△APQ与△ABC重叠部分图形的面积为S,求S与t之间的函数关系式.(4)当直线PQ把△ABC分成的两部分图形中有一个是轴对称图形时,直接写出t的值.7.已知△ABC与△A′B′C′关于直线l对称,其中CA=CB,连接AB',交直线l于点D(点D与点C不重合).(1)如图1,若∠ACB=40°,∠1=30°,求∠2的度数;(2)若∠ACB=40°,且0°<∠BCD<110°,求∠2的度数;(3)如图2,若∠ACB=60°,0°<∠BCD<120°,求证:BD=AD+CD.8.在△ABC与△ABD中,∠DBA=∠CAB,AC与BD交于点F(1)如图1,若∠DAF=∠CBF,求证:AD=BC;(2)如图2,∠D=135°,∠C=45°,AD=2,AC=4,求BD的长.(3)如图3,若∠DBA=18°,∠D=108°,∠C=72°,AD=1,直接写出DB的长.9.思维启迪:(1)如图①,A,B两点分别位于一个池塘的两端,小亮想用绳子测量A,B间的距离,但绳子不够长,他出一个办法:先在地上取一个可以直接到达B点的点C,连接BC,取BC的中点P(点P可以直接到达A点),利用工具过点C作CD∥AB交AP的延长线于点D,此时测得CD=200米,那么A,B间的距离是米.思维探索:(2)在△ABC和△ADE中,AC=BC=4,AE=DE=,∠ACB=∠AED=90°,将△ADE绕点A顺时针方向旋转,把点E在AC边上时△ADE的位置作为起始位置(此时点B和点D位于AC的两侧),设旋转角为α,连接BD,点P是线段BD的中点,连接PC,PE.①如图②,当△ADE在起始位置时,求证:PC⊥PE,PC=PE.②如图③,当α=90°时,点D落在AB边上,PC与PE的数量关系和位置关系分别为.③当α=135°时,直接写出PC的值.10.如图1,在平面直角坐标系中,等边△ABC的边BC在x轴上,A(0,3),B(﹣,0),点M(m,0)为x轴上的一个动点,连接AM,将AM绕点A逆时针旋转60°得到AN.(1)当M点在B点的左方时,连接CN,求证:△BAM≌△CAN;(2)如图2,当M点在边BC上时,过点N作ND∥AC交x轴于点D,连接MN,若S=S△MND,试求D点的坐标;四边形ACDN(3)如图3,是否存在点M,使得点N恰好在抛物线y=﹣2x2+4x+3上,如果存在,请求出m的值,如果不存在,请说明理由.参考答案1.解:(1)因为∠DAE=∠BAC,所以∠DAE+∠BAE=∠BAC+∠BAE.所以∠DAB=∠EAC,在△DAB和△EAC中,,所以△DAB≌△EAC(SAS),所以BD=CE,故答案为:△AEC,BD=CE;(2)BD=CE且BD⊥CE;理由如下:因为∠DAE=∠BAC=90°,所以∠DAE+∠BAE=∠BAC+∠BAE.所以∠DAB=∠EAC.在△DAB和△EAC中,,所以△DAB≌△EAC(SAS),所以BD=CE,∠DBA=∠ECA,因为∠ECA+∠ECB+∠ABC=90°,所以∠DBA+∠ECB+∠ABC=90°,即∠DBC+∠ECB=90°,所以∠BPC=180°﹣(∠DBC+∠ECB)=90°,所以BD⊥CE,综上所述:BD=CE且BD⊥CE;(3)如图3所示,BE=CD,∠PBC+∠PCB=60°;因为△ABD和△ACE是等边三角形,所以AD=AB,AC=AE,∠ADB=∠ABD=∠BAD=∠CAE=60°,所以∠BAD+∠BAC=∠CAE+∠BAC,所以∠CAD=∠EAB,在△ACD和△AEB中,,所以△ACD≌△AEB(SAS),所以CD=BE,∠ADC=∠ABE,所以∠BPD=180°﹣∠PBD﹣∠BDP=180°﹣∠ABE﹣∠ABD﹣∠BDP=180°﹣∠ABD﹣(∠ABE+∠BDP)=180°﹣∠ABD﹣(∠ADC+∠BDP)=180°﹣∠ABD﹣∠ADB=60°,所以∠PBC+∠PCB=∠BPD=60°.2.(1)证明:∵△ABC为等边三角形,∴AB=CA,∠ABE=∠CAD=60°,∵点D、E以相同的速度,同时从点A、点B出发,分别延AB、BC方向运动,∴BE=AD,在△ABE和△CAD中,,∴△ABE≌△CAD(SAS);(2)解:∵△ABC为等边三角形,∴∠BAC=60°,∵△ABE≌△CAD,∴∠BAE=∠ACD,∵∠COE是△ACO的外角,∴∠COE=∠ACD+∠EAC=∠BAE+∠EAC=∠BAC=60°,故答案为60;(3)解:BO与PO的数量关系为BO=2PO,理由如下:延长OP到F,使PF=OP,连接CF,以OC为边作等边△COG,连接BG,如图2所示:∵∠COE=60°,∴O、E、G三点共线,∵点P为边AC中点,∴AP=CP,在△APO和△CPF中,,∴△APO≌△CPF(SAS),∴AO=CF,∠AOP=∠F,∴CF∥AO,∴∠FCO=∠COE=60°,∵△COG是等边三角形,∴CO=OG=CG,∠COG=∠GCO=∠CGO=60°,∴∠AOC=180°﹣60°=120°,∵∠ACB=∠OCG=60°,∴∠ACO=∠BCG,在△ACO和△BCG中,,∴△ACO≌△BCG(SAS),∴∠BGC=∠AOC=120°,AO=BG,∴CF=BG,∠BGO=∠BGC﹣∠CGO=120°﹣60°=60°,∴∠FCO=∠BGO,在△FCO和△BGO中,,∴△FCO≌△BGO(SAS),∴BO=OF,∵PF=OP,∴BO=2PO.3.(1)解:补全图形,如图1所示:(2)①解:如图2,连接BD,P为BD与AE的交点.点P即为所求;②证明:连接DE,DF.如图3所示:∵△ABC,△ADC是等边三角形,∴AC=AD,∠ACB=∠CAD=60°.∵AE⊥CD,∴∠CAE=∠CAD=30°.∴∠CEA=∠ACB﹣∠CAE=30°.∴∠CAE=∠CEA.∴CA=CE.∴CD垂直平分AE.∴DA=DE.∴∠DAE=∠DEA,∵EF⊥AF,∠EAF=45°,∴∠FEA=45°.∴∠FEA=∠EAF.∴FA=FE,∠FAD=∠FED,在△FAD和△FED中,,∴△FAD≌△FED(SAS).∴∠AFD=∠EFD.∴点D到AF,EF的距离相等.4.解:(1)如图1所示:∵∠DAE=∠BAC,∴∠DAE+∠CAD=∠BAC+∠CAD,∴∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE(SAS),∴∠ACE=∠B=(180°﹣40°)=70°,BD=CE,∴BC+DC=CE,∵∠ACD=∠B+∠BAC=∠ACE+∠DCE,∴∠BAC=∠DCE,∵∠BAC=40°,∴∠DCE=40°,故答案为:70°;40°;BC+DC=CE;(2)①当点D在线段BC的延长线上移动时,α与β之间的数量关系是α=β,理由如下:∵∠DAE=∠BAC,∴∠DAE+∠CAD=∠BAC+∠CAD,∴∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE(SAS),∴∠B=∠ACE,∵∠ACD=∠B+∠BAC=∠ACE+∠DCE,∴∠BAC=∠DCE,∵∠BAC=α,∠DCE=β,∴α=β;②分三种情况:(Ⅰ)当D在线段BC上时,α+β=180°,如图2所示,理由如下:同理可证明:△ABD≌△ACE(SAS),∴∠ADB=∠AEC,∠ABC=∠ACE,∵∠ADC+∠ADB=180°,∴∠ADC+∠AEC=180°,∴∠DAE+∠DCE=180°,∵∠BAC=∠DAE=α,∠DCE=β,(Ⅱ)当点D在线段BC反向延长线上时,α=β,如图3所示,理由如下:同理可证明:△ABD≌△ACE(SAS),∴∠ABD=∠ACE,∵∠ACE=∠ACD+∠DCE,∠ABD=∠ACD+∠BAC,∴∠ACD+∠DCE=∠ACD+∠BAC,∴∠BAC=∠DCE,∵∠BAC=α,∠DCE=β,∴α=β;(Ⅲ)当点D在线段BC的延长线上时,如图1所示,α=β;综上所述,当点D在BC上移动时,α=β或α+β=180°;(3)∠ACB=60°,理由如下:∵当点D在线段BC的延长线上或在线段BC反向延长线上移动时,α=β,即∠BAC=∠DCE,∵CE∥AB,∴∠ABC=∠DCE,∴∠ABC=∠BAC,∵AB=AC,∴∠ABC=∠ACB=∠BAC,∴△ABC是等边三角形,∴∠ACB=60°;∵当D在线段BC上时,α+β=180°,即∠BAC+∠DCE=180°,∵CE∥AB,∴∠ABC+∠DCE=180°,∴∠ABC=∠BAC,∵AB=AC,∴∠ABC=∠ACB=∠BAC,∴△ABC是等边三角形,综上所述,当CE∥AB时,若△ABD中最小角为15°,∠ACB的度数为60°.5.(1)①证明:∵AD是BC边上的高线,∴∠ADB=∠ADC=90°.∴∠BAD=90°﹣∠B,∠CAD=90°﹣∠C.∵AB=AC,∴∠C=∠B,∴∠BAD=∠CAD.②解:∵AD是BC边上的高线,∴∠ADB=∠ADC=90°.∴∠BAD=90°﹣∠B,∠CAD=90°﹣∠C.∵AB>AC,∴∠C>∠B(在同一个三角形中,大边对大角).∴∠BAD>∠CAD.故答案为:∠C>∠B,>;(2)①证明:延长AD至E,使ED=AD,连接CE,如图1所示:∵AD是BC边上的中线,∴BD=CD,又∵∠ADB=∠EDC,∴△ABD≌△ECD(SAS),∴∠BAD=∠E,AB=EC,∵AB=AC,∴EC=AC,∴∠CAD=∠E,∴∠BAD=∠CAD;②解:延长AD至E,使ED=AD,连接CE,如图3所示:同①得:△ABD≌△ECD(SAS),∴∠BAD=∠E,AB=EC,∵AB>AC,∴EC>AC,∴∠CAD>∠E,∴∠BAD<∠CAD,故答案为:<.6.解:(1)在Rt△ABC中,tan A===,由题意得,AP=3t,在Rt△APQ中,tan A==,∴PQ=AP=4t,根据勾股定理得,AQ===5t.当0<t≤时,如图1所示:CQ=AC﹣AQ=6﹣5t;当<t≤时,如图2所示:CQ=AQ﹣AC=5t﹣6;故答案为:6﹣5t或5t﹣6;(2)∵PQ⊥AB,∴∠APQ=90°=∠ACB,∵∠A=∠A,∴△APQ∽△ACB,∴==,即=,解得:t=,即当△APQ与△ABC的周长的比为1:4时,t为秒.(3)分两种情况:①当0<t≤时,如图1所示:△APQ与△ABC重叠部分图形的面积为S=△APQ的面积=×3t×4t=6t2;即S=6t2(0<t≤);②当<t≤时,如图2所示:由(1)得:PQ=3t,PQ=4t,AQ=5t,同(2)得:△CDQ∽△PAQ,∴==,即==,解得:CD=(5t﹣6),∴△APQ与△ABC重叠部分图形的面积为S=△APQ的面积﹣△CDQ的面积=×3t ×4t﹣×(5t﹣6)×(5t﹣6)=﹣t2+t﹣;即S=﹣t2+t﹣(<t≤);(4)由(1)知,AQ=5t,PQ=4t,CQ=6﹣5t或CQ=5t﹣6,当CQ=PQ时,四边形BCQP是轴对称图形,则4t=6﹣5t,∴t=;当<t≤时,设PQ和BC相交于D,当AC=AP时,四边形ACDP是轴对称图形,则6=3t,∴t=2.综上所述,当直线PQ把△ABC分成的两部分图形中有一个是轴对称图形时,t的值为秒或2秒.7.解:(1)∵△ABC与△A′B′C′关于直线l对称,其中CA=CB,∴AC=CB=A'C=B'C,∠BCD=∠B'CD,∴∠1=∠CB'D=30°,∴∠ACB'=120°,∵∠ACB=40°,∴∠BCB'=80°,∴∠BCD=40°,∴∠2=180°﹣∠1﹣∠ACD=70°;(2)若点D在点C下方时,∵△ABC与△A′B′C′关于直线l对称,其中CA=CB,∴AC=CB=A'C=B'C,∠BCD=∠B'CD,∴∠1=∠CB'D==70°﹣∠BCD,∴∠2=∠CB'D+∠DCB'=70°,若点D在点C上方时,同理可求∠2=110°;(3)如图2,在BD上截取DH=CD,连接CH,∵△ABC与△A′B′C′关于直线l对称,其中CA=CB,∴AC=CB=A'C=B'C,∠BCD=∠B'CD,∴∠1=∠CB'D==60°﹣∠BCD,∴∠2=∠CB'D+∠DCB'=60°,又∵CD=DH,∴△CDH是等边三角形,∴CH=CD,∵∠BCA=∠HCD=60°,∴∠BCH=∠ACD,在△BCH和△ACD中,,∴△BCH≌△ACD(SAS),∴AD=BH,∴BD=BH+DH=AD+CD.8.(1)证明:∵∠DFA=∠CFB,∠DAF=∠CBF,∴∠D=∠C,在△DAB和△CBA中,,∴△DAB≌△CBA(AAS),∴AD=BC;(2)解:在FC上取一点E,使得∠FBE=∠DAF,如图2所示:由(1)知,△DAB≌△EBA(AAS),∴BE=AD=2,DB=EA,∠BDA=∠AEB=135°,∴∠BEC=45°,∵∠C=45°,∴∠BEC=∠C,∴BC=BE=2,∠EBC=90°,∴EC=BE=2,∵AC=4,∴AE=AC﹣EC=4﹣2,∴BD=AE=4﹣2.(3)解:在FC上取一点E,使得∠FBE=∠DAF,如图3所示:由(1)知△DAB≌△EBA(AAS),∴BE=AD=1,DB=AE,∠BEA=∠BDA=108°,∠DBA=∠EAB=18°,∴∠BEC=72°=∠C,∠EFB=∠DBA+∠EAB=36°,∴BC=BE=1,∠EBC=36°,∴∠C=∠BEA﹣∠EBC=72°,∴∠FBC=72°,∴∠C=∠FBC,∠EFB=∠EBF=36°,∴EF=EB=1,FB=FC,∵∠DBA=∠CAB,∴AF=FB=FC=1+EC,∵∠EBC=∠EFB,∠∠C=∠C,∴△CBE~△CFB,∴,∴BC2=CE•CF,∴CE•CF=1,∴CE(CE+1)=1,即CE2+CE﹣1=0,解得:(负值已舍去),∴,∴,∴.9.(1)解:∵CD∥AB,∴∠ABP=∠C,∵P是BC的中点,∴PB=PC,在△ABP和△DCP中,,∴△ABP≌△DCP(ASA),∴AB=CD=200米;故答案为:200;(2)①证明:延长EP交BC于F,如图②所示:∵∠ACB=∠AED=90°,∴DE∥BC,∴∠EDP=∠FBP,∠DEP=∠BFP,∵点P是线段BD的中点,∴PB=PD,在△FBP和△EDP中,,∴△FBP≌△EDP(AAS),∴PF=PE,BF=DE,∵AC=BC,AE=DE,∴FC=EC,又∵∠ACB=90°,∴△EFC是等腰直角三角形,∵PE=PF,∴PC⊥EF,PC=EF=PE;②解:PC⊥PE,PC=PE;理由如下:延长ED交BC于H,如图③所示:由旋转的性质得:∠CAE=90°,∵∠AED=∠ACB=90°,∴四边形ACHE是矩形,∴∠BHE=∠CHE=90°,AE=CH,∵AE=DE,∴CH=DE,∠ADE=45°,∴∠EDP=135°,∵∠ACB=90°,AC=BC,∴∠ABC=45°,∵∠BHE=90°,点P是线段BD的中点,∴PH⊥BD,PH=BD=PD,△BPH是等腰直角三角形,∴∠BHP=45°,∴∠CHP=135°=∠EDP,在△CPH和△EPD中,,∴△CPH≌△EPD(SAS),∴PC=PE,∠CPH=∠EPD,∴∠CPE=∠HPD=90°,∴PC⊥PE;故答案为:PC⊥PE,PC=PE;③解:当α=135°时,AD⊥AC,延长CP,交AD延长线于点H,则AH∥BC,∴△BCP∽△DHP,∴==,∵P是BD的中点,∴PD=PB,∴DH=BC=4,PH=PC,∵AD=AE=2,∴AH=DH+AD=6,∴CH===2,∴PC=CH=.10.解:(1)证明:∵△ABC是等边三角形,∴∠BAC=60°,AB=AC,∵将AM绕点A逆时针旋转60°得到AN,∴AM=AN,∠MAN=60°=∠BAC,即∠CAN+∠BAN=∠MAB+∠BAN,∴∠CAN=∠MAB,∴△BAM≌△CAN(SAS);(2)如图1,连接CN,由(1)可知△BAM≌△CAN,∴∠B=∠ACN=60°,∵DN∥AC,∴∠NDC=∠ACB=60°,∴∠NCD=60°,∴△CDN是等边三角形,∴CN=DN,∠CND=60°,∵AM=AN,∠MAN=60°,∴△AMN是等边三角形,∴AN=MN,∠ANM=60°,∴∠ANC=∠MND,∴△ANC≌△MND(SAS),∴S△ACN=S△MND,∵S四边形ACDN=S△MND=S△ACN+S△CDN,∴,∴CD=AB,∵A(0,3),B(﹣,0),∴OA=3,OB=,∴AB==2,∴CD=,∴OD=OC+CD==,∴D(,0);(3)如图2,过点C作CE∥AB交y轴于点E,由(1),(2)可知点N在直线CE 上,CE与抛物线交于点N1,N2,∴∠ABC=∠OCE=60°,OC=OB=,∴OE=3,∴E(0,﹣3),设直线CE的解析式为y=kx+b,∴,解得:,∴直线CE的解析式为y=x﹣3,∴,解得:,,∴N1(2,3),N2(﹣,﹣),若AM绕点A逆时针旋转60°得到AN1时,M(m,0),∴AM=AN1=2,∵AB=2,AN1∥x轴,∴点M与点C重合,即m=,若AM绕点A逆时针旋转60°得到AN2时,M(m,0),∵C(0,),∴CN 2==3,由(1)可知BM 2=CN2=3,∴OM2=OB+BM2==4,∴m=﹣4.综合以上可得,m=或﹣4.。

2021年九年级数学中考一轮复习《等腰三角形判定应用》专题突破训练

2021年九年级数学中考一轮复习《等腰三角形判定应用》专题突破训练

2021年九年级数学中考一轮复习《等腰三角形判定应用》专题突破训练1.如图,在△ABC中,AB=AC,∠A=36°,BD、CE分别是∠ABC、∠BCD的角平分线,则图中的等腰三角形有()A.5个B.4个C.3个D.2个2.已知△ABC的三边长分别为4、4、6,在△ABC所在平面内画一条直线,将△ABC分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画()条.A.3B.4C.5D.63.如图,坐标平面内一点A(2,﹣1),O为原点,P是x轴上的一个动点,如果以点P、O、A为顶点的三角形是等腰三角形,那么符合条件的动点P的个数为()A.2B.3C.4D.54.如图,已知每个小方格的边长为1,A,B两点都在小方格的顶点上,请在图中找一个顶点C,使△ABC为等腰三角形,则这样的顶点C有()A.8个B.7个C.6个D.5个5.在△ABC中,其两个内角如下,则能判定△ABC为等腰三角形的是()A.∠A=40°,∠B=50°B.∠A=40°,∠B=60°C.∠A=20°,∠B=80°D.∠A=40°,∠B=80°6.已知:如图,下列三角形中,AB=AC,则经过三角形的一个顶点的一条直线能够将这个三角形分成两个小等腰三角形的是()A.①③④B.①②③④C.①②④D.①③7.如图,是四张形状不同的纸片,用剪刀沿一条直线将它们分别剪开(只允许剪一次),不能够得到两个等腰三角形纸片的是()A.B.C.D.8.在等边△ABC所在平面内找出一个点,使它与三角形中的任意两个顶点所组成的三角形都是等腰三角形.这样的点一共有()A.1个B.4个C.7个D.10个9.如图,已知△ABC中,AB=3,AC=5,BC=7,在△ABC所在平面内一条直线,将△ABC分割成两个三角形,使其中有一个边长为3的等腰三角形,则这样的直线最多可画()A.5条B.4条C.3条D.2条10.已知:如图,点D,E分别在△ABC的边AC和BC上,AE与BD相交于点F,给出下面四个条件:①∠1=∠2;②AD=BE;③AF=BF;④DF=EF,从这四个条件中选取两个,不能判定△ABC是等腰三角形的是()A.①②B.①④C.②③D.③④11.已知△ABC的三条边长分别为3,4,6,在△ABC所在平面内画一条直线,将△ABC 分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画()A.5条B.6条C.7条D.8条12.在等边△ABC所在的平面内求一点P,使△P AB、△PBC、△P AC都是等腰三角形,具有这样性质的点P有()A.1个B.4个C.7个D.10个13.如图,A,B两点在正方形网格的格点上,每个方格都是边长为1的正方形,点C也在格点上,且△ABC为等腰三角形,满足条件的点C有()A.6个B.7个C.8个D.9个14.在平面直角坐标系xOy中,已知点P(2,2),点Q在y轴上,△PQO是等腰三角形,则满足条件的点Q共有()A.5个B.4个C.3个D.2个15.如图,在6×6的正方形网格中,点A,B均在正方形格点上,若在网格中的格点上找一点C,使△ABC为等腰三角形,这样的点C一共有()A.7个B.8个C.10个D.12个16.如图,∠AOB=45°,点M,N在边OA上,OM=x,ON=x+4,点P是边OB上的点.若使点P,M,N构成等腰三角形的点P恰好有三个,则x的值是.17.如图,∠AOB=60°,OC平分∠AOB,如果射线OA上的点E满足△OCE是等腰三角形,那么∠OEC的度数为.18.如图,在直角坐标系中,O是原点,已知A(4,3),P是坐标轴上的一点,若以O,A,P三点组成的三角形为等腰三角形,则满足条件的点P共有个,写出其中一个点P的坐标是.19.已知△ABC的三条边长分别为3,4,6,在△ABC所在平面内画一条直线,将△ABC 分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画条.20.如图,在△ABC中,AB=AC,BD,CE分别是∠ABC,∠ACB的平分线,且DE∥BC,∠A=36°,则图中等腰三角形共有个.21.在△ABC中,∠B=50°,当∠A为时,△ABC是等腰三角形.22.如图,∠AOB=60°,C是BO延长线上一点,OC=12cm,动点P从点C出发沿CB以2cm/s的速度移动,动点Q从点O出发沿OA以1cm/s的速度移动,如果点P、Q同时出发,用t(s)表示移动的时间,当t=s时,△POQ是等腰三角形.23.如图所示的正方形网格中,网格线的交点称为格点.已知A、B是两格点,如果C也是图中的格点,且使得△ABC为等腰三角形,则符合条件的点C有个.24.如图,在平面直角坐标系中,点A(2,2),连接AO,点P在x轴上,使△AOP为等腰三角形的点P的个数有个.25.在△ABC中,∠A=40°,当∠B=时,△ABC是等腰三角形.26.用一条长为20cm的细绳围成一个等腰三角形,如果腰长是底边长的2倍,则底边长为cm.27.在△ABC中,∠A=50°,当∠B的度数=时,△ABC是等腰三角形.28.如图,已知点P是射线BM上一动点(P不与B重合),∠AOB=30°,∠ABM=60°,当∠OAP=时,以A、O、B中的任意两点和P点为顶点的三角形是等腰三角形.29.如图,在△ABC中,边AB的垂直平分线分别交AB、AC于点D,E,若AD为4cm,△ABC的周长为26cm,则△BCE的周长为cm.30.如图,已知平面直角坐标系中有点A(3,0)和点B(0,﹣4),在x轴上存在一点C,使得△ABC为等腰三角形,则C坐标为.31.如图所示,在4×4的方格中每个小正方形的边长是单位1,小正方形的顶点称为格点.现有格点A、B,在方格中任意找一点C(必须是格点),使△ABC成为等腰三角形.这样的格点有个.32.Rt△ABC中,∠ACB=90°,∠A=60°,在直线BC上取一点P使得△P AB是等腰三角形,则符合条件的点P有个.33.在直角坐标系中,O为坐标原点,点A的坐标是(2,2),若点P在x轴上,且△APO 是等腰三角形,则满足条件的点P坐标是.34.在平面直角坐标系xOy中,已知A(1,2),在y轴确定点P,使△AOP为等腰三角形,则符合条件的点P有个.35.如图,平面直角坐标系内有一点A(2,﹣2),O是原点,P是x轴上一动点,如果以P、O、A为顶点的三角形是等腰三角形,那么点P的坐标为.36.如图:E在△ABC的AC边的延长线上,D点在AB边上,DE交BC于点F,DF=EF,BD=CE.求证:△ABC是等腰三角形.(过D作DG∥AC交BC于G)37.已知:点D是△ABC的边BC的中点,DE⊥AC,DF⊥AB,垂足分别为E,F,且BF =CE.求证:△ABC是等腰三角形.38.已知:如图,AB=AC,D是AB上一点,DE⊥BC于点E,ED的延长线交CA的延长线于点F.求证:△ADF是等腰三角形.39.如图,在△ABC中,点E在AB上,点D在BC上,BD=BE,∠BAD=∠BCE,AD与CE相交于点F,试判断△AFC的形状,并说明理由.40.如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,CE平分∠DCB交AB于点E.(1)求证:∠AEC=∠ACE;(2)若∠AEC=2∠B,AD=1,求BD的长.41.如图,在△ABC中,∠ABC=90°,过点B作BD⊥AC于点D,BE平分∠ABD交AC 于点E.(1)求证:CB=CE;(2)若∠CEB=80°,求∠DBC的大小.42.如图,在△ABC中,已知点D在线段AB的反向延长线上,过AC的中点F作线段GE 交∠DAC的平分线于E,交BC于G,且AE∥BC.(1)求证:△ABC是等腰三角形.(2)若AE=8,AB=10,GC=2BG,求△ABC的周长.43.如图,点D是△ABC内部的一点,BD=CD,过点D作DE⊥AB,DF⊥AC,垂足分别为E、F,且BE=CF.求证:△ABC为等腰三角形.44.如图,在△ABC中,AB=AC,∠A=36°,DE是AC的垂直平分线,求证:△BCD是等腰三角形.。

专题15 三角形及其性质(解析版)2021年中考数学

专题15   三角形及其性质(解析版)2021年中考数学

2021年中考数学一轮复习过关训练汇编专题15 三角形及其性质一、选择题1.下列各组线段,能构成三角形的是()A.3,2,1B.2,1,1C.2,2,1D.4,2,1【答案】C【分析】根据构成三角形的条件进行判断即可.【详解】A:3-2=1,两边之差不小于第三边,不满足构成三角形的条件,故不符合题意;B:2-1=1,两边之差不小于第三边,不满足构成三角形的条件,故不符合题意;C:2+2>1,2-2<1,满足构成三角形的条件,故符合题意;D:4-2=2>1,两边之差不小于第三边,不满足构成三角形的条件,故不符合题意;故选:C.【点睛】本题考查组成三角形的条件,掌握两边之和大于第三边,两边之差小于第三边是解题的关键.2.等腰三角形的两边长分别是5cm和11cm,则它的周长是()A.27cm B.21cm C.27cm或21cm D.无法确定【答案】A【分析】题目给出等腰三角形有两条边长为5cm和11cm,而没有明确腰是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【详解】解:当三边是5,5,11时,5+5<11,不符合三角形的三边关系,应舍去;当三边是5,11,11时,符合三角形的三边关系,此时周长是27.故选:A.【点睛】本题考查了等腰三角形的性质和三角形的三边关系.已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.3.如图,在△ABC中,△A=90°,若沿图中虚线截去△A,则△1+△2的度数为()A.90°B.180°C.270°D.300°【答案】C【分析】在△ABC中,利用三角形内角和定理可求出△B+△C的度数,再利用四边形内角和为360°,即可求出△1+△2的度数.【详解】解:在△ABC中,△A=90°,△A+△B+△C=180°,△△B+△C=180°﹣90°=90°,又△△1+△2+△B+△C=360°,△△1+△2=360°﹣90°=270°.故选:C.【点睛】本题考查三角形和四边形内角和的性质,熟知:“三角形内角和为180°,四边形内角和为360°”是解答本题的关键.4.如图,若△A=60°,△B=48°,△C=32°,则△BDC=()A.102°B.160°C.150°D.140°【答案】D【分析】如图,延长AD,利用三角形的外角性质分别求得△1、△2的值即可.【详解】解:如图,延长AD,△△1=△B+△BAD,△2=△C+△CAD,△A=60°,△B=48°,△C=32°,△△1+△2=△B+△C+△BAC=48°+32°+60°=140°.故选:D.【点睛】本题主要考查了三角形外角的性质,三角形的外角通常情况下是转化为内角来解决. 5.如图,AB△CD,BD△CF,垂足为B,△BDC=50°,则△ABF的度数为()A.50°B.40°C.45°D.25°【答案】B【分析】首先利用三角形内角和定理计算出△C的度数,再利用平行线的性质可得△ABF的度数.【详解】解:△BD△CF,△△DBC=90°,△△BDC=50°,△△C=180°-90°-50°=40°,△AB△CD,△△ABF=△C=40°,故选:B .【点睛】本题主要考查了平行线的性质,关键是掌握两直线平行,同位角相等.6.如图,在四边形ABCD 中,E ,F 分别是两组对边延长线的交点,EG ,FG 分别是BEC ∠,DFC ∠的角平分线.若60ADC ∠=︒,80ABC ∠=︒,则G ∠=( )A .140︒B .130︒C .120︒D .110︒【答案】D【分析】 连接EF ,根据三角形内角和等于180°及三角形角平分线的性质,即可得出△EGF1(360)2ABC ADC ︒=-∠-∠,代入△ADC =60°、△ABC =80°,即可求出△EGF 的度数. 【详解】解:连接EF ,如图所示.△EGF =180°-(△GFE +△GEF )=180°-(△CFE -△CFG +△CEF -△CEG )=180°-(△CFE +△CEF )+(△CFG +△CEG )11180(180)()22C CFD CEB ︒︒=--∠+∠+∠ 1()2C CFD CEB =∠+∠+∠ 1(180180)2C C CDA C CBA ︒︒=∠+-∠-∠+-∠-∠1(360)2ABC ADC ︒=-∠-∠, △△ADC =60°、△ABC =80°,△△EGF =12(360°-60°-80°) =110°.故选:D .【点睛】本题考查了三角形内角和定理、角平分线的性质,根据角与角之间的关系找出△EGF 12=(360°-△ABC -△ADC )是解题的关键.二、填空题7.ABC ∆的三边长分别为1,3,x ,且x 为整数,则x 的值是_____________.【答案】3【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【详解】解:根据三角形三边关系,△三角形的第三边x 满足:3-1<x <3+1,即2<x <4,△x 为整数,△x =3,故答案为:3.【点睛】此题主要考查了三角形三边关系,根据第三边的范围是:大于已知的两边的差,而小于两边的和是解决问题的关键.8.如图,把三角形铁皮ABC 加工成四边形ABCD 形状的零件,△A =40°,且D 恰好是△ABC 两条角平分线的交点,工人师傅量得△BDC =110°,则这个四边形零件加工_____.(填“合格”或“不合格”)【答案】合格【分析】根据三角形内角和定理可求出ABC ACB ∠+∠的大小,再根据角平分线的性质可知△DBC =12△ABC ,△DCB =12△ACB ,即可求出△DBC +△DCB 的大小,最后再利用三角形内角和定理即可求出△BDC =110°,与题干相符,即合格.【详解】解:△△A =40°,△18040140ABC ACB ∠+∠=︒-︒=︒,△BD 、CD 分别平分△ABC 和△ACB ,△△DBC =12△ABC ,△DCB =12△ACB , △△DBC +△DCB =12△ABC +12△ACB =140︒×12=70°, △△BDC =110°,△这个四边形零件加工合格,故答案为:合格.【点睛】本题考查三角形内角和定理以及角平分线的性质.利用两知识点找出角的等量关系是解答本题的关键. 9.如图,在ABC 中,68ACB ∠=︒,12∠=∠.若P 为ABC 的角平分线BP ,CP 的交点,则BPC ∠=________;若P 为ABC 内一点,则BPC ∠=________.【答案】112︒ 112︒【分析】若P 为ABC 的角平分线BP ,CP 的交点,可求出BCP ∠及2∠的度数,然后根据三角形内角和定理得出答案;若P 为ABC 内一点,可整体求出2BCP ∠+∠的度数,然后根据三角形内角和定理得出答案.【详解】解:若P 为ABC 的角平分线BP ,CP 的交点,△68ACB ∠=︒,△134BCP ∠=∠=︒,△12=34∠=∠︒,△18021803434112BPC BCP ∠=︒-∠-∠=︒-︒-︒=︒;若P 为ABC 内一点,△12∠=∠,△1268ACB BCP BCP ∠=∠+∠=∠+∠=︒,△()180180681122BC BP P C ∠=︒-=︒-︒=∠+∠︒;故答案为:112°,112°.【点睛】本题考查了三角形角平分线的定义及三角形内角和定理,熟练掌握整体思想的应用是解题的关键. 10.如图,在△ABC 中,BD 平分△ABC ,连接CD ,若△A =△D =40°,△ACD =30°,则△DCE 的度数为_____.【答案】70°.【分析】由三角形的外角的性质定理得到△ACE =△A +△ABC ,△DCE =△CBD +△D ,再由已知△ABD =△CBD ,△A =△D =40°,△ACD =30°解方程组可求得结果.【详解】△BD 平分△ABC ,△△ABD =△CBD ,△△ACE =△A +△ABC =40°+2△CBD ,△△DCE +△ACD =△A +2△CBD ,△△DCE =△CBD +△D ,△A =△D =40°,△ACD =30°,△△DCE +30°=40°+2△CBD ,即△DCE =2△CBD +10°①,△DCE =40°+△CBD ②,由①②得△DCE =70°,故答案为:70°.【点睛】本题主要考查了三角形的外角的性质定理,角平分线的定义,熟练应用三角形的外角的性质定理是解决问题的关键.11.如图,在△ABC 中,AD △BC ,AE 平分△BAC ,若△1=30°,△2=20°,则△B =_____.【答案】50°.【分析】利用角平分线的定义结合1∠的度数可得出CAE ∠的值,进而可得出DAE ∠、BAD ∠的值,在ABD ∆中利用三角形内角和定理可求出B 的值,此题得解.【详解】解:AE ∵平分BAC ∠,130∠=,130CAE ∴∠=∠=︒,210DAE CAE ∴∠=∠-∠=︒,140BAD DAE ∴∠=∠+∠=︒.AD BC ⊥,90ADB ∴∠=︒,18050B BAD ADB ∴∠=︒-∠-∠=︒.故答案为50°.【点睛】本题考查了三角形内角和定理,角平分线的行政,熟悉相关性质是解题的关键.12.如图,△BAC=30°,AP平分△BAC,GF垂直平分AP,交AC于F,Q为射线AB上一动点,若PQ的最小值为3,则AF的长为_____.【答案】6【分析】作PH△AC于H,连接PF,根据角平分线的性质求出PH,根据线段垂直平分线的性质得到F A=FP,根据三角形的外角的性质求出△PFH,根据直角三角形的性质解答即可.【详解】解:作PH△AC于H,连接PF,当PQ△AB时,PQ的最小,△AP平分△BAC,PQ△AB,PH△AC,△PH=PQ=3,△P AB=△P AC=15°,△GF垂直平分AP,△F A=FP,△△FP A=△P AC=15°,△△PFH=30°,△PF=2PH=6,△AF=6,故答案为:6.【点睛】本题为三角形综合题,掌握角平分线的性质,线段垂直平分线的性质,三角形的外角的性质以及含30角的直角三角形的性质是解答本题的关键.三、解答题13.已知a b c ,,满足()2240a c --=.(1)求a b c ,,的值.(2)以a b c ,,为边能否构成三角形,如果能,求出三角形的周长;如果不能,请说明理由.【答案】(1)a =2,b =3,c =4;(2)能,9【分析】(1)根据非负数的性质列式求解即可得到a 、b 、c 的值;(2)利用三角形的三边关系判断能够组成三角形,然后根据三角形的周长公式列式进行计算即可得解.【详解】解:(1)根据题意得:a -2=0,b -3=0,c -4=0,解得:a =2,b =3,c =4;(2)△2+3>4,即a +b >c ,△能构成三角形,△C △ABC =2+3+4=9.【点睛】本题考查了绝对值,算术平方根和平方数非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0列式是解题的关键.14.在证明“三角形内角和等于180”这一命题时,小彬的思路如下.请写出“求证”部分,补充第一步推理的依据并按他的思路完成后续证明.已知:如图,ABC .求证:_____________________.证明:如图,在BC 边上取点D ,过点D 作//DE AB 交AC 于点E ,过点D 作//DF AC 交AB 于点F . △//DE AB ,△1A ∠=∠,2B ∠=∠(依据:_____________________).△//DF AC ,△13∠=∠.【答案】180A B C ∠+∠+∠=︒;两直线平行,同位角相等;见解析.【分析】结合平行线的性质进行推理证明.【详解】解:已知:如图,ABC .求证:180A B C ∠+∠+∠=︒.证明:在BC 边上取点D ,过点D 作//DE AB 交AC 于点E ,过点D 作//DF AC 交AB 于点F . △//DE AB ,△1A ∠=∠,2B ∠=∠(依据:两直线平行,同位角相等).△//DF AC ,△13∠=∠,4C ∠=∠.△3A ∠=∠△2+3+4=180∠∠∠︒△180A B C ∠+∠+∠=︒即三角形内角和等于180°【点睛】本题考查平行线的性质,掌握平行线的性质正确添加辅助线进行推理论证是解题关键.15.如图,在△ABC 中,AD △BC ,AE 平分△BAC ,△B =72°,△C =30°,①求△BAE 的度数;②求△DAE 的度数.【答案】①△BAE=39°;②△DAE=21°.【分析】①先根据三角形内角和定理计算出△BAC=78°,然后根据角平分线定义得到△BAE=12△BAC=39°;②根据垂直定义得到△ADB=90°,则利用互余可计算出△BAD=90°﹣△B=18°,然后利用△DAE=△BAE﹣△BAD进行计算即可;【详解】解:①△△B+△C+△BAC=180°,△△BAC=180°﹣72°﹣30°=78°,△AE平分△BAC,△△BAE=12△BAC=39°;②△AD△BC,△△ADB=90°,△△BAD=90°﹣△B=18°,△△DAE=△BAE﹣△BAD=39°﹣18°=21°.【点睛】本题考查了三角形内角和定理,角平分线的定义,垂直的定义,角的计算等知识.三角形内角和定理:三角形内角和是180°.16.在△ABC中,AB=AC=5,点D是边BC上的中点,AD=3,求△ABC的面积.【答案】12【分析】由AB=AC,点D为BC的中点,可知AD△BC,且BD=CD,在Rt△ABD中,AB=5,AD=3,由勾股定理可求BD4=,可得BC=2BD==8,利用面积公式S△ABC=1122BC AD⋅=即可.【详解】解:△AB =AC ,点D 为BC 的中点,△AD △BC ,且BD =CD ,在Rt △ABD 中,AB =5,AD =3,△BD 2222534AD ,△BC =2BD =2×4=8,△S △ABC =11831222BC AD ⋅=⨯⨯=. 【点睛】本题考查等腰三角形性质,勾股定理。

2021年九年级数学中考专题训练:三角形(含答案)

2021年九年级数学中考专题训练:三角形(含答案)

2021中考专题训练:三角形一、选择题1. 下列长度的三根小木棒能构成三角形的是()A. 2 cm,3 cm,5 cmB. 7 cm,4 cm,2 cmC. 3 cm,4 cm,8 cmD. 3 cm,3 cm,4 cm2. 如图,CE是△ABC的外角∠ACD的平分线,若∠B=35°,∠ACE=60°,则∠A=()A. 35°B. 95°C. 85°D. 75°3. (2019•荆门)将一副直角三角板按如图所示的位置摆放,使得它们的直角边互相垂直,则1∠的度数是A.95︒B.100︒C.105︒D.110︒4. 如图,在△ABC中,AB=4,BC=6,DE、DF是△ABC的中位线,则四边形BEDF的周长是()A. 5B. 7C. 8D. 105. 某木材市场上木棒规格与对应单价如下表:规格 1 m 2 m 3 m 4 m 5 m 6 m单价(元/根) 10 15 20 25 30 35小明的爷爷要做一个三角形的木架养鱼用,现有两根长度分别为3 m和5 m的木棒,还需要到该木材市场去购买一根木棒,则小明的爷爷至少带的钱数应为()A.10元B.15元C.20元D.25元6. 长为9,6,5,4的四根木条,选其中三根组成三角形,选法有()A.1种B.2种C.3种D.4种7. (2019•大庆)如图,在△ABC中,BE是∠ABC的平分线,CE是外角∠ACM 的平分线,BE与CE相交于点E,若∠A=60°,则∠BEC是A.15°B.30°C.45°D.60°8. 如图,在△ABC中,∠ACB=70°,∠1=∠2,则∠BPC的度数为()A.70°B.108°C.110°D.125°二、填空题9. 如图,以△ABC的顶点B为圆心,BA长为半径画弧,交BC边于点D,连接AD.若∠B=40°,∠C=36°,则∠DAC的大小为.10. 已知一个等腰三角形两边的长分别为3和6,则该等腰三角形的周长是.11. 如图,已知直线a∥b,△ABC的顶点B在直线b上,∠C=90°,∠1=36°,则∠2=________.12. 如图,已知∠A=54°,∠B=31°,∠C=21°,则∠1=________°.13. 如图所示,在△ABC中,∠B=∠C,FD⊥BC,DE⊥AB,垂足分别为D,E.若∠AFD=158°,则∠EDF=°.14. 如图,△ABC三边的中线AD,BE,CF的公共点为G,若S△ABC=12,则图中阴影部分的面积是________.15. 在△ABC中,AB=4,AC=3,AD是△ABC的角平分线,则△ABD与△ACD 的面积之比是________.16. 如图,直角三角形的两条直角边AC,BC分别经过正九边形的两个顶点,则图中∠1+∠2的度数是.三、解答题17. 如图,在Rt△ABC中,∠ACB=90°,∠A=40°,△ABC的外角∠CBD的平分线BE交AC的延长线于点E.(1)求∠CBE的度数;(2)过点D作DF∥BE,交AC的延长线于点F,求∠F的度数.18. 如图,CE是△ABC的外角∠ACD的平分线,且CE交BA的延长线于点E,∠B=25°,∠E=30°,求∠BAC的度数.19. 在△ABC中,∠B=55°,且3∠A=∠B+∠C,求∠A和∠C的度数.20. 如图,AD,AE分别是△ABC的角平分线和高.(1)若∠B=50°,∠C=60°,求∠DAE的度数;(2)若∠C>∠B,猜想∠DAE与∠C-∠B之间的数量关系,并加以证明.21. 如图11-Z-11,点B在点A的南偏西45°方向,点C在点A的南偏东30°方向,点C在点B的北偏东60°方向,求∠C的度数.22. 观察与转化思想如图是五角星形,求∠A +∠B +∠C +∠D +∠E的度数.2021中考专题训练:三角形-答案一、选择题1. 【答案】D 【解析】根据三角形两边之和大于第三边,两边之差小于第三边,进行判断,A 中2+3=5不能构成三角形;B 中2+4<7不能构成三角形;C 中3+4<8不能构成三角形;只有D 选项符合.2. 【答案】C 【解析】∵CE 是△ABC 的外角∠ACD 的平分线,∠ACE =60°,∴∠ACD =2∠ACE =120°,∵∠A +∠B =∠ACD ,∠B =35°,∴∠A =∠ACD -∠B =120°-35°=85°.3. 【答案】C 【解析】如图,由题意得,2454903060∠=︒∠=︒︒=︒,-,∴3245∠=∠=︒, 由三角形的外角性质可知,134105∠=∠+∠=︒,故选C .4. 【答案】D【解析】∵DE、DF是△ABC的中位线,∴DE∥AB,DF∥BC,DE=12AB,DF=12BC,∴四边形BEDF是平行四边形,∵AB=4,BC=6,∴DE=BF=2,DF=BE=3,∴四边形BEDF的周长为:2(DE+DF)=10.5. 【答案】C[解析] 由三角形三边大小关系可得第三根木棒的长度应该大于2 m 且小于8 m,所以满足要求的木棒有3 m,4 m,5 m,6 m,其中买3 m木棒用钱最少,为20元.6. 【答案】C7. 【答案】B【解析】∵BE是∠ABC的平分线,∴∠EBM=12∠ABC,∵CE是外角∠ACM的平分线,∴∠ECM=12∠ACM,则∠BEC=∠ECM–∠EBM=12×(∠ACM–∠ABC)=12∠A=30°,故选B.8. 【答案】C[解析] ∵在△ABC中,∠ACB=70°,∠1=∠2,∴∠2+∠BCP=∠1+∠BCP=∠ACB=70°.∴∠BPC=180°-∠2-∠BCP=180°-70°=110°.二、填空题9. 【答案】34°[解析]根据题意可得BA=BD,∵∠B=40°,∴∠BAD=∠BDA=70°.∵∠B=40°,∠C=36°,∴∠BAC=180°-∠B-∠C=104°,∴∠DAC=∠BAC-∠BAD=34°,故答案为34°.10. 【答案】15[解析] 若腰长为3,3+3=6,∴3,3,6不能组成三角形;若腰长为6,3+6=9>6,∴3,6,6能组成三角形,该三角形的周长为3+6+6=15.11. 【答案】54°【解析】如解图,过点C 作直线CE ∥a ,则a ∥b ∥CE ,则∠1=∠ACE ,∠2=∠BCE ,∵∠ACE +∠BCE =90°,∴∠1+∠2=90°,∵∠1=36°,∴∠2=54°.12. 【答案】106[解析] 由三角形的外角性质可知,∠CDB =∠A +∠C =75°,∴∠1=∠CDB +∠B =106°.13. 【答案】68[解析] ∵∠AFD=158°,∴∠CFD=180°-∠AFD=180°-158°=22°. ∵FD ⊥BC , ∴∠FDC=90°.∴∠C=180°-∠FDC-∠CFD=180°-90°-22°=68°. ∵∠B=∠C ,DE ⊥AB ,∴∠EDB=180°-∠B-∠DEB=180°-68°-90°=22°. ∴∠EDF=180°-90°-22°=68°.14. 【答案】4【解析】∵△ABC 三边的中线AD ,BE ,CF 相交于点G ,∴S △ABD=S △ACD =12S △ABC =12×12=6,AG =2GD ,∴由三角形的面积公式得S △ACG =23S△ACD =4,又∵AE =CE ,∴S △CEG =12S △ACG =2,同理S △BGF =2,∴S 阴影=2+2=4.15. 【答案】4∶3 【解析】如解图,过D 作DE ⊥AB ,DF ⊥AC ,垂足分别为E 、F ,∵AD 是∠BAC 的平分线,∴DE =DF(角平分线上的点到角两边的距离相等),设DE =DF =h ,则S △ABD S △ACD=12AB·h12AC·h =43.16. 【答案】190°[解析] 如图,正九边形的一个内角为=140°,∠3+∠4=90°,则∠1+∠2=140°×2-90°=190°.三、解答题17. 【答案】解:(1)∵在Rt△ABC中,∠ACB=90°,∠A=40°,∴∠ABC=90°-∠A=50°. ∴∠CBD=130°.∵BE是∠CBD的平分线,∴∠CBE=12∠CBD=65°.(2)∵∠ACB=90°,∠CBE=65°,∴∠CEB=90°-65°=25°.∵DF∥BE,∴∠F=∠CEB=25°.18. 【答案】解:∵∠B=25°,∠E=30°,∴∠ECD=∠B+∠E=55°.∵CE是∠ACD的平分线,∴∠ACE=∠ECD=55°.∴∠BAC=∠ACE+∠E=85°.19. 【答案】解:∵在△ABC中,∠A+∠B+∠C=180°,3∠A=∠B+∠C,∴4∠A=180°,解得∠A=45°.∵∠B=55°,∴∠C=180°-45°-55°=80°.20. 【答案】解:(1)在△ABC中,∵∠B=50°,∠C=60°,∴∠BAC=70°.∵AD是△ABC的角平分线,∴∠BAD =∠DAC =12∠BAC =35°. ∵AE 是BC 上的高,∴∠AEB =90°. ∴∠BAE =90°-∠B =40°. ∴∠DAE =∠BAE -∠BAD =5°. (2)∠DAE =12(∠C -∠B). 证明:∵AE 是△ABC 的高, ∴∠AEC =90°. ∴∠EAC =90°-∠C. ∵AD 是△ABC 的角平分线, ∴∠DAC =12∠BAC.∵∠BAC =180°-∠B -∠C , ∴∠DAC =12(180°-∠B -∠C). ∴∠DAE =∠DAC -∠EAC =12(180°-∠B -∠C)-(90°-∠C) =12(∠C -∠B).21. 【答案】解:∵∠NBC =60°,∠NBA =∠BAS =45°, ∴∠ABC =∠NBC -∠NBA =60°-45°=15°. 又∵∠BAC =∠BAS +∠SAC =45°+30°=75°, ∴在△ABC 中,∠C =180°-(75°+15°)=90°.22. 【答案】解:如图,∵∠1是△CEG 的外角,∴∠1=∠C +∠E.同理可得∠AFB =∠B +∠D.∵在△AFG中,∠A+∠1+∠AFG=180°,∴∠A+∠B+∠C+∠D+∠E=180°.。

九年级数学中考2021年复习分类压轴大题专题:三角形综合题【含答案】

九年级数学中考2021年复习分类压轴大题专题:三角形综合题【含答案】

九年级数学中考2021年复习分类压轴大题专题:三角形综合题1.在平面直角坐标系中,B(2,2),以OB为一边作等边△OAB(点A在x轴正半轴上).(1)若点C是y轴上任意一点,连接AC,在直线AC上方以AC为一边作等边△ACD.①如图1,当点D落在第二象限时,连接BD,求证:AB⊥BD;②若△ABD是等腰三角形,求点C的坐标;(2)如图2,若FB是OA边上的中线,点M是FB一动点,点N是OB一动点,且OM+NM 的值最小,请在图2中画出点M、N的位置,并求出OM+NM的最小值.2.在△ABC中,AB=AC,CD是AB边上的高,若AB=10,BC=.(1)求CD的长.(2)动点P在边AB上从点A出发向点B运动,速度为1个单位/秒;动点Q在边AC上,从点A出发向点C运动,速度为v个单位/秒(v>1).设运动的时间为t(t>0),当点Q到点C时,两个点都停止运动.①若当v=2时,CP=BQ,求t的值.②若在运动过程中存在某一时刻,使CP=BQ成立,求v关于t的函数表达式,并写出自变量t的取值范围.3.如图1,直线AB分别与x轴、y轴交于A、B两点,OC平分∠AOB交AB于点C,点D为线段AB上一点,过点D作DE∥OC交y轴于点E,已知AO=m,BO=n,且m、n满足n2﹣8n+16+|n﹣2m|=0.(1)求A、B两点的坐标;(2)若点D为AB中点,求OE的长;(3)如图2,若点P(x,﹣2x+4)为直线AB在x轴下方的一点,点E是y轴的正半轴上一动点,以E为直角顶点作等腰直角△PEF,使点F在第一象限,且F点的横、纵坐标始终相等,求点P的坐标.4.在等边△ABC中,线段AM为BC边上的中线.动点D在直线AM上时,以CD为一边在CD 的下方作等边△CDE,连结BE.(1)若点D在线段AM上时(如图1),则AD BE(填“>”、“<”或“=”),∠CAM=度;(2)设直线BE与直线AM的交点为O.①当动点D在线段AM的延长线上时(如图2),试判断AD与BE的数量关系,并说明理由;②当动点D在直线AM上时,试判断∠AOB是否为定值?若是,请直接写出∠AOB的度数;若不是,请说明理由.5.提出问题:如图1,在直角△ABC中,∠BAC=90°,点A正好落在直线l上,则∠1、∠2的关系为.探究问题:如图2,在直角△ABC中,∠BAC=90°,AB=AC,点A正好落在直线l上,分别作BD⊥l 于点D,CE⊥l于点E,试探究线段BD、CE、DE之间的数量关系,并说明理由.解决问题:如图3,在△ABC中,∠CAB、∠CBA均为锐角,点A、B正好落在直线l上,分别以A、B为直角顶点,向△ABC外作等腰直角三角形ACE和等腰直角三角形BCF,分别过点E、F 作直线l的垂线,垂足为M、N.①试探究线段EM、AB、FN之间的数量关系,并说明理由;②若AC=3,BC=4,五边形EMNFC面积的最大值为.6.如图,在Rt△ABC中,AC=BC,∠ACB=90°,D、E分别在AC、BC上,连接AE、BD交于点O,且CD=CE.(1)如图1,求证:AO=BO.(2)如图2,F是BD的中点,试探讨AE与CF的位置关系.(3)如图3,F、G分别是BD、AE的中点,若AC=,CE=,求△CGF的面积.7.在Rt△ABC中,∠BAC=90°,AB=AC,P是直线AC上的一点,连接BP,过点C作CD⊥BP,交直线BP于点D.(1)当点P在线段AC上时,如图①,求证:BD﹣CD=AD;(2)当点P在直线AC上移动时,位置如图②、图③所示,线段CD,BD与AD之间又有怎样的数量关系?请直接写出你的猜想,不需证明.8.几何探究题(1)发现:在平面内,若AB=a,BC=b,其中b>a.当点A在线段BC上时,线段AC的长取得最小值,最小值为;当点A在线段CB延长线上时,线段AC的长取得最大值,最大值为.(2)应用:点A为线段BC外一动点,如图2,分别以AB、AC为边,作等边△ABD和等边△ACE,连接CD、BE.①证明:CD=BE;②若BC=5,AB=2,则线段BE长度的最大值为.(3)拓展:如图3,在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(7,0),点P为线AB外一动点,且PA=2,PM=PB,∠BPM=90°.请直接写出线段AM长的最大值及此时点P的坐标.9.如图1,平面直角坐标系xOy中,若A(0,4)、B(1,0)且以AB为直角边作等腰Rt △ABC,∠CAB=90°,AB=AC.(1)如图1,求C点坐标;(2)如图2,在图1中过C点作CD⊥x轴于D,连接AD,求∠ADC的度数;(3)如图3,点A在y轴上运动,以OA为直角边作等腰Rt△OAE,连接EC,交y轴于F,试问A点在运动过程中S△AOB :S△AEF的值是否会发生变化?如果没有变化,请说明理由.10.已知,在△ABC中,∠A=90°,AB=AC,点D为BC的中点.(1)问题发现如图①,若点E、F分别是AB,AC的中点,连接DE,DF,EF,则线段DE与DF的数量关系是,线段DE与DF的位置关系是;(2)拓展探究如图②,若点E,F分别是AB,AC上的点,且BE=AF,连接DE,DF,EF,上述结论是否依然成立?若成立,请给出证明;若不成立,请说明理由;(3)解决问题当点E,F分别为AB,CA延长线上的点,且BE=AF=AB=2,连接DE,DF,EF,直接写出△DEF的面积.参考答案1.(1)①证明:∵△OAB和△ACD是等边三角形,∴BO=AO=AB,AC=AD,∠OAB=∠CAD=60°,∴∠BAD=∠OAC,在△ABD和△AOC中,,∴△ABD≌△AOC(SAS),∴∠ABD=∠AOC=90°,∴AB⊥BD;②解:存在两种情况:当点D落在第二象限时,如图1所示:作BM⊥OA于M,∵B(2,2),∴OM=2,BM=2,∵△OAB是等边三角形,∴AO=2OM=4,同①得:△ABD≌△AOC(SAS),∴BD=OC,∠ABD=∠OAC=90°,若△ABD是等腰三角形,则BD=AB,∴OC=AB=OA=4,∴C(0,﹣4);当点D落在第一象限时,如图1﹣1所示:作BM⊥OA于M,∵B(2,2),∴OM=2,BM=2,∵△OAB是等边三角形,∴AO=2OM=4,同①得:△ABD≌△AOC(SAS),∴BD=OC,∠ABD=∠OAC=90°,若△ABD是等腰三角形,则BD=AB,∴OC=AB=OA=4,∴C(0,4);综上所述,若△ABD是等腰三角形,点C的坐标为(0,﹣4)或(0,4);(2)解:作ON'⊥AB于N',作MN⊥OB于N,如图2所示:∵△OAB是等边三角形,ON'⊥AB,FB是OA边上的中线,∴AN'=AB=2,BF⊥OA,BF平分∠ABO,∵ON'⊥AB,MN⊥OB,∴MN=MN',∴N'和N关于BF对称,此时OM+MN的值最小,∴OM+MN=OM+MN'=ON,∵ON===2,∴OM+MN=2;即OM+NM的最小值为2.2.解:(1)如图,作AE⊥BC于点E,∵AB=AC∴BE=BC=2在Rt△ABE中,AE===4∵S=BC•AE=AB•CD△ABC∴CD===8答:CD的长为8.(2)过点B作BF⊥AC于点F,当点Q在AF之间时,如图所示:=AC•BF=AB•CD∵S△ABC∵AB=AC∴BF=CD在Rt△CDP和Rt△BQF中,∵CP=BQ,CD=BF∴Rt△CDP≌Rt△BQF(HL)∴PD=QF在Rt△ACD中,CD=8,AC=AB=10 ∴AD==6同理可得AF=6∴PD=AD=AP=6﹣t,QF=AF﹣AQ=6﹣2t由PD=QF得6﹣t=6﹣2t,解得t=0 ∵t>0,此种情况不符合题意,舍去;当点Q在FC之间时,如图所示:此时PD=6﹣t,QF=2t﹣6,由PD=QF,得6﹣t=2t﹣6解得t=4综上得t的值为4.②同①可知:v>1时,Q在AF之间不存在CP=BQ,Q在FC之间存在CP=BQ,Q在F点时,显然CP不等于BQ.∵运动时间为t,则AP=t,AQ=vt,∴PD=6﹣t,QF=vt﹣6,由DP=QF,得6﹣t=vt﹣6整理得v=∵Q在FC之间,即AF<AQ≤AC∴6<vt≤10,代入v=得6<12﹣t≤10,解得2≤t<6所以v=(2≤t<6).3.解:(1)∵n2﹣8n+16+|n﹣2m|=0,∴(n﹣4)2+|n﹣2m|=0,∵(n﹣4)2≥0,|n﹣2m|≥0,∴(n﹣4)2=0,|n﹣2m|=0,∴m=2,n=4,∴点A为(2,0),点B为(0,4);(2)延长DE交x轴于点F,延长FD到点G,使得DG=DF,连接BG,设OE=x,∵OC平分∠AOB,∴∠BOC=∠AOC=45°,∵DE∥OC,∴∠EFO=∠FEO=∠BEG=∠BOC=∠AOC=45°,∴OE=OF=x,在△ADF和△BDG中,,∴△ADF≌△BDG(SAS),∴BG=AF=2+x,∠G=∠AFE=45°,∴∠G=∠BEG=45°,∴BG=BE=4﹣x,∴4﹣x=2+x,解得:x=1,∴OE=1;(3)如图2,分别过点F、P作FM⊥y轴于点M,PN⊥y轴于点N,设点E为(0,m),∵点P的坐标为(x,﹣2x+4),∴PN=x,EN=m+2x﹣4,∵∠PEF=90°,∴∠PEN+∠FEM=90°,∵FM⊥y轴,∴∠MFE+∠FEM=90°,∴∠PEN=∠MFE,在△EFM和△PEN中,,∴△EFM≌△PEN(AAS),∴ME=NP=x,FM=EN=m+2x﹣4,∴点F为(m+2x﹣4,m+x),∵F点的横坐标与纵坐标相等,∴m+2x﹣4=m+x,解得:x=4,∴点P为(4,﹣4).4.解:(1))∵△ABC与△DEC都是等边三角形∴AC=BC,CD=CE,∠ACB=∠DCE=60°∴∠ACD+∠DCB=∠DCB+∠BCE∴∠ACD=∠BCE.在△ADC和△BEC中,∴△ACD≌△BCE(SAS),∴AD=BE;∵△ABC是等边三角形,∴∠BAC=60°.∵线段AM为BC边上的中线∴∠CAM=∠BAC,∴∠CAM=30°.故答案为:=,30;(2)①AD=BE,理由如下:∵△ABC和△CDE都是等边三角形∴AB=BC,DC=EC,∠ACB=∠DCE=60°,∵∠ACD=∠ACB﹣∠DCB,∠BCE=∠DCE﹣∠DCB,∴∠ACD=∠BCE,∴△ACD≌△BCE(SAS)∴AD=BE.②∠AOB是定值,∠AOB=60°,理由如下:当点D在线段AM上时,如图1,由①知△ACD≌△BCE,则∠CBE=∠CAD=30°,又∠ABC=60°,∴∠CBE+∠ABC=60°+30°=90°,∵△ABC是等边三角形,线段AM为BC边上的中线∴AM平分∠BAC,即,∴∠BOA=90°﹣30°=60°.当点D在线段AM的延长线上时,如图2,∵△ABC与△DEC都是等边三角形∴AC=BC,CD=CE,∠ACB=∠DCE=60°∴∠ACB+∠DCB=∠DCB+∠DCE∴∠ACD=∠BCE在△ACD和△BCE中,∴△ACD≌△BCE(SAS)∴∠CBE=∠CAD=30°,同理可得:∠BAM=30°,∴∠BOA=90°﹣30°=60°.5.解:(1)∵∠BAC=90°,∴∠1+∠2=90°;故答案为:∠1+∠2=90°;(2)DE=CE+BD,理由如下:∵BD⊥l于点D,CE⊥l,∴∠BDA=∠CEA=90°,∴∠1+∠ABD=90°,又∵∠1+∠2=90°,∴∠2=∠ABD,又∵AB=AC,∠BDA=∠AEC,∴△ABD≌△CAE(AAS)∴BD=AE,CE=AD,∴DE=AD+AE=CE+BD;(3)①AB=EM+FN,理由如下:如图,过点C作CH⊥AB于H,∵△AEC是等腰直角三角形,∴AE=AC,∠EAC=90°,∵∠EAM+∠CAH=90°,∠ACH+∠CAH=90°,∴∠ACH=∠EAM,又∵AE=AC,∠EMA=∠AHC=90°,∴△AEM≌△CAH(AAS),∴EM=AH,AM=CH,同理可得:△BCH≌△FBN(AAS),∴BH=FN,CH=BN,∴AB=AH+BH=EM+FN;②∵△AEM≌△CAH,△BCH≌△FBN,∴S△AEM =S△CAH,S△BCH=S△FBN,∴五边形EMNFC面积=S△AEC +S△BCF+2S△ABC=+2S△ABC,∵当AC⊥BC时,△ABC的最大面积为6,∴五边形EMNFC面积的最大值=+12=,故答案为:.6.解:(1)如图1中,在△ACE和△BCD中,,∴△ACE≌△BCD(SAS),∴∠CAE=∠CBD,∵CA=CB,∴∠CAB=∠CBA,∴∠OAB=∠OBA,∴OA=OB.(2)如图2,设AE与CF的交点为M,在Rt△BCD中,点F是BD的中点,∴CF=BF,∴∠BCF=∠CBF,由(1)知,∠CAE=∠CBD,∴∠BCF=∠CAE,∴∠CAE+∠ACF=∠BCF+∠ACF=∠ACB=90°,∴∠AMC=90°,∴AE⊥CF;(3)如图3,设AE与CF的交点为M,∵AC=,∴BC=AC=,∵CE=,∴CD=CE=,在Rt△BCD中,根据勾股定理得,BD==,∵点F是BD中点,∴CF=DF=BD=,同理:EG=AE=,连接EF,过点F作FH⊥BC,∵∠ACB=90°,点F是BD的中点,∴FH=CD=,=CE•FH=××=,∴S△CEF由(2)知,AE⊥CF,=CF•ME=×ME=ME,∴S△CEF∴ME=,∴ME=,∴GM=EG﹣ME=﹣=,=CF•GM=××=.∴S△CFG7.解:(1)证明:如图1,在BD上截取BE=CD,∵∠BAC=∠BDC=90°,∴∠ABP+∠APB=90°,∠ACD+∠DPC=90°.∵∠APB=∠DPC,∴∠ABP=∠ACD.又AB=AC,∴△ABE≌△ACD(SAS),∴AE=AD,∠BAE=∠CAD.∴∠EAD=∠EAP+∠CAD=∠EAP+∠BAE=90°.在Rt△AED中,DE2=AE2+AD2=2AD2,∴∴;(2)如图2,CD﹣BD=AD.在CD上截取CE=BD,连接AE,由(1)可知△ADB≌△AEC,∴AE=AD,∠BAD=∠CAE,∴∠EAD=∠BAE+∠BAD=∠BAE+∠CAE=90°,在Rt△AED中,DE2=AE2+AD2=2AD2,∴DE=AD,∴CD﹣BD=CD﹣CE=DE=AD,∴CD﹣BD=AD.如图3,CD+BD=AD.延长DC至点E,使得CE=BD,连接AE,∵∠BAC=∠BDC=90°,∴∠ABD+∠ACD=180°,∠ACD+∠ACE=180°,∴∠ABD=∠ACE,在△ABD和△ACE中,,∴△ADB≌△AEC(SAS),∴AE=AD,∠BAD=∠CAE,∴∠EAD=∠CAE+∠CAD=∠BAD+∠CAD=90°,在Rt△AED中,DE2=AE2+AD2=2AD2,∴DE=AD,∴CD+BD=CD+CE=DE=AD.8.解:(1)∵当点A在线段BC上时,线段AC的长取得最小值,最小值为BC﹣AB,∵BC=b,AB=a,∴BC﹣AB=b﹣a,当点A在线段CB延长线上时,线段AC的长取得最大值,最大值为BC+AB,∵BC=b,AB=a,∴BC+AB=b+a,故答案为:b﹣a,b+a;(2)①CD=BE,理由:∵△ABD与△ACE是等边三角形,∴AD=AB,AC=AE,∠BAD=∠CAE=60°,∴∠BAD+∠BAC=∠CAE+∠BAC,即∠CAD=∠EAB,在△CAD与△EAB中,,∴△CAD≌△EAB(SAS),∴CD=BE;②∵线段BE长的最大值=线段CD的最大值,∴由(1)知,当线段CD的长取得最大值时,点D在CB的延长线上,∴最大值为BE=CD=BD+BC=AB+BC=5+2=7;故答案为:7.(3)最大值为5+2;∴P(2﹣,).如图1,连接BM,∵将△APM绕着点P顺时针旋转90°得到△PBN,连接AN,则△APN是等腰直角三角形,∴PN=PA=2,BN=AM,∵A的坐标为(2,0),点B的坐标为(7,0),∴AO=2,OB=7,∴AB=5,∴线段AM长的最大值=线段BN长的最大值,∴当N在线段BA的延长线时,线段BN取得最大值,最大值=AB+AN,∵AN=AP=2,∴最大值为 5+2;如图2,过P作PE⊥x轴于E,∵△APN是等腰直角三角形,∴PE=AE=,∴OE=OA﹣AE=2﹣,∴P(2﹣,).9.解:(1)如图①,∵A(0,4)、B(1,0),∴OA=4,OB=1,过点C作CG⊥y轴于G,∴∠AGC=90°=∠BOA,∴∠OAB+∠OBA=90°∵∠CAB=90°,∴∠OAB+∠GAC=90°,∴∠OBA=∠GAC,∵AB=AC,∴△AOB≌△CGA(AAS),∴CG=OA=4,AG=OB=1,∴OG=OA+AG=5,∴C(4,5);(2)由(1)知,OA=4,点C(4,5),∵CD⊥x轴,∴点D(4,0),∴OD=4,∴OA=OD,∠OAD =45°,∵CD ⊥x 轴,∴CD ∥y 轴,∴∠ADC =∠OAD =45°;(3)A 点在运动过程中S △AOB :S △AEF 的值不会发生变化,理由:设点A 的坐标为(0,a ),①当点A 在y 轴正半轴上时,连接CE 交y 轴于F ,∴点C ,E 在y 轴的两侧,即点E 在y 轴左侧,同(1)的方法得,C (a ,a +1),∵△OAE 是等腰直角三角形,∴AE ⊥OA ,∴E (﹣a ,a ),∴直线CE 的解析式为y =x +a +,∴F (0,a +), ∴AF =a +﹣a =, ∵OB =1, ∴=2;②当点A 在y 轴负半轴上时,同①的方法得,C (﹣a ,a ﹣1),E (a ,a ), ∴直线CE 的解析式为y =x +a ﹣,∴F (0,a ﹣), ∴AF =, ∴=2.即A 点在运动过程中S △AOB :S △AEF 的值不会发生变化.10.解:(1)结论:DE=DF,DE⊥DF.理由:连接AD,∵AB=AC,∠BAC=90°,BD=CD,∴AD⊥BC,∴AD=BD=CD,∴∠ADB=∠ADC=90°,∵AE=EB,AF=FC,∴DE⊥AB,DF⊥AC,∴DE=AB,DF=AC,∴DE=DF.∵∠DEA=∠EAF=∠DFA=90°,∴∠EDF=90°,∴DE⊥DF,故答案为:DE=DF,DE⊥DF.(2)结论成立,DE=DF;DE⊥DF.证明:如解图①,连接AD,∵AB=AC,∠BAC=90°,点D为BC的中点,∴,且AD平分∠BAC,∴∠BAD=∠CAD=45°,在△BDE和△ADF中,∴△BDE≌△ADF(SAS),∴DE=DF,∠BDE=∠ADF,∵∠BDE+∠ADE=90°,∴∠ADF+∠ADE=90°,即∠EDF=90°,即DE⊥DF;(3)如图③,连接AD,∵AB=AC,∴△ABC为等腰三角形,∵∠BAC=90°,点D为BC的中点,∴AD=BD,AD⊥BC,∴∠DAC=∠ABD=45°,∴∠DAF=∠DBE=135°,又∵AF=BE,∴△DAF≌△DBE(SAS),∴DF=DE,∠FDA=∠EDB,∴∠EDF=∠EDB+∠FDB=∠FDA+∠FDB=∠ADB=90°,∴△DEF为等腰直角三角形,∵,∴AE=CF=2+4=6,在Rt△AEF中,EF2=AF2+AE2=22+62=40,∴,∴.。

2021年九年级数学中考一轮复习知识点中考真题演练20:等腰三角形(附答案)

2021年九年级数学中考一轮复习知识点中考真题演练20:等腰三角形(附答案)

2021年九年级数学中考一轮复习知识点中考真题演练:等腰三角形(附答案)1.已知实数x,y满足,则以x,y的值为两边长的等腰三角形的周长是()A.20或16 B.20 C.16 D.以上答案均不对2.在平面直角坐标系中,O为坐标原点,点A的坐标为(1,),M为坐标轴上一点,且使得△MOA为等腰三角形,则满足条件的点M的个数为()A.4B.5C.6D.83.如图,在Rt△ABC中,∠ACB=90°,AB=2BC,在直线BC或AC上取一点P,使得△P AB为等腰三角形,则符合条件的点P共有()A.4个B.5个C.6个D.7个4.如图,在△ABC中,AB=AC,∠A=30°,直线a∥b,顶点C在直线b上,直线a交AB于点D,交AC与点E,若∠1=145°,则∠2的度数是()A.30°B.35°C.40°D.45°5.如图,△ABC中,AC=BC<AB.若∠1、∠2分别为∠ABC、∠ACB的外角,则下列角度关系何者正确()A.∠1<∠2B.∠1=∠2C.∠A+∠2<180°D.∠A+∠1>180°6.如图,在网格中有一个直角三角形(网格中的毎个小正方形的边长均为1个单位1长度),若以该三角形一边为公共边画一个新三角形与原来的直角三角形一起组成一个等腰三角形,要求新三角形与原来的直角三角形除了有一条公共边外,没有其它的公共点,新三角形的顶点不一定在格点上.那么符合要求的新三角形有()A.4个B.6个C.7个D.9个7.如图,在△ABC中,AB=AC,∠A=36°,BD,CE分别为∠ABC,∠ACB的角平分线,则图中等腰三角形共有()A.5个B.6个C.7个D.8个8.下图是由九个等边三角形组成的一个六边形,当最小的等边三角形边长为2cm时,这个六边形的周长为()cm.A.30B.40C.50D.609.如图,△ABC是等边三角形,⊙O与AC相切于A点,与BC交于E点,与AB的延长线交于D点.已知BE=6,CE=4,则BD的长为()A.10B.9C.25D.3510.已知△ABC是等边三角形,D是BC边上的任意一点,连接AD并作等边三角形ADE,若DE⊥AB,则的值是()A.B.C.1D.11.如图,在△ABC中,AB=AC.以点C为圆心,以CB长为半径作圆弧,交AC的延长线于点D,连结BD.若∠A=32°,则∠CDB的大小为度.12.在△ABC中,AB=AC,∠BAC=100°,点D在BC边上,连接AD,若△ABD为直角三角形,则∠ADC的度数为.13.已知a,b,c为△ABC的三边长.b,c满足(b﹣2)2+|c﹣3|=0,且a为方程|x﹣4|=2的解,则△ABC的形状为三角形.14.如图,∠AOB=45°,点M,N在边OA上,OM=x,ON=x+4,点P是边OB上的点.若使点P,M,N构成等腰三角形的点P恰好有三个,则x的值是.15.如图,在△ABC中,∠A=36°,AB=AC,BD平分∠ABC,则图中等腰三角形的个数是.16.如图,矩形ABCD中,AB=4,AD=3,点Q在对角线AC上,且AQ=AD,连接DQ 并延长,与边BC交于点P,则线段AP=.17.如图,在△ABC中,BC的垂直平分线分别交BC、AB于点E、F.若△AFC是等边三角形,则∠B=°.18.如图,已知等边△ABC的边长是2,以BC边上的高AB1为边作等边三角形,得到第一个等边△AB1C1;再以等边△AB1C1的B1C1边上的高AB2为边作等边三角形,得到第二个等边△AB2C2;再以等边△AB2C2的B2C2边上的高AB3为边作等边三角形,得到第三个等边△AB3C3;…,记△B1CB2的面积为S1,△B2C1B3的面积为S2,△B3C2B4的面积为S3,如此下去,则S n=.19.如图,△ABC是等边三角形,高AD、BE相交于点H,BC=4,在BE上截取BG=2,以GE为边作等边三角形GEF,则△ABH与△GEF重叠(阴影)部分的面积为.20.问题:如图,在△ABD中,BA=BD.在BD的延长线上取点E,C,作△AEC,使EA =EC.若∠BAE=90°,∠B=45°,求∠DAC的度数.答案:∠DAC=45°.思考:(1)如果把以上“问题”中的条件“∠B=45°”去掉,其余条件不变,那么∠DAC的度数会改变吗?说明理由.(2)如果把以上“问题”中的条件“∠B=45°”去掉,再将“∠BAE=90°”改为“∠BAE=n°”,其余条件不变,求∠DAC的度数.21.如图,在△ABC中,AB=AC,D是BC边上的中点,连结AD,BE平分∠ABC交AC 于点E,过点E作EF∥BC交AB于点F.(1)若∠C=36°,求∠BAD的度数;(2)求证:FB=FE.22.如图,在△ABC中,CD是AB边上的高,BE是AC边上的中线,且BD=CE.求证:(1)点D在BE的垂直平分线上;(2)∠BEC=3∠ABE.23.在边长为2的等边三角形ABC中,P是BC边上任意一点,过点P分别作PM⊥AB,PN⊥AC,M、N分别为垂足.(1)求证:不论点P在BC边的何处时都有PM+PN的长恰好等于三角形ABC一边上的高;(2)当BP的长为何值时,四边形AMPN的面积最大,并求出最大值.参考答案1.解:根据题意得,解得,(1)若4是腰长,则三角形的三边长为:4、4、8,不能组成三角形;(2)若4是底边长,则三角形的三边长为:4、8、8,能组成三角形,周长为4+8+8=20.故选:B.2.解:如图,满足条件的点M的个数为6.分别为:(﹣2,0),(2,0),(0,2),(0,2),(0,﹣2),(0,).故选:C.3.解:如图,①AB的垂直平分线交AC一点P1(P A=PB),交直线BC于点P2;②以A为圆心,AB为半径画圆,交AC有二点P3,P4,交BC有一点P2,(此时AB=AP);③以B为圆心,BA为半径画圆,交BC有二点P5,P2,交AC有一点P6(此时BP=BA).2+(3﹣1)+(3﹣1)=6,∴符合条件的点有六个.故选:C.4.解:∵AB=AC,且∠A=30°,∴∠ACB=75°,在△ADE中,∵∠1=∠A+∠AED=145°,∴∠AED=145°﹣30°=115°,∵a∥b,∴∠AED=∠2+∠ACB,∴∠2=115°﹣75°=40°,故选:C.5.解:∵AC=BC<AB,∴∠A=∠ABC<∠ACB,∵∠1、∠2分别为∠ABC、∠ACB的外角,∴∠2=∠A+∠ABC,∴∠A+∠2=∠A+∠A+∠ABC<∠ACB+∠A+∠ABC=180°,故选:C.6.解:如图所示:∵根据题意可知:以4为腰的等腰三角形有2个,以5为腰的三角形有4个,以5为底边的等腰三角形有1个,∴符合要求的新三角形有2+4+1=7个.故选:C.7.解:设CE与BD的交点为点O,∵AB=AC,∠A=36°,∴∠ABC=∠ACB,再根据三角形内角和定理知,∠ABC=∠ACB==72°,∵BD是∠ABC的角的平分线,∴∠ABD=∠DBC=∠ABC=36°=∠A,∴AD=BD,同理,∠A=∠ACE=∠BCE=36°,AE=CE,∵∠DBC=36°,∠ACB=72°,根据三角形内角和定理知,∠BDC=180°﹣72°﹣36°=72°,∴BD=BC,同理CE=BC,∵∠BOC=180°﹣36°﹣36°=108°,∴∠ODC=∠DOC=∠OEB=∠EOB=72°,∴△ABC,△ADB,△AEC,△BEO,△COD,△BCE,△BDC,△BOC都是等腰三角形,共8个.故选:D.8.解:设AB=x,∴等边三角形的边长依次为x,x,x,2,x+2,x+2,x+2×2,x+2×2,x+3×2,∴六边形周长是2x+2(x+2)+2(x+2×2)+(x+3×2)=7 x+18,∵AF=2AB,即x+6=2x,∴x=6cm,∴周长为7x+18=60cm.故选:D.9.解:连接AE,延长EB与圆交于点F,∵⊙O与AC相切于A点,∵∠CAE=∠AFC,∠C=∠C,∴△AEC∽△F AC,∴CA2=CE•CF,又△ABC是等边三角形,∴CA=AB=BC=CE+BE=10,CE=4,∴4CF=100,∴CF=25,∴BF=15,∵AB•BD=BE•BF,∴BD=9.故选:B.10.解:∵DE⊥AB∴∠BDE=30°∴∠EDA=60°∴AD⊥BC即BD=DC∴的值是1.故选:C.11.解:∵AB=AC,∠A=32°,∴∠ABC=∠ACB=74°,又∵BC=DC,∴∠CDB=∠CBD=∠ACB=37°.故答案为:37.12.解:∵在△ABC中,AB=AC,∠BAC=100°,∴∠B=∠C=40°,∵点D在BC边上,△ABD为直角三角形,∴当∠BAD=90°时,则∠ADB=50°,∴∠ADC=130°,当∠ADB=90°时,则∠ADC=90°,故答案为:130°或90°.13.解:∵(b﹣2)2+|c﹣3|=0,∴b﹣2=0,c﹣3=0,解得:b=2,c=3,∵a为方程|x﹣4|=2的解,∴a﹣4=±2,解得:a=6或2,∵a、b、c为△ABC的三边长,b+c<6,∴a=6不合题意,舍去,∴a=2,∴a=b=2,∴△ABC是等腰三角形,故答案为:等腰.14.解:分三种情况:①如图1,当M与O重合时,即x=0时,点P恰好有三个;②如图2,以M为圆心,以4为半径画圆,当⊙M与OB相切时,设切点为C,⊙M与OA交于D,∴MC⊥OB,∵∠AOB=45°,∴△MCO是等腰直角三角形,∴MC=OC=4,∴OM=4,当M与D重合时,即x=OM﹣DM=4﹣4时,同理可知:点P恰好有三个;③如图3,取OM=4,以M为圆心,以OM为半径画圆,则⊙M与OB除了O外只有一个交点,此时x=4,即以∠PMN为顶角,MN为腰,符合条件的点P有一个,以N圆心,以MN为半径画圆,与直线OB相离,说明此时以∠PNM 为顶角,以MN为腰,符合条件的点P不存在,还有一个是以NM为底边的符合条件的点P;点M沿OA运动,到M1时,发现⊙M1与直线OB有一个交点;∴当4<x<4时,圆M在移动过程中,则会与OB除了O外有两个交点,满足点P 恰好有三个;综上所述,若使点P,M,N构成等腰三角形的点P恰好有三个,则x的值是:x=0或x =4﹣4或4.故答案为:x=0或x=4﹣4或4.15.解:∵AB=AC,∠A=36°∴△ABC是等腰三角形,∠ABC=∠ACB==72°,BD平分∠ABC,∴∠ABD=∠DBC=36°,∴在△ABD中,∠A=∠ABD=36°,AD=BD,△ABD是等腰三角形,在△ABC中,∠C=∠ABC=72°,AB=AC,△ABC是等腰三角形,在△BDC中,∠C=∠BDC=72°,BD=BC,△BDC是等腰三角形,所以共有3个等腰三角形.故答案为:316.解:∵矩形ABCD中,AB=4,AD=3=BC,∴AC=5,又∵AQ=AD=3,AD∥CP,∴CQ=5﹣3=2,∠CQP=∠AQD=∠ADQ=∠CPQ,∴CP=CQ=2,∴BP=3﹣2=1,∴Rt△ABP中,AP===,故答案为:.17.解:∵EF垂直平分BC,∴BF=CF,∴∠B=∠BCF,∵△ACF为等边三角形,∴∠AFC=60°,∴∠B=∠BCF=30°.故答案为:30.18.解:∵等边三角形ABC的边长为2,AB1⊥BC,∴BB1=B1C=1,∠ACB=60°,∴B1B2=B1C=,B2C=,∴S1=××=依题意得,图中阴影部分的三角形都是相似图形,且相似比为,故S n=•()n﹣1或S n=.故答案为:•()n﹣1或.19.解:如图所示:,由△ABC是等边三角形,高AD、BE相交于点H,BC=4,得AD=BE=BC=6,∠ABG=∠HBD=30°.由直角三角的性质,得∠BHD=90°﹣∠HBD=60°.由对顶角相等,得∠MHE=∠BHD=60°由BG=2,得EG=BE﹣BG=6﹣2=4.由GE为边作等边三角形GEF,得FG=EG=4,∠EGF=∠GEF=60°,△MHE是等边三角形;S△ABC=AC•BE=AC×EH×3EH=BE=×6=2.由三角形外角的性质,得∠BIG=∠FGE﹣∠IBG=60°﹣30°=30°,由∠IBG=∠BIG=30°,得IG=BG=2,由线段的和差,得IF=FG﹣IG=4﹣2=2,由对顶角相等,得∠FIN=∠BIG=30°,由∠FIN+∠F=90°,得∠FNI=90°,由锐角三角函数,得FN=1,IN=.S五边形NIGHM=S△EFG﹣S△EMH﹣S△FIN=×42﹣×22﹣××1=,故答案为:.20.解:(1)∠DAC的度数不会改变;∵EA=EC,∴∠EAC=∠C,①,∵BA=BD,∴∠BAD=∠BDA,∵∠BAE=90°,∴∠B=90°﹣∠AED=90°﹣2∠C,∴∠BAD=(180°﹣∠B)=[180°﹣(90°﹣2∠C)]=45°+∠C,∴∠DAE=90°﹣∠BAD=90°﹣(45°+∠C)=45°﹣∠C,②由①,②得,∠DAC=∠DAE+∠CAE=45°﹣∠C+∠C=45°;(2)设∠ABC=m°,则∠BAD=(180°﹣m°)=90°﹣m°,∠AEB=180°﹣n°﹣m°,∴∠DAE=n°﹣∠BAD=n°﹣90°+m°,∵EA=EC,∴∠CAE=AEB=90°﹣n°﹣m°,∴∠DAC=∠DAE+∠CAE=n°﹣90°+m°+90°﹣n°﹣m°=n°.21.(1)解:∵AB=AC,∴∠C=∠ABC,∵∠C=36°,∴∠ABC=36°,∵BD=CD,AB=AC,∴AD⊥BC,∴∠ADB=90°,∴∠BAD=90°﹣36°=54°.(2)证明:∵BE平分∠ABC,∴∠ABE=∠CBE=∠ABC,∵EF∥BC,∴∠FEB=∠CBE,∴∠FBE=∠FEB,∴FB=FE.22.解:(1)连接DE,∵CD是AB边上的高,∴∠ADC=∠BDC=90°,∵BE是AC边上的中线,∴AE=CE,∴DE=CE,∵BD=CE,∴BD=DE,∴点D在BE的垂直平分线上;(2)∵DE=AE,∴∠A=∠ADE,∵∠ADE=∠DBE+∠DEB,∵BD=DE,∴∠DBE=∠DEB,∴∠A=∠ADE=2∠ABE,∵∠BEC=∠A+∠ABE,∴∠BEC=3∠ABE.23.解:(1)连接AP,过C作CD⊥AB于D,∵△ABC是等边三角形,∴AB=AC,∵S△ABC=S△ABP+S△ACP,∴AB•CD=AB•PM+AC•PN,∴PM+PN=CD,即不论点P在BC边的何处时都有PM+PN的长恰好等于三角形ABC一边上的高;(2)设BP=x,则CP=2﹣x,∵△ABC是等边三角形,∴∠B=∠C=60°,∵PM⊥AB,PN⊥AC,∴BM=x,PM=x,CN=(2﹣x),PN=(2﹣x),∴四边形AMPN的面积=×(2﹣x)•x+[2﹣(2﹣x)]•(2﹣x)=﹣x2+x+=﹣(x﹣1)2+,∴当BP=1时,四边形AMPN的面积最大,最大值是.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

如果别人思考数学的真理像我一样深入持久,他也会找到我的发现。

——高斯2021中考数学 专题训练 等腰三角形一、选择题(本大题共10道小题) 1. 若等腰三角形的顶角为50°,则它的底角度数为 ( ) A .40° B .50° C .60° D .65°2. 如图所示,线段AC 的垂直平分线交线段AB 于点D ,∠A=50°,则∠BDC=( )A .50°B .100°C .120°D .130°3. (2020·福建)如图,AD 是等腰三角形ABC 的顶角平分线,5=BD ,则CD 等于( )A.10B.5C.4D.34. 如图,在△ABC中,AB =AC =5,BC =6,点M 为BC 的中点,MN ⊥AC 于点N ,则MN 等于( )A. 65B. 95C. 125D. 1655. (2019•梧州)如图,DE 是ABC △的边AB 的垂直平分线,D 为垂足,DE 交AC于点E ,且85AC BC ==,,则BEC △的周长是A .12B .13C.14 D.156. (2020·河南)如图,在△ABC中,AB=BC=3,∠BAC=30°,分别以点A,C 为圆心,AC的长为半径作弧,两弧交于点D,连接DA,DC,则四边形ABCD的面积为( )A.63B.9C.6D. 337. 如图,在五边形ABCDE中,AB=AC=AD=AE,且AB∥ED,∠EAB=120°,则∠BCD的度数为()A.150°B.160°C.130°D.60°8. (2020·荆门)如图3,△ABC中,AB=AC,∠BAC=120°,BC=23,D为BC 的中点,AE=14AB,则△EBD的面积为( )A.33B.33C.3D.39. (2019•广西)如图,在ABC∆中,,40AC BC A=∠=︒,观察图中尺规作图的痕迹,可知BCG∠的度数为A.40︒B.45︒C.50︒D.60︒10. (2020·烟台)七巧板是我们祖先的一项创造,被誉为“东方魔板”.在一次数EA学活动课上,小明用边长为4cm的正方形纸片制作了如图所示的七巧板,并设计了下列四幅作品﹣﹣“奔跑者”,其中阴影部分的面积为5cm2的是()A.B.C.D.二、填空题(本大题共8道小题)11. 若等腰三角形的一个底角为72°,则这个等腰三角形的顶角为.12. (2019•怀化)若等腰三角形的一个底角为72 ,则这个等腰三角形的顶角为___ _______.13. (2020·宿迁)如图,在△ABC中,AB=AC,∠BAC的平分线AD交BC于点D,E为AB的中点.若BC=12,AD=8,则DE的长为.ED CBA14. (2020·宜昌)如图,在一个池塘两旁有一条笔直小路(B,C为小路端点)和一棵小树(A为小树位置).测得的相关数据为:∠ABC= 60°,∠ACB= 60°,BC= 48米,则AC= 米.15. 如图,△ABC是等腰三角形,AB=AC,∠BAC=45°,点D在AC边上,将△ABD 绕点A逆时针旋转45°得到△ACD',且点D',D,B在同一直线上,则∠ABD的度数是.16. (2020·贵阳)(4分)如图,△ABC中,点E在边AC上,EB=EA,∠A=2∠CBE,CD垂直于BE的延长线于点D,BD=8,AC=11,则边BC的长为.17. (2020·湖北孝感)某型号飞机的机翼形状如图所示,根据图中数据计算AB 的长为________米.(结果保留根号)18. 如图,在△ABC中,若AB=AC=8,∠A=30°,则S△ABC=________.三、解答题(本大题共6道小题)19. 如图,在△ABC中,AB=AC,AD⊥BC于点D.(1)若∠C=42°,求∠BAD的度数;(2)若点E在边AB上,EF∥AC交AD的延长线于点F.求证:AE=FE.20. (2020·广东)如题20图,在△ABC 中,点D 、E 分别是AB 、AC 边上的点,BD =CE ,∠ABE =∠ACD ,BE 与CD 相交于点F .求证:△ABC 是等腰三角形.21. 如图,在△ABC 中,AB =AC ,∠ABC =60°,延长BA 至点D ,延长CB 至点E ,使BE =AD ,连接CD ,AE ,延长EA 交CD 于点G . (1)求证:△ACE ≌△CBD ; (2)求∠CGE 的度数.22.如图,已知BE 、CF 分别为ABC ∆中B ∠、C ∠的平分线,AM BE ⊥于M ,AN CF ⊥于N ,求证:MN BC ∥.NMEFCBA23. 如图,已知等腰直角三角形ABC ,点P 是斜边BC 上一点(不与B ,C 重合),PE 是△ABP 的外接圆⊙O 的直径. (1)求证:△APE 是等腰直角三角形;(2)若⊙O 的直径为2,求PC 2+PB 2的值.24. 如图,AB为⊙O 的直径,C 为圆外一点,AC 交⊙O 于点D ,BC 2=CD ·CA ,ED ︵=BD ︵,BE 交AC 于点F . (1)求证:BC 为⊙O 的切线;(2)判断△BCF 的形状并说明理由;(3)已知BC =15,CD =9,∠BAC =36°,求BD ︵的长度(结果保留π).2021中考数学 专题训练 等腰三角形-答案一、选择题(本大题共10道小题) 1. 【答案】D2. 【答案】B3. 【答案】B【解析】本题考查了等腰三角形三线合一的性质,∵AD 是等腰三角形ABC 的顶角平分线,5 BD ,∴CD=BD=5,因此本题选B .4. 【答案】C【解析】此题应首先连接AM ,则AM ⊥BC.∴ AM =AC 2-CM 2=4,然后由三角形面积:S △ACM =12AM ×CM.S △ACM =12AC ×MN.得:AM ×CM =AC ×MN.∴MN =125.也可以利用△ACM ∽△MCN.得:AC CM =AMMN .∴MN =AM ×CM AC =125.5. 【答案】B【解析】∵DE 是ABC △的边AB 的垂直平分线,∴AE BE =,∵85AC BC ==,,∴BEC △的周长是:13BE EC BC AE EC BC AC BC ++=++=+=.故选B .6. 【答案】D【解析】∵分别以点A 、C 为圆心,AC 的长为半径作弧,两弧交于点D ,∴AD=AC=CD ,∴△ACD 是等边三角形,∴∠DAC=60°.∵AB=BC ,AD=CD ,连接BD 交AC 于点E ,∴BD 垂直平分AC ,∴∠AEB=90°.∵∠BAC=30°, AB= 3,∴BE=32,AE=32,∴AC=3.在R t △ADE 中,∵∠DAC=60°,∠AED=90°,AE=32,∴DE=332,∴BD=333232,∴四边形ABCD 的面积为:3333221=⨯⨯.7. 【答案】A[解析] ∵AB ∥ED ,∴∠E =180°-∠EAB =180°-120°=60°. 又∵AD =AE ,∴△ADE 是等边三角形.∴∠EAD =60°.∴∠BAD =∠EAB -∠EAD =120°-60°=60°.∵AB =AC =AD ,∴∠B =∠ACB ,∠ACD =∠ADC.在四边形ABCD 中,∠BCD =∠B +∠ADC =12(360°-∠BAD)=12×(360°-60°)=150°. 故选A.8. 【答案】B【解析】连结AD .∠B =∠C =12×(180°-∠A )=30°.由等腰三角形的“三线合一”可知AD ⊥BC .∴AD =BD ·tanB 3×3=1.∴S △ABC =12BC ·AD =12×23×1=3.∵AE =14AB ,∴S △EBD =34S △ABD =38S △ABC =338.故选B .9. 【答案】C【解析】由作法得CG AB ⊥,∵AB AC =,∴CG 平分ACB ∠,A B ∠=∠,∵1804040100ACB ∠=︒-︒-︒=︒,∴1502BCG ACB ∠=∠=︒.故选C .10. 【答案】最小的等腰直角三角形的面积42=1(cm 2),平行四边形面积为2cm 2,中等的等腰直角三角形的面积为2cm 2,最大的等腰直角三角形的面积为4cm 2,则A 、阴影部分的面积为2+2=4(cm 2),不符合题意;B 、阴影部分的面积为1+2=3(cm 2),不符合题意;C 、阴影部分的面积为4+2=6(cm 2),不符合题意;D 、阴影部分的面积为4+1=5(cm 2),符合题意. 故选:D .二、填空题(本大题共8道小题)11. 【答案】36° [解析]∵等腰三角形的一个底角为72°, ∴这个等腰三角形的顶角为180°-72°×2=36°.12. 【答案】36°【解析】∵等腰三角形的一个底角为72︒,∴等腰三角形的顶角180727236=︒-︒-︒=︒, 故答案为:36︒.13. 【答案】5【解析】∵AB =AC ,∠BAC 的平分线AD 交BC 于点D ,∴AD ⊥BC ,BD =CD =12BC =6.在R t △ABD 中,由勾股定理,得AB =2268+10.又∵E 为AB 的中点,∴DE =12AB =5.故答案为5.14. 【答案】48【解析】 ∵∠ABC=60°,∠ACB=60°,∴∠A=180°-60°-60°=60°,∴△ABC是等边三角形,∴AB=BC=AC,∵BC=48,∴AC=4815. 【答案】22.5°[解析]根据题意可知△ABD≌△ACD',∴∠BAC=∠CAD'=45°,AD'=AD,∴∠ADD'=∠AD'D==67.5°.∵D',D,B三点在同一直线上,∴∠ABD=∠ADD'-∠BAC=22.5°.16. 【答案】4【解析】解:延长BD到F,使得DF=BD,∵CD⊥BF,∴△BCF是等腰三角形,∴BC=CF,过点C点作CH∥AB,交BF于点H∴∠ABD=∠CHD=2∠CBD=2∠F,∴HF =HC,∵BD=8,AC=11,∴DH=BH﹣BD=AC﹣BD=3,∴HF=HC=8﹣3=5,在R t△CDH,∴由勾股定理可知:CD=4,在R t△BCD中,∴BC4,故答案为:417. 【答案】(533-1.6).【解析】如图,过点A作AM CM于M,则CM=5m,在R t△BCM中,∠BCM=30°,所以BM=CM tan30°=533.由题意可知△DCN是等腰直角三角形,所以CN=CD=3.4m,所以MN=5-3.4=1.6(m),因为△AMN是等腰直角三角形,所以MN=AM=1.6m,所以AB=BM-AM=(533-1.6)m.故答案为(533-1.6).18. 【答案】16[解析] 如图,过点C作CD⊥AB,垂足为D,则△ADC是含30°角的直角三角形,那么DC=12AC=4,∴S△ABC=12AB·DC=12×8×4=16.三、解答题(本大题共6道小题)19. 【答案】解:(1)(方法一):∵AB=AC,∠C=42°,∴∠B=∠C=42°,∴∠BAC=180°-∠B-∠C=180°-42°-42°=96°.∵AD⊥BC,∴∠BAD=∠BAC=×96°=48°.(方法二):∵AB=AC,∠C=42°,∴∠B=∠C=42°.∵AD⊥BC于点D,∴∠ADB=90°,∴∠BAD=180°-90°-42°=48°.(2)证明:∵EF∥AC,∴∠CAF=∠F,∵AB=AC,AD⊥BC,∴∠CAF=∠BAF,∴∠F=∠BAF,∴AE=FE.20. 【答案】证明:在△BFD和△CFE中,∠ABE=∠ACD,∠DFB=∠CFE,BD=CE,∴△BFD≌△CFE(AAS).∴∠DBF=∠ECF.∵∠ABE=∠ACD∴∠DBF+∠ABE=∠ECF+∠ACD.∴∠ABC=∠ACB.∴AB=AC.∴△ABC是等腰三角形.【解析】先利用三角形边边角的判定方法证明∠DBF=∠ECF,再根据等式的性质,加上相等角得到∠ABC=∠ACB,等角对等边,得到AB=AC.根据等腰三角形定义得到△ABC是等腰三角形.21. 【答案】解:(1)证明:∵AB=AC,∠ABC=60°,∴△ABC是等边三角形.∴AB =CB =AC ,∠ACB =∠ABC =60°.∵BE =AD ,∴BE +BC =AD +AB ,即CE =BD.在△ACE 和△CBD 中,⎩⎨⎧CE =BD ,∠ACE =∠CBD ,AC =CB ,∴△ACE ≌△CBD(SAS).(2)由(1)知△ACE ≌△CBD ,∴∠E =∠D.∵∠BAE =∠DAG ,∴∠E +∠BAE =∠D +∠DAG ,即∠CGE =∠ABC.∵∠ABC =60°,∴∠CGE =60°.22. 【答案】延长AM 、AN 交BC 于点Q 、R .由等腰三角形三线合一可得AM QM =、AN RN =再由三角形中位线可得MN BC ∥.23. 【答案】【思路分析】(1)因为PE 是直径,所以∠PAE =90°,要证△PAE 是等腰直角三角形,只要证PA =EA ,由已知得∠PBA =45°,而∠PEA 与∠PBA 是同弧所对的圆周角,所以∠PEA =∠PBA ,问题得证;(2)由(1)得△PAC ≌△EAB ,所以PC =BE ,因为PE 是直径,所以∠PBE =90°,所以PC 2+PB 2=BE 2+PB 2=PE 2=4.解图(1)证明:如解图,∵△ABC 是等腰直角三角形,∴AC =AB ,∠CAB =90°,∠PBA =45°,∵在⊙O 中,∠PEA 与∠PBA 都是AP ︵所对的圆周角,∴∠PEA =∠PBA =45°,∵PE 为⊙O 的直径,∴∠PAE =90°,(4分)∴△PAE 为等腰直角三角形且AP =AE ;(5分)(2)∵∠PAE =∠CAB =90°,∴∠CAB -∠PAB =∠PAE -∠PAB ,∴∠CAP =∠BAE ,∴△CAP ≌△BAE(SAS ),(8分)∠C =∠ABE =45°,∠PBE =∠PBA +∠ABE =90°(10分)在Rt △PBE 中,PC 2+PB 2=PE 2=4.(12分)24. 【答案】(1)证明:∵BC 2=CD ·CA ,∴BC CA =CD BC ,∵∠C =∠C ,∴△CBD ∽△CAB ,∴∠CBD =∠BAC ,又∵AB 为⊙O 的直径,∴∠ADB =90°,即∠BAC +∠ABD =90°,∴∠ABD +∠CBD =90°,即AB ⊥BC ,又∵AB 为⊙O 的直径,∴BC 为⊙O 的切线;(2)解:△BCF 为等腰三角形.证明如下:∵ED ︵=BD ︵,∴∠DAE =∠BAC ,又∵△CBD ∽△CAB ,∴∠BAC =∠CBD ,∴∠CBD =∠DAE ,∵∠DAE =∠DBF ,∴∠DBF =∠CBD ,∵∠BDF =90°,∴∠BDC =∠BDF =90°,∵BD =BD ,∴△BDF ≌△BDC ,∴BF =BC ,∴△BCF 为等腰三角形;(3)解:由(1)知,BC 为⊙O 的切线,∴∠ABC =90°∵BC 2=CD ·CA ,∴AC =BC 2CD =1529=25,由勾股定理得AB =AC 2-BC 2=252-152=20,∴⊙O 的半径为r =AB 2=10,∵∠BAC =36°,∴BD ︵所对圆心角为72°.则BD ︵=72×π×10180=4π.一天,毕达哥拉斯应邀到朋友家做客。

相关文档
最新文档