七年级数学教案人教版绝对值

合集下载

七年级数学上册 第一章 有理数 1.2 有理数 1.2.4 绝对值(第1课时)教案 新人教版

七年级数学上册 第一章 有理数 1.2 有理数 1.2.4 绝对值(第1课时)教案 新人教版

1.2.4 绝对值课题:1.2.4 绝对值课时第1课时教学设计课标要求借助数轴理解绝对值的意义,掌握求有理数的绝对值的方法教材及学情分析本节内容是人教版七年级上册第一章第二节第四小节第一课时的内容,主要讲述和绝对值有关的知识。

借助数轴,可以用数轴上的点直观地表示有理数,从而也为学生提供了理解绝对值的直观工具,帮助学生学习绝对值这是绝对值得几何意义;通过计算观察归纳等方法发现有理数绝对值的规律,从而知道绝对值的代数意义。

七年级的学生思维正处于从以具体形象思维成分为主,向以逻辑思维为主的转折期,授课时要注意具体性、形象性,同时还要有适当的抽象、概括要求课时教学目标1、掌握绝对值的概念,会求出一个数的绝对值,能利用数轴及绝对值的知识2、经历绝对值概念的形成,初步体会数形结合的思想方法,丰富解决问题的策略3、体验数学的概念、法则来自于实际生活,渗透数形结合和分类思想重点绝对值的概念难点绝对值的概念提炼课题利用数轴理解绝对值得意义教法学法指导归纳总结、探究教具准备多媒体课件教学过程提要环节学生要解决的问题或完成的任务师生活动设计意图引入新课回顾知识回顾知识:什么叫数轴?什么叫相反数?怎样表示数a的相反数?回顾知识教学过程分析情景,思考问题知道绝对值的几何意义完成练习,思考问题情景分析:(1)甲、乙两辆出租车在一条东西走向的街道上行驶,记向东行驶的里程数为正。

两辆出租车都从O地出发,甲车向东行驶10km到达A处,记作km,乙车向西行驶10km到达B处,记做km。

以O为原点,取适当的单位长度画数轴,并在数轴上标出A、B的位置,则A、B两点与原点距离分别是多少?它们的实际意义是什么?(2)数轴上表示-4和4的点到原点的距离分别是多少?表示的0.5和-0.5点呢?绝对值的概念:一个数在数轴上对应的点到原点的距离叫做这个数的绝对值,用“| |”表示。

例如:探究新知:先求下列各数的绝对值,再思考后面的问题:|5|= |-10|=|3.5|= |-4.5|=|50|= |-3|=|100|= |-5000|=0|=0创设情景,引入新知。

新人教版七年级数学上册1.2.4 绝对值[教学设计]绝对值 数学 初中 常小霞

新人教版七年级数学上册1.2.4 绝对值[教学设计]绝对值 数学 初中 常小霞
师述:求一个数 的绝对值,记作:| |,其中“| |”是对一个数求绝对值符号, 是被求绝对值的数。
七年级学生由于年龄原因,使他们普遍缺少较丰富的生活经验,这里创设游戏情境,提出相关的数学问题,唤醒学生前一学段的知识储备,锻炼了学生从数学角度来阅读生活、提出合情且合理的数学问题的能力,体现了数学知识来源于生活,服务于生活的理念,有利于培养学生对数学学习的兴趣。同时, “距离”及 “关注距离”也为学生积累最初步的绝对值几何意义的感性认识,有助于过渡到本节课的课题:绝对值。
这一绝对值的几何意义要点,达成突破本节课的一个教学难点,也进一步渗透了“数”与“形”结合的数学思想。
这是对绝对值几何意义的初步抽象。并对“| |”用自然语言进行了解读,让学生明白这个式子的意义,这是很重要的。
活动2
再设
问题
明晰
定义
(个体活动、师生互动)
(1)互为相反数的两个数的绝对值有什么关系?通过观察、比较、归纳能得出什么结论?
《绝对值》教学设计
【教学任务分析】
教学内容
新人教版七年级数学上册1.2.4《绝对值》
教材地位与作用
“绝对值”是人教版九年义务教育七年级上册第一章第二节第四课时的内容。“绝对值”是数学中的一个重要概念,学好它有助于培养学生 “数形结合”、“从特殊到一般”、“抽象”、“分类”等重要的数学思想,同时也为有理数大小比较、有理数运算奠定基础。经过本单元第二小节“数轴”、“相反数”的学习,学生已经具有了简单的“数”“形”结合的思想,这为理解、抽象“绝对值”的几何意义与代数求法打下了一定基础。“绝对值”的几何意义让“绝对值”这个“数”与“形(数轴)”结合了起来,代数求法则提供了求一个数的绝对值的代数方法,且这个方法渗透了“从特殊到一般”、“分类讨论”等重要的数学思想,所以,教师灵活把握“绝对值”概念教学的深度和对上述重要数学思想的渗透,都将对后续有理数大小比较、有理数的运算等内容的“教”和“学”及培养学生数学思维具有非常重要的意义,应该引起重视。

人教版七年级数学上册《有理数——绝对值》教学PPT课件(3篇)

人教版七年级数学上册《有理数——绝对值》教学PPT课件(3篇)

非__正__数__的绝对值是它的相反数.
1
2.|- 1 |的相反数是
3
-3
;若| a |=2,则
a= _±__2__.
3.化简: | 0.2 |= 0.2
-273 =
27 3
| b |= -b (b<0)
| a – b | = a-b (a>b)
课堂总结
1.绝对值的定义:数轴上表示数a的点与原点的距离叫做数a
同类型题检测:学案课堂练习第2题
活动形式:1、学生独立思考 2、小组讨论,每一组拍一份答案上传 3、展示小组讨论结果,互评评优,找到问题所在,有针对性的点评讲解
同类型题检测:
已知|a -1|+|b+2|=0,求a+b的值
巩固练习:学案课堂练习第4题 4.正式排球比赛对所用的排球重量是有严格规定的,现检查5个排球的重量,超 过规定重量的克数记作正数,不足规定重量的克数记作负数,检查结果如下:
A.a>b>c B.b>c>a C.c>a>b D.b>a>c
知识点二:运用法则比较有理数的大小
学生自学问题展示:
展示学案对应部分学生的典型问题
知识点二:运用法则比较有理数的大小
同桌讨论:两个负数之间如何比较大小? 要点梳理: (1)正数大于0,负数小于0,正数大于负数; (2)两个负数,绝对值大的反而小.
活动形式:1、学生独立完成,拍照上传, 2、老师给出标准答案,互评 3、展示互评结果,找到问题所在,有针对性的点评讲解
学生自学问题展示:学案课前自主学习任务第7题
同类题检测:
(1)绝对值等于2的数是 2或-2 ,
(2)绝对值等于0的数是 0

七年级数学上册 第一章《绝对值》教学课件 人教版

七年级数学上册 第一章《绝对值》教学课件 人教版

当a为任意有理数时,a ___≥____ 0 .
巩教固学提目升

知2-练
4 (中考·娄底)若|a-1|=a-1,则a的取值范围是( A )
A.a≥1 B.a≤1 C.a<1 D.a>1
5 (中考·威海)检验4个工件,其中超过标准质量的克数 记作正数,不足标准质量的克数记为负数,从轻重的 角度看,最接近标准的工件是( A ) A.-2 B.-3 C.3 D.5
1. 一个正数的绝对值是它本身;一个负数的绝对值是 它的相反数;0的绝对值是0.即
(1)如果a>0,那么 a =a;
(2)如果a=0,那么 a =0;
(3)如果a<0,那么 a =-a.
2.非负性:任何有理数的绝对值都是非负数,即 a 0.
新教课学讲目解

例3 下列各式中无论m为何值,一定是正数的是
解:根据题意可知:a-2=0,b-1=0 , 所以:a=2 ,b=1.
巩教固学提目升

知2-练
1 绝对值最小的数是____0____;绝对值最小的负整数
是___-__1___.
2 如果 a- 1 +|b-1|=0,那么a+b=( C )
2
A.- 1
2
B. 1
2
C. 3
2
D.1
巩教固学提目升

3
知2-练
写出下列各式的值,并回答问题.
1
15
=
__1_5___,2.5
=
__2_.5__ ,2 3
=
2 __3___ ;
2
-15
=___1_5__,-2来自5=_2__.5__ ,-
2 3
=
2 ___3__ ;

人教版初中七年级数学上册《绝对值》教案

人教版初中七年级数学上册《绝对值》教案

绝对值第一课时教学目标借助数轴初步理解绝对值的概念,能求一个数的绝对值. 1. 通过应用绝对值解决实际问题,体会绝对值的意义和作用. 2.探索一个数的绝对值与这通过观察实例及绝对值的几何意义,3. 个数之间的关系,培养学生语言描述能力.培养学生积极参与探索活动,体会数形结合的方法. 4.教学重、难点正确理解绝对值的概念,能求一个数的绝对值..重点:1正确理解绝对值的几何意义和代数意义..难点: 2教学过程一、复习提问,新课引入 1 .什么叫互为相反数?.在数轴上表示互为相反数的两个点和原点的位置关系怎样? 2二、新授在一些量的计算中,有时并不注意其方向,例如,为了计算汽车行驶所耗的油量,起作用的是汽车行驶的路程而不是行驶的方向.,回答:2-5.1页图11.观察课本第 1 )两辆汽车行驶的路线相同吗?1()它们行驶路程的远近相同吗?2(但行驶的路程的远近•,这两辆车行驶的路线不同(方向相反)• •。

人教版初中七年级数学上册《绝对值》教案

人教版初中七年级数学上册《绝对值》教案

1.2.4 绝对值第1课时绝对值【教学目标】(一)知识技能1.使学生掌握有理数的绝对值概念及表示方法。

2.使学生熟练掌握有理数绝对值的求法和有关计算问题。

(二)过程方法1.在绝对值概念形成的过程中,渗透数形结合等思想方法,并注意培养学生的概括能力。

2.能根据一个数的绝对值表示“距离”,初步理解绝对值的概念。

3.给出一个数,能求它的绝对值。

(三)情感态度从上节课学的相反数到本节的绝对值,使学生感知数学知识具有普遍的联系性。

教学重点给出一个数会求它的绝对值。

教学难点绝对值的几何意义,代数定义的导出;负数的绝对值是它的相反数。

【情景引入】问题:两辆汽车,第一辆沿公路向东行驶了5千米,第二辆向西行驶了4千米.为了表示行驶的方向(规定向东为正)和所在位置,分别记作+5千米和-4千米.这样,利用有理数就可以明确表示每辆汽车在公路上的位置了.我们知道,出租汽车是计程收费的,这时我们只需要考虑汽车行驶的距离,不需要考虑方向.当不考虑方向时,两辆汽车行驶的距离就可以记为5千米和4千米(在图上标出距离).这里的5叫做+5的绝对值,4叫做-4的绝对值.【教学过程】1.绝对值的定义:我们把在数轴上表示数a的点与原点的距离叫做数a的绝对值)。

记作|a|。

例如,在数轴上表示数―6与表示数6的点与原点的距离都是6,所以―6和6的绝对值都是6,记作|―6|=|6|=6。

同样可知|―4|=4,|+1.7|=1.7。

2.试一试:你能从中发现什么规律? 由绝对值的意义,我们可以知道: (1)|+2|= ,51= ,|+8.2|= ; (2)|0|= ; (3)|―3|= ,|―0.2|= ,|―8.2|= 。

概括:通过对具体数的绝对值的讨论,并注意观察在原点右边的点表示的数(正数)的绝对值有什么特点?在原点左边的点表示的数(负数)的绝对值又有什么特点?由学生分类讨论,归纳出数a 的绝对值的一般规律:(1)一个正数的绝对值是它本身;(2) 0的绝对值是0;(3) 一个负数的绝对值是它的相反数。

人教版初中七年级数学第一单元有理数1.2.4_绝对值教案

人教版初中七年级数学第一单元有理数1.2.4_绝对值教案

6 / 6人教版初中七年级数学第一单元有理数1.2 有理数(第4课时)教学目标1.会求一个数的绝对值,能利用数轴及绝对值的知识,比较两个有理数的大小.2.经历绝对值概念的形成,初步体会数形结合的思想方法,丰富解决问题的策略.3.渗透数形结合等思想方法,培养学生的概括能力.教学重点难点重点:绝对值的定义.难点:求一个数的绝对值.课前准备多媒体课件教学过程导入新课1.上节课我们学习了相反数,请画一条数轴,并标出表示6,-2,0及它们的相反数的点.2.大家设想一下,如果在你刚才所画数轴上表示+6和-6的两点处各有一只蚂蚁以相同的速度向原点爬去,会是谁先爬到呢?讨论一下,答案是,原因是. 答案:1.如图1所示.图12.同时爬到两点到原点的距离相等师生活动教师展示图片,学生到黑板上画出数轴,分组讨论第2题,并回答.探究新知活动11.关于“蚂蚁爬行”的问题,大家一定回答上来了,原因是两点到原点的相等.2.+6与-6互为相反数,只有不同,但表示它们的点到是相等的.3.两辆汽车从同一处O出发,分别向东、西方向行驶,第一辆沿公路向东行驶了10千米,第二辆向西行驶了10千米.为了表示行驶的方向(规定向东为正)和所在位置,分别记作10千米和-10千米.这样,利用有理数就可以明确表示每辆汽车在公路上的位置了,如图2所示.(媒体展示:汽车的位置,直观体现问题)图2提出问题(1)它们的行驶路线相同吗?(2)它们的行驶路程相等吗?4.下面请同学们阅读教材第11页,思考并解决以下几个问题:(1)什么叫做绝对值?怎么用语言表达?其关键词是什么?(2)绝对值用符号怎样表示?(3)绝对值里面的数都可以是哪些数?6 / 6(要求学生自己看书,勾画主要内容)归纳:一般地,数轴上表示数a的点到原点的距离叫做数a的绝对值.记作|a|.这里的a可以是正数,可以是负数,也可以是0.例如,上面的问题中|10|=10,|-10|=10,而|0|=0.答案:1.距离 2.符号原点的距离3.(1)路线不同 (2)路程相等4.(1)数轴上表示数a的点与原点的距离叫做数a的绝对值.(2)记作|a|.(3)可以是正数、零、负数.师生活动教师展示问题图片,学生分组讨论并回答问题.教师总结:从“形”的角度看,绝对值就是数轴上表示数a的点与原点的距离,所以绝对值绝对不会是个负值.活动21.想一想+6和-6的绝对值分别是什么,有什么关系?±3呢?2.分别写出下列绝对值的结果:︱5︱=,︱-2︱=,︱+4︱=,︱9︱=,︱0︱=,︱-7.8︱=.3.上边分别求了正数、负数和0的绝对值,观察这些结果,你能得到一个数的绝对值与这个数的关系吗?6 / 64.在如图3所示数轴上标出表示-1.5,-3,-1,-5的点.图3它们的绝对值分别是,,,,这四个数的大小你一定知道.-1.5,-3,-1,-5呢?试填在下边横线上:>>>.答案:1.6,6,相等;3,3,相等.2.5 2 4 9 0 7.83.一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.4.图略 1.5 3 1 5 -1 -1.5 -3 -5师生活动教师展示问题图片,学生分组讨论后举手回答问题.教师总结:从“数”的角度看,非负数的绝对值是它本身,非正数的绝对值是它的相反数.可见绝对值具有非负性.新知应用例1 比较下列两组数的大小:和-2.7.(1)-1和-7;(2)-56解:(1)-1>-7;(2)-5>-2.7.6师生活动6 / 6教师展示问题图片,让学生到黑板前做题,下面学生自主完成.教师总结:两个负数比较大小,绝对值大的反而小.例2 用“<”连接下列各数:-2.7,-3.5,0,23,π.解:-3.5<-2.7<0<23<π.师生活动教师展示问题图片,学生分组讨论,回答问题并总结出此类问题的解决方法. 课堂练习(见导学案“当堂达标”)参考答案1.B2.B 解析:原式=-1+2=1,故选B.3.C 解析:实数的大小比较方法:正数大于零,零大于负数.因为π>3,所以选C.4.C 解析:负数的比较方法:绝对值大的反而小,故选C.5.A6.D7.B 解析:因为│−13│=13,所以│−13│的相反数是-13.点评:主要考查绝对值与相反数.本题是求│−13│的相反数,而不是求-13的相反数.8.D 9.±46 / 66 / 610.(1)11 -5,-4,-3,-2,-1,0,1,2,3,4,5(2)4,5,-4,-511.812.a =2,b =3.课堂小结1.什么是绝对值?2.正数、负数、0的绝对值分别是什么?3.如何利用绝对值比较两个负数的大小?4.比较有理数的大小还有什么方法?布置作业教材第11页练习第1,3题板书设计教学反思绝对值的性质,是初中数学中的一个重要性质,这也是历年中考的一个热点;本节教师上课时可作必要的补充,如:(1)|a |≥0. (2)|a |≥a .(3)|a |=|-a|.(4)若|a|=|b|,则a=b或a=-b.(5)若|a|+|b|=0,则a=b=0,以此来突出重点,强化难点.6 / 6。

初中七年级数学上册《绝对值》教学设计

初中七年级数学上册《绝对值》教学设计

初中七年级数学上册《绝对值》教课设计第一部分:教课剖析(一)教课内容:《绝对值》是七年级数学教材上册 1.2.4 节内容,此前,学生已经学习了有理数的分类,数轴与相反数等基础知识,为本课学习的基础。

绝对值不单能够使学生加深对有理数的认识,还会为此后学习两个负数的大小比较以及有理数的运当作准备。

因此本课在有理数一章起到承前启后的作用。

(二)教课目的:依据数学课程内容标准要求及教课内容的特色,以及学生的认知水平,确立本节课的教课目的以下:1,理解、掌握绝对值观点. 领会绝对值的作用与意义;2,能正确求出一个数的绝对值;3,掌握绝对值的几何意义,浸透数形联合和分类思想. 体验运用直观知识解决数学识题的成功;(三)教课重、难点剖析:教课要点:掌握绝对值的观点会求已知数的绝对值.教课难点:掌握有理数的观点及分类。

(四)教课协助手段利用多媒体(实物投影)、教案进行协助教课第二部分:教课方案教课过程师生互动设计企图一、创建情境、引入新课二、合作沟通、探究新知问题 1:什么叫做绝对值?怎么用数学符号表示一个数的绝对值?问题 2:互为相反数的绝对值的关系如何?问题 3:正数的绝对值是什么数?零的绝对值是什么数?负数的绝对值是什么数?问题 4:设a表示一个数,|a| 等于什么?三、拓展提升、应用稳固1.判断以下说法能否正确:(1)符号相反的数互为相反数 ().(2)符号相反且绝对值相等的数互为相反数()(3)一个数的绝对值越大,表示它的点在数轴上越靠右. ()( 4)一个数的绝对值越大,表示它的点在数轴上离远点越远. ()2.求以下各数的绝对值:,,0,, .四、归纳总结、部署作业讲堂小结:1、本节课收获:由学生进行总结,其余同学帮忙增补,教师提示。

2、关于本节课的知识,假如还有不理解的地方请提出来,同学和老师共同帮助解决部署作业:课本 p11 第 1, 2, 3,教师展现投影,甲乙两车相向而行问题,学生在教案上画出数轴,并依据教案的要求,思虑甲乙两车行驶的距离引出的三个问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级数学教案人教版绝对值
七年级数学的教案设计,简单地说,就是指教师为达成一定的教
学目标,对教学活动进行的系统规划、安排与决策。下面是小编为大
家精心整理的人教版七年级数学绝对值的教案,仅供参考。
七年级数学教案人教版绝对值(一)
第一章 有理数
单元教学内容
1.本单元结合学生的生活经验,列举了学生熟悉的用正、负数表
示的实例,•从扩充运算的角度引入负数,然后再指出可以用正、负数
表示现实生活中具有相反意义的量,使学生感受到负数的引入是来自
实际生活的需要,体会数学知识与现实世界的联系.
引入正、负数概念之后,接着给出正整数、负整数、正分数、负
分数集合及整数、分数和有理数的概念.
2.通过怎样用数简明地表示一条东西走向的马路旁的树、•电线杆
与汽车站的相对位置关系引入数轴.数轴是非常重要的数学工具,它可
以把所有的有理数用数轴上的点形象地表示出来,使数与形结合为一
体,揭示了数形之间的内在联系,从而体现出以下4个方面的作用:
(1)数轴能反映出数形之间的对应关系.
(2)数轴能反映数的性质.
(3)数轴能解释数的某些概念,如相反数、绝对值、近似数.
(4)数轴可使有理数大小的比较形象化.
3.对于相反数的概念,•从“数轴上表示互为相反数的两点分别在
原点的两旁,且离开原点的距离相等”来说明相反数的几何意义,同
时补充“零的相反数是零”作为相反数意义的一部分.
4.正确理解绝对值的概念是难点.
根据有理数的绝对值的两种意义,可以归纳出有理数的绝对值有
如下性质:
(1)任何有理数都有唯一的绝对值.
(2)有理数的绝对值是一个非负数,即最小的绝对值是零.
(3)两个互为相反数的绝对值相等,即│a│=│-a│.
(4)任何有理数都不大于它的绝对值,即│a│≥a,│a│≥-a.
(5)若│a│=│b│,则a=b,或a=-b或a=b=0.
七年级数学教案人教版绝对值(二)
三维目标
1.知识与技能
(1)了解正数、负数的实际意义,会判断一个数是正数还是负数.
(2)掌握数轴的画法,能将已知数在数轴上表示出来,•能说出数轴
上已知点所表示的解.
(3)理解相反数、绝对值的几何意义和代数意义,•会求一个数的相
反数和绝对值.
(4)会利用数轴和绝对值比较有理数的大小.
2.过程与方法
经过探索有理数运算法则和运算律的过程,体会“类比”、“转
化”、“数形结合”等数学方法.
3.情感态度与价值观
使学生感受数学知识与现实世界的联系,鼓励学生探索规律,并
在合作交流中完善规范语言.
重、难点与关键
1.重点:正确理解有理数、相反数、绝对值等概念;会用正、•负数
表示具有相反意义的量,会求一个数的相反数和绝对值.
2.难点:准确理解负数、绝对值等概念.
3.关键:正确理解负数的意义和绝对值的意义.
课时划分
1.1 正数和负数 2课时
1.2 有理数 5课时
1.3 有理数的加减法 4课时
1.4 有理数的乘除法 5课时
1.5 有理数的乘方 4课时
第一章有理数(复习) 2课时
1.1正数和负数
七年级数学教案人教版绝对值(三)
第一课时
三维目标
一.知识与技能
能判断一个数是正数还是负数,能用正数或负数表示生活中具有
相反意义的量.
二.过程与方法
借助生活中的实例理解有理数的意义,体会负数引入的必要性和
有理数应用的广泛性.
三.情感态度与价值观
培养学生积极思考,合作交流的意识和能力.
教学重、难点与关键
1.重点:正确理解负数的意义,掌握判断一个数是正数还是负数
的方法.
2.难点:正确理解负数的概念.
3.关键:创设情境,充分利用学生身边熟悉的事物,•加深对负数
意义的理解 教学过程
四、课堂引入
我们知道,数是人们在实际生活和生活需要中产生,并不断扩充
的.人们由记数、排序、产生数1,2,3,„;为了表示“没有物体”、
“空位”引进了数“0”,•测量和分配有时不能得到整数的结果,为
此产生了分数和小数.
在生活、生产、科研中经常遇到数的表示与数的运算的问题,例
如课本第2•页至第3页中提到的四个问题,这里出现的新数:-3,-2,
-2.7%在前面的实际问题中它们分别表示:零下3摄氏度,净输2球,
减少2.7%.
五、讲授新课
(1)、像-3,-2,-2.7%这样的数(即在以前学过的0以外的数前面
加上负号“-”的数)叫做负数.而3,2,+2.7%在问题中分别表示零上
3摄氏度,净胜2球,增长2.7%,•它们与负数具有相反的意义,我们
把这样的数(即以前学过的0•以外的数)叫做正数,有时
11在正数前面也加上“+”(正)号,例如,+3,+2,+0.5,+,
„就是3,2,0.5,,„33
一个数前面的“+”、“-”号叫做它的符号,这种符号叫做性质
符号.
(2)、中国古代用算筹(表示数的工具)进行计算,红色算筹表示正
数,黑色算筹表示负数.
(3)、数0既不是正数,也不是负数,但0是正数与负数的分界数.
(4) 、0可以表示没有,还可以表示一个确定的量,如今天气温是
0℃,是指一个确定的温度;海拔0表示海平面的平均高度.
用正负数表示具有相反意义的量
(5)、 把0以外的数分为正数和负数,起源于表示两种相反意义的
量.•正数和负数在许多方面被广泛地应用.在地形图上表示某地高度时,
需要以海平面为基准,通常用正数表示高于海平面的某地的海拔高度,
负数表示低于海平面的某地的海拔高度.例如:珠穆朗玛峰的海拔高度
为8844m,吐鲁番盆地的海拔高度为-155m.记录账目时,通常用正
数表示收入款额,负数表示支出款额.
(6)、 请学生解释课本中图1.1-2,图1.1-3中的正数和负数的含
义.
(7)、 你能再举一些用正负数表示数量的实际例子吗?
(8)、例如,通常用正数表示汽车向东行驶的路程,用负数表示汽
车向西行驶的路程;用正数表示水位升高的高度,用负数表示水位下降
的高度;用正数表示买进东西的数量,用负数表示卖出东西的数量.
六、巩固练习
课本第3页,练习1、2、3、4题.
七、课堂小结
为了表示现实生活中的具有相反意义的量,我们引进了负数.正数
就是我们过去学过的数(除0外),在正数前放上“-”号,就是负数,•
但不能说:“带正号的数是正数,带负号的数是负数”,在一个数前
面添上负号,它表示的是原数意义相反的数.如果原数是一个负数,那
么前面放上“-”号后所表示的数反而是正数了,另外应注意“0”既
不是正数,也不是负数.
八、作业布置
1.课本第5页习题1.1复习巩固第1、2、3题.
九、板书设计

相关文档
最新文档