立体几何经典习题集(含答案)
人教A版高一数学必修第二册第八章《立体几何初步》单元练习题卷含答案解析 (34)

高一数学必修第二册第八章《立体几何初步》单元练习题卷3(共22题)一、选择题(共10题)1.在空间四边形ABCD的边AB,BC,CD,DA上分别取E,F,G,H四点,若EF与HG交于点M,那么( )A.M一定在直线AC上B.M一定在直线BD上C.M可能在直线AC上,也可能在直线BD上D.M既不在直线AC上,也不在直线BD上2.关于“斜二测”画图法,下列说法不正确的是( )A.平行直线的斜二测图仍是平行直线B.斜二测图中,互相平行的任意两条线段的长度之比保持原比例不变C.正三角形的直观图一定为等腰三角形D.在画直观图时,由于坐标轴的选取不同,所得的直观图可能不同3.已知直线m,n与平面α,β,m⊥α,n⊥β,若α⊥β,则m,n的位置关系是( )A.平行B.垂直C.相交D.异面4.如图所示,正方体ABCD−A1B1C1D1的棱长为2,动点E,F在棱A1B1上,动点P,Q分别在棱AD,CD上,若EF=1,A1E=x,DQ=y,DP=z(x,y,z大于零),则四面体PQEF的体积( )A.与x,y,z都有关B.与x有关,与y,z无关C.与y有关,与x,z无关D.与z有关,与x,y无关5.在正方体中ABCD−A1B1C1D1中,E为棱CD的中点,则( )A.A1E⊥DC1B.A1E⊥BD C.A1E⊥BC1D.A1E⊥AC6.一个四面体的所有棱长都为√2,四个顶点在同一球面上,则此球的表面积为( )A.3πB.4πC.3√3πD.6π7.正方体的内切球与其外接球的体积之比为( )A.1:√3B.1:3C.1:3√3D.1:98.《九章算术》中,称底面为矩形且有一侧棱垂直于底面的四棱锥为阳马,如图,某阳马的三视图如图所示,则该阳马的最长棱的长度为( )A.√2B.√3C.2D.2√29.已知正六棱柱的12个顶点都在一个半径为3的球面上,当正六棱柱的体积取最大值时,其高的值为( )A.3√3B.√3C.2√6D.2√310.若一个圆锥的轴截面(过圆锥顶点和底面直径的截面)是等边三角形,其面积为√3,则这个圆锥的体积为( )A.3πB.√3π3C.√3πD.√3π2二、填空题(共6题)11.已知正方体ABCD−A1B1C1D1的棱长为1,除面ABCD外,该正方体其余各面的中心分别为点E,F,G,H,M(如图),则四棱锥M−EFGH的体积为.12.如图,在正三棱柱ABC−A1B1C1中,已知AB=AA1=3,点P在棱CC1上,则三棱锥P−ABA1的体积为.13.正六棱柱的底面边长为4,高为6,则它的外接球(正六棱柱的顶点都在此球面上)的表面积为.14.正△ABC的斜二测画法的水平放置图形的直观图,若△AʹBʹCʹ的面积为√3,那么△ABC的面积为.15.正方体ABCD−A1B1C1D1中,若过A,C,B1三点的平面与底面A1B1C1D1的交线为l,则l与A1C1的位置关系是.16.如图所示,长方形ABCD−A1B1C1D1的体积为24,E为线段B1C上的一点,则棱锥A−DED1的体积为.三、解答题(共6题)17.如图,在正方体ABCD−A1B1C1D1中,P,Q分别是平面AA1D1D,平面A1B1C1D1的中心,证明:(1) D1Q∥平面C1DB;(2) 平面D1PQ∥平面C1DB.18.如图,在四棱锥P−ABCD中,底面ABCD是菱形,PB=PD.(1) 求证:平面APC⊥底面BPD;(2) 若PB⊥PD,∠DAB=60∘,AP=AB=2,求二面角A−PD−C的余弦值.19.如图,在△AOB中,∠AOB=90∘,AO=2,OB=1.△AOC可以通过△AOB以直线AO为轴旋转得到,且OB⊥OC,动点D在斜边AB上.(1) 求证:平面COD⊥平面AOB;(2) 当D为AB的中点时,求二面角B−CD−O的余弦值;(3) 求CD与平面AOB所成的角中最大角的正弦值.20.如图,在三棱柱ABC−A1B1C1中,四边形A1C1CA为菱形,∠B1A1A=∠C1A1A=60∘,AC=4,AB=2,平面ACC1A1⊥平面ABB1A1,Q在线段AC上移动,P为棱AA1的中点.(1) 若Q为线段AC的中点,H为BQ的中点,延长AH交BC于D,求证:AD∥平面B1PQ;(2) 若二面角B1−PQ−C1的平面角的余弦值为√13,求点P到平面BQB1的距离.1321.如图,AE⊥面ABCD,ABCD是正方形,AE=AB=2,F为BE的中点.求证:DE∥面ACF.22.阅读下面题目及其证明过程,在横线处填写适当的内容.如图,长方体ABCD−A1B1C1D1的底面ABCD是边长为1的正方形,点E,F分别为线段BD1,CC1的中点.(Ⅰ)求证:EF∥平面ABCD;(Ⅰ)当DD1=√2时,求证:DE⊥平面BFD1;证明:(Ⅰ)如图,连接AC,BD,设AC∩BD=O,连接OE.因为长方体ABCD−A1B1C1D1的底面ABCD是边长为1的正方形,所以BO=OD,又因为BE=ED1,DD1,所以OE∥DD1,OE=12因为F为线段CC1中点,DD1,所以CF∥DD1,CF=12所以CF∥OE,CF=OE.所以四边形OCFE为平行四边形.所以EF∥OC.又因为EF⊄平面ABCD,OC⊂平面ABCD,所以EF∥平面ABCD.(Ⅰ)因为F为线段CC1中点,所以BF=D1F,所以△D1FB是等腰三角形.因为E为BD1的中点,所以EF⊥BD1.因为BD⊥OC,EF∥OC,所以EF⊥BD.因为BD∩BD1=B,所以①.因为DE⊂平面BDD1,所以②.因为DD1=√2,所以DD1=BD,所以③.因为EF∩D1B=E,所以DE⊥平面BFD1.在上述证明过程中,(Ⅰ)的证明思路是:先证明“④”,再证明“⑤”.答案一、选择题(共10题)1. 【答案】A【解析】如图,因为EF∩HG=M,所以M∈EF,M∈HG,又EF⊂平面ABC,HG⊂平面ADC,故M∈平面ABC,M∈平面ADC,又平面ABC∩平面ADC=AC,所以M∈AC.故选A.【知识点】平面的概念与基本性质2. 【答案】C【解析】对于A,平行直线的斜二测图仍是平行直线,A正确;对于B,斜二测图中,互相平行的任意两条线段的长度之比保持原比例不变,B正确;对于C,正三角形的直观图不一定为等腰三角形,如图所示,所以C错误;对于D,画直观图时,由于坐标轴的选取不同,所得的直观图可能不同,D正确.【知识点】直观图3. 【答案】B【解析】m,n有可能相交或异面,但必定垂直.故答案选B.【知识点】直线与直线的位置关系4. 【答案】D【解析】设P点到平面A1B1CD的距离为ℎ,因为A1B1∥DC,所以Q到EF的距离为定值2√2,又因为EF=1,所以S△QEF=12×1×2√2=√2,因为V四面体PQEF =V三棱锥P−QEF=13S△QEF⋅ℎ=√23ℎ,即四面体的体积只与点P到平面A1B1CD的距离无关,所以四面体的体积与z有关,与x,y无关.【知识点】棱锥的表面积与体积5. 【答案】C【解析】画出正方体ABCD−A1B1C1D1,如图所示.对于选项A,连D1E,若A1E⊥DC1,又DC1⊥A1D1,所以DC1平面A1ED1,所以可得DC1⊥D1E,显然不成立,所以A不正确.对于选项B,连AE,若A1E⊥BD,又BD⊥AA1,所以DB⊥平面A1AE,故得BD⊥AE,显然不成立,所以B不正确.对于选项C,连AD1,则AD1∥BC1.连A1D,则得AD1⊥A1D,AD1⊥ED,所以AD1⊥平面A1DE,从而得AD1⊥A1E,所以A1E⊥BC1.所以C正确.对于选项D,连AE,若A1E⊥AC,又AC⊥AA1,所以AC⊥平面A1AE,故得AC⊥AE,显然不成立,所以D不正确.【知识点】空间中直线与直线的垂直6. 【答案】A【解析】联想只有正方体中有这么多相等的线段,所以构造一个正方体,则正方体的面对角线即为四面体的棱长,求得正方体的棱长为1,体对角线为√3,从而外接球的直径也为√3,所以此球的表面积为3π.【知识点】组合体、球的表面积与体积7. 【答案】C【解析】设正方体的棱长为a,则其内切球的半径为a2,所以V内=43π(a2)3−πa36,正方体的外接球的半径为√32a,所以V外=43π(√32a)3=3√3πa36,所以V内:V外=1:3√3.【知识点】球的表面积与体积8. 【答案】B【解析】根据题设条件可知三视图还原成的几何体为四棱锥,如图所示,其中PD=1,底面ABCD是边长为1的正方形,易知PB=√3,PA=PC=√2,故最长棱的长度为√3.【知识点】三视图、棱锥的结构特征9. 【答案】D【知识点】棱柱的表面积与体积10. 【答案】B【解析】设圆锥底面圆的半径为r,圆锥的高为ℎ,体积为V,则ℎ=√3r.因为12×2r×√3r=√3r2=√3,所以r=1,所以V=13πr2h=√33πr3=√3π3.【知识点】圆锥的表面积与体积二、填空题(共6题)11. 【答案】112【解析】连接AD1,CD1,B1A,B1C,AC,因为E,H分别为AD1,CD1的中点,所以EH∥AC,EH=12AC,因为 F ,G 分别为 B 1A ,B 1C 的中点, 所以 FG ∥AC ,FG =12AC ,所以 EH ∥FG ,EH =FG , 所以四边形 EHGF 为平行四边形, 又 EG =HF ,EH =HG , 所以四边形 EHGF 为正方形, 又点 M 到平面 EHGF 的距离为 12, 所以四棱锥 M −EFGH 的体积为 13×(√22)2×12=112.【知识点】棱锥的表面积与体积12. 【答案】9√34【解析】因为在正三棱柱 ABC −A 1B 1C 1 中,AB =AA 1=3,点 P 在棱 CC 1 上, 所以点 P 到平面 ABA 1 的距离即为 △ABC 的高, 即为 ℎ=√32−(32)2=3√32,S △ABA 1=12×3×3=92,三棱锥 P −ABA 1 的体积为:V =13×S △ABA 1×ℎ=13×92×3√32=9√34.【知识点】棱锥的表面积与体积13. 【答案】 100π【解析】依题意,该正六棱柱的外接球的球心应是上、下底面中心连线的中点, 所以其半径等于 √42+(62)2=5,其表面积等于 4π×25=100π.【知识点】球的表面积与体积14. 【答案】 2√6【知识点】直观图15. 【答案】 A 1C 1∥l【解析】因为 平面ABCD ∥平面A 1B 1C 1D 1,AC ⊂平面ABCD , 所以 AC ∥平面A 1B 1C 1D 1,又平面 ACB 1 经过直线 AC 与平面 A 1B 1C 1D 1 相交于直线 l , 所以 AC ∥l , 又因为 A 1C 1∥AC , 所以 A 1C 1∥l .【知识点】直线与平面平行关系的性质、直线与平面平行关系的判定16. 【答案】4【解析】设AB=a,AD=b,AA1=c,则长方体的体积V ABCD−A1B1C1D1=abc=24,三棱锥A−DED1的体积V A−DED1=V E−ADD1=13S△ADD1⋅AB=13×12×AD×DD1×AB=16×bc⋅a=16×24=4.【知识点】棱锥的表面积与体积三、解答题(共6题)17. 【答案】(1) 由题可知D1Q∥DB.因为D1Q⊄平面C1DB,DB⊂平面C1DB,所以D1Q∥平面C1DB.(2) 由题可知D1P∥C1B.因为D1P⊄平面C1DB,C1B⊂平面C1DB,所以D1P∥平面C1DB.由(1)知,D1Q∥平面C1DB,又D1Q∩D1P=D1,所以平面D1PQ∥平面C1DB.【知识点】平面与平面平行关系的判定、直线与平面平行关系的判定18. 【答案】(1) 记AC∩BD=O,连接PO,因为底面 ABCD 是菱形,所以 BD ⊥AC ,O 是 BD ,AC 的中点, 因为 PB =PD , 所以 PO ⊥BD , 因为 AC ∩PO =O , 所以 BD ⊥平面APC , 又因为 BD ⊂平面BPD ,所以 平面APC ⊥平面BPD .(2) 如图,以 O 为原点,OA ,OB ,OP 所在直线分别为 x ,y ,z 轴建立如图所示的空间坐标系, 则 A(√3,0,0),D (0,−1,0),P (0,0,1),C(−√3,0,0,),所以 DA ⃗⃗⃗⃗⃗ =(√3,1,0),DP ⃗⃗⃗⃗⃗ =(0,1,1),DC ⃗⃗⃗⃗⃗ =(−√3,1,0), 设 n 1⃗⃗⃗⃗ =(x 1,y 1,z 1) 是平面 APD 的法向量,则 {DA ⃗⃗⃗⃗⃗ ⋅n 1⃗⃗⃗⃗ =0,DP ⃗⃗⃗⃗⃗ ⋅n 1⃗⃗⃗⃗ =0⇒{√3x 1+y 1=0,y 1+z 1=0, 令 y 1=−√3,得 n 1⃗⃗⃗⃗ =(1,−√3,√3),同理可得平面 PCD 的法向量 n 2⃗⃗⃗⃗ =(1,√3,−√3),所以 cos ⟨n 1⃗⃗⃗⃗ ,n 2⃗⃗⃗⃗ ⟩=n1⃗⃗⃗⃗⃗ ⋅n 2⃗⃗⃗⃗⃗ ∣∣n 1⃗⃗⃗⃗⃗ ∣∣⋅∣∣n2⃗⃗⃗⃗⃗ ∣∣=√3)×√3+(−√3)×√3√7×√7=−57,由图形可知二面角 A −PD −C 为钝二面角, 所以二面角 A −PD −C 的余弦值为 −57.【知识点】利用向量的坐标运算解决立体几何问题、平面与平面垂直关系的判定、二面角19. 【答案】(1) 在 △AOC 中,AO ⊥OC , 因为 OB ⊥OC ,且 AO ∩OB =O , 所以 OC ⊥平面AOB , 又 OC ⊂平面COD ,所以 平面COD ⊥平面AOB .(2) 如图建立空间直角坐标系 O −xyz , 因为 D 为 AB 的中点,所以 O (0,0,0),A (0,0,2),B (0,1,0),C (1,0,0),D (0,12,1),所以 OC ⃗⃗⃗⃗⃗ =(1,0,0),OD ⃗⃗⃗⃗⃗⃗ =(0,12,1),BC ⃗⃗⃗⃗⃗ =(1,−1,0),BD⃗⃗⃗⃗⃗⃗ =(0,−12,1), 设 n 1⃗⃗⃗⃗ =(x 1,y 1,z 1) 为平面 OCD 的法向量,所以 {n 1⃗⃗⃗⃗ ⋅OC ⃗⃗⃗⃗⃗ =0,n 1⃗⃗⃗⃗ ⋅OD ⃗⃗⃗⃗⃗⃗ =0, 即 {x 1=0,12y 1+z 1=0, 令 z 1=1,则 y 1=−2,所以 n 1⃗⃗⃗⃗ =(0,−2,1) 是平面 BCD 的一个法向量, 设 n 2⃗⃗⃗⃗ =(x 2,y 2,z 2) 为平面 OCD 的法向量, 所以 {n 2⃗⃗⃗⃗ ⋅BC ⃗⃗⃗⃗⃗ =0,n 2⃗⃗⃗⃗ ⋅BD ⃗⃗⃗⃗⃗⃗ =0, 即 {x 2−y 2=0,−12y 2+z 2=0, 令 z 2=1,则 x 2=2,y 2=2,所以 n 2⃗⃗⃗⃗ =(2,2,1) 是平面 OCD 的一个法向量,所以 cos 〈n 1⃗⃗⃗⃗ ,n 2⃗⃗⃗⃗ 〉=n 1⃗⃗⃗⃗⃗ ⋅n 2⃗⃗⃗⃗⃗ ∣∣n 1⃗⃗⃗⃗⃗ ∣∣⋅∣∣n 2⃗⃗⃗⃗⃗ ∣∣=√02+(−2)2+12⋅√22+22+12=−√55, 所以二面角 B −CD −O 的余弦值为 √55. (3) 解法一:因为 OC ⊥平面AOB ,所以 ∠CDO 为 CD 与平面 AOB 所成的角, 因为 OC =1,所以点 O 到直线 AB 的距离最小时,∠CDO 的正弦值最大, 即当 OD ⊥AB 时,∠CDO 的正弦值最大, 此时 OD =2√55, 所以 CD =3√55, 所以 sin∠CDO =√53. 解法二:设 AD⃗⃗⃗⃗⃗ =λAB ⃗⃗⃗⃗⃗ (λ∈[0,1]), 所以 D (0,λ,2−2λ).CD ⃗⃗⃗⃗⃗ =(−1,λ,2−2λ),平面 AOB 的法向量 n ⃗ =(1,0,0),所以 sinθ=∣∣n ⃗ ⋅CD⃗⃗⃗⃗⃗ ∣∣∣∣n ⃗ ∣∣∣∣CD⃗⃗⃗⃗⃗ ∣∣=√5λ2−8λ+5=√5(λ−45)2+95,所以当 λ=45 时,CD 与平面 AOB 所成的角最大,sinθ=√53. 【知识点】二面角、平面与平面垂直关系的判定、线面角20. 【答案】(1) 如图,取 BB 1 的中点 E ,连接 AE ,EH . 因为 H 为 BQ 的中点, 所以 EH ∥B 1Q .在平行四边形 AA 1B 1B 中,P ,E 分别为 AA 1,BB 1 的中点, 所以 AE ∥PB 1.又 EH ∩AE =E ,PB 1∩B 1Q =B 1, 所以 平面EHA ∥平面B 1QP . 因为 AD ⊂平面EHA , 所以 AD ∥平面B 1PQ .(2) 如图,连接 PC 1,AC 1,因为四边形 A 1C 1CA 为菱形,∠C 1A 1A =60∘, 所以 AA 1=AC 1=A 1C 1=4, 即 △AC 1A 1 为等边三角形. 因为 P 为 AA 1 的中点, 所以 PC 1⊥AA 1.因为 平面ACC 1A 1⊥平面ABB 1A 1,平面ACC 1A 1∩平面ABB 1A 1=AA 1,PC 1⊂平面ACC 1A 1, 所以 PC 1⊥平面ABB 1A 1.在平面 ABB 1A 1 内过点 P 作 PR ⊥AA 1 交 BB 1 于 R .以 PR ,PA 1,PC 1 所在直线分别为 x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系 Pxyz ,则 P (0,0,0),A 1(0,2,0),A (0,−2,0),C 1(0,0,2√3),C(0,−4,2√3).设 AQ ⃗⃗⃗⃗⃗ =λAC ⃗⃗⃗⃗⃗ =λ(0,−2,2√3),λ∈(0,1](当 λ=0 时,平面 B 1PQ 即平面 ABB 1A 1,不符合题意),所以 Q(0,−2(λ+1),2√3λ). 所以 PQ⃗⃗⃗⃗⃗ =(0,−2(λ+1),2√3λ). 因为 A 1B 1=AB =2,∠B 1A 1A =60∘, 所以 B 1(√3,1,0), 所以 PB 1⃗⃗⃗⃗⃗⃗⃗ =(√3,1,0).设平面 PQB 1 的法向量为 m ⃗⃗ =(x,y,z ),则 {m ⃗⃗ ⋅PQ⃗⃗⃗⃗⃗ =0⃗ ,m ⃗⃗ ⋅PB 1⃗⃗⃗⃗⃗⃗⃗ =0⃗ ,所以 {−2(λ+1)y +2√3λz =0,√3x +y =0,令 x =1, 则 y =−√3,z =−λ+1λ,所以平面 PQB 1 的一个法向量为 m ⃗⃗ =(1,−√3,−λ+1λ).设平面 AA 1C 1C 的法向量为 n ⃗ =(1,0,0), 二面角 B 1−PQ −C 1 的平面角为 θ, 则cosθ=∣m⃗⃗⃗ ⋅n ⃗ ∣∣m⃗⃗⃗ ∣∣n ⃗ ∣=√1+3+(−λ)2=√1313.所以 λ=12 或 λ=−14(舍), 所以 AQ⃗⃗⃗⃗⃗ =12AC ⃗⃗⃗⃗⃗ , 所以 Q(0,−3,√3), 又 B(√3,−3,0),所以 QB⃗⃗⃗⃗⃗ =(√3,0,−√3), 所以 ∣QB ⃗⃗⃗⃗⃗ ∣=√3+3=√6. 又 ∣B 1Q ⃗⃗⃗⃗⃗⃗⃗ ∣=√22, 所以 BQ 2+BB 12=B 1Q 2, 所以 ∠QBB 1=90∘.连接 BP ,设点 P 到平面 BQB 1 的距离为 ℎ, 则 13×12×4×√3×√3=13×12×4×√6⋅ℎ.所以 ℎ=√62, 即点 P 到平面 BQB 1 的距离为√62. 【知识点】直线与平面平行关系的判定、利用向量的坐标运算解决立体几何问题、二面角21. 【答案】连接 BD 交 AC 于 G ,连接 FG .因为 F ,G 分别为 BE ,BD 的中点, 所以 FG ∥DE ,因为 FG ⫋平面ACF ,DE ⊄面ACF , 所以 DE ∥面ACF .【知识点】直线与平面平行关系的判定22. 【答案】① EF ⊥平面BDD 1② EF ⊥DE③ DE ⊥BD 1 ④线线平行 ⑤线面平行【知识点】直线与平面垂直关系的判定、直线与直线的位置关系、直线与平面平行关系的判定、直线与平面垂直关系的性质。
立体几何练习题及答案

立体几何练习题及答案### 立体几何练习题及答案#### 一、选择题1. 在正方体ABCD-A1B1C1D1中,点E是棱CC1的中点,点F是棱BB1上的动点,且BF=1/3BB1,则线段AE与AF所成的角是:- A. 45°- B. 30°- C. 60°- D. 90°答案:C2. 若三棱锥P-ABC的四个顶点不共面,且PA⊥PB,PA⊥PC,PA=PB=PC=1,则三棱锥的体积为:- A. 1/6- B. √2/6- C. √3/6- D. 1/3答案:C#### 二、填空题1. 已知圆锥的底面半径为3,母线长为4,则圆锥的侧面展开图的扇形半径为______。
答案:42. 若球的半径为R,则球的内接正方体的对角线长为______。
答案:√3R#### 三、解答题1. 问题:已知正四面体ABCD的棱长为a,求正四面体的体积。
- 解答:设正四面体的高为h,由正四面体的性质知,底面三角形的高为h',有h' = √3/2 * a。
由勾股定理得,h = √(a^2 - (h'/2)^2) = √(3/4 * a^2)。
正四面体的体积V = (1/3) * 底面积 * 高 = (1/3) * (√3/4 * a^2) * h = (√2/12) * a^3。
2. 问题:已知球的半径为R,求球的内接正四面体的棱长。
- 解答:设正四面体的棱长为l,由球的内接正四面体的性质知,正四面体的高h与球的半径R和棱长l满足关系:h = √3/6 * R,l =√8/3 * h。
将h代入得l = √2R/3。
#### 四、证明题1. 问题:证明正方体中,对角线AC1与棱AB所成的角等于45°。
- 解答:在正方体ABCD-A1B1C1D1中,AC1是体对角线,AB是棱。
由于正方体的对角线AC1平分面A1B1C1D1,所以AC1与面A1B1C1D1垂直。
高中立体几何经典题型练习题(含答案)

高中数学立体几何练习题精选试卷姓名班级学号得分说明:1、本试卷包括第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
满分100分。
考试时间90分钟。
2、考生请将第Ⅰ卷选择题的正确选项填在答题框内,第Ⅱ卷直接答在试卷上。
考试结束后,只收第Ⅱ卷第Ⅰ卷(选择题)一.单选题(每题2分,共40分)1.设直线l,m和平面α,β,下列条件能得到α∥β的有()①l⊂α,m⊂α,且l∥β,m∥β;②l⊂α,m⊂α且l∥m;③l∥α,m∥β且l∥m.A.1个B.2个C.3个D.0个2.一个四面体中如果有三条棱两两垂直,且垂足不是同一点,这三条棱就象中国武术中的兵器--三节棍,所以,我们常把这类四面体称为“三节棍体”,三节棍体ABCD四个顶点在空间直角坐标系中的坐标分别为A(0,0,0)、B(0,4,0)、C(4,4,0)、D(0,0,2),则此三节棍体外接球的表面积是()A.36πB.24πC.18πD.12π3.一个圆锥的侧面展开图的圆心角为90°,它的表面积为a,则它的底面积为()A.B.C.D.4、如图,三棱柱ABC-A1B1C1的侧棱长和底面边长均为4,且侧棱AA1⊥底面ABC,其主视图是边长为4的正方形,则此三棱柱的侧视图的面积为()A.16B.2C.4D.5.三棱锥P-ABC的侧棱PA,PB,PC两两互相垂直,且PA=PB=PC=2,则三棱锥P-ABC的外接球的体积是()A.2πB.4πC.πD.8π6.在正方体ABCD-A′B′C′D′中,过对角线BD‘的一个平面交AA′于点E,交CC′于点F.则下列结论正确的是()①四边形BFD′E一定是平行四边形②四边形BFD′E有可能是正方形③四边形BFD′E在底面ABCD的投影一定是正方形④四边形BFD′E有可能垂于于平面BB′D.A.①②③④B.①③④C.①②④D.②③④7.如图,在四面体A-BCD中,AB⊥平面BCD,BC⊥CD,若AB=BC=CD=1,则AD=()A.1B.C.D.28.已知a,b是空间两条异面直线,它们所成的角为80°,过空间一点P作直线l,使l与a,b所成角均为50°,这样的l有()A.1条B.2条C.3条D.4条9.满足下面哪一个条件时,可以判定两个不重合的平面α与β平行()A.α内有无数个点到平面β的距离相等B.α内的△ABC与β内的△A"B"C"全等,且AA"∥BB"∥CC"C.α,β都与异面直线a,b平行D.直线l分别与α,β两平面平行10.已知两个不同的平面α,β和两条不重合的直线m,n,有下列四个命题:①若m∥n,n⊂α,则m∥α;②若m∥α,n∥α,且m⊂β,n⊂β,则α∥β;③若m∥α,n⊂α,则m∥n;④若α∥β,m⊂α,则m∥β.其中正确命题的个数是()A.1个B.2个C.3个D.4个11.在直二面角α-AB-β的棱AB上取一点P,过P分别在α、β两个平面内作与棱成45°的斜线PC、PD,那么∠CPD的大小为()A.45°B.60°C.120°D.60°或120°12、如图,将边长为1的正方形ABCD ,沿对角线BD 折起来,使平面ABD ⊥平面C ′BD ,则AC ′=( )A .1B .C .D .13.一个正四棱锥的底面面积为Q ,则它的中截面(过各侧棱的中点的截面)的边长是( ) A .B .C .D .14.某几何体的三视图如图实数,则当x+y 取最大值时,该几何体的体积为( )A .B .C .D .15.空间三条直线a ,b ,c 中,b 和c 是一对异面直线,取三条直线中某两条直线确定平面,那么可以确定平面个数是( ) C /A BC D 正视图 侧视图 俯视图xyξ6 11A.0或1B.1或2C.0或2D.0或1或216.已知二面角α-l-β的大小为60°,且m⊥α,n⊥β,则异面直线m,n所成的角为()A.30°B.120°C.90°D.60°17.设α、β表示平面,l表示不在α内也不在β内的直线,给出下列命题:①若l⊥α,l∥β,则α⊥β;②若l∥β,α⊥β,则l⊥α;③若l⊥α,α⊥β,则l∥β.其中正确的命题是()A.①③B.①②C.②③D.①②③18.三棱锥P-ABC中,PA=PB=PC=AC=1,△ABC是等腰直角三角形,∠ABC=90°.若E为PC 中点,则BE与平面PAC所成的角的大小等于()A.30°B.45°C.60°D.90°19.在正方体A1C中,对角线A1C与平面B1BCC1所成的角是()A.∠A1CB1B.∠A1CC1C.∠A1CB D.∠A1B1C20.若m、n是两条不同的直线,α、β、γ是三个不同的平面,则下列命题中真命题是()A.若m⊥β,m∥α,则α⊥βB.若α∩γ=m,β∩γ=n,m∥n,则α∥βC.若m⊂β,α⊥β,则m⊥αD.若α⊥γ,α⊥β,则β⊥γ二.填空题(每题3分,共15分)21.将边长为a的正方形ABCD沿对角线AC折起,使得BD=a,则三棱锥D-ABC的体积是______.22.如图,图①、②、③是图④表示的几何体的三视图,其中图①是______,图②是______,图③是______(说出视图名称).23.若空间四边形ABCD的两条对角线AC,BD的长分别为4,6,过AB的中点E且平行BD,AC的截面四边形的周长为______.24、如图,以等腰直角三角形斜边BC上的高AD为折痕,把△ABD与△ACD折成互相垂直的两个平面后,某学生得出下列四个结论:①;②∠BAC=60°;③三棱锥D-ABC是正三棱锥;④平面ADC的法向量和平面ABC的法向量互相垂直.其中正确结论的序号是______.(请把正确结论的序号都填上)25.直角三角形ABC中,CA=CB=,M为AB的中点,将△ABC沿CM折叠,使A、B之间的距离为1,则三棱锥M-ABC外接球的体积为______.三.简答题(每题9分,共45分)如图,多面体ABCDEFG中,AB,AC,AD两两垂直,平面ABC∥平面DEFG,平面BEF∥平面ADGC,AB=AD=DG=2,AC=EF=1.(1)证明四边形ABED是正方形;(2)判断点B,C,F,G是否四点共面,并说明为什么?(3)连接CF,BG,BD,求证:CF⊥平面BDG.27、如图,直四棱柱ABCD-A1B1C1D1中,底面ABCD为梯形,AB平行于CD,,AD1⊥A1C,E是A1B1中点.(1)求证:CD⊥A1D1.(2)求二面角C-D1E-B1的大小.28、如图,直三棱柱ABC-A1B1C1中,AC=BC,AA1=AB,D为BB1的中点,E为AB1上的一点,AE=3EB1.(Ⅰ)证明:DE为异面直线AB1与CD的公垂线;(Ⅱ)设异面直线AB1与CD的夹角为45°,求二面角A1-AC1-B1的大小.29.按下列叙述画出图形(不必写作法):直线a,b相交于点M,点N不在直线a,b上,点N分别与直线a,b确定平面α,β.30、如图,已知四棱锥P-ABCD中,PA⊥平面ABCD,ABCD是直角梯形,AD∥BC,∠BAD=90°,BC=2AD.(1)求证:AB⊥PD;(2)在线段PB上是否存在一点E,使AE∥平面PCD,若存在,指出点E的位置并加以证明;若不存在,请说明理由.参考答案一.单选题(共__小题)1.设直线l,m和平面α,β,下列条件能得到α∥β的有()①l⊂α,m⊂α,且l∥β,m∥β;②l⊂α,m⊂α且l∥m;③l∥α,m∥β且l∥m.A.1个B.2个C.3个D.0个答案:D解析:解:对于①,∵l⊂α,m⊂α,且l∥β,m∥β,当直线l与直线m相交时,α∥β,故①错误;对于②,l⊂α,m⊂α且l∥m,不能得到α∥β,故②错误;对于③,如图,l∥α,m∥β且l∥m,α∩β=n,故③错误;故选:D.2.一个四面体中如果有三条棱两两垂直,且垂足不是同一点,这三条棱就象中国武术中的兵器--三节棍,所以,我们常把这类四面体称为“三节棍体”,三节棍体ABCD四个顶点在空间直角坐标系中的坐标分别为A(0,0,0)、B(0,4,0)、C(4,4,0)、D(0,0,2),则此三节棍体外接球的表面积是()A.36πB.24πC.18πD.12π答案:A解析:解:由题意,可补成长方体,同一顶点的三条棱长分别为2,4,4,其对角线长为=6,∴三节棍体外接球的半径为3,∴三节棍体外接球的表面积是4π×32=36π,故选:A.3.一个圆锥的侧面展开图的圆心角为90°,它的表面积为a,则它的底面积为()A.B.C.D.答案:A解析:解:设圆锥的母线为l,所以圆锥的底面周长为:,底面半径为:=,底面面积为:.圆锥的侧面积为:,所以圆锥的表面积为:+=a,底面面积为:=.故选A.4、如图,三棱柱ABC-A1B1C1的侧棱长和底面边长均为4,且侧棱AA1⊥底面ABC,其主视图是边长为4的正方形,则此三棱柱的侧视图的面积为()A.16B.2C.4D.答案:D解析:解:根据题中的直观图和三视图,结合题意可得∵主视图是边长为4的正方形,∴三棱柱的侧棱与底面垂直,底面是边长为4的等边三角形,作出底面等边三角形的高,可得等边三角形的高为4sin60°=2,∵侧视图是以侧棱长为一边、底面三角形的高为另一边的矩形∴侧视图的面积S=4×=故选:D5.三棱锥P-ABC的侧棱PA,PB,PC两两互相垂直,且PA=PB=PC=2,则三棱锥P-ABC的外接球的体积是()A.2πB.4πC.πD.8π答案:B解析:解:以PA、PB、PC为过同一顶点的三条棱,作长方体如图则长方体的外接球同时也是三棱锥P-ABC外接球.∵长方体的对角线长为2,∴球直径为2,半径R=,因此,三棱锥P-ABC外接球的体积是πR3=π×()3=4π故选:B.6.在正方体ABCD-A′B′C′D′中,过对角线BD‘的一个平面交AA′于点E,交CC′于点F.则下列结论正确的是()①四边形BFD′E一定是平行四边形②四边形BFD′E有可能是正方形③四边形BFD′E在底面ABCD的投影一定是正方形④四边形BFD′E有可能垂于于平面BB′D.A.①②③④B.①③④C.①②④D.②③④答案:B解析:解:①∵四边形BFD′E与面BCC′B′的交线为BF,与面ADD′A′的交线为D′E,且面BCC′B′∥面ADD′A′的交线为D′E,∴BF∥D′E,同理可证明出BE∥D′F,∴四边形BFD′E一定是平行四边形,故结论①正确.②当F与C′重合,E与A点重合时,BF显然与EB不相等,不能是正方形,当这不重合时,BF和BE不可能垂直,综合可知,四边形BFD′E不可能是正方形结论②错误.③∵四边形BFD′E在底面ABCD的投影是四边形A′B′C′D′,故一定是正方形,③结论正确.④当E,F分别是AA′,CC′的中点时,EF∥AC,AC⊥BD,∴EF⊥BD,BB′⊥面ABCD,AC⊂面ABCD,∴BB′⊥AC,∴BB′⊥EF,∵BB′⊂面BDD′B′,BD⊂面BDD′B′,BD∩BB′=B,∴EF⊥面BDD′B′,∵EF⊂四边形BFD′E,平面BB′D⊂面BDD′B′,∴面形BFD′E⊥面BDD′B′.故结论④正确.故选:B.7.如图,在四面体A-BCD中,AB⊥平面BCD,BC⊥CD,若AB=BC=CD=1,则AD=()A.1B.C.D.2答案:C解析:解:∵AB⊥平面BCD,CD⊂面BCD,∴AB⊥CD,又CD⊥BC,∴CD⊥面ABC,∴CD⊥AC,又AB=BC=CD=1,∴AD2=AC2+CD2=AB2+BC2+CD2=3,∴AD=.故选C.8.已知a,b是空间两条异面直线,它们所成的角为80°,过空间一点P作直线l,使l与a,b所成角均为50°,这样的l有()A.1条B.2条C.3条D.4条答案:C解析:解:在空间取一点P,经过点P分别作a∥a‘,b∥b',设直线a'、b'确定平面α,当直线PM满足它的射影PQ在a'、b'所成角的平分线上时,PM与a'所成的角等于PM与b'所成的角因为直线a,b所成的角为80°,得a'、b'所成锐角等于80°所以当PM的射影PQ在a'、b'所成锐角的平分线上时,PM与a'、b'所成角的范围是[40°,90°).这种情况下,过点P有两条直线与a',b'所成的角都是50°当PM的射影PQ在a'、b'所成钝角的平分线上时,PM与a'、b'所成角的范围是[50°,90°).这种情况下,过点P有且只有一条直线(即PM⊂α时)与a',b'所成的角都是50°综上所述,过空间任意一点P可作与a,b所成的角都是50°的直线有3条故选:C.9.满足下面哪一个条件时,可以判定两个不重合的平面α与β平行()A.α内有无数个点到平面β的距离相等B.α内的△ABC与β内的△A"B"C"全等,且AA"∥BB"∥CC"C.α,β都与异面直线a,b平行D.直线l分别与α,β两平面平行答案:C解析:解:A错,若α∩β=a,b⊂α,a∥b,α内直线b上有无数个点到平面β的距离相等,则不能断定α∥β;B错,若α内的△ABC与β内的△A‘B'C'全等,如图,在正三棱柱中构造△ABC与△A'B'C'全等,但不能断定α∥β;C正确,因为分别过异面直线a,b作平面与平面α,β相交,可得出交线相互平行,从而根据面面平行的判定定理即可得出平面α与β平行;D错,若直线l分别与α,β两相交平面的交线平行,则不能断定α∥β;故选C.10.已知两个不同的平面α,β和两条不重合的直线m,n,有下列四个命题:①若m∥n,n⊂α,则m∥α;②若m∥α,n∥α,且m⊂β,n⊂β,则α∥β;③若m∥α,n⊂α,则m∥n;④若α∥β,m⊂α,则m∥β.其中正确命题的个数是()A.1个B.2个C.3个D.4个答案:A解析:解:①若m∥n,n⊂α,则m∥α或m⊂α,故原命题不正确;②若m∥α,n∥α,且m⊂β,n⊂β,则α∥β,对照面面平行的判定定理可知缺少条件“相交直线”,故不正确;③若m∥α,n⊂α,则m与n平行或异面或相交,故不正确;④若α∥β,m⊂α,则m∥β,根据面面平行的性质可知正确;故正确命题的个数是1个故选:A11.在直二面角α-AB-β的棱AB上取一点P,过P分别在α、β两个平面内作与棱成45°的斜线PC、PD,那么∠CPD的大小为()A.45°B.60°C.120°D.60°或120°答案:D解析:解:如图,当两斜线PC,PD同向时,在PC上取点C,过C作CG⊥AB于G,在平面β内过G作GD⊥AB,交PD于D,连结CD.∵二面角α-AB-β为直二面角,∴CG⊥β,则CG⊥GD.在Rt△CGP中,∵∠CPG=45°,设CG=a,则PG=a,∴PC=.在Rt△DGP中,∵∠DPG=45°,∴DG=PG=a,则PD=.在Rt△DGC中,∵CG=DG=a,∴CD=.∴△PCD是等边三角形,∴PC和PD所成角为60°;如图,当两斜线PC,PD异向时,在PC上取点C,过C作CG⊥AB于G,在PD上取点D,使PD=CG,连结CD,∵二面角α-AB-β为直二面角,∴CG⊥β,则CG⊥GD.设CG=a,在Rt△CGP中,∵∠CPG=45°,∴PG=a,则PC=,PD=CG=,∵∠BPD=45°,∴∠DPG=135°.在△DPG中,GD2=PG2+PD2-2PG•PDcos135°==5a2.∴CD2=CG2+GD2=a2+5a2=6a2.在△DPC 中,.∴∠DPC=120°.∴PC 和PD 所成角为120°.所以∠CPD 的大小为60°或120°.故选D .12、如图,将边长为1的正方形ABCD ,沿对角线BD 折起来,使平面ABD ⊥平面C ′BD ,则AC ′=( )A .1B .C .D .答案:A解析:解:取BD 的中点O ,连接OA ,OC ′,则∵将边长为1的正方形ABCD 沿对角线BD 折起来,使平面ABD ⊥平面C ′BD , ∴AO ⊥CO ,AO=CO=,∴AC ′==1故选:A .13.一个正四棱锥的底面面积为Q ,则它的中截面(过各侧棱的中点的截面)的边长是( )C /AB C D OA .B .C .D .答案:A解析:解:由棱锥的几何特征可得棱锥的中截面与棱锥的底面是相似图形且相似比为则棱锥的中截面与棱锥的底面的面积之比为相似比的平方又∵棱锥的底面面积是Q ,∴棱锥的中截面面积是,则它的中截面的边长是故选A .14.某几何体的三视图如图实数,则当x+y 取最大值时,该几何体的体积为()A .B .C .D .答案:A解析: 正视图 侧视图 俯视图xyξ6 11解:该几何体是长方体一角,如图所示,可知AC=,BD=1,BC=y,AB=x.设CD=a,AD=b,则a2+b2=6,a2+1=y2,b2+1=x2,消去a2,b2得x2+y2=8≥,所以x+y≤4,当且仅当x=y=2时等号成立,此时a=b=,所以V==.故选A.15.空间三条直线a,b,c中,b和c是一对异面直线,取三条直线中某两条直线确定平面,那么可以确定平面个数是()A.0或1B.1或2C.0或2D.0或1或2答案:D解析:解:∵b和c是一对异面直线若a与b,c均相交,则可以确定两个平面;若a与b,c中一条平行与另一条相交,则可以确定两个平面;若a与b,c中一条平行与另一条异面,则可以确定一个平面;若a与b,c中一条相交与另一条异面,则可以确定一个平面;若a与b,c均异面,则可以确定零个平面;故选D16.已知二面角α-l-β的大小为60°,且m⊥α,n⊥β,则异面直线m,n所成的角为()A.30°B.120°C.90°D.60°答案:D解析:解:因为m,n为异面直线,且m⊥α,n⊥β,所以m,n所成的角就是二面角α-l-β的大小,因为二面角α-l-β的大小为60°,所以是60°故选D.17.设α、β表示平面,l表示不在α内也不在β内的直线,给出下列命题:①若l⊥α,l∥β,则α⊥β;②若l∥β,α⊥β,则l⊥α;③若l⊥α,α⊥β,则l∥β.其中正确的命题是()A.①③B.①②C.②③D.①②③答案:A解析:解:①,由l∥β,可以知道过l的平面与β相交,设交线为m,则l∥m,又l⊥α,所以m ⊥α,m⊂β,故α⊥β,正确;②,由l∥β,α⊥β,则l与α可以平行、相交垂直,故错误;③,l⊥α,α⊥β,则l与β平行或在β内,而条件是l表示不在α内也不在β内的直线,故只有l∥β,正确.故选A.18.三棱锥P-ABC中,PA=PB=PC=AC=1,△ABC是等腰直角三角形,∠ABC=90°.若E为PC 中点,则BE与平面PAC所成的角的大小等于()A.30°B.45°C.60°D.90°答案:B解析:解:作PO⊥平面ABC,垂足为O则∠POA=∠POB=∠POC=90°,而PA=PB=PC,PO是△POA、△POB、△POC的公共边∴△POA≌△POB≌△POC∴AO=BO=CO,则点O为三角形ABC的外心∵△ABC是等腰直角三角形,∠ABC=90°∴点O为AC的中点,则BO⊥AC而PO⊥BO,PO∩AC=O∴BO⊥平面PAC,连接OE∴∠BEO为BE与平面PAC所成的角∵点O为AC的中点,E为PC中点,PA=PB=PC=AC=1,ABC是等腰直角三角形,∠ABC=90°∴OE为中位线,且OE=,BO=又∵∠BOE=90°∴∠BEO=45°即BE与平面PAC所成的角的大小为45°故选B.19.在正方体A1C中,对角线A1C与平面B1BCC1所成的角是()A.∠A1CB1B.∠A1CC1C.∠A1CB D.∠A1B1C答案:A解析:解:∵正方体A1C中,A1B1⊥平面B1BCC1,∴直线B1C是直线A1C在平面B1BCC1内的射影因此∠A1CB1就是直线A1C与平面B1BCC1所成的角故选:A20.若m、n是两条不同的直线,α、β、γ是三个不同的平面,则下列命题中真命题是()A.若m⊥β,m∥α,则α⊥βB.若α∩γ=m,β∩γ=n,m∥n,则α∥βC.若m⊂β,α⊥β,则m⊥αD.若α⊥γ,α⊥β,则β⊥γ答案:A解析:解:对于A,m∥α,过m的平面与α交于n,则m∥n,∵m⊥β,∴n⊥β,∵n⊂α,∴α⊥β,故正确;对于B,不正确.如图,若平面ABCD∩平面ABFE=AB,平面ABFE∩平面CDEF=EF,AB∥EF,但平面ABCD与平面CDEF不平行.对于C,因为若α⊥β,m⊂β,则m与α的位置关系不确定,故m与α可能相交,可能平行,也可能是m⊂α,对于D,因为γ,β垂直于同一个平面α,故γ,β可能相交,可能平行.故选:A.二.填空题(共__小题)21.将边长为a的正方形ABCD沿对角线AC折起,使得BD=a,则三棱锥D-ABC的体积是______.答案:解析:解:如图,由题意知DE=BE=a,BD=a由勾股定理可证得∠BED=90°故三角形BDE面积是a2又正方形的对角线互相垂直,且翻折后,AC与DE,BE仍然垂直,故AE,CE分别是以面BDE 为底的两个三角形的高故三棱锥D-ABC的体积为×a ×a2=故答案为:.22.如图,图①、②、③是图④表示的几何体的三视图,其中图①是______,图②是______,图③是______(说出视图名称).答案:主视图左视图俯视图解析:解:根据三视图的定义,可得图①是主视图,图②是左视图,图③是俯视图.故答案为:主视图、左视图、俯视图.23.若空间四边形ABCD的两条对角线AC,BD的长分别为4,6,过AB的中点E且平行BD,AC的截面四边形的周长为______.答案:10解析:解:设截面四边形为EFGH,F、G、H分别是BC、CD、DA的中点,∴EF=GH=2,FG=HE=3,∴周长为2×(2+3)=10.故答案为:10.24、如图,以等腰直角三角形斜边BC上的高AD为折痕,把△ABD与△ACD折成互相垂直的两个平面后,某学生得出下列四个结论:①;②∠BAC=60°;③三棱锥D-ABC是正三棱锥;④平面ADC的法向量和平面ABC的法向量互相垂直.其中正确结论的序号是______.(请把正确结论的序号都填上)答案:②③解析:解:BD⊥平面ADC,⇒BD⊥AC,①错;AB=AC=BC,②对;DA=DB=DC,结合②,③对④错.故答案为:②③25.直角三角形ABC中,CA=CB=,M为AB的中点,将△ABC沿CM折叠,使A、B之间的距离为1,则三棱锥M-ABC外接球的体积为______.答案:解析:解:∵Rt△ABC中CA=CB=,∴AB=2,又∵M为AB的中点,∴MA=MB=MC=1,故对折后三棱锥M-ABC的底面为边长为1的等边三角形,如下图所示:其外接球可化为以MAB 为底面,以MC 为高的正三棱柱的外接球,设三棱锥M-ABC 外接球的球心为O ,则球心到MAB 的距离d=MC=,平面MAB 的外接圆半径r=,故三棱锥M-ABC 外接球的半径R===, 则外接球的体积为V=R 3== 故答案为:.三.简答题(共__小题)26、如图,多面体ABCDEFG 中,AB ,AC ,AD 两两垂直,平面ABC ∥平面DEFG ,平面BEF ∥平面ADGC ,AB=AD=DG=2,AC=EF=1.(1)证明四边形ABED 是正方形;(2)判断点B ,C ,F ,G 是否四点共面,并说明为什么?(3)连接CF,BG,BD,求证:CF⊥平面BDG.答案:证明:(1),同理AD∥BE,则四边形ABED是平行四边形.又AD⊥DE,AD=DE,∴四边形ABED是正方形(2)取DG中点P,连接PA,PF.在梯形EFGD中,FP∥DE且FP=DE.又AB∥DE且AB=DE,∴AB∥PF且AB=PF∴四边形ABFP为平行四边形,∴AP∥BF在梯形ACGD中,AP∥CG,∴BF∥CG,∴B,C,F,G四点共面(3)同(1)中证明方法知四边形BFGC为平行四边形.且有AC∥DG、EF∥DG,从而AC∥EF,∴EF⊥AD,BE∥AD又BE=AD=2、EF=1故,而,故四边形BFGC为菱形,CF⊥BG又由AC∥EF且AC=EF知CF∥AE.正方形ABED中,AE⊥BD,故CF⊥BD.27、如图,直四棱柱ABCD-A1B1C1D1中,底面ABCD为梯形,AB平行于CD,,AD1⊥A1C,E是A1B1中点.(1)求证:CD⊥A1D1.(2)求二面角C-D1E-B1的大小.答案:解:(1)∵ABCD-A1B1C1D1是直四棱柱且AD=DD1;∴四边形AA1D1D是正方形,∴AD1⊥A1D,∵AD1⊥A1C,A1D∩A1C=A1;∴AD1⊥平面DA1C;∴AD1⊥DC∵DD1⊥DC,DD1∩AD1=D1;∴DC⊥平面AA1D1D;∴DC⊥A1D1(2)由(1)知以D1为坐标原点,建立空间直角坐标系;C(0,1,1);E(1,1,0);;由题意,平面D1EB1的法向量为=(0,0,1)设平面CD1E的法向量=(x,y,z),则,令y=-1,则=(1,-1,1)∴;由图形知,二面角C-D1E-B1为锐角,∴二面角C-D1E-B1的大小为.28、如图,直三棱柱ABC-A1B1C1中,AC=BC,AA1=AB,D为BB1的中点,E为AB1上的一点,AE=3EB1.(Ⅰ)证明:DE为异面直线AB1与CD的公垂线;(Ⅱ)设异面直线AB1与CD的夹角为45°,求二面角A1-AC1-B1的大小.答案:解:(1)连接A1B,记A1B与AB1的交点为F.因为面AA1BB1为正方形,故A1B⊥AB1,且AF=FB1,又AE=3EB1,所以FE=EB1,又D为BB1的中点,故DE∥BF,DE⊥AB1.作CG⊥AB,G为垂足,由AC=BC知,G为AB中点.又由底面ABC⊥面AA1B1B.连接DG,则DG∥AB1,故DE⊥DG,由三垂线定理,得DE⊥CD.所以DE为异面直线AB1与CD的公垂线.(2)因为DG∥AB1,故∠CDG为异面直线AB1与CD的夹角,∠CDG=45°设AB=2,则AB1=,DG=,CG=,AC=.作B1H⊥A1C1,H为垂足,因为底面A1B1C1⊥面AA1CC1,故B1H⊥面AA1C1C.又作HK⊥AC1,K为垂足,连接B1K,由三垂线定理,得B1K⊥AC1,因此∠B1KH为二面角A1-AC1-B1的平面角.B1H=,C1H=,AC1=,HK=tan∠B1KH=,∴二面角A1-AC1-B1的大小为arctan.29.按下列叙述画出图形(不必写作法):直线a,b相交于点M,点N不在直线a,b上,点N分别与直线a,b确定平面α,β.答案:解:满足直线a,b相交于点M,点N不在直线a,b上,点N分别与直线a,b确定平面α,β的图象如下图所示:30、如图,已知四棱锥P-ABCD中,PA⊥平面ABCD,ABCD是直角梯形,AD∥BC,∠BAD=90°,BC=2AD.(1)求证:AB⊥PD;(2)在线段PB上是否存在一点E,使AE∥平面PCD,若存在,指出点E的位置并加以证明;若不存在,请说明理由.答案:解:(1)证明∵PA⊥平面ABCD,AB⊂平面ABCD,∴PA⊥AB.∵AB⊥AD,PA∩AD=A,∴AB⊥平面PAD,∵PD⊂平面PAD,∴AB⊥PD.(2)取线段PB的中点E,PC的中点F,连接AE,EF,DF,则EF是△PBC中位线.∴EF∥BC,,∵AD∥BC,,∴AD∥EF,AD=EF.∴四边形EFDA是平行四边形,∴AE∥DF.∵AE⊄平面PCD,DF⊂平面PCD,∴AE∥平面PCD.∴线段PB的中点E是符合题意要求的点.∴平面AEF∥平面PCD.∵AE⊂平面AEF,∴AE∥平面PCD.∴线段PB的中点E是符合题意要求的点.。
人教A版高一数学必修第二册第八章《立体几何初步》章末练习题卷含答案解析 (1)

高一数学必修第二册第八章《立体几何初步》单元练习题卷7(共22题)一、选择题(共10题)1.如图,三棱柱A1B1C1−ABC中,侧棱AA1⊥底面A1B1C1,底面三角形A1B1C1是正三角形,E是BC中点,则下列叙述正确的是( )A.CC1与B1E是异面直线B.AC⊥平面ABB1A1C.A1C1∥平面AB1ED.AE与B1C1为异面直线,且AE⊥B1C12.长方体的表面积为11,十二条棱长之和为24,则这个长方体的一条体对角线长为( )A.2√3B.√14C.5D.6.则3.如图,正方体ABCD−A1B1C1D1的棱长为1,线段B1D1上有两个动点E,F,且EF=12下列结论中正确的个数为( )① AC⊥BE;② EF∥平面ABCD;③三棱锥A−BEF的体积为定值;④ △AEF的面积与△BEF的面积相等.A.4B.3C.2D.14.已知三棱柱ABC−A1B1C1的底面为直角三角形,侧棱长为2,体积为1,若此三棱柱的顶点均在同一球面上,则该球半径的最小值为( )A.1B.2C.√6D.√625.下列几何体中是棱柱的有( )A.1个B.2个C.3个D.4个6.四条线段顺次首尾相连,它们最多可确定的平面个数有( )A.4B.3C.2D.17.空间四点A,B,C,D共面而不共线,那么这四点中( )A.必有三点共线B.必有三点不共线C.至少有三点共线D.不可能有三点共线8.若一个长方体的长、宽、高分别为√3,√2,1,则它的外接球的表面积为( )πB.5πC.6πD.24πA.329.若空间中n个不同的点两两距离都相等,则正整数n的取值( )A.至多等于3B.至多等于4C.等于5D.大于510.某三棱锥的三视图如图所示,则该三棱锥的体积是( )A.6B.8C.12D.24二、填空题(共6题)11.在棱长为2的正方体ABCD−A1B1C1D1中,P是A1B1的中点,过点A1作与截面PBC1平行的截面,所得截面的面积是.12.在棱长为6的正方体ABCD−A1B1C1D1中,P,Q是直线DD1上的两个动点.如果PQ=2,那么三棱锥P−BCQ的体积等于.13.一条直线a上的3个点A,B,C到平面M的距离都为1,这条直线和平面的关系是.14.侧棱长为3,底面面积为8的正四棱柱的体对角线的长为.15.如图,A,B,C,D为空间四点,在△ABC中,AB=2,AC=BC=√2,等边三角形ADB以AB为轴运动,当平面ADB⊥平面ABC时,CD=.16.如图,点M为矩形ABCD的边BC的中点,AB=1,BC=2.将矩形ABCD绕直线AD旋转所得到的几何体体积记为V1,将△MCD绕直线CD旋转所得到的几何体体积记为V2,则V1V2的值为.三、解答题(共6题)17.如图,四棱锥S−ABCD中,△ABS是正三角形,四边形ABCD是菱形,点E是BS的中点.(1) 求证:SD∥平面ACE;(2) 若平面ABS⊥平面ABCD,AB=4,∠ABC=120∘,求三棱锥E−ASD的体积.18.如图,在长方体ABCD−A1B1C1D1中,AB=1,AD=2,E,F,Q分别为AD,AA1,BC的中点,求证:平面BEF∥平面A1DQ.19.如图,在四棱锥P−ABCD中,底面ABCD为菱形,∠BAD=60∘,Q为AD的中点,(1) 若PA=PD,求证:平面PQB⊥平面PAD;(2) 点M在线段PC上,PM=tPC,试确定实数t的值,使得PA∥平面MQB;(3) 在(2)的条件下,若平面PAD⊥平面ABCD,PA=AD=PD=2,求二面角M−BQ−C的大小.20.用符号表示下列语句,并画出图形.(1) 平面α与β相交于直线l,直线a与α,β分别相交于点A,B.(2) 点A,B在平面α内,直线a与平面α交于点C,点C不在直线AB上.AD=1,21.如图,四棱锥P−ABCD中,PA⊥CD,AD∥BC,∠ADC=∠PAD=90∘,BC=CD=12 PA=2√2,M为PD的中点.(1) 求证:PA⊥AB;(2) 求证:CM∥平面PAB;(3) 求直线CM与平面PAD所成的角.22.一个几何体,它的下面是一个圆柱,上面是一个圆锥,并且圆锥的底面与圆柱的上底面重合,圆柱的底面直径为3cm,高(两底面圆心连线的长度)为4cm,圆锥的高(顶点与底面圆心连线的长度)为3cm,画出此几何体的直观图.答案一、选择题(共10题)1. 【答案】D【知识点】直线与平面的位置关系、直线与直线的位置关系2. 【答案】C【解析】设长方体的长,宽,高分别为a,b,c,由题意可知,4(a+b+c)=24, ⋯⋯①2ab+2bc+2ac=11, ⋯⋯②联立①②可得a2+b2+c2=25,则这个长方体的一条体对角线长为5.【知识点】棱柱的结构特征3. 【答案】B【解析】①中AC⊥BE,由题意及图形知,AC⊥面DD1B1B,故可得出AC⊥BE,此命题正确;② EF∥平面ABCD,由正方体ABCD−A1B1C1D1的两个底面平行,EF在其一面上,故EF与平面ABCD无公共点,故有EF∥平面ABCD,此命题正确;③三棱锥A−BEF的体积为定值,由几何体的性质及图形知,三角形BEF的面积是定值,A点到面DD1B1B距离是定值,故可得三棱锥A−BEF的体积为定值,此命题正确;④由图形可以看出,B到线段EF的距离与A到EF的距离不相等,故△AEF的面积与△BEF的面积相等不正确.【知识点】棱锥的表面积与体积、直线与平面垂直关系的性质、直线与平面平行关系的判定4. 【答案】D【解析】因为三棱柱内接于球,所以棱柱各侧面均为平行四边形且内接于圆,所以棱柱的侧棱都垂直于底面,所以该三棱柱为直三棱柱.设底面三角形的两条直角边长为a,b,因为三棱柱ABC−A1B1C1的高为2,体积是1,所以12ab⋅2=1,即ab=1,将直三棱柱ABC−A1B1C1补成一个长方体,则直三棱柱ABC−A1B1C1与长方体有同一个外接球,所以球O的半径为√a2+b2+42≥√2ab+42=√62(当且仅当a=b=1时,等号成立).【知识点】棱柱的结构特征、球的结构特征5. 【答案】C【解析】观察图形得:“有两个面互相平行,其余各面都是四边形,”的几何体有:①③⑤,只有它们是棱柱,共三个.【知识点】棱柱的结构特征6. 【答案】A【解析】首尾相连的四条线段每相邻两条确定一个平面,所以最多可以确定四个平面.【知识点】平面的概念与基本性质7. 【答案】B【解析】由题意,四点共面不共线分为图①和图②两种情况,只有选项B正确.【知识点】平面的概念与基本性质8. 【答案】C【知识点】球的表面积与体积、组合体9. 【答案】B【解析】由正四面体的定义可知n=4能满足条件.当n≥5时,可设其中三个点为A,B,C,由直线与平面垂直的性质及点到点的距离定义可知到A,B,C三点距离相等的点必在过△ABC 的重心且与平面ABC垂直的直线上,从而易知到A,B,C的距离等于正三角形ABC边长的点有两个,分别在平面ABC的两侧.此时可知这两点间的距离大于正三角形的边长,从而不可能有5个点满足条件.当然也不可能有多于5个的点满足条件.【知识点】空间线段的长度、直线与平面垂直关系的性质10. 【答案】B【知识点】由三视图还原空间几何体、棱锥的表面积与体积二、填空题(共6题)11. 【答案】2√6【解析】如图,取AB,C1D1的中点E,F,连接A1E,A1F,EF,则平面A1EF∥平面BPC1.在△A1EF中,A1F=A1E=√5,EF=2√2,S△A1EF =12×2√2×√(√5)2−(√2)2=√6,从而所得截面面积为2S△A1EF=2√6.【知识点】平面与平面平行关系的判定12. 【答案】12【解析】因为在棱长为6的正方体ABCD−A1B1C1D1中,P,Q是直线DD1上的两个动点,PQ=2,所以S△PQC=12×PQ×CD=12×2×6=6,所以三棱锥P−BCQ的体积:V P−BCQ=V B−PQC=13×S△PQC×BC=13×6×6=12.【知识点】棱锥的表面积与体积13. 【答案】平行【解析】假设直线a与平面α相交,则A,B,C三点中必有两个点在平面α同一侧,不妨设为A,B,过A,B分别作平面α的垂线,垂足为M,N,则AM∥BN,AM=BN.所以四边形AMNB是平行四边形,所以AB∥MN,又MN⊂α,AB⊄α,所以AB∥α,这与假设直线a与平面α相交矛盾,故假设错误,于是直线a与平面α平行.【知识点】直线与平面的位置关系14. 【答案】5【解析】正四棱柱的底面为正方形,设底面边长为a,侧棱长为b,则有a2=8,所以a=2√2,则四棱柱的体对角线为√a2+a2+b2=√8+8+9=5.故答案为:5.【知识点】棱柱的结构特征15. 【答案】2【解析】如图,取AB的中点E,连接DE,CE,因为△ADB是等边三角形,所以DE⊥AB.当平面ADB⊥平面ABC时,因为平面ADB∩平面ABC=AB,所以DE⊥平面ABC.又CE⊂平面ABC,所以DE⊥CE.由已知可得DE=√3,CE=1,在Rt△DEC中,CD=√DE2+CE2=2.【知识点】平面与平面垂直关系的性质16. 【答案】6【知识点】圆柱的表面积与体积三、解答题(共6题)17. 【答案】(1) 连接BD,设AC∩BD=O,连接OE,则点O是BD的中点.又因为E是BS的中点,所以SD∥OE,又因为SD⊄平面ACE,OE⊂平面ACE,所以SD∥平面ACE.(2) 因为四边形ABCD是菱形,且∠ABC=120∘,所以∠ABD=12∠ABC=60∘.又因为AB=AD,所以三角形ABD是正三角形.取AB的中点F,连接SF,则DF⊥AB,DF=2√3.又平面ABS⊥平面ABCD,DF⊂平面ABCD,平面ABS∩平面ABCD=AB,所以DF⊥平面ABS,即DF是四棱锥D−AES的一条高,而S△ASE=12SA⋅SE⋅sin∠ASE=2√3,所以V E−ADS=V D−AES=13S△ASE⋅DF=13×2√3×2√3=4.综上,三棱锥E−ASD的体积为4.【知识点】直线与平面平行关系的判定、棱锥的表面积与体积18. 【答案】因为E是AD的中点,Q是BC的中点,所以ED=BQ,ED∥BQ,所以四边形BEDQ是平行四边形,所以BE∥DQ,又因为BE⊄平面A1DQ,DQ⊂平面A1DQ,所以BE∥平面A1DQ,又因为F是A1A的中点,所以EF∥A1D,因为EF⊄平面A1DQ,A1D⊂平面A1DQ,所以EF∥平面A1DQ,因为BE∩EF=E,EF⊂平面BEF,BE⊂平面BEF,所以平面BEF∥平面A1DQ.【知识点】平面与平面平行关系的判定(1) 因为 PA =PD ,Q 为 AD 的中点,所以 PQ ⊥AD .因为底面 ABCD 为菱形,∠BAD =60∘,所以 △ABD 为正三角形,所以 BQ ⊥AD .又 BQ ∩PQ =Q ,所以 AD ⊥平面PQB .又 AD ⊂平面PAD ,所以 平面PQB ⊥平面PAD .(2) 当 t =13 时,PA ∥平面MQB .下面证明:设 AC ∩BQ =N ,连接 MN .因为 AQ ∥BC ,所以 AN NC =AQ BC =12.由 PM =13PC ,得 PM MC =12, 所以 AN NC =PM MC ,所以 PA ∥MN .又 MN ⊂平面MQB ,PA ⊄平面MQB ,所以 PA ∥平面MQB .(3) 由(1),得 BQ ⊥AD ,PQ ⊥AD .因为平面 PAD ⊥平面ABCD ,平面 PAD ∩平面ABCD =AD ,所以 PQ ⊥平面ABCD .如图,建立空间直角坐标系,则 Q (0,0,0),A (1,0,0),B(0,√3,0),C(−2,√3,0),P(0,0,√3),则 QB ⃗⃗⃗⃗⃗ =(0,√3,0), 且 QM ⃗⃗⃗⃗⃗⃗ =QP ⃗⃗⃗⃗⃗ +PM ⃗⃗⃗⃗⃗⃗ =QP ⃗⃗⃗⃗⃗ +13PC ⃗⃗⃗⃗⃗ =(−23,√33,2√33). 设平面 MQB 的一个法向量为 n ⃗ =(x,y,z ).由 {n ⃗ ⋅QB ⃗⃗⃗⃗⃗ =0,n ⃗ ⋅QM ⃗⃗⃗⃗⃗⃗ =0, 得 {√3y =0,−2x 3+√3y 3+2√3z 3=0, 取 z =1,则 n ⃗ =(√3,0,1).又因为平面 ABCD 的一个法向量为 m ⃗⃗ =(0,0,1),所以 cos 〈m ⃗⃗ ,n ⃗ 〉=m ⃗⃗⃗ ⋅n ⃗ ∣m ⃗⃗⃗ ∣∣n ⃗ ∣=12, 于是,二面角 M −BQ −C 的大小为 π3.【知识点】直线与平面平行关系的判定、二面角、平面与平面垂直关系的判定、空间向量的应用(1) 用符号表示a∩β=l,a∩α=A,a∩β=B,如图.(2) 用符号表示A∈α,B∈α,a∩α=C,C∉AB,如图.【知识点】平面的概念与基本性质21. 【答案】(1) 因为∠PAD=90∘,所以PA⊥AD.又因为PA⊥CD,CD∩AD=D,所以PA⊥平面ABCD.又因为AB⊂平面ABCD,所以PA⊥AB.(2) 取PA中点N,连接MN,BN.因为M,N分别是PA,PD的中点,所以MN∥AD且MN=12AD,又因为BC∥AD且BC=12AD,所以MN∥BC且MN=BC,所以四边形MNBC是平行四边形,所以CM∥BN,又因为CM⊄平面PAB,BN⊂平面PAB,所以CM∥平面PAB.(3) 因为CD⊥PA,CD⊥AD,PA∩AD=A,所以CD⊥平面PAD.所以∠CMD为直线CM与平面PAD所成的角.在Rt△PAD中,因为PA=2√2,AD=2,所以PD=2√3,所以MD=√3.所以在Rt△CMD中,tan∠CMD=CDMD =√33.所以,直线CM与平面PAD所成的角为π6.【知识点】线面角、直线与平面垂直关系的判定、直线与平面平行关系的性质22. 【答案】(1)画轴.如图①所示,画x轴,z轴,使∠xOz=90∘.(2)画圆柱的下底面.在x轴上取A,B两点,使AB=3cm,且OA=OB,选择椭圆模板中适当的椭圆且过A,B两点,使它为圆柱的下底面.(3)在Oz上截取OOʹ=4cm,过点Oʹ作平行于Ox轴的Oʹxʹ轴,类似圆柱下底面的画法画出圆柱的上底面.(4)画圆锥的顶点.在Oz上截取点P,使POʹ=3cm.(5)成图.连接AʹA,BʹB,PAʹ,PBʹ,整理(去掉辅助线,将被遮挡部分改成虚线)得到此几何体的直观图,如图②所示.【知识点】直观图。
立体几何专题训练附答案

立体几何G5 空间中的垂直关系18.、[2014·广东卷] 如图14,四边形ABCD为正方形,PD⊥平面ABCD,∠DPC=30°,AF⊥PC于点F,FE∥CD,交PD于点E.(1)证明:CF⊥平面ADF;(2)求二面角D AF E的余弦值.图1419.、[2014·湖南卷] 如图16所示,四棱柱ABCDA1B1C1D1的所有棱长都相等,AC∩BD =O,A1C1∩B1D1=O1,四边形ACC1A1和四边形BDD1B1均为矩形.(1)证明:O1O⊥底面ABCD;(2)若∠CBA=60°,求二面角C1OB1D的余弦值.19.解:(1)如图(a),因为四边形ACC1A1为矩形,所以CC1⊥AC.同理DD1⊥BD.因为CC1∥DD1,所以CC1⊥BD.而AC∩BD=O,因此CC1⊥底面ABCD.由题设知,O1O∥C1C.故O1O⊥底面ABCD.(2)方法一:如图(a),过O1作O1H⊥OB1于H,连接HC1.由(1)知,O1O⊥底面ABCD O1O⊥A1C1.又因为四棱柱ABCDA1B1C1D1的所有棱长都相等,所以四边形A1B1C1D1是菱形,因此A1C1⊥B1D1,从而A1C1⊥平面BDD1B1,所以A1C1⊥OB1,于是OB1⊥平面O1HC1.进而OB1⊥C1H.故∠C1HO1是二面角C1OB1D的平面角.不妨设AB =2.因为∠CBA =60°,所以OB =3,OC =1,OB 1=7.在Rt △OO 1B 1中,易知O 1H =OO 1·O 1B 1OB 1=237.而O 1C 1=1,于是C 1H =O 1C 21+O 1H 2=1+127=197. 故cos ∠C 1HO 1=O 1HC 1H=237197=25719.即二面角C 1OB 1D 的余弦值为25719.方法二:因为四棱柱ABCD A 1B 1C 1D 1的所有棱长都相等,所以四边形ABCD 是菱形,因此AC ⊥BD .又O 1O ⊥底面ABCD ,从而OB ,OC ,OO 1两两垂直.如图(b),以O 为坐标原点,OB ,OC ,OO 1所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系O xyz ,不妨设AB =2.因为∠CBA =60°,所以OB =3,OC =1,于是相关各点的坐标为O (0,0,0),B 1(3,0,2),C 1(0,1,2).易知,n 1=(0,1,0)是平面BDD 1B 1的一个法向量.设n 2=(x ,y ,z )是平面OB 1C 1的一个法向量,则⎩⎪⎨⎪⎧n 2·OB →1=0,n 2·OC →1=0,即⎩⎨⎧3x +2z =0,y +2z =0.取z =-3,则x =2,y =23,所以n 2=(2,23,-3). 设二面角C 1OB 1D 的大小为θ,易知θ是锐角,于是cos θ=|cos 〈,〉|=⎪⎪⎪⎪⎪⎪n 1·n 2|n 1|·|n 2|=2319=25719.故二面角C 1OB 1D 的余弦值为25719.19.、、[2014·江西卷] 如图16,四棱锥P ABCD 中,ABCD 为矩形,平面PAD ⊥平面ABCD .图16(1)求证:AB ⊥PD .(2)若∠BPC =90°,PB =2,PC =2,问AB 为何值时,四棱锥P ABCD 的体积最大?并求此时平面BPC 与平面DPC 夹角的余弦值.19.解:(1)证明:因为ABCD 为矩形,所以AB ⊥AD . 又平面PAD ⊥平面ABCD , 平面PAD ∩平面ABCD =AD , 所以AB ⊥平面PAD ,故AB ⊥PD .(2)过P 作AD 的垂线,垂足为O ,过O 作BC 的垂线,垂足为G ,连接PG . 故PO ⊥平面ABCD ,BC ⊥平面POG ,BC ⊥PG .在Rt △BPC 中,PG =2 33,GC =2 63,BG =63.设AB =m ,则OP =PG 2-OG 2=43-m 2,故四棱锥P ABCD 的体积为 V =13×6·m ·43-m 2=m 38-6m 2. 因为m 8-6m 2=8m 2-6m 4=-6⎝⎛⎭⎪⎫m 2-232+83,所以当m =63,即AB =63时,四棱锥P ABCD 的体积最大.此时,建立如图所示的空间直角坐标系,各点的坐标分别为O (0,0,0),B ⎝⎛⎭⎪⎫63,-63,0,C ⎝ ⎛⎭⎪⎫63,263,0,D ⎝ ⎛⎭⎪⎫0,263,0,P ⎝⎛⎭⎪⎫0,0,63,故PC →=⎝ ⎛⎭⎪⎫63,263,-63,BC →=(0,6,0),CD =⎝ ⎛⎭⎪⎫-63,0,0.设平面BPC 的一个法向量为n 1=(x ,y ,1),则由n 1⊥PC →,n 1⊥BC →,得⎩⎪⎨⎪⎧63x +2 63y -63=0,6y =0,解得x =1,y =0,则n 1=(1,0,1). 同理可求出平面DPC 的一个法向量为n 2=⎝ ⎛⎭⎪⎫0,12,1.设平面BPC 与平面DPC 的夹角为θ,则cos θ=|n 1·n 2||n 1||n 2|=12·14+1=105. 19.、[2014·辽宁卷] 如图15所示,△ABC 和△BCD 所在平面互相垂直,且AB =BC =BD =2,∠ABC =∠DBC =120°,E ,F 分别为AC ,DC 的中点.(1)求证:EF ⊥BC ;(2)求二面角E BF C 的正弦值.19.解:(1)证明:方法一,过点E 作EO ⊥BC ,垂足为O ,连接OF .由△ABC ≌△DBC 可证出△EOC ≌△FOC ,所以∠EOC =∠FOC =π2,即FO ⊥BC .又EO ⊥BC ,EO ∩FO =O ,所以BC ⊥平面EFO .又EF ⊂平面EFO ,所以EF方法二,由题意,以B 为坐标原点,在平面DBC 内过B 作垂直BC 的直线,并将其作为x 轴,BC 所在直线为y 轴,在平面ABC 内过B 作垂直BC 的直线,并将其作为z 轴,建立如图所示的空间直角坐标系,易得B (0,0,0),A (0,-1,3),D (3,-1,0),C (0,2,0),因而E (0,12,32),F (32,12,0),所以EF →=(32,0,-32),BC →=(0,2,0),因此EF →·BC→=0,从而EF →⊥BC →,所以EF ⊥BC .(2)方法一,在图1中,过点O 作OG ⊥BF ,垂足为G ,连接EG .因为平面ABC ⊥平面BDC ,所以EO ⊥面BDC ,又OG ⊥BF ,所以由三垂线定理知EG ⊥BF ,因此∠EGO 为二面角E BF C 的平面角.在△EOC 中,EO =12EC =12BC ·cos 30°=32.由△BGO ∽△BFC 知,OG =BOBC ·FC =34,因此tan ∠EGO =EO OG =2,从而得sin ∠EGO =255,即二面角E BF C 的正弦值为2 55. 方法二,在图2中,平面BFC 的一个法向量为n 1=(0,0,1).设平面BEF 的法向量n 2=(x ,y ,z ),又BF →=(32,12,0),BE →=(0,12,32),所以⎩⎪⎨⎪⎧n 2·BF →=0,n 2·BE →=0,得其中一个n 2=(1,-3,1).设二面角E BF C 的大小为θ,且由题知θ为锐角,则cos θ=|cos 〈n 1,n 2〉|=⎪⎪⎪⎪⎪⎪n 1·n 2|n 1||n 2|=15, 因此sin θ=25=2 55,即所求二面角正弦值为2 55.19.G 5、G 11[2014·新课标全国卷Ⅰ] 如图15,三棱柱ABC A 1B 1C 1中,侧面BB 1C 1C 为菱形,AB ⊥B 1C .图15(1)证明:AC =AB 1;(2)若AC ⊥AB 1,∠CBB 1=60°,AB =BC ,求二面角A A 1B 1 C 1的余弦值.19.解:(1)证明:连接BC 1,交B 1C 于点O ,连接AO ,因为侧面BB 1C 1C 为菱形,所以B 1C ⊥BC 1,且O 为B 1C 及BC 1的中点.又AB ⊥B 1C ,所以B 1C ⊥平面ABO . 由于AO ⊂平面ABO ,故B 1C ⊥AO . 又B 1O =CO ,故AC =AB 1.(2)因为AC ⊥AB 1,且O 为B 1C 的中点,所以AO =CO .又因为AB =BC ,所以△BOA ≌ △BOC .故OA ⊥OB ,从而OA ,OB ,OB 1两两垂直.以O 为坐标原点,OB 的方向为x 轴正方向,|OB |为单位长,建立如图所示的空间直角坐标系O xyz .因为∠CBB 1=60°,所以△CBB 1为等边三角形,又AB =BC ,则A ⎝ ⎛⎭⎪⎫0,0,33,B (1,0,0),B 1⎝ ⎛⎭⎪⎫0,33,0,C ⎝ ⎛⎭⎪⎫0,-33,0. AB 1→=⎝⎛⎭⎪⎫0,33,-33, A 1B 1→=AB =⎝ ⎛⎭⎪⎫1,0,-33,B 1C →1=BC =⎝⎛⎭⎪⎫-1,-33,0. 设n =(x ,y ,z )是平面AA 1B 1的法向量,则⎩⎨⎧n ·AB 1=0,n ·A 1B 1→=0,即⎩⎪⎨⎪⎧33y -33z =0,x -33z =0.所以可取n =(1,3,3).设m 是平面A 1B 1C 1的法向量, 则⎩⎪⎨⎪⎧m ·A 1B 1→=0,m ·B 1C 1→=0,同理可取m =(1,-3,3).则cos 〈n ,m 〉=n ·m |n ||m |=17.所以结合图形知二面角A A 1B 1 C 1的余弦值为17.18.,,,[2014·四川卷] 三棱锥A BCD 及其侧视图、俯视图如图14所示.设M ,N 分别为线段AD ,AB 的中点,P 为线段BC 上的点,且MN ⊥NP .(1)证明:P 是线段BC 的中点;(2)求二面角A NP M 的余弦值.图1418.解:(1)如图所示,取BD 的中点O ,连接AO ,CO . 由侧视图及俯视图知,△ABD ,△BCD 为正三角形,所以AO ⊥BD ,OC ⊥BD .因为AO ,OC ⊂平面AOC ,且AO ∩OC =O , 所以BD ⊥平面AOC .又因为AC ⊂平面AOC ,所以BD ⊥AC . 取BO 的中点H ,连接NH ,PH .又M ,N ,H 分别为线段AD ,AB ,BO 的中点,所以MN ∥BD ,NH ∥AO , 因为AO ⊥BD ,所以NH ⊥BD .因为MN ⊥NP ,所以NP ⊥BD .因为NH ,NP ⊂平面NHP ,且NH ∩NP =N ,所以BD ⊥平面NHP . 又因为HP ⊂平面NHP ,所以BD ⊥HP .又OC ⊥BD ,HP ⊂平面BCD ,OC ⊂平面BCD ,所以HP ∥OC . 因为H 为BO 的中点,所以P 为BC 的中点.(2)方法一:如图所示,作NQ ⊥AC 于Q ,连接MQ.由(1)知,NP ∥AC ,所以NQ ⊥NP .因为MN ⊥NP ,所以∠MNQ 为二面角A NP M 的一个平面角. 由(1)知,△ABD ,△BCD 为边长为2的正三角形,所以AO =OC = 3. 由俯视图可知,AO ⊥平面BCD .因为OC ⊂平面BCD ,所以AO ⊥OC ,因此在等腰直角△AOC 中,AC = 6. 作BR ⊥AC 于R因为在△ABC 中,AB =BC ,所以R 为AC 的中点, 所以BR =AB 2-⎝ ⎛⎭⎪⎫AC 22=102. 因为在平面ABC 内,NQ ⊥AC ,BR ⊥AC ,所以NQ ∥BR .又因为N 为AB 的中点,所以Q 为AR 的中点,所以NQ =BR 2=104.同理,可得MQ =104. 故△MNQ 为等腰三角形, 所以在等腰△MNQ 中,cos ∠MNQ =MN 2NQ =BD4NQ =105.故二面角A NP M 的余弦值是105. 方法二:由俯视图及(1)可知,AO ⊥平面BCD . 因为OC ,OB ⊂平面BCD ,所以AO ⊥OC ,AO ⊥OB . 又OC ⊥OB ,所以直线OA ,OB ,OC 两两垂直.如图所示,以O 为坐标原点,以OB ,OC ,OA 的方向为x 轴,y 轴,z 轴的正方向,建立空间直角坐标系O xyz .则A (0,0,3),B (1,0,0),C (0,3,0),D (-1,0,0). 因为M ,N 分别为线段AD ,AB 的中点, 又由(1)知,P 为线段BC 的中点,所以M ⎝ ⎛⎭⎪⎫-12,0,32,N ⎝ ⎛⎭⎪⎫12,0,32,P ⎝ ⎛⎭⎪⎫12,32,0,于是AB =(1,0,-3),BC =(-1,3,0),MN =(1,0,0),NP =⎝⎛⎭⎪⎫0,32,-32. 设平面ABC 的一个法向量n 1=(x 1,y 1,z 1),由⎩⎪⎨⎪⎧n 1⊥AB ,n 1⊥BC ,得⎩⎪⎨⎪⎧n 1·AB =0,n 1·BC =0,即 ⎩⎨⎧(x 1,y 1,z 1)·(1,0,-3)=0,(x 1,y 1,z 1)·(-1,3,0)=0, 从而⎩⎨⎧x 1-3z 1=0,-x 1+3y 1=0.取z 1=1,则x 1=3,y 1=1,所以n 1=(3,1,1). 设平面MNP 的一个法向量n 2=(x 2,y 2,z 2),由,⎩⎪⎨⎪⎧n 2⊥MN ,n 2⊥NP ,得⎩⎪⎨⎪⎧n 2·MN =0,n 2·NP =0, 即⎩⎪⎨⎪⎧(x 2,y 2,z 2)·(1,0,0)=0,(x 2,y 2,z 2)·⎝⎛⎭⎪⎫0,32,-32=0, 从而⎩⎪⎨⎪⎧x 2=0,32y 2-32z 2=0. 取z 2=1,则y 2=1,x 2=0,所以n 2=(0,1,1).设二面角A NP M 的大小为θ,则cos θ=⎪⎪⎪⎪⎪⎪n 1·n 2|n 1|·|n 2|=⎪⎪⎪⎪⎪⎪(3,1,1)·(0,1,1)5×2=105.故二面角A NP M 的余弦值是105. 17.、[2014·天津卷] 如图14所示,在四棱锥P ABCD 中,PA ⊥底面ABCD, AD ⊥AB ,AB ∥DC ,AD =DC =AP =2,AB =1,点E 为棱PC 的中点.(1)证明:BE ⊥DC ;(2)求直线BE 与平面PBD 所成角的正弦值;(3)若F 为棱PC 上一点,满足BF ⊥AC ,求二面角F AB P 的余弦值.图1417.解:方法一:依题意,以点A 为原点建立空间直角坐标系(如图所示),可得B (1,0,0),C (2,2,0),D (0,2,0),P (0,0,2).C 由E 为棱PC 的中点,得E (1,1,1).(1)证明:向量BE =(0,1,1),DC =(2,0,0), 故BE ·DC =0, 所以BE ⊥DC .(2)向量BD =(-1,2,0),PB =(1,0,-2). 设n =(x ,y ,z )为平面PBD 的法向量,则⎩⎪⎨⎪⎧n ·BD =0,n ·PB =0,即⎩⎪⎨⎪⎧-x +2y =0,x -2z =0. 不妨令y =1,可得n =(2,1,1)为平面PBD 的一个法向量.于是有cos 〈n ,BE 〉=n ·BE |n |·|BE |=26×2=33,所以直线BE 与平面PBD 所成角的正弦值为33. (3) 向量BC =(1,2,0),CP =(-2,-2,2),AC =(2,2,0),AB =(1,0,0).由点F 在棱PC 上,设CF =λCP →,0≤λ≤1.故BF =BC +CF =BC +λCP →=(1-2λ,2-2λ,2λ).由BF ⊥AC ,得BF ·AC =0,因此2(1-2λ)+2(2-2λ)=0,解得λ=34,即BF =⎝ ⎛⎭⎪⎫-12,12,32.设n 1=(x ,y ,z )为平面FAB的法向量,则⎩⎪⎨⎪⎧n 1·AB =0,n 1·BF =0,即⎩⎪⎨⎪⎧x =0,-12x +12y +32z =0.不妨令z =1,可得n 1=(0,-3,1)为平面FAB 的一个法向量.取平面ABP 的法向量n 2=(0,1,0),则cos 〈,〉=n 1·n 2|n 1|·|n 2|=-310×1=-31010.易知二面角F AB P 是锐角,所以其余弦值为31010.方法二:(1)证明:如图所示,取PD 中点M ,连接EM ,AM .由于E ,M 分别为PC ,PD 的中点,故EM ∥DC ,且EM =12DC .又由已知,可得EM ∥AB 且EM =AB ,故四边形ABEM 为平行四边形,所以BE ∥AM .因为PA ⊥底面ABCD ,故PA ⊥CD ,而CD ⊥DA ,从而CD ⊥平面PAD .因为AM ⊂平面PAD ,所以CD ⊥AM .又BE ∥AM ,所以BE ⊥CD .(2)连接BM ,由(1)有CD ⊥平面PAD ,得CD ⊥PD .而EM ∥CD ,故PD ⊥EM .又因为AD =AP ,M 为PD 的中点,所以PD ⊥AM ,可得PD ⊥BE ,所以PD ⊥平面BEM ,故平面BEM ⊥平面PBD ,所以直线BE 在平面PBD 内的射影为直线BM .而BE ⊥EM ,可得∠EBM 为锐角,故∠EBM 为直线BE 与平面PBD 所成的角.依题意,有PD =22,而M 为PD 中点,可得AM =2,进而BE = 2.故在直角三角形BEM 中,tan ∠EBM =EM BE =AB BE =12,因此sin ∠EBM =33,所以直线BE 与平面PBD 所成角的正弦值为33. (3)如图所示,在△PAC 中,过点F 作FH ∥PA 交AC 于点H .因为PA ⊥底面ABCD ,所以FH ⊥底面ABCD ,从而FH ⊥AC .又BF ⊥AC ,得AC ⊥平面FHB ,因此AC ⊥BH .在底面ABCD 内,可得CH =3HA ,从而CF =3FP .在平面PDC 内,作FG ∥DC 交PD 于点G ,于是DG =3GP .由于DC ∥AB ,故GF ∥AB ,所以A ,B ,F ,G 四点共面.由AB ⊥PA ,AB ⊥AD ,得AB ⊥平面PAD ,故AB ⊥AG ,所以∠PAG 为二面角F AB P 的平面角.在△PAG 中,PA =2,PG =14PD =22,∠APG =45°.由余弦定理可得AG =102,cos ∠PAG=31010,所以二面角F AB P 的余弦值为31010.20.、[2014·浙江卷] 如图15,在四棱锥A BCDE 中,平面ABC ⊥平面BCDE ,∠CDE =∠BED =90°,AB =CD =2,DE =BE =1,AC = 2.(1)证明:DE ⊥平面ACD ;(2)求二面角B AD E 的大小.20.解:(1)证明:在直角梯形BCDE 中,由DE =BE =1,CD =2,得BD =BC =2, 由AC =2,AB =2,得AB 2=AC 2+BC 2,即AC ⊥BC .又平面ABC ⊥平面BCDE ,从而AC ⊥平面BCDE , 所以AC ⊥DE .又DE ⊥DC ,从而DE ⊥平面ACD . (2)方法一:过B 作BF ⊥AD ,与AD 交于点F ,过点F 作FG ∥DE ,与AE 交于点G ,连接BG .由(1)知DE ⊥AD ,则FG ⊥AD .所以∠BFG 是二面角B AD E 的平面角.在直角梯形BCDE 中,由CD 2=BC 2+BD 2, 得BD ⊥BC .又平面ABC ⊥平面BCDE ,得BD .由AC ⊥平面BCDE ,得AC ⊥CD . 在Rt △ACD 中,由DC =2,AC =2,得AD = 6. 在Rt △AED 中,由ED =1,AD =6,得AE =7.在Rt △ABD 中,由BD =2,AB =2,AD =6,得BF =2 33,AF =23AD .从而GF =23ED =23.在△ABE ,△ABG 中,利用余弦定理分别可得cos ∠BAE =5 714,BG =23.在△BFG 中,cos ∠BFG =GF 2+BF 2-BG 22BF ·GF =32.所以,∠BFG =π6,即二面角B AD E 的大小是π6.方法二:以D 为原点,分别以射线DE ,DC 为x ,y 轴的正半轴,建立空间直角坐标系D xyz ,如图所示.由题意知各点坐标如下:D (0,0,0),E (1,0,0),C (0,2,0), A (0,2,2),B (1,1,0).设平面ADE 的法向量为m =(x 1,y 1,z 1), 平面ABD 的法向量为n =(x 2,y 2,z 2).可算得AD =(0,-2,-2),AE =(1,-2,-2),DB →=(1,1,0). 由⎩⎨⎧m ·AD =0,m ·AE →=0,即⎩⎨⎧-2y 1-2z 1=0,x 1-2y 1-2z 1=0, 可取m =(0,1,-2).由⎩⎪⎨⎪⎧n ·AD →=0,n ·DB →=0,即⎩⎨⎧-2y 2-2z 2=0,x 2+y 2=0,可取n =(1,-1,2).于是|cos 〈m ,n 〉|=|m ·n ||m |·|n |=33×2=32.由题意可知,所求二面角是锐角,故二面角B AD E 的大小是π6.19.,[2014·重庆卷]如图13所示,四棱锥P ABCD 中,底面是以O 为中心的菱形,PO ⊥底面ABCD ,AB =2,∠BAD =π3,M 为BC 上一点,且BM =12,MP ⊥AP .(1)求PO 的长;(2)求二面角A PM C 的正弦值.19.解:(1)如图所示,连接AC ,BD ,因为四边形ABCD 为菱形,所以AC ∩ BD =O ,且AC ⊥BD .以O 为坐标原点,OA →,OB →,OP →的方向分别为x 轴,y 轴,z 轴的正方向建立空间直角坐标系O xyz .因为∠BAD =π3,所以OA =AB ·cos π6=3,OB =AB ·sin π6=1,所以O (0,0,0),A (3,0,0),B (0,1,0),C (-3,0,0),OB →=(0,1,0),BC →=(-3,-1,0).由BM =12,BC =2知,BM →=14BC →=⎝ ⎛⎭⎪⎫-34,-14,0,从而OM →=OB →+BM →=⎝ ⎛⎭⎪⎫-34,34,0,即M ⎝ ⎛⎭⎪⎫-34,34,0. 设P (0,0,a ),a >0,则AP →=(-3,0,a ),MP →=⎝ ⎛⎭⎪⎫34,-34,a .因为MP ⊥AP ,所以MP →·AP→=0,即-34+a 2=0,所以a =32或a =-32(舍去),即PO =32.(2)由(1)知,AP →=⎝ ⎛⎭⎪⎫-3,0,32,MP →=⎝ ⎛⎭⎪⎫34,-34,32,CP →=⎝⎛⎭⎪⎫3,0,32.设平面APM 的法向量为n 1=(x 1,y 1,z 1),平面PMC 的法向量为n 2=(x 2,y 2,z 2).由n 1·AP →=0, n 1·MP →=0,得⎩⎪⎨⎪⎧-3x 1+32z 1=0,34x 1-34y 1+32z 1=0,故可取n 1=⎝ ⎛⎭⎪⎫1,533,2.由n 2·MP →=0,n 2·CP →=0,得⎩⎪⎨⎪⎧34x 2-34y 2+32z 2=0,3x 2+32z 2=0,故可取n 2=(1,-3,-2).从而法向量n 1,n 2的夹角的余弦值为cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=-155,故所求二面角A PM C 的正弦值为105.G3 平面的基本性质、空间两条直线 4.[2014·辽宁卷] 已知m ,n 表示两条不同直线,α表示平面.下列说法正确的是( ) A .若m ∥α,n ∥α,则m ∥nB .若m ⊥α,n ⊂α,则m ⊥nC .若m ⊥α,m ⊥n ,则n ∥αD .若m ∥α,m ⊥n ,则n ⊥α4.B [解析] B [解析] 由题可知,若m ∥α,n ∥α,则m 与n 平行、相交或异面,所以A 错误;若m ⊥α,n ⊂α,则m ⊥n ,故B 正确;若m ⊥α,m ⊥n ,则n ∥α或n ⊂α,故C 错误.若m ∥α,m ⊥n ,则n ∥α或n ⊥α或n 与a 相交,故D 错误.17.、、[2014·福建卷] 在平面四边形ABCD 中,AB =BD =CD =1,AB ⊥BD ,CD ⊥BD .将△ABD 沿BD 折起,使得平面ABD ⊥平面BCD ,如图15所示.(1)求证:AB ⊥CD ;(2)若M 为AD 中点,求直线AD 与平面MBC 所成角的正弦值.图1517.解:(1)证明:∵平面ABD ⊥平面BCD ,平面ABD ∩平面BCD =BD ,AB ⊂平面ABD ,AB ⊥BD ,∴AB ⊥平面BCD .又CD ⊂平面BCD ,∴AB ⊥CD .(2)过点B 在平面BCD 内作BE ⊥BD .由(1)知AB ⊥平面BCD ,BE ⊂平面BCD ,BD ⊂平面BCD ,∴AB ⊥BE ,AB ⊥BD .以B 为坐标原点,分别以BE →,BD →,BA →的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系(如图所示).依题意,得B (0,0,0),C (1,1,0),D (0,1,0),A (0,0,1),M ⎝ ⎛⎭⎪⎫0,12,12. 则BC →=(1,1,0),BM →=⎝ ⎛⎭⎪⎫0,12,12,AD →=(0,1,-1).设平面MBC 的法向量n =(x 0,y 0,z 0),则⎩⎪⎨⎪⎧n ·BC →=0,n ·BM →=0,即⎩⎪⎨⎪⎧x 0+y 0=0,12y 0+12z 0=0, 取z 0=1,得平面MBC 的一个法向量n =(1,-1,1). 设直线AD 与平面MBC 所成角为θ,则sin θ=||cos 〈n ,AD →〉=|n ·AD →||n |·|AD →|=63.即直线AD 与平面MBC 所成角的正弦值为63. 11.[2014·新课标全国卷Ⅱ] 直三棱柱ABC A 1B 1C 1中,∠BCA =90°,M ,N 分别是A 1B 1,A 1C 1的中点,BC =CA =CC 1,则BM 与AN 所成角的余弦值为( )A.110B.25C.3010D.2211.C [解析] 如图,E 为BC 的中点.由于M ,N 分别是A 1B 1,A 1C 1的中点,故MN ∥B 1C 1且MN =12B 1C 1,故MN 綊BE ,所以四边形MNEB 为平行四边形,所以EN 綊BM ,所以直线AN ,NE 所成的角即为直线BM ,AN 所成的角.设BC =1,则B 1M =12B 1A 1=22,所以MB =1+12=62=NE ,AN =AE =52, 在△ANE 中,根据余弦定理得cos ∠ANE =64+54-542×62×52=3010.18.,,,[2014·四川卷] 三棱锥A 14所示.设M ,N 分别为线段AD ,AB 的中点,P 为线段BC 上的点,且MN ⊥NP .(1)证明:P 是线段BC 的中点;(2)求二面角A NP M 的余弦值.图1418.解:(1)如图所示,取BD 的中点O ,连接AO ,CO . 由侧视图及俯视图知,△ABD ,△BCD 为正三角形,所以AO ⊥BD ,OC ⊥BD .因为AO ,OC ⊂平面AOC ,且AO ∩OC =O , 所以BD ⊥平面AOC .又因为AC ⊂平面AOC ,所以BD ⊥AC . 取BO 的中点H ,连接NH ,PH .又M ,N ,H 分别为线段AD ,AB ,BO 的中点,所以MN ∥BD ,NH ∥AO , 因为AO ⊥BD ,所以NH ⊥BD . 因为MN ⊥NP ,所以NP ⊥BD .因为NH ,NP ⊂平面NHP ,且NH ∩NP =N ,所以BD ⊥平面NHP . 又因为HP ⊂平面NHP ,所以BD ⊥HP .又OC ⊥BD ,HP ⊂平面BCD ,OC ⊂平面BCD ,所以HP ∥OC . 因为H 为BO 的中点,所以P 为BC 的中点.(2)方法一:如图所示,作NQ ⊥AC 于Q ,连接MQ.由(1)知,NP ∥AC ,所以NQ ⊥NP .因为MN ⊥NP ,所以∠MNQ 为二面角A NP M 的一个平面角. 由(1)知,△ABD ,△BCD 为边长为2的正三角形,所以AO =OC = 3. 由俯视图可知,AO ⊥平面BCD .因为OC ⊂平面BCD ,所以AO ⊥OC ,因此在等腰直角△AOC 中,AC = 6. 作BR ⊥AC 于R因为在△ABC 中,AB =BC ,所以R 为AC 的中点, 所以BR =AB 2-⎝ ⎛⎭⎪⎫AC 22=102. 因为在平面ABC 内,NQ ⊥AC ,BR ⊥AC ,所以NQ ∥BR .又因为N 为AB 的中点,所以Q 为AR 的中点,所以NQ =BR 2=104.同理,可得MQ =104. 故△MNQ 为等腰三角形, 所以在等腰△MNQ 中,cos ∠MNQ =MN 2NQ =BD4NQ =105.故二面角A NP M 的余弦值是105. 方法二:由俯视图及(1)可知,AO ⊥平面BCD . 因为OC ,OB ⊂平面BCD ,所以AO ⊥OC ,AO ⊥OB . 又OC ⊥OB ,所以直线OA ,OB ,OC 两两垂直.如图所示,以O 为坐标原点,以OB ,OC ,OA 的方向为x 轴,y 轴,z 轴的正方向,建立空间直角坐标系O xyz .则A (0,0,3),B (1,0,0),C (0,3,0),D (-1,0,0). 因为M ,N 分别为线段AD ,AB 的中点, 又由(1)知,P 为线段BC 的中点,所以M ⎝ ⎛⎭⎪⎫-12,0,32,N ⎝ ⎛⎭⎪⎫12,0,32,P ⎝ ⎛⎭⎪⎫12,32,0,于是AB =(1,0,-3),BC =(-1,3,0),MN =(1,0,0),NP =⎝ ⎛⎭⎪⎫0,32,-32. 设平面ABC 的一个法向量n 1=(x 1,y 1,z 1), 由⎩⎪⎨⎪⎧n 1⊥AB ,n 1⊥BC ,得⎩⎪⎨⎪⎧n 1·AB =0,n 1·BC =0,即⎩⎨⎧(x 1,y 1,z 1)·(1,0,-3)=0,(x 1,y 1,z 1)·(-1,3,0)=0, 从而⎩⎨⎧x 1-3z 1=0,-x 1+3y 1=0.取z 1=1,则x 1=3,y 1=1,所以n 1=(3,1,1). 设平面MNP 的一个法向量n 2=(x 2,y 2,z 2),由,⎩⎪⎨⎪⎧n 2⊥MN ,n 2⊥NP ,得⎩⎪⎨⎪⎧n 2·MN =0,n 2·NP =0, 即⎩⎪⎨⎪⎧(x 2,y 2,z 2)·(1,0,0)=0,(x 2,y 2,z 2)·⎝⎛⎭⎪⎫0,32,-32=0, 从而⎩⎪⎨⎪⎧x 2=0,32y 2-32z 2=0. 取z 2=1,则y 2=1,x 2=0,所以n 2=(0,1,1).设二面角A NP M 的大小为θ,则cos θ=⎪⎪⎪⎪⎪⎪n 1·n 2|n 1|·|n 2|=⎪⎪⎪⎪⎪⎪(3,1,1)·(0,1,1)5×2=105.故二面角A NP M 的余弦值是105. G4 空间中的平行关系 20.、、[2014·安徽卷] 如图15,四棱柱ABCD A 1B 1C 1D 1中,A 1A ⊥底面ABCD ,四边形ABCD 为梯形,AD ∥BC ,且AD =2BC .过A 1,C ,D 三点的平面记为α,BB 1与α的交点为Q .图15(1)证明:Q 为BB 1的中点;(2)求此四棱柱被平面α所分成上下两部分的体积之比;(3)若AA 1=4,CD =2,梯形ABCD 的面积为6,求平面α与底面ABCD 所成二面角的大小.20.解: (1)证明:因为BQ ∥AA 1,BC ∥AD , BC ∩BQ =B ,AD ∩AA 1=A , 所以平面QBC ∥平面A 1AD ,从而平面A 1CD 与这两个平面的交线相互平行, 即QC ∥A 1D .故△QBC 与△A 1AD 的对应边相互平行, 于是△QBC ∽△A 1AD ,所以BQ BB 1=BQ AA 1=BC AD =12,即Q 为BB 1的中点. (2)如图1所示,连接QA ,QD .设AA 1=h ,梯形ABCD 的高为d ,四棱柱被平面α所分成上下两部分的体积分别为V 上和V 下,BC =a ,则AD =2a .图1V 三棱锥Q A 1AD =13×12·2a ·h ·d =13ahd ,V 四棱锥Q ABCD =13·a +2a 2·d ·⎝ ⎛⎭⎪⎫12h =14ahd ,所以V 下=V 三棱锥Q A 1AD +V 四棱锥Q ABCD =712ahd .又V 四棱柱A 1B 1C 1D 1 ABCD =32ahd ,所以V 上=V 四棱柱A 1B 1C 1D 1 ABCD -V 下=32ahd -712ahd =1112ahd ,故V 上V 下=117.(3)方法一:如图1所示,在△ADC 中,作AE ⊥DC ,垂足为E ,连接A 1E .又DE ⊥AA 1,且AA 1∩AE =A ,所以DE ⊥平面AEA 1,所以DE ⊥A 1E .所以∠AEA 1为平面α与底面ABCD 所成二面角的平面角. 因为BC ∥AD ,AD =2BC ,所以S △ADC =2S △BCA . 又因为梯形ABCD 的面积为6,DC =2, 所以S △ADC =4,AE =4. 于是tan ∠AEA 1=AA 1AE =1,∠AEA 1=π4. 故平面α与底面ABCD 所成二面角的大小为π4.方法二:如图2所示,以D 为原点,DA ,DD 1→分别为x 轴和z 轴正方向建立空间直角坐标系.设∠CDA =θ,BC =a ,则AD =2a .因为S 四边形ABCD =a +2a2·2sin θ=6,所以a =2sin θ.图2从而可得C (2cos θ,2sin θ,0),A 1⎝⎛⎭⎪⎫4sin θ,0,4,所以DC =(2cos θ,2sin θ,0),DA 1→=⎝ ⎛⎭⎪⎫4sin θ,0,4.设平面A 1DC 的法向量n =(x ,y ,1), 由⎩⎨⎧DA 1→·n =4sin θ x +4=0,DC →·n =2x cos θ+2y sin θ=0,得⎩⎪⎨⎪⎧x =-sin θ,y =cos θ,所以n =(-sin θ,cos θ,1).又因为平面ABCD 的法向量m =(0,0,1), 所以cos 〈n ,m 〉=n·m |n||m|=22,故平面α与底面ABCD 所成二面角的大小为π4.17.、[2014·北京卷] 如图13,正方形AMDE 的边长为2,B ,C 分别为AM ,MD 的中点.在五棱锥P ABCDE 中,F 为棱PE 的中点,平面ABF 与棱PD ,PC 分别交于点G ,H .(1)求证:AB ∥FG ;(2)若PA ⊥底面ABCDE ,且PA =AE ,求直线BC 与平面ABF 所成角的大小,并求线段PH 的长.图1317.解:(1)证明:在正方形AMDE 中,因为B 是AM 的中点,所以AB ∥DE . 又因为AB ⊄平面PDE , 所以AB ∥平面PDE .因为AB ⊂平面ABF ,且平面ABF ∩平面PDE =FG , 所以AB ∥FG .(2)因为PA ⊥底面ABCDE , 所以PA ⊥AB ,PA ⊥AE .建立空间直角坐标系Axyz ,如图所示,则A (0,0,0),B (1,0,0),C (2,1,0),P (0,0,2),F (0,1,1),BC →=(1,1,0).设平面ABF 的法向量为n =(x ,y ,z ),则 ⎩⎪⎨⎪⎧n ·AB →=0,n ·AF →=0,即⎩⎪⎨⎪⎧x =0,y +z =0. 令z =1,则y =-1.所以n =(0,-1,1).设直线BC 与平面ABF 所成角为α,则sin α=|cos 〈n ,BC →〉|=⎪⎪⎪⎪⎪⎪⎪⎪n ·BC→|n ||BC →|=12. 因此直线BC 与平面ABF 所成角的大小为π6.设点H 的坐标为(u ,v ,w ).因为点H 在棱PC 上,所以可设PH →=λPC →(0<λ<1).即(u ,v ,w -2)=λ(2,1,-2),所以u =2λ,v =λ,w =2-2λ. 因为n 是平面ABF 的一个法向量, 所以n ·AH →=0,即(0,-1,1)·(2λ,λ,2-2λ)=0,解得λ=23,所以点H 的坐标为⎝ ⎛⎭⎪⎫43,23,23. 所以PH =⎝ ⎛⎭⎪⎫432+⎝ ⎛⎭⎪⎫232+⎝ ⎛⎭⎪⎫-432=2.19.、、、[2014·湖北卷] 如图14,在棱长为2的正方体ABCD A 1B 1C 1D 1中,E ,F ,M ,N 分别是棱AB ,AD ,A 1B 1,A 1D 1的中点,点P ,Q 分别在棱DD 1,BB 1上移动,且DP =BQ =λ(0<λ<2).(1)当λ=1时,证明:直线BC 1∥平面EFPQ .(2)是否存在λ,使面EFPQ 与面PQMN 所成的二面角为直二面角?若存在,求出λ的值;若不存在,说明理由.19.解:方法一(几何方法):(1)证明:如图①,连接AD 1,由ABCD A 1B 1C 1D 1是正方体,知BC 1∥AD 1.当λ=1时,P 是DD 1的中点,又F 是AD 的中点,所以FP ∥AD 1,所以BC 1∥FP . 而FP ⊂平面EFPQ ,且BC 1⊄平面EFPQ ,故直线BC 1∥平面EFPQ .(2)如图②,连接BD .因为E ,F 分别是AB ,AD 的中点,所以EF ∥BD ,且EF =12BD .又DP =BQ ,DP ∥BQ ,所以四边形PQBD 是平行四边形,故PQ ∥BD ,且PQ =BD ,从而EF ∥PQ ,且EF =12PQ .在Rt △EBQ 和Rt △FDP 中,因为BQ =DP =λ,BE =DF =1,于是EQ =FP =1+λ2,所以四边形EFPQ 也是等腰梯形. 同理可证四边形PQMN 也是等腰梯形.分别取EF ,PQ ,MN 的中点为H ,O ,G ,连接OH ,OG , 则GO ⊥PQ ,HO ⊥PQ ,而GO ∩HO =O ,故∠GOH 是面EFPQ 与面PQMN 所成的二面角的平面角.若存在λ,使面EFPQ 与面PQMN 所成的二面角为直二面角,则∠GOH =90°. 连接EM ,FN ,则由EF ∥MN ,且EF =MN 知四边形EFNM 是平行四边形. 连接GH ,因为H ,G 是EF ,MN 的中点, 所以GH =ME =2.在△GOH 中,GH 2=4,OH 2=1+λ2-⎝ ⎛⎭⎪⎫222=λ2+12,OG 2=1+(2-λ)2-⎝ ⎛⎭⎪⎫222=(2-λ)2+12,由OG 2+OH 2=GH 2,得(2-λ)2+12+λ2+12=4,解得λ=1±22,故存在λ=1±22,使面EFPQ 与面PQMN 所成的二面角为直二面角. 方法二(向量方法):以D 为原点,射线DA ,DC ,DD 1分别为x ,y ,z 轴的正半轴建立如图③所示的空间直角坐标系.由已知得B (2,2,0),C 1(0,2,2),E (2,1,0),F (1,0,0),P (0,0,λ).BC 1→=(-2,0,2),FP =(-1,0,λ),FE =(1,1,0). (1)证明:当λ=1时,FP =(-1,0,1),因为BC 1→=(-2,0,2),所以BC 1→=2FP →,即BC 1∥FP .而FP ⊂平面EFPQ ,且BC 1⊄平面EFPQ ,故直线BC 1∥平面EFPQ .(2)设平面EFPQ 的一个法向量为n =(x ,y ,z ),则由⎩⎪⎨⎪⎧FE →·n =0,FP →·n =0可得⎩⎪⎨⎪⎧x +y =0,-x +λz =0.于是可取n =(λ,-λ,1).同理可得平面MNPQ 的一个法向量为m =(λ-2,2-λ,1). 若存在λ,使面EFPQ 与面PQMN 所成的二面角为直二面角, 则m ·n =(λ-2,2-λ,1)·(λ,-λ,1)=0,即λ(λ-2)-λ(2-λ)+1=0,解得λ=1±22.故存在λ=1±22,使面EFPQ 与面PQMN 所成的二面角为直二面角. 18.、[2014·新课标全国卷Ⅱ] 如图13,四棱锥P ABCD 中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 为PD 的中点.(1)证明:PB ∥平面AEC ;(2)设二面角D AE C 为60ACD 的体积.18.解:(1)证明:连接BD 交AC 于点O ,连接EO . 因为ABCD 为矩形,所以O 为BD 的中点. 又E 为PD 的中点,所以EO ∥PB . 因为EO ⊂平面AEC ,PB ⊄平面AEC , 所以PB ∥平面AEC .(2)因为PA ⊥平面ABCD ,ABCD 为矩形, 所以AB ,AD ,AP 两两垂直.如图,以A 为坐标原点,AB →,AD ,AP 的方向为x 轴、y 轴、z 轴的正方向,|AP →|为单位长,建立空间直角坐标系A xyz ,则D ()0,3,0,E ⎝ ⎛⎭⎪⎫0,32,12,AE →=⎝⎛⎭⎪⎫0,32,12.设B (m ,0,0)(m >0),则C (m ,3,0),AC =(m ,3,0). 设n 1=(x ,y ,z )为平面ACE 的法向量,则⎩⎪⎨⎪⎧n 1·AC →=0,n 1·AE →=0,即⎩⎪⎨⎪⎧mx +3y =0,32y +12z =0,可取n 1=⎝⎛⎭⎪⎫3m ,-1,3. 又n 2=(1,0,0)为平面DAE 的法向量,由题设易知|cos 〈n 1,n 2〉|=12,即33+4m 2=12,解得m =32. 因为E 为PD 的中点,所以三棱锥E ACD 的高为12.三棱锥E ACD 的体积V =13×12×3×32×12=38. 17.,[2014·山东卷] 如图13所示,在四棱柱ABCD A 1B 1C 1D 1中,底面ABCD 是等腰梯形,∠DAB=60°,AB=2CD=2,M是线段AB的中点.图13(1)求证:C1M∥平面A1ADD1;(2)若CD1垂直于平面ABCD且CD1=3,求平面C1D1M和平面ABCD所成的角(锐角)的余弦值.17.解:(1)证明:因为四边形ABCD是等腰梯形,且AB=2CD,所以AB∥DC,又M是AB的中点,所以CD∥MA且CD=MA.连接AD1.因为在四棱柱ABCD A1B1C1D1中,CD∥C1D1,CD=C1D1,所以C1D1∥MA,C1D1=MA,所以四边形AMC1D1为平行四边形,因此,C1M∥D1A.又C1M⊄平面A1ADD1,D1A⊂平面A1ADD1,所以C1M∥平面A1ADD1.(2)方法一:连接AC,MC.由(1)知,CD∥AM且CD=AM,所以四边形AMCD为平行四边形,所以BC=AD=MC.由题意∠ABC=∠DAB=60°,所以△MBC为正三角形,因此AB=2BC=2,CA=3,因此CA⊥CB.设C为坐标原点,建立如图所示的空间直角坐标系Cxyz.所以A (3,0,0),B (0,1因此M ⎝⎛⎭⎪⎫32,12,0, 所以MD 1→=⎝ ⎛⎭⎪⎫-32,-12,3,D 1C 1→=MB →=⎝ ⎛⎭⎪⎫-32,12,0.设平面C 1D 1M 的一个法向量n =(x ,y ,z ), 由⎩⎪⎨⎪⎧n ·D 1C 1→=0,n ·MD 1→=0,得⎩⎨⎧3x -y =0,3x +y -2 3z =0,可得平面C 1D 1M 的一个法向量n =(1,3,1). 又CD 1→=(0,0,3)为平面ABCD 的一个法向量. 因此cos 〈CD 1→,n 〉=CD 1→·n|CD 1→||n |=55, 所以平面C 1D 1M 和平面ABCD 所成的角(锐角)的余弦值为55. 方法二:由(1)知,平面D 1C 1M ∩平面ABCD =AB ,点过C 向AB 引垂线交AB 于点N ,连接D 1N .由CD 1⊥平面ABCD ,可得D 1N ⊥AB ,因此∠D 1NC 为二面角C 1 AB C 的平面角. 在Rt △BNC 中,BC =1,∠NBC =60°, 可得CN =32, 所以ND 1=CD 21+CN 2=152.在Rt△D1CN中,cos∠D1NC=CND1N=32152=55,所以平面C1D1M和平面ABCD所成的角(锐角)的余弦值为55.18.,,,[2014·四川卷] 三棱锥A BCD及其侧视图、俯视图如图14所示.设M,N 分别为线段AD,AB的中点,P为线段BC上的点,且MN⊥NP.(1)证明:P是线段BC的中点;(2)求二面角A NP M的余弦值.图1418.解:(1)如图所示,取BD的中点O,连接AO,CO.由侧视图及俯视图知,△ABD,△BCD为正三角形,所以AO⊥BD,OC⊥BD.因为AO,OC⊂平面AOC,且AO∩OC=O,所以BD⊥平面AOC.又因为AC⊂平面AOC,所以BD⊥AC.取BO的中点H,连接NH,PH.又M,N,H分别为线段AD,AB,BO的中点,所以MN∥BD,NH∥AO,因为AO⊥BD,所以NH⊥BD.因为MN⊥NP,所以NP⊥BD.因为NH,NP⊂平面NHP,且NH∩NP=N,所以BD⊥平面NHP.又因为HP⊂平面NHP,所以BD⊥HP.又OC⊥BD,HP⊂平面BCD,OC⊂平面BCD,所以HP∥OC.因为H为BO的中点,所以P为BC的中点.(2)方法一:如图所示,作NQ⊥AC于Q,连接MQ.由(1)知,NP∥AC,所以NQ⊥NP.因为MN⊥NP,所以∠MNQ为二面角A NP M的一个平面角.由(1)知,△ABD ,△BCD 为边长为2的正三角形,所以AO =OC = 3. 由俯视图可知,AO ⊥平面BCD .因为OC ⊂平面BCD ,所以AO ⊥OC ,因此在等腰直角△AOC 中,AC = 6. 作BR ⊥AC 于R因为在△ABC 中,AB =BC ,所以R 为AC 的中点, 所以BR =AB 2-⎝ ⎛⎭⎪⎫AC 22=102. 因为在平面ABC 内,NQ ⊥AC ,BR ⊥AC ,所以NQ ∥BR .又因为N 为AB 的中点,所以Q 为AR 的中点,所以NQ =BR 2=104.同理,可得MQ =104. 故△MNQ 为等腰三角形, 所以在等腰△MNQ 中,cos ∠MNQ =MN 2NQ =BD4NQ =105.故二面角A NP M 的余弦值是105. 方法二:由俯视图及(1)可知,AO ⊥平面BCD . 因为OC ,OB ⊂平面BCD ,所以AO ⊥OC ,AO ⊥OB . 又OC ⊥OB ,所以直线OA ,OB ,OC 两两垂直.如图所示,以O 为坐标原点,以OB ,OC ,OA 的方向为x 轴,y 轴,z 轴的正方向,建立空间直角坐标系O xyz .则A (0,0,3),B (1,0,0),C (0,3,0),D (-1,0,0). 因为M ,N 分别为线段AD ,AB 的中点, 又由(1)知,P 为线段BC 的中点,所以M ⎝ ⎛⎭⎪⎫-12,0,32,N ⎝ ⎛⎭⎪⎫12,0,32,P ⎝ ⎛⎭⎪⎫12,32,0,于是AB =(1,0,-3),BC =(-1,3,0),MN =(1,0,0),NP =⎝⎛⎭⎪⎫0,32,-32. 设平面ABC 的一个法向量n 1=(x 1,y 1,z 1),由⎩⎪⎨⎪⎧n 1⊥AB ,n 1⊥BC ,得⎩⎪⎨⎪⎧n 1·AB =0,n 1·BC =0,即⎩⎨⎧(x 1,y 1,z 1)·(1,0,-3)=0,(x 1,y 1,z 1)·(-1,3,0)=0, 从而⎩⎨⎧x 1-3z 1=0,-x 1+3y 1=0.取z 1=1,则x 1=3,y 1=1,所以n 1=(3,1,1). 设平面MNP 的一个法向量n 2=(x 2,y 2,z 2),由,⎩⎪⎨⎪⎧n 2⊥MN ,n 2⊥NP ,得⎩⎪⎨⎪⎧n 2·MN =0,n 2·NP =0, 即⎩⎪⎨⎪⎧(x 2,y 2,z 2)·(1,0,0)=0,(x 2,y 2,z 2)·⎝⎛⎭⎪⎫0,32,-32=0, 从而⎩⎪⎨⎪⎧x 2=0,32y 2-32z 2=0. 取z 2=1,则y 2=1,x 2=0,所以n 2=(0,1,1).设二面角A NP M 的大小为θ,则cos θ=⎪⎪⎪⎪⎪⎪n 1·n 2|n 1|·|n 2|=⎪⎪⎪⎪⎪⎪(3,1,1)·(0,1,1)5×2=105.故二面角A NP M 的余弦值是105.G7 棱柱与棱锥13.[2014·山东卷] 三棱锥P ABC 中,D ,E 分别为PB ,PC 的中点,记三棱锥D ABE 的体积为V 1,P ABC 的体积为V 2,则V 1V 2=________.13.14 [解析] 如图所示,由于D ,E 分别是边PB 与PC 的中点,所以S △BDE =14S △PBC .又因为三棱锥A BDE 与三棱锥A PBC 的高长度相等,所以V 1V 2=14.19.、、[2014·江西卷] 如图16,四棱锥P ABCD 中,ABCD 为矩形,平面PAD ⊥平面ABCD .图16(1)求证:AB ⊥PD .(2)若∠BPC =90°,PB =2,PC =2,问AB 为何值时,四棱锥P ABCD 的体积最大?并求此时平面BPC 与平面DPC 夹角的余弦值.19.解:(1)证明:因为ABCD 为矩形,所以AB ⊥AD . 又平面PAD ⊥平面ABCD , 平面PAD ∩平面ABCD =AD , 所以AB ⊥平面PAD ,故AB ⊥PD .(2)过P 作AD 的垂线,垂足为O ,过O 作BC 的垂线,垂足为G ,连接PG . 故PO ⊥平面ABCD ,BC ⊥平面POG ,BC ⊥PG .在Rt △BPC 中,PG =2 33,GC =2 63,BG =63.设AB =m ,则OP =PG 2-OG 2=43-m 2,故四棱锥P ABCD 的体积为 V =13×6·m ·43-m 2=m 38-6m 2. 因为m 8-6m 2=8m 2-6m 4=-6⎝⎛⎭⎪⎫m 2-232+83,所以当m =63,即AB =63时,四棱锥P ABCD 的体积最大.此时,建立如图所示的空间直角坐标系,各点的坐标分别为O (0,0,0),B ⎝⎛⎭⎪⎫63,-63,0,C ⎝ ⎛⎭⎪⎫63,263,0,D ⎝ ⎛⎭⎪⎫0,263,0,P ⎝⎛⎭⎪⎫0,0,63,故PC →=⎝ ⎛⎭⎪⎫63,263,-63,BC →=(0,6,0),CD =⎝ ⎛⎭⎪⎫-63,0,0.设平面BPC 的一个法向量为n 1=(x ,y ,1),则由n 1⊥PC →,n 1⊥BC →,得⎩⎪⎨⎪⎧63x +2 63y -63=0,6y =0,解得x =1,y =0,则n 1=(1,0,1). 同理可求出平面DPC 的一个法向量为n 2=⎝ ⎛⎭⎪⎫0,12,1.设平面BPC 与平面DPC 的夹角为θ,则cos θ=|n 1·n 2||n 1||n 2|=12·14+1=105. 8.、[2014·全国卷] 正四棱锥的顶点都在同一球面上.若该棱锥的高为4,底面边长为2,则该球的表面积为( )A.81π4 B .16π C .9π D.27π48.A [解析] 如图所示,因为正四棱锥的底面边长为2,所以AE =12AC = 2.设球心为O ,球的半径为R ,则OE =4-R ,OA =R ,又知△AOE 为直角三角形,根据勾股定理可得,OA 2=OE 2+AE 2,即R 2=(4-R )2+2,解得R =94,所以球的表面积S =4πR 2=4π×⎝ ⎛⎭⎪⎫942=81π4.G8 多面体与球 7.、[2014·湖南卷] 一块石材表示的几何体的三视图如图12所示,将该石材切削、( )图12A .1B .2C .3D .47.B [解析] 由三视图可知,石材为一个三棱柱(相对应的长方体的一半),故可知能得到的最大球为三棱柱的内切球.由题意可知正视图三角形的内切圆的半径即为球的半径,可得r =6+8-102=2.8.、[2014·全国卷] 正四棱锥的顶点都在同一球面上.若该棱锥的高为4,底面边长为2,则该球的表面积为( )A.81π4 B .16π C .9π D.27π48.A [解析] 如图所示,因为正四棱锥的底面边长为2,所以AE =12AC = 2.设球心为O ,球的半径为R ,则OE =4-R ,OA =R ,又知△AOE 为直角三角形,根据勾股定理可得,OA 2=OE 2+AE 2,即R 2=(4-R )2+2,解得R =94,所以球的表面积S =4πR 2=4π×⎝ ⎛⎭⎪⎫942=81π4.5.[2014·陕西卷] 已知底面边长为1,侧棱长为2的正四棱柱的各顶点均在同一个球面上,则该球的体积为( )A.32π3 B .4π C .2π D.4π35.D [解析] 设该球的半径为R ,根据正四棱柱的外接球的直径长为正四棱柱的体对角线长,可得(2R )2=(2)2+12+12,解得R =1,所以该球的体积为V =43πR 3=43π.G9 空间向量及运算 5.[2014·广东卷] 已知向量a =(1,0,-1),则下列向量中与a 成60°夹角的是( ) A .(-1,1,0) B .(1,-1,0) C .(0,-1,1) D .(-1,0,1)5.B [解析] 本题考查空间直角坐标系中数量积的坐标表示.设所求向量是b ,若b 与a 成60°夹角,则根据数量积公式,只要满足a ·b |a ||b |=12即可,所以B 选项满足题意. 19.,[2014·重庆卷]如图13所示,四棱锥P ABCD 中,底面是以O 为中心的菱形,PO ⊥底面ABCD ,AB =2,∠BAD =π3,M 为BC 上一点,且BM =12,MP ⊥AP . (1)求PO 的长;(2)求二面角A PM C 的正弦值.19.解:(1)如图所示,连接AC ,BD ,因为四边形ABCD 为菱形,所以AC ∩ BD =O ,且AC ⊥BD .以O 为坐标原点,OA →,OB →,OP →的方向分别为x 轴,y 轴,z 轴的正方向建立空间直角坐标系O xyz .因为∠BAD =π3,所以OA =AB ·cos π6=3,OB =AB ·sin π6=1,所以O (0,0,0),A (3,0,0),B (0,1,0),C (-3,0,0),OB →=(0,1,0),BC →=(-3,-1,0).由BM =12,BC =2知,BM →=14BC →=⎝ ⎛⎭⎪⎫-34,-14,0,从而OM →=OB →+BM →=⎝ ⎛⎭⎪⎫-34,34,0,即M ⎝ ⎛⎭⎪⎫-34,34,0. 设P (0,0,a ),a >0,则AP →=(-3,0,a ),MP →=⎝ ⎛⎭⎪⎫34,-34,a .因为MP ⊥AP ,所以MP →·AP→=0,即-34+a 2=0,所以a =32或a =-32(舍去),即PO =32.(2)由(1)知,AP →=⎝ ⎛⎭⎪⎫-3,0,32,MP →=⎝ ⎛⎭⎪⎫34,-34,32,CP →=⎝⎛⎭⎪⎫3,0,32.设平面APM 的法向量为n 1=(x 1,y 1,z 1),平面PMC 的法向量为n 2=(x 2,y 2,z 2).由n 1·AP →=0, n 1·MP →=0,得⎩⎪⎨⎪⎧-3x 1+32z 1=0,34x 1-34y 1+32z 1=0,故可取n 1=⎝ ⎛⎭⎪⎫1,533,2.由n 2·MP →=0,n 2·CP →=0,得⎩⎪⎨⎪⎧34x 2-34y 2+32z 2=0,3x 2+32z 2=0,故可取n 2=(1,-3,-2).从而法向量n 1,n 2的夹角的余弦值为cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=-155,故所求二面角A PM C 的正弦值为105. G6 三垂线定理 19.、[2014·全国卷] 如图11所示,三棱柱ABC A 1B 1C 1中,点A 1在平面ABC 内的射影D 在AC 上,∠ACB =90°,BC =1,AC =CC 1=2.(1)证明:AC 1⊥A 1B;(2)设直线AA 1与平面BCC 1B 1的距离为3,求二面角A 1 AB C 的大小.。
人教A版高一数学必修第二册第八章《立体几何初步》章末练习题卷含答案解析 (28)

高一数学必修第二册第八章《立体几何初步》单元练习题卷8(共22题)一、选择题(共10题)1.下列命题中正确的是( )A.三点确定一个平面B.垂直于同一直线的两条直线平行C.若直线l与平面α上的无数条直线都垂直,则直线l⊥αD.若a,b,c是三条直线,a∥b且与c都相交,则直线a,b,c共面2.紫砂壶是中国特有的手工制造陶土工艺品,其制作始于明朝正德年间.紫砂壶的壶型众多,经典的有西施壶、掇球壶、石瓢壶、潘壶等.其中,石瓢壶的壶体可以近似看成一个圆台(即圆锥用平行于底面的平面截去一个锥体得到的).下图给出了一个石瓢壶的相关数据(单位:cm),那么该壶的容量约为( )A.100cm3B.200cm3C.300cm3D.400cm33.设平面α与平面β相交于直线m,直线a在平面α内,直线b在平面β内,且b⊥m,则“α⊥β”是“a⊥b”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件4.对于棱锥,下列叙述正确的是( )A.四棱锥共有四条棱B.五棱锥共有五个面C.六棱锥的顶点有六个D.任何棱锥都只有一个底面5.一个水平放置的平面图形的直观图是一个底角为45∘,腰和上底长均为1的等腰梯形,则该平面图形的面积等于( )A.12+√22B.1+√22C.1+√2D.2+√26.如图,是一个空间几何体的三视图,其主(正)视图是一个边长为2的正三角形,俯视图是一个斜边为2的等腰直角三角形,左(侧)视图是一个两直角边分别为√3和1的直角三角形,则此几何体的体积为( )A.√33B.1C.√32D.27.下列四个正方体中,A,B,C为正方体所在棱的中点,则能得出平面ABC∥平面DEF的是( )A.B.C.D.8.一个圆台上、下底面半径分别为r,R,高为ℎ,若其侧面积等于两底面面积之和,则下列关系正确的是( )A.2ℎ=1R+1rB.1ℎ=1R+1rC.1r=1R+1ℎD.2R=1r+1ℎ9.已知四棱锥M−ABCD,MA⊥平面ABCD,AB⊥BC,∠BCD+∠BAD=180∘,MA=2,BC= 2√6,∠ABM=30∘.若四面体MACD的四个顶点都在同一个球面上,则该球的表面积为( ) A.20πB.22πC.40πD.44π10.某几何体的三视图如图所示,且该几何体的体积是3,则正视图中的x的值为( )A.2B.3C.32D.92二、填空题(共6题)11.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的表面积为.12.一个底面半径为2cm的圆柱形容器内盛有足量的水,能放入一个半径为2cm的实心铁球,沉入水底后,水未溢出容器,则水面升高了cm.13.已知圆柱的底面积为S,侧面展开图是一个正方形,那么这个圆柱的侧面积是.14.已知M,N是三棱锥P−ABC的棱AB,PC的中点,记三棱锥P−ABC的体积为V1,三棱锥N−MBC的体积为V2,则V2V1等于.15.如图,在正四棱柱ABCD−A1B1C1D1中,AB=3cm,AA1=√2cm,则三棱锥D1−A1BD的外接球的体积为.16.思考辨析,判断正误.异面直线所成角的大小与点O的位置无关,所以求解时,可根据需要合理选择该点.三、解答题(共6题)17.如图,在三棱柱ABC−A1B1C1中,侧面ABB1A1和BCC1B1都是正方形,平面ABB1A1⊥平面BCC1B1,D,E分别为BB1,AC的中点.(1) 求证:BE∥平面A1CD;(2) 求直线B1E与平面A1CD所成角的正弦值.18.如图,在四棱锥P−ABCD中,底面ABCD为正方形,PA⊥平面ABCD,PA=AB,AC与BD交于点O,E,F分别为AB,PC的中点.(1) 求证:平面PAD⊥平面PCD;(2) 求证:EF∥平面PAD;(3) 求证:AF⊥平面POD.19.如图,在直三棱柱ABC−A1B1C1中,CA=CB=1,∠BCA=90∘,AA1=2,M,N分别是棱AA1,A1B1的中点.(1) 求BM的长;(2) 求BA1与CB1所成角的余弦值;(3) 求证:BA1⊥C1N.20.用符号语言表示下列语句,并画出图形.(1) 三个平面α,β,γ相交于一点P,且平面α与平面β相交于PA,平面α与平面γ相交于PB,平面β与平面γ相交于PC;(2) 平面ABD与平面BDC相交于BD,平面ABC与平面ADC相交于AC.21.如图,在四棱锥P−ABCD中,PA⊥平面ABCD,底面ABCD为直角梯形,AB⊥AD,AB∥CD,CD=AD=2AB=2AP.(1) 求证:平面PCD⊥平面PAD;(2) 在侧棱PC上是否存在点E,使得BE∥平面PAD.若存在,确定点E的位置,并给出证明;若不存在,请说明理由.22.直三棱柱底面各边的比为17:10:9,侧棱长为16cm,全面积为1440cm2,求底面各边之长.答案一、选择题(共10题)1. 【答案】D【知识点】平面的概念与基本性质2. 【答案】B【知识点】圆锥的表面积与体积3. 【答案】A【解析】因为b⊥m,所以当α⊥β,则由面面垂直的性质可得a⊥b成立,若a⊥b,则α⊥β不一定成立,故“α⊥β”是“a⊥b”的充分不必要条件.【知识点】平面与平面垂直关系的性质4. 【答案】D【解析】对于A,四棱锥共有八条棱,故A错误;对于B,五棱锥共有六个面,故B错误;对于C,六棱锥的顶点只有一个,故C错误;对于D,根据棱锥的结构特征,知D正确.【知识点】棱锥的结构特征5. 【答案】D【解析】将直观图还原成平面图形如图所示,则平面图形是上底长为1,下底长为1+√2,高为2的直角梯形,其面积为2+√2.【知识点】直观图6. 【答案】A【知识点】棱锥的表面积与体积、由三视图还原空间几何体7. 【答案】B【解析】如图,在B中连接MN,PN,因为A,B,C为正方体所在棱的中点,所以AB∥MN,AC∥PN,因为MN∥DE,PN∥EF,所以AB∥DE,AC∥EF,因为AB∩AC=A,DE∩EF=E,AB,AC⊂平面ABC,DE,EF⊂平面DEF,所以平面ABC∥平面DEF.【知识点】平面与平面平行关系的判定8. 【答案】A【解析】设圆台的母线长为l,根据题意可得圆台的上底面面积为S上=πr2,圆台的下底面面积为S下=πR2,因为圆台的侧面面积等于两底面面积之和,所以侧面积S侧=π(r2+R2)=π(r+R)l,解之得l=r 2+R2r+R,因为l=√ℎ2+(R−r)2,所以r 2+R2r+R=√ℎ2+(R−r)2,所以(r 2+R2r+R )2=ℎ2+(R−r)2,所以2ℎ=1R+1r.【知识点】圆台的表面积与体积9. 【答案】C【解析】因为∠BCD+∠BAD=180∘,所以A,B,C,D四点共圆,∠ADC=∠ABC=90∘.由tan30∘=2AB,得AB=2√3,所以 AC =√(2√3)2+(2√6)2=6. 设 AC 的中点为 E ,MC 的中点为 O , 因为 MA ⊥平面ABCD ,所以 OE ⊥平面ABCD .易知点 O 为四面体 MACD 外接球的球心,所以 OC =√(62)2+(22)2=√10,S 球=4π⋅OC 2=40π. 故选C .【知识点】球的表面积与体积10. 【答案】B【知识点】三视图、棱锥的表面积与体积二、填空题(共6题) 11. 【答案】 (32+√3)π【知识点】组合体、圆柱的表面积与体积12. 【答案】 83【知识点】圆柱的表面积与体积、球的表面积与体积13. 【答案】4πS【解析】设底面半径为 r ,由底面积 S =πr 2 得 r 2=S π,则 S 侧=(2πr )2=4π2r 2=4π2×Sπ=4πS .【知识点】圆柱的表面积与体积14. 【答案】 14【解析】 M 是 AB 的中点,所以 S △ABC =2S △MBC ,N 是 PC 的中点,所以 ℎ1=2ℎ2,V2V 1=13S △MBC ⋅ℎ213S △ABC ⋅ℎ1=14.【知识点】棱锥的表面积与体积15. 【答案】20√53π cm 3【解析】因为正四棱柱底面为正方形,所以 AB =BC =3,且三棱锥的顶点为这正四棱柱 8 个当中的 4 个,所以两者的外接球为同一个, 设球的半径为 R ,则 2R =√9+9+2=√20=2√5, 所以 R =√5,所以球的体积为 V =43πR 3=43π×5√5=20√5π3cm 3.【知识点】组合体、球的表面积与体积16. 【答案】 √【知识点】异面直线所成的角三、解答题(共6题) 17. 【答案】(1) 取 A 1C 的中点 F ,连接 DF ,EF . 因为 E ,F 分别为 AC ,A 1C 的中点, 所以 EF ∥AA 1,且 EF =12AA 1.因为四边形 ABB 1A 1 是正方形, 所以 BB 1∥AA 1,且 BB 1=AA 1, 所以 EF ∥BB 1 且 EF =12BB 1, 又因为 D 为 BB 1 的中点, 所以 EF ∥BD 且 EF =BD , 所以四边形 EFDB 为平行四边形, 所以 BE ∥DF ,又 BE ⊄平面A 1CD ,DF ⊂平面A 1CD ,所以 BE ∥平面A 1CD .(2) 由题意知 BA ,BC ,BB 1 两两垂直,以 B 为原点,BC ,BB 1,BA 所在直线分别为 x 轴,y 轴,z 轴建立如图所示的空间直角坐标系,设 BA =BC =BB 1=2,则 B 1(0,2,0),E (1,0,1),C (2,0,0),D (0,1,0),A 1(0,2,2).所以 B 1E ⃗⃗⃗⃗⃗⃗⃗ =(1,−2,1),CD ⃗⃗⃗⃗⃗ =(−2,1,0),A 1C ⃗⃗⃗⃗⃗⃗⃗ =(2,−2,−2),设平面 A 1CD 的法向量为 m ⃗⃗ =(x,y,z ),则 {A 1C ⃗⃗⃗⃗⃗⃗⃗ ⋅m ⃗⃗ =0,CD ⃗⃗⃗⃗⃗ ⋅m ⃗⃗ =0,即 {2x −2y −2z =0,−2x +y =0,令 x =1,得 m ⃗⃗ =(1,2,−1),设直线 B 1E 与平面 A 1CD 所成角为 θ,则 sinθ=∣∣cos⟨B 1E ⃗⃗⃗⃗⃗⃗⃗ ,m ⃗⃗ ⟩∣∣=∣∣∣B 1E ⃗⃗⃗⃗⃗⃗⃗⃗ ⋅m ⃗⃗⃗ ∣∣B 1E ⃗⃗⃗⃗⃗⃗⃗⃗ ∣∣∣∣m⃗⃗⃗ ∣∣∣∣∣=∣∣√6×√6∣∣=23, 所以直线 B 1E 与平面 A 1CD 所成角的正弦值为 23.【知识点】线面角、直线与平面平行关系的判定、利用向量的坐标运算解决立体几何问题18. 【答案】(1) 因为 PA ⊥平面ABCD , 所以 PA ⊥CD .因为 CD ⊥AD ,AD ∩PA =A , 所以 CD ⊥平面PAD . 因为 CD ⊂平面PCD ,所以 平面PAD ⊥平面PCD .(2) 取 PD 中点 G ,连接 FG ,AG , 因为 F 为 PC 的中点所以 FG ∥CD ,且 FG =12CD .因为 E 为 AB 的中点,底面 ABCD 为正方形, 所以 AE ∥CD ,且 AE =12CD .所以 FG ∥AE ,且 FG =AE . 所以四边形 AEFG 为平行四边形. 所以 EF ∥AG .因为 EF ⊄平面PAD 且 AG ⊂平面PAD , 所以 EF ∥平面PAD .(3) 在正方形 ABCD 中,OD ⊥AC , 因为 PA ⊥平面ABCD , 所以 PA ⊥OD . 因为 AC ∩PA =A , 所以 OD ⊥平面PAC . 所以 OD ⊥AF .在 △PAC 中,设 PO 交 AF 于 H . 因为 PA ⊥AC ,且 O ,F 分别为 AC ,PC 的中点, 所以 AF =FC . 所以 ∠FAC =∠FCA .设 PA =1,由已知 PA =AB , 所以 AC =√2.所以 tan∠APO =tan∠ACP =√22. 所以 ∠APO =∠ACP . 所以 ∠APO =∠ACP ,且 ∠AOP 为公共角,所以 △APO ∽△HAO .所以 ∠AHO =90∘.所以 AF ⊥PO .因为 PO ∩OD =O ,所以 AF ⊥平面POD .【知识点】直线与平面平行关系的判定、平面与平面垂直关系的判定、直线与平面垂直关系的判定19. 【答案】(1) 根据题意,以 C 为坐标原点,分别以 CA ,CB ,CC 1 所在直线为 x 轴,y 轴,z 轴,建立空间直角坐标系 Cxyz ,如图,依题意得 B (0,1,0),M (1,0,1),根据空间两点间的距离公式得,∣BM⃗⃗⃗⃗⃗⃗ ∣=√(1−0)2+(0−1)2+(1−0)2=√3. (2) 由(1)得,A 1(1,0,2),B (0,1,0),C (0,0,0),B 1(0,1,2),则 BA 1⃗⃗⃗⃗⃗⃗⃗⃗ =(1,−1,2),CB 1⃗⃗⃗⃗⃗⃗⃗ =(0,1,2),所以 BA 1⃗⃗⃗⃗⃗⃗⃗⃗ ⋅CB 1⃗⃗⃗⃗⃗⃗⃗ =3.又 ∣BA 1⃗⃗⃗⃗⃗⃗⃗⃗ ∣=√6,∣CB 1⃗⃗⃗⃗⃗⃗⃗ ∣=√5,所以 cos 〈BA 1⃗⃗⃗⃗⃗⃗⃗⃗ ,CB 1⃗⃗⃗⃗⃗⃗⃗ 〉=BA 1⃗⃗⃗⃗⃗⃗⃗⃗ ⋅CB 1⃗⃗⃗⃗⃗⃗⃗⃗ ∣BA 1⃗⃗⃗⃗⃗⃗⃗⃗ ∣⋅∣CB 1⃗⃗⃗⃗⃗⃗⃗⃗ ∣=√3010. (3) 由(1)得,C 1(0,0,2),N (12,12,2),所以 C 1N ⃗⃗⃗⃗⃗⃗⃗ =(12,12,0), 所以 BA 1⃗⃗⃗⃗⃗⃗⃗⃗ ⋅C 1N ⃗⃗⃗⃗⃗⃗⃗ =12−12+0=0,所以 BA 1⃗⃗⃗⃗⃗⃗⃗⃗ ⊥C 1N ⃗⃗⃗⃗⃗⃗⃗ ,即 BA 1⊥C 1N .【知识点】利用向量的坐标运算解决立体几何问题、异面直线所成的角、空间中直线与直线的垂直、空间线段的长度20. 【答案】(1) 符号语言表示:α∩β∩γ=P ,α∩β=PA ,α∩γ=PB ,β∩γ=PC .图形表示:如图(2) 符号语言表示:平面ABD ∩平面BDC =BD ,平面ABC ∩平面ADC =AC .图形表示:如图【知识点】平面与平面的位置关系21. 【答案】(1) 因为PA⊥平面ABCD,CD⊂平面ABCD,所以PA⊥CD,又因为AB⊥AD,AB∥CD,所以CD⊥AD,又PA∩AD=A,PA⊂平面PAD,AD⊂平面PAD,所以CD⊥平面PAD,又CD⊂平面PCD,所以平面PCD⊥平面PAD.(2) 当点E是PC的中点时,BE∥平面PAD.证明如下:设PD的中点为F,连接EF,AF,则EF是△PCD的中位线,所以EF∥CD,EF=12CD,又AB∥CD,AB=12CD,所以EF∥AB,EF=AB,所以四边形ABEF为平行四边形,所以BE∥AF,又BE⊄平面PAD,AF⊂平面PAD,所以BE∥平面PAD.【知识点】平面与平面垂直关系的判定、直线与平面平行关系的性质22. 【答案】设底面边长为17k,10k,9k(k>0),cosα=(9k)2+(10k)2−(17k)22⋅9k⋅10k =−35,所以S底面=12⋅9k⋅10k⋅sinα=36k2,由题意,(17k+10k+9k)⋅16+2⋅36k2=1440,所以k=2,所以底面三条边长分别为34cm,20cm,18cm.【知识点】棱柱的表面积与体积。
立体几何大题练习(附答案)

1.(本小题总分值14分)如图,在四棱锥 P ABCD 中,底面ABCD 是正方形,侧棱PD 底面ABCD, PD DC 1, E 是PC 的中点,作EF PB 交PB 于点F.(I)证实: PA //平面EDB; (II)证实:PB ,平面EFD; (III)求三棱锥P DEF 的体积.2 .(本小题总分值(m)求三棱锥(I )求证:B 118.(本小题总分值14分)如右图,在直角梯形ABCD中, B=90 °,1DC//AB,BC=CD= -AB=2 , G 为线段AB 的中点,将VADG 沿GD 2折起,使平面ADG 平面BCDG,得到几何体A-BCDG.(1)假设E,F分别为线段AC,AD的中点,求证:EF//平面ABG;(2)求证:AG 平面BCDG;(3)求V C-ABD 的值.4、(本小题总分值14分)如图4, AA是圆柱的母线, AB是圆柱底面圆的直径,C是底面圆周上异于A,B的任意一点, AA AB 2.(1)求证:BC 平面A〔AC ;(2)求三棱锥A ABC的体积的最大值.图4C (n ) 求证:EF 面PAC;〔出〕求三棱锥B-PAC的体积.6 .〔本小题总分值14分〕如图,平行四边形ABCD中,CD 1, BCD 60,且BD CD ,正方形ADEF 和平面ABCD成直二面角,G, H是DF , BE的中点.〔I〕求证:BD 平面CDE ;〔n〕求证:GH 〃平面CDE;〔出〕求三棱锥D CEF的体积.7.〔本小题总分值14分〕右图是一个直三棱柱〔以A i B i C i为底面〕被一平面所截得到的几何体,截面为ABC.A i B i = B i C i = l, ZAi B i C i = 90 ,AA i = 4,BB i=2, CC i=3.(I)设点O是AB的中点,证实:OC//平面A i B i C i;(II)求此几何体的体积.8 .(本小题总分值i4分)如图,在正方体ABCD—A i B i C i D i中,E、F为棱AD、AB的中点.(i )求证:EF//平面CB i D i;(2)求证:平面CAA i C■平面CB i D i.9 .(本小题总分值i4分)如图i ,在直角梯形ABEF中(图中数字表示线段的长度),将直角梯形DCEF沿CD折起,使平面DCEF 平面ABCD,连结局部线段后围成一个空间几何体,如图2.(I)求证:BE〃平面ADF ;(n)求三棱锥F BCE的体积.图图-10 .(本小题总分值14分)在直三棱柱ABC ABG中,AD 平面ABC,其垂足D落在直线A〔B上.(I )求证:BC A1B ;(n)假设AD J3, AB BC 2, P为AC的中点,求三棱锥P ABC的体积.B1…1 .解:(1)证实:连结AC, AC交BD于O,连结EO••・底面ABCD是正方形,,点O是AC的中点在PAC中,EO是中位线,,PA // EO而EO 平面EDB且PA 平面EDB,所以,PA //平面EDB.(2)证实:PD,底面ABCD 且DC 底面ABCD,,PD DCPD=DC,可知PDC是等腰直角三角形,而DE是斜边PC的中线,.DE PC ①同样由PD,底面ABCD,得PDXBC•••底面ABCD是正方形,有DCXBC,,BC,平面PDC 而DE 平面PDC, BC DE ②由①和②推得DE 平面PBC而PB 平面PBC, . DE PB又EF PB 且DE EF E,所以PB ,平面EFD................................ 8分(3) . PD DC 1,由 PD ,平面 ABCD,PDXBC,又.BCXCD, PDACD = D,BC± PC.-CL 2f在Z^BDE 中,DE -------- , BD22221 DE2 BE 2 BD 2 — 2 而由(2), PB,平面EFD,••.BC,平面 PCD,3 c-一 2 0,即 DEL BE.2PBXDE,因而 DEL 平面 BEF,2在 RtABPD 中,BF BP BD , BF1 1 . V DE EF PF 32 2.解:(I)证实:连结 BD ,那么 BD // B 1D 1,ABCD 是正方形,,AC BD. CE 面 ABCD,,CE BD .又 A .CE C, BD 面 ACE. . AE 面 ACE, . . BD AE ,• .B 1D 1 AE .(n)证实:作BB 1的中点F,连结AF 、CF 、EF.• •・E 、F 是 CC 、BB 1 的中点,,CE?B 1F , • •・四边形B 〔FCE 是平行四边形,, CF// B 1E .E,F 是 CC 、BB 1 的中点,,EF//BC ,又 BC//AD , EF //AD ...............14分136;Rt 革EFEF. AF I CF C , B 1EI ED E ,,平面 ACF 〃面 B 1DE .又 AC 平面 ACF , . . AC 〃面 B 1DE .4证实:二.是底面圆周上异于 A, B 的任意 柱底面圆的直径, •••BCXAC,……2 分,.AA1,平面 ABC , BC i 平面 ABC, . AAiXBC,…… 4 分•.AA i AAC=A , AA 1 i 平面 AA i C, AC i 平面 AA1 C, . EC ,平面AA1C.……6分 (2)解法 1 :设 AC=x ,在 RtMBC 中,BC = J AB 2 AC 2 h x 2(o<x<2),……7 分....1 一 … 1 11 -~~2故 V ARABC = —S VABC AA 1— — AC BC AA 1 _x \ 4x (0<x<2),13 3 23即 V A 「ABC =4“ x 2 1 \/x 2 (4 x 2):J (x 2~2)2~4 . ……11 分 23 33,-0<x<2 , 0<x 2<4 ,「.当 x 2=2,即 x = 五时, 三棱锥A 1-ABC 的体积的最大值为 -.……14分35(1)证实:在三角形 PBC 中,E 是PC 中点.F 为PB 中点所以 EF//BC , BC 面ABC, EF 面ABC, 所以 EF 〃面ABC ……4分,四边形ADEF 是平行四边形,AF // ED ,(3)S ABD - AB AD 2 •2VA BDE VE ABD1S ~ SABDCE1S3 SABDCE2 3又AB 是.O 的直径,所以BC AC …… ⑵ ……7分 由(1) (2)得 BC 面PAC 因EF//BC BC 面PAC ,所以EF 面PAC ……9分(出)因PA OO 所在的平面,AC 是PC 在面ABC 内的射影,1V B PACV P ABC S ABC PA37 . (1)证实:作OD //.交片81于口,连C 1D .那么 OD // BB 1 // CC 1 .作BH(n) PA BC面ABC 面ABCBC PA所成角 PCA 450,PA=AC11分在Rt ABC 中,E 是PC 中点,BAC -, AC BC 2412分Q O 是AB 的中点,OD1-(AA 1 BB 1) 3 CC 1 .2那么ODCQ 是平行四边形,OC // C 1D .……4分Q C 1D 平面 C 1B 1A 且 OC 平面C1B1A ,OC // 面 A 1B 1C 1.(2)如图,过B 作截面BA 2c 2CC 1 于 A 2,//面ABG,分别交AA1,Q CC 1 面 BA 2c 2, CC 1BH ,那么BH 平面AC .又Q A 2B AB 1 1 , BC 2B 1c l 1 , BH --, 2V B AA 2C 2C1 S A A 2c 2c3BH 1 1 厂J.21 (1 2) '2 -3 2 22PCA 即为PC 与面ABC'.2----- …14分3所求几何体体积为:V V B AACC . 八八 2 J 2 J8 .〔本小题总分值14分〕折叠之后平行关系不变. BC 平面ADF , AD 平面 • .BC//平面 ADF ,V AB|C 1 A2BC 21八, SA A 1B 1C 1BB 1 - 2 1〔1〕证实:连结 BD .在长方体AC i 中, 对角线BD//B 1D 1. 又Q E 、F 为棱AD 、AB 的中点, ・.EF //BD . . .EF //BD 1. 又 B 1D 1 平面 CBD 1, EF 平面 CB 1D 1,,EF//平面 CB 1D 1. (2) Q 在长方体 AC [中,AA 1,平面 A 1B 1C 1D 1,而 B 1D 1 平面 A 1B 1C 1D 1, . AA iX B i D i . 又Q 在正方形 A 1B 1C 1D 1 中,A 1C 1 XB 1D 1, .. B 1D 1,平面 CAA 1C 1. 又Q B 1D 1 平面 CB 1D 1,,平面 CAA 1C 1,平面 CB 〔D 1. 14分9 .〔本小题总分值14分〕 证实:〔I 〕证法一:取 DF 中点为G,连结AG, EG 中, 八 1一 八 一八.CE — DF ,,EG 〃CD 且 EG CD 2 又•••AB 〃CD 且AB CD,,EG 〃AB 且 EG AB四边形ABEG 为平行四边形,,BE//AG. BE 平面ADF , AG 平面 ADF,. ・BE 〃平面 ADF ,证法二:由图1可知BC // AD , CE//DFV A 1B 1C 1 A 2BC 2同理CE〃平面ADF ................... 4分. BCI CE C , BC , CE 平面BCE ,,平面BCE 〃平面ADF ......... 6分. BE 平面BCE ,,BE 〃平面ADF ......... 7 分(II)解法1:V F BCE V B CEF .................... 8分由图1可知BC CD.平面DCEF 平面ABCD ,平面DCEF I平面ABCD CDBC 平面ABCD,..BC 平面DCEF ,1 1由图 1 可知DC CE 1 S CEF -CE DC .................. ........... 12 分2 2V F BCE V B CEF 3 BC S CEF解法2:由图1可知CD BC , CD CEBCI CE C. .CD 平面BCE ,. DF //DC点F到平面BCE的距离等于点D到平面BCE的距离为1 ,由图1可知BC CE 1 S BCE 1-BC CE 2BCE 1 … c 13 CD S BCE 6解法3:过E作EH FC ,垂足为H , ....................... 8分由图1可知BC CD•••平面DCEF 平面ABCD,平面DCEFI 平面ABCD CD11分A B11分BC 平面 ABCD,. BC 平面 DCEF ,EH 平面 DCEF.BC EH,EH 平面BCF 1 、5S BCF -BC DF —, .......... 12 分 2 2又 BD CD. .BD ¥® CDE(n )证实:连结 EA ,那么G 是AE 的中点••• EAB 中,GH // AB又 AB//CD . GH //CD . .GH 〃平面CDE 11分 由 BC FC , FC .DC 2 DF 2 5, 在 CEF 中,由等面积法可得 EHV F BCE V E BCF EH S BCF13分 14分 6.(本小题总分值14分)(I )证实:平面 ADEF 平面ABCD ,交线为ADED AD• .ED 平面ABCDED BD2〔出〕解:设Rt BCD中BC边上的高为h1 1 -依题意:一2 h 1 32 23• • h —2_ ___ _____ .. 一、. .3即:点C到平面DEF的距离为- ---------------- 10•V D CEF V C DEF .32,33分------- 14 分。
高三精选立体几何大题30题(含详细解答)

A BC第1题图ABCD第1题图立体几何大题1.如下图,一个等腰直角三角形的硬纸片ABC中,∠ACB=90°,AC=4cm,CD是斜边上的高沿CD 把△ABC折成直二面角.(1)如果你手中只有一把能度量长度的直尺,应该如何确定A,B的位置,使二面角A-CD-B是直二面角?证明你的结论.(2)试在平面ABC上确定一个P,使DP与平面ABC内任意一条直线都垂直,证明你的结论.(3)如果在折成的三棱锥内有一个小球,求出小球半径的最大值.2.如图,已知正四棱柱ABCD—A1B1C1D1的底面边长为3,侧棱长为4,连结A1B过A作AF⊥A1B垂足为F,且AF的延长线交B1B于E。
(Ⅰ)求证:D1B⊥平面AEC;(Ⅱ)求三棱锥B—AEC的体积;(Ⅲ)求二面角B—AE—C的大小的正弦值.3.如图,正三棱柱ABC—A1B1C1的底面边长为1,点M在BC上,△AMC1是以M为直角顶点的等腰直角三角形.(I)求证:点M为BC的中点;(Ⅱ)求点B到平面AMC1的距离;(Ⅲ)求二面角M—AC1—B 的正切值. 4.如图,已知多面体ABCDE中,AB⊥平面ACD,DE⊥平面ACD,三角形ACD是正三角形,且AD=DE=2,AB=1,F是CD的中点.(Ⅰ)求证:AF∥平面BCE;(Ⅱ)求多面体ABCDE的体积;(Ⅲ)求二面角C-BE-D 的正切值.5.已知:ABCD是矩形,设PA=a,PA⊥平面ABCD.M、N分别是AB、PC的中点.(Ⅰ)求证:MN⊥AB;(Ⅱ)若PD=AB,且平面MND⊥平面PCD,求二面角P—CD—A的大小;(Ⅲ)在(Ⅱ)的条件下,求三棱锥D—AMN的体积.6.在正方体ABCD—A1B1C1D1中,P、M、N分别为棱DD1、AB、BC的中点。
(I)求二面角B1—MN—B的正切值;(II)证明:PB⊥平面MNB1;(III)画出一个正方体表面展开图,使其满足“有4个正方形面相连成一个长方形”的条件,并求出展开图中P、B两点间的距离。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
立体几何基础A 组题一、选择题:1.下列命题中正确命题的个数是 ( ) ⑴ 三点确定一个平面⑵ 若点P 不在平面α内,A 、B 、C 三点都在平面α内,则P 、A 、B 、C 四点不在同一平面内 ⑶ 两两相交的三条直线在同一平面内⑷ 两组对边分别相等的四边形是平行四边形A.0B.1C.2D.3答案:A2.已知异面直线a 和b 所成的角为︒50,P 为空间一定点,则过点P 且与a 、b 所成的角都是︒30的直线条数有且仅有 ( ) A.1条 B.2条 C.3条 D.4条答案:B 3.已知直线⊥l 平面α,直线⊂m 平面β,下列四个命题中正确的是 ( ) (1) 若βα//,则m l ⊥ (2) 若βα⊥,则m l // (3) 若m l //,则βα⊥ (4) 若 m l ⊥,则βα//A.(3)与(4)B.(1)与(3)C.(2)与(4)D.(1)与(2)答案:B4.已知m 、n 为异面直线,⊂m 平面α,⊂n 平面β,l =βα ,则l ( ) A.与m 、n 都相交 B.与m 、n 中至少一条相交 C.与m 、n 都不相交 D.至多与m 、n 中的一条相交答案:B5.设集合A={直线},B={平面},B A C =,若A a ∈,B b ∈,C c ∈,则下列命题中的真命题是 ( )A. c a b a b c ⊥⇒⎭⎬⎫⊥// B.c a c b b a //⇒⎭⎬⎫⊥⊥ C.c a b c b a //////⇒⎭⎬⎫ D. c a b c b a ⊥⇒⎭⎬⎫⊥//答案:A6.已知a 、b 为异面直线,点A 、B 在直线a 上,点C 、D 在直线b 上,且AC=AD ,BC=BD ,则直线a 、b 所成的角为 ( ) A. ︒90 B. ︒60 C. ︒45 D. ︒30答案:A7.下列四个命题中正确命题的个数是 ( ) 有四个相邻侧面互相垂直的棱柱是直棱柱 各侧面都是正方形的四棱柱是正方体底面是正三角形,各侧面都是等腰三角形的三棱锥是正三棱锥A.1个B.2个C.3个D.0个答案:D8.设M={正四棱柱},N={长方体},P={直四棱柱},Q={正方体},则这些集合之间关系是 ( ) A.Q M N P B.Q M N P C.Q N M P D.Q N M P答案:B9.正四棱锥P —ABCD 中,高PO 的长是底面长的21,且它的体积等于334cm ,则棱AB 与侧面PCD 之间的距离是 ( ) A.cm 2 B. cm 2 C. cm 1 D.cm 22答案:A10.纬度为α的纬圈上有A 、B 两点,弧在纬圈上,弧AB 的长为απcos R (R 为球半径),则A 、B 两点间的球面距离为 ( )A. R πB. R )(απ-C. R )2(απ-D. R )2(απ-答案:D11.长方体三边的和为14,对角线长为8,那么 ( ) A.它的全面积是66 B.它的全面积是132C.它的全面积不能确定D.这样的长方体不存在答案:D12.正四棱锥P —ABCD 的所有棱长都相等,E 为PC 的中点,那么异面直线BE 与PA 所成角的余弦值等于( )A.21B. 22C. 32D. 33答案:D13.用一个过正四棱柱底面一边的平面去截正四棱柱,截面是 ( )A.正方形B.矩形C.菱形D.一般平行四边形答案:B二、填空题:14.正方体1111D C B A ABCD -中,E 、F 、G 分别为AB 、BC 、CC 1的重点,则EF 与BG 所成角的余弦值为________________________答案:510 15.二面角βα--a 内一点P 到两个半平面所在平面的距离分别为22和4,到棱a 的距离为24,则这个二面角的大小为__________________答案:︒︒16575或16.四边形ABCD 是边长为a 的菱形,︒=∠60BAD ,沿对角线BD 折成︒120的二面角A —BD —C 后,AC 与BD 的距离为_________________________答案:a 43 17.P 为︒120的二面角βα--a 内一点,P 到α、β的距离为10,则P 到棱a 的距离是_________________答案:3320 18.如图:正方形ABCD 所在平面与正方形ABEF 所在平面成︒60的二面角,则异面直线AD 与BF 所成角的余弦值是______________________答案:4219.已知三棱锥P —ABC 中,三侧棱PA 、PB 、PC 两两互相垂直,三侧面与底面所成二面角的大小分别为γβα,,,则=++γβα222cos cos cos _______________答案:1 20.若四面体各棱的长是1或2,且该四面体不是正四面体,则其体积的值是_____________(只需写出一个可能的值)。
答案:)12141211(611或 21.三棱锥P —ABC 的四个顶点在同一球面上,PA 、PB 、PC 两两互相垂直,且这个三棱锥的三个侧面的面积分别为6,32,2,则这个球的表面积是________答案:π18三、解答题:22.已知直线α⊥a ,直线⊥a 直线b ,α⊄b ,求证:α//b答案:略23.如图:在四面体ABCD 中,BCD AB 平面⊥,BC=CD ,︒=∠90BCD ,︒=∠30ADB ,E 、F 分别是AC 、AD 的中点。
(1)求证:平面BEF ⊥平面ABC ;(2)求平面BEF 和平面BCD 所成的锐二面角。
答案:(1)略;(2)36arctanBDA27.如图所示:已知⊥PA ⊙O 所在的平面,AB 是⊙O 的直径,C 是⊙O 上任意一点,过A 作PC AE ⊥于E ,求证:PBC AE 平面⊥。
PEA O BC24.已知正方体ABCD —A 1B 1C 1D 1的棱长为a ,求异面直线B 1C 和BD 1间的距离。
答案:a 66 25.如图:正方体ABCD —A 1B 1C 1D 1的棱长为a ,E 、F 、G 分别是AB 、CC 1、B 1C 的中点,求异面直线EG 与A 1F 的距离。
答案:a 42 1A 1CE26.矩形ABCD 中,AB=6,BC=32,沿对角线BD 将ABD ∆向上折起,使点A 移至点P ,且P 在平面BCD上射影位O ,且O 在DC 上, (1)求证:PC PD ⊥;(2)求二面角P —DB —C 的平面角的余弦值; (3)求直线CD 与平面PBD 所成角正弦值。
答案:(1)略,(2)31,(3)32B28.已知:空间四边形ABCD 中,AB=BC=CD=DA=AC=BD=a ,M 、N 分别为BC 和AD 的中点,设AM 和CN所成的角为α,求αcos 的值。
答案:32 29.已知:正三棱锥S —ABC 的底面边长为a ,各侧面的顶角为︒30,D 为侧棱SC 的重点,截面DEF ∆过D且平行于AB ,当DEF ∆周长最小时,求截得的三棱锥S —DEF 的侧面积。
答案:2832a + 30.在四面体A —BCD 中,AB=CD=5,AC=BD=52,AD=BC=13,求该四面体的体积。
答案:8立体几何基础B 组题一、选择题:1.在直二面角α—AB —β的棱AB 上取一点P ,过P 分别在α、β两个平面内作与棱成︒45 的斜线PC 、PD ,那么CPD ∠的大小为 ( ) A. ︒45 B. ︒60 C. ︒120 D. ︒︒12060或答案:D2.如果直线l 、m 与平面α、β、γ满足:γβ =l ,α//l ,α⊂m 和γ⊥m ,那么必有( ) A. γα⊥且m l ⊥ B. γα⊥且β//mC. β//m 且m l ⊥D. βα//且γα⊥答案:A3.在四棱锥的四个侧面中,直角三角形最多可有 ( )A.1个B.2个C.3个D.4个答案:DE F 4.如图:在多面体ABCDEF 中,已知ABCD 是边长 为3的正方形,EF//AB ,23=EF ,EF 与面AC 的距 D C 离为2,则该多面体的体积为 ( )A.29 B. 5 C. 6 D. 215 A B 答案:D5.如果一个二面角的两个半平面分别垂直于另一个二面角的两个半平面,那么这两个二面角的大小关系是 ( )A.相等B.互补C.相等或互补D.大小关系不确定答案:D6.已知球的体积为π36,则该球的表面积为 ( ) A. π9 B. π12 C. π24 D. π36答案:D7.已知α//MN ,α⊂A M 1,且α⊥1MM ,MN NA ⊥,若2=MN ,31=A M ,4=NA ,则N M 1等于 ( ) A.15 B. 5 C. 13 D. 132答案:A8.异面直线a 、b 成︒60角,直线a c ⊥,则直线b 与c 所成角的范围是 ( )A. ]90,30[︒︒B. ]90,60[︒︒C. ]120,60[︒︒D. ]120,30[︒︒答案:A9.一个三棱锥,如果它的底面是直角三角形,那么它的三个侧面 ( ) A.至多只有一个是直角三角形 B.至多只有两个是直角三角形 C.可能都是直角三角形 D.必然都是非直角三角形答案:C10.如图:在斜三棱柱ABC —A 1B 1C 1的底面ABC ∆中, B1 C 1︒=∠90A ,且AC BC ⊥1,过C 1作⊥H C 1底面ABC , A 1垂足为H ,则点H 在 ( )A.直线AC 上B.直线AB 上 B CC.直线BC 上D. ABC ∆内部 A答案:B11.如图:三棱锥S —ABC 中,21===SC SG FS BF EA SE ,则截面EFG 把三棱锥分成的两部分的体积之比为 ( )A. 9:1B. 7:1C. 8:1D. 25:2答案:CC12.正四面体内任意一点到各面的距离和为一个常量,这个常量是 ( ) A.正四面体的一个棱长 B.正四面体的一条斜高的长C.正四面体的高D.以上结论都不对 答案:C 13.球面上有三点A 、B 、C ,每两点之间的球面距离都等于大圆周长的61,过三点的小圆周长为π4,则球面面积为 ( )A. π16B. π24C. π32D. π48 答案:D 二、填空题:14.α、β是两个不同的平面,n m ,是平面α及β之外的两条不同直线,给出四个论断:①n m ⊥ ②βα⊥ ③β⊥n ④α⊥m 以其中三个论断作为条件,余下一个论断作为结论,写出你认为正确的一个命题是____________答案:②③④⇒①或①③④⇒②15.关于直角AOB 在平面α内的射影有如下判断:①可能是︒0的角;②可能是锐角;③可能是直角;④可能是钝角;⑤可能是︒180的角,其中正确判断的序号是_________(注:把你认为是正确判断的序号都填上) 答案:①②③④⑤16.如图所示:五个正方体图形中,l 是正方体的一条对角线,点M 、N 、P 分别为其所在棱的中点,能得出⊥l 面MNP 的图形的序号是____________________① ② ③N答案:①④⑤④ ⑤17.如图:平面//α平面β//平面γ,且β在α、γ之间。