立体几何练习题
立体几何练习题

立体几何小题专练1.设,,l m n 是空间三条不同的直线,,αβ是空间两个不重合的平面,给出下列四个命题: ①若l 与m 异面,m ∥n ,则l 与n 异面;②若l ∥α,α∥β,则l ∥β;③若αβ⊥,l α⊥,m β⊥,则l m ⊥;④若m ∥α,m ∥n ,则n ∥α. 其中正确命题的序号有 .(请将你认为正确命题的序号都填上) 2.点P 在正方形ABCD 所在平面外,PA ⊥平面ABCD ,AB PA =,则PB 与AC 所成角的大小是 .3.下列说法中,错误的个数有________个:①平行于同一条直线的两个平面平行. ②平行于同一个平面的两个平面平行.③一个平面与两个平行平面相交,交线平行.④一条直线与两个平行平面中的一个相交,则必与另一个平面相交.A .0个B .1个C .2个D .3个4.如图所示,四棱锥P ﹣ABCD 的底面是边长为a 的正方形,侧棱PA ⊥底面ABCD ,且BE ⊥PC 于E ,PA=a ,,点F 在线段AB 上,并有EF ∥平面PAD .则= .5.设α、β、γ是三个不同的平面,l 、m 、n 是三条不同的直线,则β⊥m 的一个充分条件为 .①l m l ⊥=⊥,,βαβα ; ②αβα⊥⊥⊥m n n ,,;③βγβαγα⊥⊥=,,m ; ④γβγαα⊥⊥⊥,,m .6.如图,PA ⊥圆O 所在的平面,AB 是圆O 的直径,C 是圆O 上的一点,E 、F 分别是点A 在PB 、PC 上的射影,给出下列结论:①AF ⊥PB ;②EF ⊥PB ;③AF ⊥BC ;④AE ⊥平面PBC ;⑤PBC PAC ⊥平面平面.其中正确命题的序号是 .7.底面边长为2,高为1的正三棱锥的表面积为__________.8.已知直三棱柱111ABC A B C -的各项点都在同一球面上,若012,90AB AC AA BAC ===∠=,则该球的体积等于___________.9.在正三棱锥V —ABC 内,有一半球,其底面与正三棱锥的底面重合,且与正三棱锥的三个侧面都相切,若半球的半径为2,则正三棱锥的体积最小时,其高等于__________.10.已知一圆锥的侧面展开图是半径为2的半圆,则该圆锥的体积为 。
立体几何练习题

E立体几何练习题1.在直四棱住1111D C B A ABCD -中,12AA =,底面是边长为1的正方形,E 、F 、G 分别是棱B B 1、D D 1、DA 的中点.(Ⅰ)求证:平面E AD 1//平面BGF ; (Ⅱ)求证:1D E ⊥面AEC .2.如图,正方体1111D C B A ABCD -的棱长为2,E 为AB 的中点. (1)求证: 1BDD AC 平面⊥(2)求点B 到平面EC A 1的距离.3.如图所示,在三棱柱111ABC A B C -中,1AA ⊥平面,90ABCACB ∠=,2AB =1BC =1AA =. (Ⅰ)求三棱锥111A AB C -的体积;(Ⅱ)若D 是棱1CC 的中点,棱AB 的中点为E , 证明:11//C AB DE 平面4.如图,在棱长均为2的三棱柱ABC DEF -中,设侧面四边形FEBC 的两对角线相交于O ,若BF ⊥平面AEC ,AB AE =.(1) 求证:AO ⊥平面FEBC ; (2) 求三棱锥B DEF -的体积.FEABD CG 1C 1A1B 1D 1B 1C ED CBA1D 1A5.如图,在体积为1的三棱柱111C B A ABC -中,侧棱⊥1AA 底面ABC ,AB AC ⊥, 11==AA AC ,E 为线段AB 上的动点.(Ⅰ)求证: CA 1C CA 11⊥C 1E ;(2)线段AB 上是否存在一点E ,使四面体E-AB 1C 1的体积为61若存在,请确定点E 的位置;若不存在,请说明理由.6.已知三棱柱ABC —A 1B 1C 1的直观图和三视图如图所示,其主视图BB 1A 1A 和侧视图A 1ACC 1均为矩形,其中AA 1=4。
俯视图ΔA 1B 1C 1中,B 1C 1=4,A 1C 1=3,A 1B 1=5,D 是AB 的中点。
(1)求证:AC ⊥BC 1; (2)求证:AC 1∥平面CDB 1;(3)求异面直线AC 1与B 1C 所成角的余弦值。
立体几何大题练习题集答案解析

立体几何大题专练1、如图,已知PA ⊥矩形ABCD 所在平面,M 、N 分别为AB 、PC 的中点; (1)求证:MNP ABC -,E F ,AC BC //EF PAB PAC ⊥ABC PA PC =90ABC ∠=︒PEF ⊥PBCEF Q E F AC BC //EF AB ∴ ……………………2分 又⊄EF 平面PAB ,⊆AB 平面PAB ,∴ EF ∥平面PAB . ……………………5分(2)PA PC =Q ,E 为AC 的中点,PE AC ∴⊥ ……………………6分 又Q 平面PAC ⊥平面ABCPE ∴⊥面ABC ……………………8分 PE BC ∴⊥……………………9分PAC EBF又因为F 为BC 的中点,//EF AB ∴090,BC EF ABC ⊥∠=∴Q ……………………10分EF PE E =Q IBC ∴⊥面PEF ……………………11分 又BC ⊂Q 面PBC∴面PBC ⊥面PEF ……………………12分3. 如图,在直三棱柱ABC —A 1B 1C 1中,AC=BC ,点D 是AB 的中点。
(1)求证:BC 1PC AB N M ABCD PA 、分别是、所在的平面,矩形⊥PAD MN 平面//CD MN ⊥图,正方形ABCD 所在的平面与三角形AD E所在平面互相垂直,△AEB是等腰直角三角形,且AE=ED 设线段BC 、AE 的中点分别为F 、M ,求证:(1)FM ∥ECD 平面; (2)求二面角E-BD—A的正切值.(1)证明:取AD 的中点N,连结FN,MN,则MN ∥ED ,FN ∥CD∴平面FMN ∥平面ECD. ∵ MF 在平面FMN 内,∴ FM ∥平面ECD ......5分 (2)连接EN, ∵AE=ED ,N 为AD 的中点,NMPDCBA∴ EN⊥AD.又∵面ADE⊥面ABCD,∴EN⊥面ABCD.作NP⊥BD,连接EP,则EP⊥BD,∴∠EPN即二面角E-BD-A的平面角,设AD=a,∵ABCD为正方形,⊿ADE为等腰三角形,∴EN=12a,NP=24a.∴tan∠EPN=2. ......10分7.如图,一个圆锥的底面半径为2cm,高为6cm,其中有一个高为x cm的内接圆柱.(1)试用x表示圆柱的侧面积;(2)当x为何值时,圆柱的侧面积最大.19.(1)解:设所求的圆柱的底面半径为r则有662xr-=,即32xr-=.∴2324)32(22xxxxrxSππππ-=-==圆柱侧.......5分(2)由(1)知当3)32(24=--=ππx时,这个二次函数有最大值为π6所以当圆柱的高为3cm时,它的侧面积最大为26cmπ......10分8.(10分)如图,在三棱锥P ABC-中,⊿PAB是等边三角形,∠PAC=∠PBC=90 o.(1)证明:AB⊥PC;(2)若4PC=,且平面PAC⊥平面PBC,求三棱锥P ABC-体积.解:(1)因为PAB ∆是等边三角形,90PAC PBC ∠=∠=︒, 所以Rt PBC Rt PAC ∆≅∆,可得AC BC =。
高三数学立体几何专项练习题及答案

高三数学立体几何专项练习题及答案一、选择题1. 下列哪个几何体的所有面都是三角形?A. 正方体B. 圆柱体C. 正六面体D. 球体答案:C2. 一个有8个面的多面体,其中6个面是正方形,另外2个面是等边三角形,它的名字是?A. 正八面体B. 正十二面体C. 正二十面体D. 正二十四面体答案:C3. 空间中任意一点到四个角落连线的垂直距离相等的四棱锥称为?A. 正四棱锥B. 圆锥台C. 四棱锥D. 无法确定答案:C4. 任意多面体的面数与顶点数、棱数的关系是?A. 面数 + 顶点数 = 棱数 + 2B. 面数 + 棱数 = 顶点数 + 2C. 顶点数 + 棱数 = 面数 + 2D. 顶点数 + 面数 = 棱数 + 2答案:A5. 求下列多面体的棱数:(1)正六面体(2)正八面体(3)正十二面体答案:(1)正六面体的棱数为 12(2)正八面体的棱数为 24(3)正十二面体的棱数为 30二、填空题1. 下列说法正确的是:一棱锥没有底面时,它的底面是一个______。
答案:点2. 铅垂线是指从一个多面体的一个顶点到与它相对的棱上所作的垂线,它与该棱垂足的连线相交于该多面体的______上。
答案:中点3. 对正八面体,下列说法不正确的是:_____条对角线与_____两两垂直。
答案:六,相邻面三、计算题1. 一个棱锥的底面是一个边长为6cm的正三角形,其高为8cm。
求棱锥体积。
解答:底面积 S = (1/2) ×底边长 ×高 = (1/2) × 6 × 8 = 24 cm²棱锥体积 V = (1/3) × S ×高 = (1/3) × 24 × 8 = 64 cm³所以,棱锥的体积为64 cm³。
2. 一个正四棱锥的底面是一个边长为10cm的正方形,其高为12cm。
求四棱锥的体积。
解答:底面积 S = 边长² = 10² = 100 cm²四棱锥体积 V = (1/3) × S ×高 = (1/3) × 100 × 12 = 400 cm³所以,四棱锥的体积为400 cm³。
高中数学立体几何经典题型练习题集(附有答案)

高中数学立体几何经典题型练习题集学校:______姓名:_____班级:______考号:______一.单选题1.正三棱锥的底边长和高都是2,则此正三棱锥的斜高长度为()A.B.C.D.2.在棱长为1的正方体ABCD-A1B1C1D1中,若E,F,G分别为C1D1,AA1,BB1的中点,则空间四边形EFBG在正方体下底面ABCD上的射影面积为()A.1B.C.D.3.一个棱柱是正四棱柱的条件是()A.底面是正方形,有两个侧面是矩形B.底面是正方形,有两个侧面垂直于底面C.底面是菱形,且有一个顶点处的三条棱两两垂直D.每个侧面都是全等矩形的四棱柱4、如图,P是正方体ABCD-A1B1C1D1对角线AC1上一动点,设AP的长度为x,若△PBD的面积为f(x),则f(x)的图象大致是()A.B.C.D.5、如图所示,AB是圆O的直径,C是异于A,B两点的圆周上的任意一点,PA垂直于圆O 所在的平面,则△PAB,△PAC,△ABC,△PBC中,直角三角形的个数是()A.1B.2C.3D.46、如图,在正方体ABCD-A1B1C1D1中,E、F、G分别是棱A1B1、BB1、B1C1的中点,则下列结论中:①FG⊥BD;②B1D⊥面EFG;③面EFG∥面ACC1A1;④EF∥面CDD1C1.正确结论的序号是()A.①和②B.③和④C.①和③D.②和④7、三棱锥P-ABC,PC⊥面ABC,△PAC是等腰三角形,PA=4,AB⊥BC,CH⊥PB,垂足为H,D是PA的中点,则△CDH的面积最大时,CB的长是()A.B.C.D.8、正方体的直观图如图所示,则其展开图是()A.B.C.D.二.填空题(共__小题)9、如图所示,ABCD是空间四边形,E、F、G、H分别是四边上的中点,并且AC⊥BD,AC=m,BD=n,则四边形EFGH的面积为______.10、如图,已知六棱锥P-ABCDEF的底面是正六边形,PA⊥平面ABC,PA=2AB,给出下列结论:①PB⊥AE;②平面ABC⊥平面PBC;③直线BC∥平面PAE;④∠PDA=45°;⑤直线PD 与平面PAB所成角的余弦值为.其中正确的有______(把所有正确的序号都填上).11.如图所示,三棱锥M,PA⊥底面ABC,∠ABC=90°,则此三棱锥P-ABC中直角三角形有______个.12、如图,正三棱柱ABC-A1B1C1的各棱长都等于2,D在AC1上,F为BB1中点,且FD⊥AC1,有下述结论(1)AC1⊥BC;(2)=1;(3)二面角F-AC1-C的大小为90°;(4)三棱锥D-ACF的体积为.正确的有______.13.各棱长为a的正三棱柱的六个顶点都在同一个球面上,则此球的表面积为______.14.一四棱锥被平行于底面的平面所截,若截面面积与底面面积之比为1:4,则此截面把一条侧棱分成的两段之比为______.15、如图所示正方体ABCD-A1B1C1D1的棱长为2,线段B1D1上有两个动点E,F且EF=,给出下列五个结论①AC⊥BE②EF∥平面ABCD③异面直线AE,BF所成的角为60°④A1点到面BEF的距离为定值⑤三棱柱A-BEF的体积为定值其中正确的结论有:______(写出所有正确结论的编号)三.简答题(共__小题)16、如图,立体图形A-BCD的四个面分别为△ABC、△ACD、△ADB和△BCD,E、F、G分别是线段AB、AC、AD上的点,且满足AE:AB=AF:AC=AG:AD,求证:△EFG∽△BCD.17、如图,在三棱锥D-ABC中,已知△BCD是正三角形,AB⊥平面BCD,AB=BC=a,E为BC 的中点,F在棱AC上,且AF=3FC.(1)求三棱锥D-ABC的表面积;(2)求证AC⊥平面DEF;(3)若M为BD的中点,问AC上是否存在一点N,使MN∥平面DEF?若存在,说明点N 的位置;若不存在,试说明理由.参考答案一.单选题(共__小题)1.正三棱锥的底边长和高都是2,则此正三棱锥的斜高长度为()A.B.C.D.答案:D解析:解:在正三棱锥中,顶点P在底面的射影为底面正三角形的中心O,延长A0到E,则E为BC的中点,连结PE,则PE为正三棱锥的斜高.∵正三棱锥的底边长和高都是2,∴AB=PO=2,即AE=,OE=,∴斜高PE==,故选:D.2、在棱长为1的正方体ABCD-A1B1C1D1中,若E,F,G分别为C1D1,AA1,BB1的中点,则空间四边形EFBG在正方体下底面ABCD上的射影面积为()A.1B.C.D.答案:B解析:解:过E点做EH垂直CD于H,连接EH,易得H即为E在平面ABCD上的射影,连接AH,BH,如下图所示则AH,BH,AB分别为FE,EG,FB在平面ABCD上的射影,又由G在平面ABCD上的射影为B,故△ABH即为空间四边形EFBG在正方体下底面ABCD上的射影∵S△ABH=S ABCD=故选B3.一个棱柱是正四棱柱的条件是()A.底面是正方形,有两个侧面是矩形B.底面是正方形,有两个侧面垂直于底面C.底面是菱形,且有一个顶点处的三条棱两两垂直D.每个侧面都是全等矩形的四棱柱答案:C解析:解:上、下底面都是正方形,且侧棱垂直于底面的棱柱叫做正四棱柱.故A和B错在有可能是斜棱柱,D错在上下底面有可能不是正方形,底面是菱形,且有一个顶点处的三条棱两两垂直能保证上、下底面都是正方形,且侧棱垂直于底面.故选C.4、如图,P是正方体ABCD-A1B1C1D1对角线AC1上一动点,设AP的长度为x,若△PBD的面积为f(x),则f(x)的图象大致是()A.B.C.D.答案:A解析:解:设正方体的棱长为1,连接AC交BD于O,连PO,则PO是等腰△PBD的高,故△PBD的面积为f(x)=BD×PO,在三角形PAO中,PO==,∴f(x)=××=,画出其图象,如图所示,对照选项,A正确.故选A.5、如图所示,AB是圆O的直径,C是异于A,B两点的圆周上的任意一点,PA垂直于圆O所在的平面,则△PAB,△PAC,△ABC,△PBC中,直角三角形的个数是()A.1B.2C.3D.4答案:D解析:证明:∵AB是圆O的直径∴∠ACB=90°即BC⊥AC,三角形ABC是直角三角形又∵PA⊥圆O所在平面,∴△PAC,△PAB是直角三角形.且BC在这个平面内∴PA⊥BC 因此BC垂直于平面PAC中两条相交直线,∴BC⊥平面PAC,∴△PBC是直角三角形.从而△PAB,△PAC,△ABC,△PBC中,直角三角形的个数是,4.故选D.6、如图,在正方体ABCD-A1B1C1D1中,E、F、G分别是棱A1B1、BB1、B1C1的中点,则下列结论中:①FG⊥BD;②B1D⊥面EFG;③面EFG∥面ACC1A1;④EF∥面CDD1C1.正确结论的序号是()A.①和②B.③和④C.①和③D.②和④答案:D解析:解:如图连接A1C1、A1B、BC1、BD、B1D,因为E、F、G分别是棱A1B1、BB1、B1C1的中点对于①因为FG∥BC1,△BDC1是正三角形,FG⊥BD,不正确.对于②因为平面A1C1B∥平面EFG,并且B1D⊥平面A1C1B,所以B1D⊥面EFG,正确.③面EFG∥面ACC1A1;显然不正确.④EF∥平面CDD1C1内的D1C,所以EF∥面CDD1C1.正确.故选D7、三棱锥P-ABC,PC⊥面ABC,△PAC是等腰三角形,PA=4,AB⊥BC,CH⊥PB,垂足为H,D是PA的中点,则△CDH的面积最大时,CB的长是()A.B.C.D.答案:D解析:解:三棱锥P-ABC中,PC⊥面ABC,AB⊂平面ABC,∴PC⊥AB;又AB⊥BC,BC∩PC=C,∴AB⊥平面PBC;又CH⊂平面PBC,∴AB⊥CH,又CH⊥PB,PB∩AB=B,∴CH⊥平面PAB,又DH⊂平面PAB,∴CH⊥DH;又△PAC是等腰直角三角形,且PA=4,D是PA的中点,∴CD=PA=2,设CH=a,DH=b,则a2+b2=CD2=4,∴4=a2+b2≥2ab,即ab≤1,当且仅当a=b=时,“=”成立,此时△CDH的面积最大;在Rt△PBC,设BC=x,则PB===,∴PC•BC=PB•CH,即2•x=•;解得x=,∴CB的长是.故选:D.8、正方体的直观图如图所示,则其展开图是()A.B.C.D.答案:D解析:解:根据题意,可得对于A,展开图中的上下两边的正方形的对边中点连线应该呈左右方向显现,故A的图形不符合题意;对于B,展开图中最右边的“日”字形正方形的对边中点连线应该是上下方向呈现,且应该在含有圆形的正方形的左边放置,故B的图形不符合题意;对于C,展开图中最右边的正方形应该与含有圆形的正方形相邻,故C的图形不符合题意;对于D,沿如图的红线将正方体的侧面剪裁,展开可得如D项图的形状,故D的图形符合题意故选:D二.填空题(共__小题)9、如图所示,ABCD是空间四边形,E、F、G、H分别是四边上的中点,并且AC⊥BD,AC=m,BD=n,则四边形EFGH的面积为______.答案:解析:解:由ABCD是空间四边形,E、F、G、H分别是四边上的中点,并且AC⊥BD,可得四边形EFGH为矩形,且此矩形的长和宽分别为和,故四边形EFGH的面积为=,故答案为:.10、如图,已知六棱锥P-ABCDEF的底面是正六边形,PA⊥平面ABC,PA=2AB,给出下列结论:①PB⊥AE;②平面ABC⊥平面PBC;③直线BC∥平面PAE;④∠PDA=45°;⑤直线PD与平面PAB所成角的余弦值为.其中正确的有______(把所有正确的序号都填上).答案:①④⑤解析:解:对于①、由PA⊥平面ABC,AE⊂平面ABC,得PA⊥AE,又由正六边形的性质得AE⊥AB,PA∩AB=A,得AE⊥平面PAB,又PB⊂平面PAB,∴AE⊥PB,①正确;对于②、又平面PAB⊥平面ABC,所以平面ABC⊥平面PBC不成立,②错;对于③、由正六边形的性质得BC∥AD,又AD⊂平面PAD,∴BC∥平面PAD,∴直线BC∥平面PAE也不成立,③错;对于④、在Rt△PAD中,PA=AD=2AB,∴∠PDA=45°,∴④正确;对于⑤、由于DE∥AB,∴D到平面PAB的距离即为E到平面PAB的距离,即E到直线PA的距离,即EA,EA=AB,在Rt△PAD中,PA=AD=2AB,∴PD=2AB,∴直线PD与平面PAB所成角的正弦值为=,∴直线PD与平面PAB所成角的余弦值为=,∴⑤正确.故答案为:①④⑤.11.如图所示,三棱锥M,PA⊥底面ABC,∠ABC=90°,则此三棱锥P-ABC中直角三角形有______个.答案:4解析:解:由已知PA⊥底面ABC,∠ABC=90°,所以CB⊥PA,CB⊥AB,又PA∩AB=A,所以CB⊥平面PAB,所以CB⊥PB,所以此三棱锥P-ABC中直角三角形有△ABC,△ABP,△ACP,△PBC共有4个.故答案为:4.12、如图,正三棱柱ABC-A1B1C1的各棱长都等于2,D在AC1上,F为BB1中点,且FD⊥AC1,有下述结论(1)AC1⊥BC;(2)=1;(3)二面角F-AC1-C的大小为90°;(4)三棱锥D-ACF的体积为.正确的有______.答案:(2)(3)(4)解析:解:(1)连接AB1,则∠B1C1A即为BC和AC1所成的角,在三角形AB1C1中,B1C1=2,AB1=2,AC1=2,cos∠B1C1A==,故(1)错;(2)连接AF,C1F,则易得AF=FC1=,又FD⊥AC1,则AD=DC1,故(2)正确;(3)连接CD,则CD⊥AC1,且FD⊥AC1,则∠CDF为二面角F-AC1-C的平面角,CD=,CF=,DF===,即CD2+DF2=CF2,故二面角F-AC1-C的大小为90°,故(3)正确;(4)由于CD⊥AC1,且FD⊥AC1,则AD⊥平面CDF,则V D-ACF=V A-DCF=•AD•S△DCF=×××=.故(4)正确.故答案为:(2)(3)(4)13.各棱长为a的正三棱柱的六个顶点都在同一个球面上,则此球的表面积为______.答案:解析:解:∵正三棱柱的六个顶点都在同一个球面上,所以球心在上下底面中心的连线的中点上,AB=a,OA=R,在△OEA中,OE=,AE=,∵AO2=OE2+AE2,∴,∴球的表面积为4πR2=,故答案为.14.一四棱锥被平行于底面的平面所截,若截面面积与底面面积之比为1:4,则此截面把一条侧棱分成的两段之比为______.答案:1:1解析:解:根据题意,设截得小棱锥的侧棱长为l,原棱锥的侧棱长为L,∵截面与底面相似,且截面面积与底面面积之比为1:4,∴相似比为:==,∴截面把棱锥的一条侧棱分成的两段之比是l:(L-l)=1:1.故答案为:1:1.15、如图所示正方体ABCD-A1B1C1D1的棱长为2,线段B1D1上有两个动点E,F且EF=,给出下列五个结论①AC⊥BE②EF∥平面ABCD③异面直线AE,BF所成的角为60°④A1点到面BEF的距离为定值⑤三棱柱A-BEF的体积为定值其中正确的结论有:______(写出所有正确结论的编号)答案:①②④⑤解析:解:①AC⊥BE,由题意及图形知,AC⊥面DD1B1B,故可得出AC⊥BE,此命题正确;②EF∥平面ABCD,由正方体ABCD-A1B1C1D1的两个底面平行,EF在其一面上,故EF与平面ABCD无公共点,故有EF∥平面ABCD,此命题正确;③由图知,当F与B1重合时,令上底面顶点为O,则此时两异面直线所成的角是∠A1AO,当E与D1重合时,此时点F与O重合,则两异面直线所成的角是∠OBC1,此二角不相等,故异面直线AE、BF所成的角不为定值,故不正确.④A1点到面DD1B1B距离是定值,所以A1点到面BEF的距离为定值,正确;⑤三棱锥A-BEF的体积为定值,由几何体的性质及图形知,三角形BEF的面积是定值,A点到面DD1B1B距离是定值,故可得三棱锥A-BEF的体积为定值,此命题正确.故答案为:①②④⑤.三.简答题(共__小题)16、如图,立体图形A-BCD的四个面分别为△ABC、△ACD、△ADB和△BCD,E、F、G分别是线段AB、AC、AD上的点,且满足AE:AB=AF:AC=AG:AD,求证:△EFG∽△BCD.答案:证明:在△ABD中,∵AE:AB=AG:AD,∴EG∥BD.同理,GF∥DC,EF∥BC.又∠GEF与∠DBC方向相同.∴∠GEF=∠DBC.同理,∠EGF=∠BDC.∴△EFG∽△BCD.17、如图,在三棱锥D-ABC中,已知△BCD是正三角形,AB⊥平面BCD,AB=BC=a,E为BC的中点,F在棱AC上,且AF=3FC.(1)求三棱锥D-ABC的表面积;(2)求证AC⊥平面DEF;(3)若M为BD的中点,问AC上是否存在一点N,使MN∥平面DEF?若存在,说明点N 的位置;若不存在,试说明理由.答案:解:(1)∵AB⊥平面BCD,∴AB⊥BC,AB⊥BD.∵△BCD是正三角形,且AB=BC=a,∴AD=AC=.设G为CD的中点,则CG=,AG=.∴,,.三棱锥D-ABC的表面积为.(2)取AC的中点H,∵AB=BC,∴BH⊥AC.∵AF=3FC,∴F为CH的中点.∵E为BC的中点,∴EF∥BH.则EF⊥AC.∵△BCD是正三角形,∴DE⊥BC.∵AB⊥平面BCD,∴AB⊥DE.∵AB∩BC=B,∴DE⊥平面ABC.∴DE⊥AC.∵DE∩EF=E,∴AC⊥平面DEF.(3)存在这样的点N,当CN=时,MN∥平面DEF.连CM,设CM∩DE=O,连OF.由条件知,O为△BCD的重心,CO=CM.∴当CF=CN时,MN∥OF.∴CN=.。
高中立体几何练习题

高中立体几何练习题几何学是数学中非常重要的一个分支,而立体几何则是其中的一个重要部分。
在高中阶段,学生需要掌握各种与立体几何相关的概念和定理,并且能够运用这些知识解决实际问题。
本文将为大家提供一些高中立体几何的练习题,以帮助大家巩固知识和提高解题能力。
练习题一:三棱柱1. 一个三棱柱的底面是一个等边三角形,边长为8cm,高度为10cm。
求该三棱柱的体积和表面积。
2. 一个三棱柱的体积是72cm³,底面边长为6cm。
求该三棱柱的高度和表面积。
练习题二:四棱柱和四棱锥1. 一个正四棱柱的底面是一个边长为4cm的正方形,高度为6cm。
求该四棱柱和与之相似的正四棱锥的体积比值。
2. 一个四棱柱的底面是一个边长为10cm的正方形,高度为8cm。
求该四棱柱和与之相似的四棱锥的表面积比值。
练习题三:球体和圆柱1. 一个半径为4cm的球从中间切割,得到两个半球。
求这两个半球的表面积之和。
2. 一个圆柱的底面半径为3cm,高度为10cm。
在底面上画一个直径,求这个直径与圆柱的侧面交点处的高度和侧面的面积。
练习题四:棱台和棱锥1. 一个棱台的上底是一个边长为6cm的正三角形,下底是一个边长为12cm的正六边形,高度为8cm。
求该棱台的体积和表面积之和。
2. 一个棱台的上底是一个边长为8cm的正方形,下底是一个边长为12cm的正六边形,高度为10cm。
求该棱台的体积和表面积的比值。
以上仅为一些高中立体几何的练习题,希望能够帮助大家巩固知识并提高解题能力。
在解答这些题目时,可以根据已学习的定理和公式进行计算,并注意单位和精度的问题。
同时也要灵活运用几何思维和建模能力,将实际问题转化为几何图形,从而更好地解决问题。
祝各位同学在立体几何学习中取得好成绩!。
高中数学立体几何专项练习题及答案

高中数学立体几何专项练习题及答案一、选择题1. 下面哪个选项不是描述柱体的特点?A. 体积恒定B. 底面形状不限C. 侧面是矩形D. 顶面和底面平行答案:A2. 如果一个四面体的一个顶点的对边垂直于底面,那么这个四面体是什么类型?A. 正方形四面体B. 倒立四面体C. 锥体D. 正方锥体答案:C3. 以下哪个选项正确描述了一个正方体的特点?A. 全部面都是正方形B. 12 条棱长度相同C. 8 个顶点D. 6 个面都是正方形答案:D4. 若长方体的高度是 6cm,底面积是 5cm²,底面对角线长为 a cm,那么 a 的值为多少?A. √11B. √29C. √31D. √41答案:C二、填空题1. 一个正方体的棱长为 4cm,它的体积是多少?答案:64cm³2. 一个球的表面积是100π cm²,那么它的半径是多少?答案:5cm3. 一个圆柱体的底面半径为 3cm,高度为 8cm,它的体积是多少?答案:72π cm³4. 一个圆锥的底面半径为 6cm,高度为 10cm,它的体积是多少?答案:120π cm³三、计算题1. 一个四棱锥的底面是边长为 5cm 的正方形,高度为 8cm,它的体积是多少?答案:单位为 cm³,计算过程如下:首先计算底面积:5cm * 5cm = 25cm²再计算体积:25cm² * 8cm / 3 = 200cm³2. 一个圆柱体的底面直径为 12cm,高度为 15cm,它的体积是多少?答案:单位为 cm³,计算过程如下:首先计算底面半径:12cm / 2 = 6cm再计算底面积:π * 6cm * 6cm = 36π cm²最后计算体积:36π cm² * 15cm = 540π cm³3. 一个球的直径为 8cm,它的体积是多少?答案:单位为 cm³,计算过程如下:首先计算半径:8cm / 2 = 4cm再计算体积:4/3 * π * 4cm * 4cm * 4cm = 268.08π cm³4. 一个圆锥的底面半径为 10cm,高度为 20cm,它的体积是多少?答案:单位为 cm³,计算过程如下:首先计算底面积:π * 10cm * 10cm = 100π cm²最后计算体积:100π cm² * 20cm / 3 = 2000π cm³四、解答题1. 若一个长方体的长度、宽度、高度分别为 a、b、c,它的表面积为多少?答案:单位为 cm²,计算过程如下:首先计算侧面积:2 * (a * b + a * c + b * c)再计算底面积:a * b最后计算表面积:2 * (a * b + a * c + b * c) + a * b2. 一个四棱锥的底面为边长为 a 的正三角形,高度为 h,求这个四棱锥的体积。
(完整word版)高中数学立体几何专项练习

立体几何简答题练习1、正方形ABCD与正方形ABEF所在平面相交于AB,在AE、BD上各有一点P、Q,且AP=DQ。
求证:PQ∥平面BCE.(用两种方法证明)2、如图所示,P是平行四边形ABCD所在平面外一点,E、F分别在PA、BD上,且PE:EA=BF:FD,求证:EF∥平面PBC.3、如图,E,F,G,H分别是正方体ABCD-A1B1C1D1的棱BC,CC1,C1D1,AA1的中点。
求证:(1)EG∥平面BB1D1 D;(2)平面BDF∥平面B1D1 H.4、如图所示,已知P 是平行四边形ABCD 所在平面外一点,M 、N 分别为AB 、PC 的中点,平面PAD ∩平面PBC =l. (1)求证:l ∥BC ;(2)MN 与平面PAD 是否平行?试证明你的结论。
5、如图,在四棱锥S-ABCD 中,底面ABCD 是正方形,SA ⊥底面ABCD ,SA=SB ,点M 是SD 的中点,AN ⊥SC ,且交SC 于点N 。
(1)求证:SB ∥平面ACM ;(2)求证:平面SAC ⊥平面AMN ; (3)求二面角D-AC-M 的余弦值。
6、如图,在四棱锥P-ABCD 中,底面ABCD 是边长为2的正方形,侧面PAD ⊥底面ABCD,且PA=PD=22AD,E 、F 分别为PC 、BD 的中点. 求证:(1) 求证:EF ∥平面PAD; (2) 求证:平面PAB ⊥平面PDC;(3) 在线段AB 上是否存在点G,使得二面角C-PD-G 的余弦值为31?说明理由.7、如图,在四棱柱ABCD-A1B1C1D1中,底面ABCD是等腰梯形,∠DAB=60°,AB=2CD=2,M是线段AB的中点。
(1)求证:C1M∥平面A1ADD1;(2)若CD1垂直于平面ABCD且CD1=3,求平面C1D1M和平面ABCD所成的角(锐角)的余弦值。
8、如图,在四棱锥P﹣ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,E是PC的中点.(1)证明:PA∥平面EDB;(2)证明:BC⊥DE.9、三棱柱ABC﹣A1B1C1中,侧棱与底面垂直,∠ABC=90°,AB=BC=BB1=2,M,N分别是AB,A1C的中点.(Ⅰ)求证:MN||平面BCC1B1;(Ⅰ)求证:平面AMN⊥平面A1B1C.10、如图,在三棱锥P﹣ABC中,PA⊥PC,AB=PB,E,F分别是PA,AC的中点.求证:(1)EF∥平面PBC;(2)平面BEF⊥平面PAB.11、如图所示,四棱锥P﹣ABCD中,底面ABCD是矩形,PA⊥平面ABCD,点M,N分别是AB,PC的中点,且PA=AD(1)求证:MN∥平面PAD(2)求证:平面PMC⊥平面PCD.12、如图,在直三棱柱ABC﹣A1B1C1中,BC⊥AC,D,E分别是AB,AC的中点.(1)求证:B1C1∥平面A1DE;(2)求证:平面A1DE⊥平面ACC1A1.8、如图所示,P是四边形ABCD所在平面外的一点,四边形ABCD是∠DAB=60°且边长为a的菱形.△PAD为正三角形,其所在平面垂直于底面ABCD.若G为AD 边的中点,求证:平面PBG⊥平面PAD;9、如图所示,在四棱柱P-ABCD中,底面ABCD是边长为a菱形,且∠DAB=60°,侧面PAD为正三角形,其所在平面垂直于底面ABCD。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
又 BF GF F 平面 AD1E // 平面 BGF ……………6 分
(Ⅱ) AA1 2 AD1 A1A2 A1D12 5 ,同理 AE 2, D1E 3 AD12 D1E2 AE2 D1E AE ……………9 分
AC BD, AC D1D AC 面 BD1 又 D1E 平面BD1 , AC D1E
A
B
图6
C
B
E
F
图(1) A
A'
C
B
EF图ຫໍສະໝຸດ (2)12.如图所示是一个几何体的直观图、 正视图、俯视图和侧视图 C 尺寸
如图 所示)。
(Ⅰ)求四棱锥 P ABCD 的体积; (Ⅱ)若 G为BC 上的动点,求证: AE PG 。
13.如图,四边形 ABCD为矩形, DA 平面 ABE , AE EB BC 2 , BF 平面 ACE 于点 F , 且点 F 在 CE 上. (Ⅰ)求证: AE BE ; (Ⅱ)求三棱锥 D AEC 的体积; (Ⅲ)设点 M 在线段 AB 上,且满足 AM 2MB , 试在线段 CE 上确定一点 N ,使得 MN // 平面 DAE .
1 6
.
VABC A1B1C1
1 AB 11 1, 2
AB 2
.
………………………(7 分)
又 AC AB, AA1 AC 且 C1A1 平面 ABB1A, BB1 AB ,
V 由 P AB1C1
VC1PAB1
1 6
,
知1S 3
PAB1
C1A1
11 32
PA BB1
1 1 PA1 32
的中点,点 E 在 CD 上移动。
(1)
求三棱锥 E PAB体积;
(2)
当点 E 为 CD 的中点时,试判断 EF 与
平面 PAC 的关系,并说明理由;
(3)
求证: PE AF
P
A B
F
D E C
9.如图所示,四棱锥 P ABCD 中,底面 ABCD 为正方形, PD 平面 ABCD , PD AB 2 , E , F ,G 分别为 PC 、 PD 、 BC 的中点.
D
C
F
A
·M
B
E
(19 题图)
14.已知四棱柱 ABCD A1B1C1D1 的三视图如图所示.
A1
D1
A1
B1
(1)画出此四棱柱的直观图,并求出四棱柱的 体积;
22
(2)若 E 为 AA1 上一点, EB // 平面 A1CD ,
A
DA
B
试确定 E 点位置,并证明 EB 平面 AB1C1D
正视图
D G A
D1
A1
C1 B1
E C
B
C1 B1
D
A
E
C B
3.如图所示,在三棱柱 ABC A1B1C1 中, AA1 平面 ABC, ACB 90 , AB 2 BC 1 AA1 3 .
(Ⅰ)求三棱锥 A1 AB1C1 的体积;
A
A1
(Ⅱ)若 D 是棱 CC1 的中点,棱 AB 的中点为 E ,
形 BED1F 为平行四边形 D1E // BF 又 D1E 平面AD1E, BF 平面AD1E BF // 平面 AD1E ……………3 分 又 G 是棱 DA 的中点GF // AD1 又 AD1 平面AD1E,GF 平面AD1E
D1
A1
F
D G A
C1 B1
E C
B
GF // 平面 AD1E ……………5 分
证明: DE // 平面AB1C1
C B
D C1
B1
4.如图,在棱长均为 2 的三棱柱 ABC DEF 中,设侧面四边形 FEBC 的两对角线相交于 O ,若 BF ⊥平面 AEC ,
AB AE .
D
A
(1) 求证: AO ⊥平面 FEBC ; (2) 求三棱锥 B DEF 的体积.
F
C
O
E
B
D A
E C B
2
2
1 正视图
1 侧视图
1
1 俯视图
18、如图,已知 AB 平面 ACD ,DE 平面 ACD ,△ ACD 为等边三角形, AD DE 2AB ,F 为 CD 的
中点.
(1) 求证: AF // 平面 BCE ; (2) 求证:平面 BCE 平面 CDE ;
B E
A
(3) 求直线 BF 和平面 BCE 所成角的正弦值.
侧视图
A
D
2
2
B1 C
俯视图
15.如图是以正方形 ABCD 为底面的正四棱柱被一平面所截得的几何体,四边形 EFGH 为截面,且 AB AD a ,
BF DH b . (Ⅰ)证明:截面四边形 EFGH 是菱形;
H
G
(Ⅱ)求三棱锥 F ABH 的体积.
F E
D C
A
16.正方形 ABCD 中,AB=2,E 是 AB 边的中点,F 是 BC 边上一点,将△AED 及 DCF 折起(如下图),使 A、C 点重合于 A’点.
计算得 AO= 2 , EFB 的面积等于正方形 BCFE 的一半 2 ,
……………12 分
因此
VBDEF
12 3
2 2 3
2
……………14 分
5. 解:(Ⅰ)证明:连结 AC1 , 侧棱 AA1 底面 ABC,
AA1 AB 又 AB AC .AB 平面 A1ACC1 .
又 CA1 平面 A1ACC1 , AB CA1 . ………(3 分)
=1,另一个侧面是正三角形 (1)求证:AD︿BC (2)在直线 AC 上是否存在一点 E,使 ED 与面 BCD 成 30角?若存在确定 E 的位置;若不存在,说明理由。
A
B
立体几何参考答案
1. 证明:(Ⅰ) E, F 分别是棱 BB1, DD1 中点 BE // D1F且BE D1F 四边
D C
∴ 点 E 到 A1C 的距离
d
53
2
,有: S A1EC
1 2
A1C d
6
S A1EB
1 2
EB
A1 A 1 ,
又由VBA1EC VCA1EB , 设点 B 到平面 A1EC 的距离为 h ,
则
1 3
S A1EC
h
1 3
S A1EB
CB
,有
6h 2,h
6 3
,
所以点
B 到平面 A1EC 的距离为
若存在,指出点 E 的位置并加以证明;若不存在,请说明理由.
C
D
11.
如图(1),ABC是等腰直角三角形, AC BC 4,ACB 90, E, F分别是AC, AB的 中点, 将A E F折起, 使点A到达A位置, 且A在平面B CE F上的射影恰为点E, 如图(2). . (1) 求证EF AC; (2) 求点F到平面ABC的距离.
AC AA1 1, 四边形 A1ACC1 为正方形, AC1 CA1 .
AC1 AB A , CA1 平面 AC1B . …………………………(5 分)
又 C1P 平面 AC1B ,CA1 C1P . …………………………………(6 分)
(Ⅱ)设在线段
AB 上存在一点 P ,使VPAB1C1
C
D F
19、如图,四棱锥 P—ABCD 中,底面四边形 ABCD 是正方形,侧面 PDC 是边长为 a 的正三角形,且平面 PDC⊥底面
ABCD,E 为 PC 的中点。
(I)求异面直线 PA 与 DE 所成的角;
(II)求点 D 到面 PAB 的距离.
20.如图,在三棱锥 A-BCD 中,侧面 ABD、ACD 是全等的直角三角形,AD 是公共的斜边,且 AD= 3 ,BD=CD
1 6
,
解得 PA 1,存在
AB 的中点 P ,使VPAB1C1
1 6
. ……………(12 分)
6. 解:(1)证明:因为主视图和侧视图均为矩形,所以该三棱柱为直三棱柱……1 分
又∵俯视图中 A1C1=3,B1C1=4,A1B1=5 ∴A1C12+B1C12=A1B12
∴∠A1C1B1=∠ACB=90°
∴平面 EFD 平面 AB1C1 .∵ DE 平面 EFD ,∴ DE 平面 AB1C1 . ------12 分
4. (1)证明:∵ BF ⊥平面 AEC ,而 AO 平面 SEC ∴ BF ⊥ AO ………2 分
∵ AE AB , AB AC ∴ AE AC ,而 BCFE 为菱形,则 O 为 EC 中点,
∴ AO ⊥ EC , 且 BF EC O ∴ AO ⊥平面 BCFE .………6 分
(2) DA∥ BE , BE BCFE DA ∥平面 BCFE
∴点 D 、 A 到面 BCFE 的距离相等
………8 分
VBDEF VDBEF VABEF ∵ AE AB ,AO=AO
∴ AOE≌ AOB,得 OE=OB ,即 EC=FB,而 BCFE 为菱形,则 BCFE 是正方形,
B
△
(1)证明:A’D EF; (2)当 BF= 1 BC 时,求三棱锥 A’一 EFD 的体积. 4
17、已知四棱锥 P ABCD 的三视图如下图所示, E 是侧棱 PC 上的动点. (1) 求四棱锥 P ABCD 的体积; (2) 是否不论点 E 在何位置,都有 BD AE ?证明你的结论; (3) 若点 E 为 PC 的中点,求二面角 D AE B 的大小. P
(1)求证:PA//平面 EFG ; (2)求证: GC 平面PEF ;
(3)求三棱锥 P EFG 的体积.
10.如图 6,已知四棱锥 P ABCD中, PA⊥平面 ABCD, ABCD是直角梯形, AD// BC , BAD=90º,