单片机数字电压表课程设计

合集下载

单片机课程设计数字电压表

单片机课程设计数字电压表

单片机课程设计——电压表的设计学院:信子信息工程学院专业:电子信息工程技术班级:电子信息工程技术二班学号:11137241** 11137241**姓名: *** ****目录1 引言 (1)2设计原理及要求 (2)2.1数字电压表的实现原理 (2)2.2数字电压表的设计要求 (2)3软件仿真电路设计 (2)3.1设计思路 (2)3.2仿真电路图 (3)3.3设计过程 (3)3.4 AT89C51的功能介绍 (4)3.4.1简单概述 (4)3.4.2主要功能特性 (5)3.4.3 AT89C51的引脚介绍 (5)3.5 ADC0809的引脚及功能介绍 (7)3.5.1芯片概述 (7)3.5.2 引脚简介 (7)3.5.3 ADC0809的转换原理 (8)3.6 74LS373芯片的引脚及功能 (8)3.6.1芯片概述 (8)3.6.2引脚介绍 (9)3.7 LED数码管的控制显示 (9)3.7.1 LED数码管的模型 (9)LED数码管模型如图3-6所示。

(9)3.7.2 LED数码管的接口简介 (9)4系统软件程序的设计 (9)4.1 主程序 (10)4.2 A/D转换子程序 (11)4.3 中断显示程序 (12)5使用说明与调试结果 (13)6总结 (13)参考文献................................ 错误!未定义书签。

附录1 源程序 ........................... 错误!未定义书签。

附录2原理电路.......................... 错误!未定义书签。

1 引言在电量的测量中,电压、电流和频率是最基本的三个被测量,其中电压量的测量最为经常。

而且随着电子技术的发展,更是经常需要测量高精度的电压,所以数字电压表就成为一种必不可少的测量仪器。

数字电压表简称DVM,它是采用数字化测量技术,把连续的模拟量转换成不连续、离散的数字形式并加以显示的仪表。

基于单片机的数字电压表的课程设计

基于单片机的数字电压表的课程设计

基于单片机的数字电压表的课程设计一、引言在电子测量领域,电压表是一种常见且重要的测量工具。

传统的模拟电压表存在精度低、读数不直观等缺点,而数字电压表则凭借其高精度、高稳定性和直观的数字显示等优势,在电子测量中得到了广泛的应用。

本课程设计旨在基于单片机设计一款数字电压表,以实现对直流电压的准确测量和数字显示。

二、设计要求1、测量范围:0 5V 直流电压。

2、测量精度:优于 01V 。

3、显示方式:四位数码管显示。

4、具备超量程报警功能。

三、系统总体设计本数字电压表系统主要由单片机最小系统、A/D 转换模块、数码管显示模块和报警模块组成。

单片机最小系统作为控制核心,负责整个系统的运行和数据处理。

A/D 转换模块将输入的模拟电压转换为数字量,供单片机读取。

数码管显示模块用于显示测量的电压值。

报警模块在测量电压超过设定范围时发出报警信号。

四、硬件设计1、单片机最小系统选用 STC89C52 单片机,其具有性能稳定、价格低廉等优点。

最小系统包括单片机芯片、晶振电路和复位电路。

2、 A/D 转换模块采用 ADC0809 芯片进行 A/D 转换。

ADC0809 是 8 位逐次逼近型A/D 转换器,具有 8 个模拟输入通道,能够满足本设计的需求。

3、数码管显示模块使用四位共阳极数码管进行电压显示。

通过单片机的 I/O 口控制数码管的段选和位选,实现数字的显示。

4、报警模块采用蜂鸣器作为报警元件,当测量电压超过 5V 时,单片机输出高电平驱动蜂鸣器发声报警。

五、软件设计软件部分主要包括主程序、A/D 转换子程序、数据处理子程序和显示子程序等。

1、主程序负责系统的初始化,包括单片机端口设置、A/D 转换器初始化等。

然后循环调用 A/D 转换子程序、数据处理子程序和显示子程序,实现电压的测量和显示。

2、 A/D 转换子程序控制 ADC0809 进行 A/D 转换,并读取转换结果。

3、数据处理子程序将 A/D 转换得到的数字量转换为实际的电压值,并进行精度处理。

单片机课程设计——数字电压表

单片机课程设计——数字电压表

单片机预习报告--------------电压表一.题目分析根据题目要求,系统设计需要基于自动控制原理,实现电压量程的自动切换、数据采样、电压显示等功能。

主要来说,系统由信号调理电路、A/D转换电路、单片机控制系统、数码显示系统等几个模块组成。

二.系统总体设计与框图系统框图如图下图所示。

该过程是:首先通过系列比较器检测输入电压的极性与范围,单片机根据电压极性与范围对继电器阵列进行相应的动作,实现了输入量程的全自动转换。

经过调理后的电压信号由AD转换后送出数码显示。

系统总体设计与框图三.各模块方案1)A/D采样系统采用ADC08322)自动量程切换量程切换电路包括电压衰减变换电路和无零漂小信号放大电路。

智能数字电压表中关键技术之一为自动量程转换问题。

用单片机控制多组继电器进行量程切换。

特点是简单实用,缺点是机械噪声大。

3)电压检测为了实现对输入的微小信号或大信号进行精确测量,我们拟采用信号放大或衰减预处理电路,即需要对被测量电压的极性、范围进行判断和确定,从而将被测电压的基本信息传递给单片机系统。

用多组比较器进行电压范围的分段检测,实现对输入电压的粗略测量。

为了粗略地得到被测量的电压范围采用多组比较器的方式,通过阶梯式比较的方法确定输入电压的范围。

4)显示部分采用LED数码管动态扫描显示。

采用3个位LED动态扫描显示的优点是能改善外部信号对显示的干扰,但单片机在工作时要求CPU不停地对LED更新,这将会降低系统的运行速度,且占用资源比较多。

5)信号调理模块该部分主要实现的功能是自动量程切换和电压变换,模块主要由电压极性检测电路、电压范围粗测电路、电压变换电路、继电器模块四部分组成。

7)继电器模块单片机是一个弱电器件,一般情况下它们大都工作在5V甚至更低.驱动电流在mA级以下.而要把它用于一些大功率场合,比如控制电动机,显然是不行的.所以,就要有一个环节来衔接,这个环节就是所谓的"功率驱动".继电器驱动就是一个典型的、简单的功率驱动环节.在这里,继电器驱动含有两个意思:一是对继电器进行驱动,因为继电器本身对于单片机来说就是一个功率器件;还有就是继电器去驱动其他负载,比如继电器可以驱动中间继电器,可以直接驱动接触器,所以,继电器驱动就是单片机与其他大功率负载接口.四.元件清单五.程序设计程序流程图如下。

单片机课程设计报告数字电压表

单片机课程设计报告数字电压表

单片机课程设课题名称:数字电压表课程原理:1、模数转换原理:试验中,我们选用ADC0809作为模数转换的芯片,其为逐次逼近式AD转换式芯片,其工作时需要一个稳定的时钟输入,根据查找资料,得到ADC0809的时钟频率在10KHZ~1200KHZ,我们选择典型值640KHZ。

课题要求测量电压范围是0到5V,又ADC0809的要求:V ref+<=Vcc,V ref->=GND,故我们取V ref+=+5V,V ref-=0V。

由于ADC0809有8个输入通道可供选择,我们选择IN0通道,直接使ADC0809的A、B、C接地便可以了,在当ADC0809启动时ALE引脚电平正跳变时变可以锁存A、B、C 上的地址信息。

ADC0809可以将从IN0得到的模拟数据转换为相应的二进制数,由于ADC0809输出为8位的二进制数,转换时将0到5V分为255等分,所以我们可以得到转换公式为x/255*5化简为:x/51,x为得到的模拟数据量,也就是直接得到的电压量。

在AD转换完成后,ADC0809将在EOC引脚上产生一个8倍于自身时钟周期的正脉冲,以此来作为转换结束的标志。

然后当OE引脚上产生高电平时,ADC0809将允许转换完的二进制数据输出。

2、数据处理原理:由ADC0809的转换原理可以知道我们从其得到数据还只是二进制数据,我们还需要进一步处理来的到x的十进制数,并且对其进行精度处理,也就是课题要求的的精确到小数点后两位,在这里我们用51单片机对数据进行处理。

我们处理数据的思路是:首先将得到的二进制数直接除以十进制数51,然后取整为x的整数部分,然后就是将得到的余数乘以10,然后再除以51,再取整为x的十分位,最后将得到的余数除以5得到x的百分位。

3、数据显示原理:试验中我们用到四位一体的七段数码管,所以我们只能考扫描显示来完成数码管对x的显示,我们用的是四位数码显示管,但是x只是三位的,故我们将将第四位显示为单位U,通过程序的延时,实现四位数码管的稳定显示。

单片机课程设计 数字电压表

单片机课程设计 数字电压表

一目的和意义 (2)二任务和要求 (2)1、设计任务 (2)2、设计要求 (2)三设计思路 (2)四、系统结构框图与工作原理 (2)1、系统结构框图 (2)2、工作原理 (3)五、硬件介绍 (3)1、单片机系统 (3)2、ADC0808主要特性 (5)ADC0808的外部引脚特征: (5)3、ADC0808的内部结构及工作流程 (7)六、复位电路和时钟电路 (8)1、复位电路设计 (8)2、时钟电路设计 (8)七LED显示系统设计 (9)1、 LED基本结构 (9)2、LED显示器的选择 (9)3、 LED译码方式 (9)4、LED显示器与单片机接口间的设计 (10)八、A/D转换电路和测量电路的设计 (11)九、程序设计 (12)1、程序设计总方案 (12)2、系统子程序设计 (12)十、使用说明与调试结果 (14)十一、总结 (15)参考文献 (16)附一系统原理图 (17)附二程序清单 (18)一目的和意义《单片机原理与接口技术》课程设计是在完成《单片机原理及其接口技术》的理论教学之后安排的一个实践教学环节。

《单片机原理与接口技术》课程设计是学习单片机理论的重要实践环节。

在单片机课程基础上,通过本课程设计的学习使学生增进对单片机的感性认识,加深对单片机理论方面的理解;使学生了解和掌握单片机应用系统软件的软硬件设计工程、方法及实现,强化单片机应用电路的设计与分析能力。

提高学生在单片机应用方面的实践技能和科学作风,培养学生综合运用理论知识解决问题的能力。

二任务和要求1、设计任务基于MCS-51系列单片机AT89C51,设计一个能测量0~5V直流电压的数字电压表2、设计要求(1)选用A/D转换器ADC0808,测定0——+5V范围内的直流电压值。

(2)采集的数据送四位数码管实时显示。

(3)实现多路电压循环测量和循环显示。

三设计思路1、根据设计要求,选择AT89C51单片机为核心控制器件。

2、A/D转换采用ADC0808实现,与单片机的接口为P0口和P2口。

单片机数字电压表课程设计报告

单片机数字电压表课程设计报告

单片机数字电压表课程设计报告单片机数字电压表课程设计报告摘要:本次课程设计采用单片机来实现数字电压表的设计,通过对市场上常见单片机的选型和开发工具的使用,实现了数字电压表的硬件和软件设计。

该数字电压表具有分辨率高、测量精度高、响应速度快等特点,可广泛应用于测量高压、低压、直流电压等领域。

关键词:单片机、数字电压表、驱动电路、计数器一、课程设计目的本次课程设计旨在让学生了解数字电压表的设计方法和原理,通过使用单片机来实现数字电压表的设计,提高学生的实践能力和创新能力。

同时,通过本次课程设计,还可以让学生了解单片机的使用方法和开发工具的使用,加深对单片机应用的理解。

二、课程设计内容本次课程设计采用单片机来实现数字电压表的设计,具体包括以下内容:1. 对市场上常见单片机的选型和开发工具的使用。

2. 设计数字电压表的硬件电路,包括驱动电路、计数器、计数器清零电路等。

3. 设计数字电压表的软件电路,包括计数器清零程序、计数器累加程序、显示程序等。

4. 将数字电压表与单片机连接,进行测试和调试。

三、课程设计原理数字电压表的设计原理是利用单片机的计数器来实现对电压值的计数和显示。

单片机通过外部时钟信号来控制计数器的计数频率,将计数器的计数值累加到显示寄存器中,从而实现对电压值的显示。

同时,通过对电压值的测量和计算,可以实现对高压、低压、直流电压的测量和显示。

四、课程设计步骤1. 对市场上常见单片机的选型和开发工具的使用。

2. 设计数字电压表的硬件电路,包括驱动电路、计数器、计数器清零电路等。

3. 设计数字电压表的软件电路,包括计数器清零程序、计数器累加程序、显示程序等。

4. 将数字电压表与单片机连接,进行测试和调试。

五、课程设计成果通过本次课程设计,学生可以独立完成数字电压表的硬件和软件设计,掌握单片机的应用和开发技巧,提高实践能力和创新能力。

同时,学生还可以根据实际应用需求,对数字电压表进行改进和创新,提高其实用性和市场竞争力。

简易数字电压表单片机课程设计

简易数字电压表单片机课程设计

一、设计任务与要求1、设计任务:简易数字电压表的设计2、设计要求:1)0—5V电压2)8路输入电压3)4位LED或LCD显示4)结果按十进制显示,芯片自选。

二、硬件硬件框图与说明(元件选择依据即功能说明)根据MUC-8088/8086H单片机的内部结构特点本文提出以MCS-51单片机为核心的电压测量系统。

该系统以8088/8086和ADC0809核心内件,能够在单片机的控制下监测八路的输入电压值,用8位串行A/D转换器进行0-5V量程自动转换,并且测量的电压值可通过四位数码管。

整个系统的设计过程中主要采用了模块化的设计方法,完成了硬件电路的设计及软件程序的编写,还详细的给出了相关的硬件框图和软件流程图,通过最终硬件电路的调试,使该系统能够在要求的条件下达到正常的测量及显示功能。

单片机8088/8086是整个系统的核心,实现输入端的分路选择,模数转换后数据的处理及在数码管上数据的显示等功能。

正文着重给出了软硬件系统的各部分电路,介绍了该系统的工作原理,MCS-51单片机特点,8088/8086的功能和应用,ADC0809的功能和应用等。

芯片介绍1)8051芯片8051是在8031的基础上,片内集成有4K ROM,作为程序存储器,是一个程序不超过4K字节的小系统。

ROM内的程序是公司制作芯片时,代为用户烧制的,出厂的8051都是含有特殊用途的单片机。

所以8051适合与应用在程序已定,且批量大的单片机产品中。

8051单片机简介8051单片机是把那些作为控制应用所必需的基本内容都集成在一个尺寸有限的集成电路芯片上[2]。

如果按功能划分,它由如下功能部件组成,即中央处理器、程序存储器(ROM)、数据存储器(RAM)、定时/计数器、并行接口、串行接口、中断系统和时种电路,其基本结构依旧是CPU加上外围芯片的传统结构模式。

但对各种功能部件的控制是采用特殊功能寄存器的集中控制方式。

8051单片机的硬件结构具有功能部件种类全,功能强等特点。

单片机电压表课程设计

单片机电压表课程设计

单片机电压表课程设计一、课程目标知识与理解目标:使学生掌握单片机电压表的基本工作原理,理解单片机在电压测量中的应用;掌握相关电路的搭建与调试方法,了解程序设计在电压表制作中的重要性。

技能目标:培养学生运用单片机进行电压测量的实际操作能力,能够独立完成电压表的硬件搭建和软件编程;提高学生的问题分析和解决能力,使其能够在实际应用中灵活调整和优化电压表的设计。

情感态度价值观目标:激发学生对单片机及电子制作的兴趣,培养其创新意识和团队合作精神;引导学生认识到科学技术在实际生活中的应用价值,增强其社会责任感和使命感。

课程性质分析:本课程属于电子技术领域,结合单片机技术,注重实践操作和理论知识相结合,旨在提高学生的实际动手能力和问题解决能力。

学生特点分析:针对高中年级学生,已具备一定的电子基础和编程能力,对新鲜事物充满好奇,具备较强的自主学习意愿。

教学要求:结合学生特点和课程性质,注重理论与实践相结合,强调学生在实际操作中发现问题、解决问题;关注学生的个体差异,提供有针对性的指导,确保每位学生都能达到课程目标。

1. 解释单片机电压表的工作原理,并阐述其在实际应用中的作用。

2. 独立完成单片机电压表的硬件搭建和软件编程,实现电压的准确测量。

3. 分析并解决电压表制作过程中遇到的问题,优化设计方案。

4. 充分发挥团队合作精神,积极参与电子制作活动,提高自身的技术水平和创新能力。

5. 关注单片机技术在日常生活中的应用,认识到科技对社会的贡献,树立正确的价值观。

二、教学内容1. 理论知识:- 单片机基础:介绍单片机的组成、工作原理及特点。

- 电压测量原理:讲解电压测量的基本方法,包括模拟量采集、模数转换等。

- 程序设计:阐述C语言编程在单片机电压表制作中的应用。

2. 实践操作:- 硬件搭建:学会使用面包板、电阻、电容、传感器等元件搭建单片机电压表电路。

- 软件编程:学习编写单片机程序,实现电压的测量、显示和报警功能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一摘要数字电压表(Digital Voltmeter)简称DVM,它是采用数字化测量技术,把连续的模拟量(直流输入电压)转换成不连续、离散的数字形式并加以显示的仪表。

传统的指针式电压表功能单一、精度低,不能满足数字化时代的需求,采用单片机的数字电压表,由精度高、抗干扰能力强,可扩展性强、集成方便,还可与PC进行实时通信。

与此同时,由DVM扩展而成的各种通用及专用数字仪器仪表,也把电量及非电量测量技术提高到崭新水平。

数字电压表是诸多数字化仪表的核心与基础,电压表的数字化是将连续的模拟量如直流电压转换成不连续的离散的数字形式并加以显示,这有别于传统的以指针加刻度盘进行读数的方法, 避免了读数的视差和视觉疲劳。

目前数字电压表的内部核心部件是A/D转换器, 转换器的精度很大程度上影响着数字电压表的准确度,本文A/D转换器采用ADC0808对输人模拟信号进行转换, 控制核心AT89C51再对转换的结果进行运算和处理,最后驱动输出装置显示数字电压信号。

数字式电压表是由高阻抗电压表头与分压电路组成的。

数字式电压表头的等效输入电阻通常在200M欧以上,满量程时所流经的电流通常在1皮安左右。

以上述表头制成的数字式电压表,满量程时所流经的电流与量程有关,通常在1皮安至100微安之间。

数字电压表(数字面板表)是当前电子、电工、仪器、仪表和测量领域大量使用的一种基本测量工具有关数字电压表的书籍和应用已经非常普及了。

数字电压表的设计和开发,已经有多种类型和款式。

传统的数字电压表各有特点,它们适合在现场做手工测量,要完成远程测量并要对测量数据做进一步处理,传统数字电压表是无法完成的。

然而基于PC 通信的数字电压表,既可以完成测量数据的传递,又可借助PC,做测量数据的处理。

所以这种类型的数字电压表无论在功能和实际上,都具有传统数字电压表无法比拟的特点,这使得它的开发和应用具有良好的前景。

本系统用单片机AT89C51构成数字电压表控制系统, 具有精度高、速度快、性能稳定和电路简单且工作可靠等特点, 具有很好的使用价值。

关键词单片机;数字电压表;A/D转换;AT89C51;ADC0808二总体设计思路2.1 基本原理硬件采用单片机的P0输出数码管的7段码,P2口输出数码管的位控信号。

用P1的三个I/O管脚连接ADC转换器的接口,通过查询定时器T0中断标志是否有效来启动ADC转换器的工作,并读取ADC 转换器的转换结果。

然后,根据ADC转换器的参考电压将ADC转换器的转换结果计算为对应的电压值,并在数码管上显示出来。

2.2 设计思路硬件电路设计由6个部分组成; A/D转换电路,AT89C51单片机系统,LED显示系统、时钟电路、复位电路以及测量电压输入电路。

硬件电路设计框图如图2-1所示。

图2-1 简易数字电压表系统硬件设计框图三硬件设计3.1 A/D转换模块现实世界的物理量都是模拟量,能把模拟量转化成数字量的器件称为模/数转换器(A/D转换器),A/D转换器是单片机数据采集系统的关键接口电路,按照各种A/D芯片的转化原理可分为逐次逼近型,双重积分型等等。

双积分式A/D转换器具有抗干扰能力强、转换精度高、价格便宜等优点。

与双积分相比,逐次逼近式A/D转换的转换速度更快,而且精度更高,比如ADC0809、ADC0808等,它们通常具有8路模拟选通开关及地址译码、锁存电路等,它们可以与单片机系统连接,将数字量送到单片机进行分析和显示。

一个n位的逐次逼近型A/D 转换器只需要比较n次,转换时间只取决于位数和时钟周期,逐次逼近型A/D转换器转换速度快,因而在实际中广泛使用[1]。

3.1.1 逐次逼近型A/D转换器原理逐次逼近型A/D转换器是由一个比较器、A/D转换器、存储器及控制电路组成。

它利用内部的寄存器从高位到低位一次开始逐位试探比较。

转换过程如下:开始时,寄存器各位清零,转换时,先将最高位置1,把数据送入A/D转换器转换,转换结果与输入的模拟量比较,如果转换的模拟量比输入的模拟量小,则1保留,如果转换的模拟量比输入的模拟量大,则1不保留,然后从第二位依次重复上述过程直至最低位,最后寄存器中的内容就是输入模拟量对应的二进制数字量[5]。

其原理框图如图2所示:图3-1 逐次逼近式A/D转换器原理图3.1.2 ADC0808 主要特性ADC0808是CMOS单片型逐次逼近式A/D转换器,带有使能控制端,与微机直接接口,片内带有锁存功能的8路模拟多路开关,可以对8路0-5V输入模拟电压信号分时进行转换,由于ADC0808设计时考虑到若干种模/数变换技术的长处,所以该芯片非常适应于过程控制,微控制器输入通道的接口电路,智能仪器和机床控制等领域[5]。

ADC0808主要特性:8路8位A/D转换器,即分辨率8位;具有锁存控制的8路模拟开关;易与各种微控制器接口;可锁存三态输出,输出与TTL兼容;转换时间:128μs;转换精度:0.2%;单个+5V电源供电;模拟输入电压范围0- +5V,无需外部零点和满度调整;低功耗,约15mW[6]。

3.1.3 ADC0808的外部引脚特征ADC0808芯片有28条引脚,采用双列直插式封装,其引脚图如图3-2所示。

图3-2 ADC0808引脚图下面说明各个引脚功能:IN0-IN7(8条):8路模拟量输入线,用于输入和控制被转换的模拟电压。

ALE:地址锁存允许输入线,高电平有效,当ALE为高电平时,为地址输入线,用于选择IN0-IN7上那一条模拟电压送给比较器进行A/D 转换。

ADDA,ADDB,ADDC:3位地址输入线,用于选择8路模拟输入中的一路,其对应关系如图3-3所示:图3-3 ADC0808通道选择表START:START为“启动脉冲”输入法,该线上正脉冲由CPU送来,宽度应大于100ns,上升沿清零SAR,下降沿启动ADC工作。

EOC: EOC为转换结束输出线,该线上高电平表示A/D转换已结束,数字量已锁入三态输出锁存器。

D1-D8:数字量输出端,D1为高位。

OE:OE为输出允许端,高电平能使D1-D8引脚上输出转换后的数字量。

REF+、REF-:参考电压输入量,给电阻阶梯网络供给标准电压。

Vcc、GND: Vcc为主电源输入端,GND为接地端,一般REF+与Vcc 连接在一起,REF-与GND连接在一起.CLK:时钟输入端。

3.1.4 ADC0808的内部结构及工作流程ADC0808由8路模拟通道选择开关,地址锁存与译码器,比较器,8位开关树型A/D转换器,逐次逼近型寄存器,定时和控制电路和三态输出锁存器等组成,其内部结构如图3-4所示。

图3-4 ADC0808的内部结构其中:(1)8路模拟通道选择开关实现从8路输入模拟量中选择一路送给后面的比较器进行比较。

(2)地址锁存与译码器用于当ALE信号有效时,锁存从ADDA、ADDB、ADDC 3根地址线上送来的3位地址,译码后产生通道选择信号,从8路模拟通道中选择当前模拟通道。

(3)比较器,8位开关树型A/D转换器,逐次逼近型寄存器,定时和控制电路组成8位A/D转换器,当START信号有效时,就开始对当前通道的模拟信号进行转换,转换完成后,把转换得到的数字量送到8位三态锁存器,同时通过引脚送出转换结束信号。

(4)三态输出锁存器保存当前模拟通道转换得到的数字量,当OE信号有效时,把转换的结果送出。

ADC0808的工作流程为:(1)输入3位地址,并使ALE=1,将地址存入地址锁存器中,经地址译码器从8路模拟通道中选通1路模拟量送给比较器。

(2)送START一高脉冲,START的上升沿使逐次寄存器复位,下降沿启动A/D转换,并使EOC信号为低电平。

(3)当转换结束时,转换的结果送入到输出三态锁存器中,并使EOC 信号回到高电平,通知CPU已转换结束。

(4)当CPU执行一读数据指令时,使OE为高电平,则从输出端D0-D7读出数据。

3.2 单片机系统3.2.1 AT89C51性能AT89C51是美国ATMEL公司生产的低电压,高性能CMOS8位单片机,片内含有4KB的可反复擦写的只读程序存储器和128字节的随机存储器。

该器件采用ATMEL高密度非易失存储器制造技术制造,与工业标准的MCS-51指令集和输出管脚相兼容,由于将多功能8位CPU 和闪烁存储器组合在单个芯片中,ATMEL的AT89C51是一种高效微控制器,它为很多嵌入式控制系统提供了一种灵活性高且价廉的方案。

AT89C51功能性能:与MCS-51成品指令系统完全兼容;4KB可编程闪速存储器;寿命:1000次写/擦循环;数据保留时间:10年;全静态工作:0-24MHz;三级程序存储器锁定;128*8B内部RAM;32个可编程I/O口线;2个16位定时/计数器;5个中断源;可编程串行UART通道;片内震荡器和掉电模式[6]。

3.2.2 AT89C51各引脚功能AT89C51提供以下标准功能:4KB的Flash闪速存储器,128B内部RAM,32个I/O口线,两个16位定时/计数器,一个5向量两级中断结构,一个全双工串行通信口,片内震荡器及时钟电路,同时,AT89C51可降至0Hz静态逻辑操作,并支持两种软件可选的节电工作模式。

空闲方式停止CPU的工作,但允许RAM,定时/计数器,串行通信口及中断系统继续工作,掉电方式保存RAM中的内容,但震荡器停止工作并禁止其他所有工作直到下一个硬件复位。

AT89C51采用PDIP 封装形式,引脚配置如图3-5所示[7]。

图3-5引脚配置AT89C51芯片的各引脚功能为:P0口:这组引脚共有8条,P0.0为最低位。

这8个引脚有两种不同的功能,分别适用于不同的情况,第一种情况是89C51不带外存储器,P0口可以为通用I/O口使用,P0.0-P0.7用于传送CPU的输入/输出数据,这时输出数据可以得到锁存,不需要外接专用锁存器,输入数据可以得到缓冲,增加了数据输入的可靠性;第二种情况是89C51带片外存储器,P0.0-P0.7在CPU访问片外存储器时先传送片外存储器的低8位地址,然后传送CPU对片外存储器的读/写数据。

P0口为开漏输出,在作为通用I/O使用时,需要在外部用电阻上拉。

P1口:这8个引脚和P0口的8个引脚类似,P1.7为最高位,P1.0为最低位,当P1口作为通用I/O口使用时,P1.0-P1.7的功能和P0口的第一功能相同,也用于传送用户的输入和输出数据。

P2口:这组引脚的第一功能与上述两组引脚的第一功能相同即它可以作为通用I/O口使用,它的第一功能和P0口引脚的第二功能相配合,用于输出片外存储器的高8位地址,共同选中片外存储器单元,但并不是像P0口那样传送存储器的读/写数据。

P3口:这组引脚的第一功能和其余三个端口的第一功能相同,第二功能为控制功能,每个引脚并不完全相同,如下表2所示:表2 P3口各位的第二功能Vcc为+5V电源线,Vss接地。

相关文档
最新文档