计数原理教材分析ppt 人教课标版43页PPT

合集下载

人教A版高中数学选修2-3课件第一章计数原理章末专题整合.pptx

人教A版高中数学选修2-3课件第一章计数原理章末专题整合.pptx

例7 (1)(2013·高考江西卷)x2-x235 展开式中的常数项为
() A.80
B.-80
C.40
D.-40
(2)(2013·高考新课标全国卷Ⅰ)设 m 为正整数,(x+y)2m 展开
式的二项式系数的最大值为 a,(x+y)2m+1 展开式的二项式
系数的最大值为 b.若 13a=7b,则 m=( )
所以共有 2×(120+72+48)=480(种)排法.
【答案】 480
3.直接间接(直接法、间接法),灵活选择
例4 50件产品中有3件是次品,从中任意取4件,至少有一
件是次品的抽法有多少种?
【解】 法一(直接法):抽取的 4 件产品至少有一件次品分 为有 1 件次品、2 件次品、3 件次品 3 种情况:有 1 件次品 的抽法有 C13C347种;有 2 件次品抽法有 C23C247种;有 3 件次品 的抽法有 C33C147种. 根据分类加法计数原理,至少有一件次品的抽法共有 C13C347 +C23C247+C33C147=51 935(种). 法二(间接法):从 50 件产品中任意抽取 4 件,有 C450种抽法, 其中没有次品的抽法有 C447种,因此至少有 1 件次品的抽法 有 C450-C447=51 935(种).
空白演示
• 在此输入您的封面副标题
第一章 计数原理
章末专题整合
知识体系构建
专题归纳整合
专题一 两个计数原理
应用两个原理解决有关计数问题的关键是区分事件 是分类完成还是分步完成,而分类与分步的区别又在 于任取其中某一方法是否能完成该事件,能完成便是 分类,否则便是分步.对于有些较复杂问题可能既要 分类又要分步,此时应注意层次清晰,不重不漏,在分 步时,要注意上一步的方法确定后对下一步有无影响 (即是否是独立的).

分类加法与分步乘法计数原理-PPT

分类加法与分步乘法计数原理-PPT
(1)4+3+2=9(种)
(2)4×3×2=24(种)
20
典例讲评
例4 要从甲、乙、丙3幅不同的画 中选出2幅,分别挂在左、右两边墙上 的指定位置,求共有多少种不同的挂 法?
3×2=6(种)
21
课堂小结
1.分类加法计数原理和分步乘法计数
原理,都是解决完成一件事的方法数的
计数问题,其不同之处在于,前者是针
例2 某班有男生30名,女生24名, 现要从中选出男、女生各一名代表班 级参加朗诵比赛,求共有多少种不同 的选派方法?
30×24=720(种)
19
例3 书架有三层,其中第一层放有4本 不同的计算机书,第二层放有3本不同的 文艺书,第三层放有2本不同的体育书. (1)从书架上任取1本书,有多少种不 同的取法? (2)从书架的第一,二,三层各取1本 书,有多少种不同的取法?
33
开始
子模块1 18条执行路径
子模块2 45条执行路径
A
子模块3 28条执行路径
子模块4 38条执行路径
子模块5 43条执行路径
7371条
结束
178次
34
例5 随着人们生活水平的提高,某 城市家庭汽车拥有量迅速增长,汽车牌 照号码需要扩容.交通管理部门出台了一 种汽车牌照组成方法,每一个汽车牌照 都必须有3个不重复的英文字母和3个不 重复的阿拉伯数字,并且3个字母必须合 成一组出现,3个数字也必须合成一组出 现.那么这种办法共能给多少辆汽车上牌 照?
3种
N=5×4×3=60(种)
40
5. 用5种不同颜色给图中A,B,C,D四 个区域涂色,每个区域只涂一种颜色, 相邻区域的颜色不同,求共有多少种不 同的涂色方法?
54
A C3

( 人教A版)分类加法计数原理与分步乘法计数原理课件 (共27张PPT)

( 人教A版)分类加法计数原理与分步乘法计数原理课件 (共27张PPT)

3.商店里有上衣 15 种,裤子 18 种,某人要买一件上衣或一条裤子,共有________ 种不同的选法,要买上衣、裤子各一件,共有________种不同的选法. 解析:要买一件上衣或一条裤子只有 15+18=33 种;要买上衣、裤子各一件共有 15×18=270 种. 答案:33 270
探究一 分类加法计数原理
分类讨论思想解决排数问题 [典例] 用 0,1,2,3,4,5 可以组成多少个无重复数字且比 2 015 大的四位偶数? [解析] 解法一 按末位是 0,2,4 分为三类: 第一类,末位是 0 的有 4×4×3=48 个; 第二类,末位是 2 的有 3×4×3=36 个; 第三类,末位是 4 的有 3×4×3=36 个. 其中 2 014 不合题意,应去除, 由分类加法计数原理,得 N=48+36+36-1=119 个.
[双基自测] 1.一个科技小组有 3 名男同学,5 名女同学,从中任选一名同学参加学科竞赛,不同 的选派方法共有________种. 解析:任选一名同学参加学科竞赛不同的选派方法有 3+5=8 种. 答案:8
2.2016 年猴年春节晚会上,某一舞蹈节目共有 6 名男演员,6 名女演员.现选一男 演员,一女演员作为领舞演员,不同的选法种数为________. 解析:共有 6×6=36 种. 答案:36
选法;第 2 步,选长裤,从 3 条长裤中任选一条,有 3 种不同选法.故共有 4×3=
12 种不同的配法.
答案:B
3.已知集合 M={1,-2,3},N={-4,5,6,7},从两个集合中各取一个元素作为点的
坐标,则这样的坐标在直角坐标系中可表示第一、二象限内不同的点的个数是( )
A.18
B.17
应用分类加法计数原理的关键: 用分类加法计数原理计数,关键在于根据问题的特点确定一个适合它的分类标准在这 个分类标准下,完成这件事的任何一种方法只属于某一类,并且分别属于不同种类的 两种方法是不同的.

新教材2023高中数学第六章计数原理6.3二项式定理6.3.1二项式定理课件新人教A版选择性必修第三

新教材2023高中数学第六章计数原理6.3二项式定理6.3.1二项式定理课件新人教A版选择性必修第三
解:
-6
2 2
2 2
) =4C ,T2=C1 ( )n-1

4C2 +2C1 =162,所以 2C2 +C1 =81,
①T3=C2 (
n-2
2

依题意,得
所以 n2=81,n∈N*,故 n=9.
3
②设第 k+1 项含 x ,则
Tk+1=C9 (
)
9-k
9-3
2
k
中的 b,可得原式=(1-2)n=(-1)n.
答案: C
2.用二项式定理展开
-
解:
-
1 6
.

6
(-1)6
-1
1 6
= 3
=



1
= 3 [C60 x6(-1)0+C61 x5(-1)1+C62 x4(-1)2+C63 x3(-1)3+C64 x2(-1)4+

C65 x1(-1)5+C66 x0(-1)6]
②二项展开式中的字母 a,b 是不能交换的,即虽然(a+b)n 与
(b+a)n 结果相同,但(a+b)n 与(b+a)n 的展开式是有区别的,二者的
展开式中的项的排列顺序是不同的,不能混淆,如(a+b)3 的展开
式中第 2 项是 3a2b,而(b+a)3 的展开式中第 2 项是 3b2a,两者是不
同的.

1 10
+
的展开式中含 x4(当

3
2
数分别为C10
,C10
,

10-r 1

《1.1两个基本计数原理》精品PPT课件

《1.1两个基本计数原理》精品PPT课件

重要的.在目前学生如果遇到与计数有关问题,基本采用列

课 举法.











பைடு நூலகம்菜单
SJ ·数学 选修2-3












教 学 方 案 设 计
在初中概率学中也学过树状图,也可解决这种问题,但 当这个数很大时,都很难实施.结合本节教材及学生的认知 情况,本节课采用问题式、引导探究式为主的教学方法.本
当 堂 双 基 达 标
课 时 作 业
教 师 备 课 资 源
教 学 教 法 分 析
教 学 方 案 设 计
课 前 自 主 导 学
课 堂 互 动 探 究
菜单
SJ ·数学 选修2-3
易 错 易 误 辨 析
当 堂 双 基 达 标
课 时 作 业
教 师 备 课 资 源
教 学 教 法 分 析
教 学 方 案 设 计
当 堂 双 基 达 标
课 前
3.情感、态度与价值观




体会知识来源生活,并为生活服务的道理,激发了学生 作



学习数学的兴趣.体现数学实际应用和理论相结合的统一美.












菜单
SJ ·数学 选修2-3






法 分
●重点难点
误 辨


教 学 方 案 设 计

人教A版数学选修2-3《1.1计数原理》课件(共15张ppt)

人教A版数学选修2-3《1.1计数原理》课件(共15张ppt)
(4)某校高一有6个班,高二有8个班,从中选择1个班级 担任周一早晨的升旗任务,一共有多少种不同选法?
(5)某商场有6个门,某人从其中的任意一个门进入商场, 再从其他的门出去,共有多少种不同的进出商场的方式?
明计数之道——辨析理解 固化原理
问题5:分类加法计数原理与分步乘法计数 原理的相同点和不同点是什么?
完__成__一N__件=__m_事_1 _有 __mn_类2__不 __m_同3__方_种案不,同在的第方法 1类。方案中有m1
种不同的方法,在第2类方案中有m2种不同的方
法, 在第n类方案中有mn种不同的方法,那么
完成这件事共有_N_____m__1___m__2___ _____m__n___
巩固训练:
书架上第一层放有4本不同的计算机书,第 二层放有3本不同的文艺书,第三层放有2本不同 的体育书。若从第一,二,三层中各取1本书,有 多少种不同取法? 变解式:1:从若第从一书, 二架, 三上层任各取取1本1本书书,,有分多为少3个种步不骤同:取 法第?1步,从第一层取1本书,有4种不同的方法; 变第式22步:,若从从第书二架层上取取12本本书不,同有类3种 别不 的同 书的 ,方 有法多;少 种第不3同步取,法从?第三层取1本书,有2种不同的方法。
种不同的方法。
明计数之道——生活感知 初识原理
问题3:
(1) 小明先从北京到成都,飞机有4班,一天后再从成 都到重庆,火车有3班。小明乘坐这些交通工具从北京 经成都到重庆共有多少种不同的走法?
明计数之道——感知积累 再识原理
问题3:
(1) 小明先从北京到成都,飞机有4班,一天后再从成 都到重庆,火车有3班。小明乘坐这些交通工具从北京 经成都到重庆共有多少种不同的走法?

分类计数原理与分步计数原理 人教课标版精品课件

分类计数原理与分步计数原理 人教课标版精品课件
分步时做到不缺步
答:从书架上的第1、2、3层各取一本书,有24种不同的 取法。
例2 一种号码锁有4个拨号盘,每个拨号盘上有从0到9共 10个数字,这4个拨号盘可以组成多少个四位数字的号码?
解:由于号码锁的每个拨号盘有0到9这10个数字,每个 拨号盘的数字有10种取法。根据分步计数原理,4个拨 号盘上各取1数字组成的个数是
是( C ) A. 12
B.64
C.81
D.7
2、火车上有10名乘客,沿途有5个车站,乘客下车的
可能方式有 ( A )种
A. 510 B. 105 C. 50 D. 以上都不对
总结:
1.分类计数原理:做一件事,完成它可以有 n 类办法,在第一 类办法中有m1种不同的方法,在第一类办法中有m2种不同的方 法,… …,在第n类办法中有mn种不同的方法。那麽完成这件事 共有 N= m1+ m2+… …+ mn 种不同的方法。
大自然给予了我们很多美好的东西,只是我们自己却不知道去好好珍惜,只有当我们在失去后或者犯错了,我们才会去说后悔没有珍惜,希望能给一次机会重新来过,只是这样的重来真的还能重来吗?我们谁都不能去肯定,路,自己选择,自己走下去,也许有人给你使绊,也许有人会拉你一把,但终归还是需要自己去选择,自己亲自去走。人生经历太多,失败了、跌倒了,可以站起来继续走,如果走错了,可以选择正确的路,但我们如果放弃了,就有可能一直停留在那,多年以后,或许你已经被遗忘。
人,活着其实很累,在公司,上有可能需要讨好领导,下还需要和同事打好关系,回家需要处理好家庭的关系,交际需要维护好朋友自己的友谊,一不小心就有可能会各种质疑的话语,让我们心里、身体上背负着更重的压力。
也许经常有这样的场景,喧嚣的闹市,聚会上,热闹非凡,尽情的喝着酒,各种嘈杂,殊不知在心里巴不得这聚会早点结束就好,想着明天还要早起上班,想着家里的妻儿还在幽幽的盼着,而你自己也根本就不喜欢这样的场合,偶尔还可以,时间长了,你已经不知该怎样去选择。年纪越大,时间越来越少,身体越来越没以前那么能抗,而自己明白的事情却越来越迷茫,入夜时分,站在这个城市的中央,越来越觉得生活的选择已经不由的我们自己来做主,只剩下了莫名的伤感。

人教a版数学【选修2-3】第1章《计数原理》归纳总结ppt课件

人教a版数学【选修2-3】第1章《计数原理》归纳总结ppt课件

2.(2012·浙江理,6)若从1、2、3、„、9这9个整数中同
时取4个不同的数,其和为偶数,则不同的取法共有( A.60种 C.65种 [答案] D B.63种 D.66种 )
[解析] 本题考查了排列与组合的相关知识.取出的 4 个 数和为偶数,可分为三类.
4 2 2 四个奇数 C4 5,四个偶数 C4,二奇二偶,C5C4. 4 2 2 共有 C4 + C + C 5 4 5C4=66 种不同取法. [点评] 分类讨论思想在排列组合题目中应用广泛.
1 n n ③各二项式系数的和:C0 + C +„+ C = 2 . n n n
第一章
章末归纳总结
成才之路 · 高中新课程 · 学习指导 · 人教A版 · 数学 · 选修2-3
(4)解决二项式定理问题的注意事项
n-k k ①运用二项式定理一定要牢记通项 Tk+1=Ck a b ,注意(a n
+b)n 与(b+a)n 虽然相同, 但具体到它们展开式的某一项时是不 同的.另外,二项式系数与项的系数是两个不同概念,前者指
第一章
章末归纳总结
成才之路 · 高中新课程 · 学习指导 · 人教A版 · 数学 · 选修2-3
3.在(x2+x+1)(x-1)5的展开式中,含x4项的系数是(
)
A.-25
C.5 [答案] B
B.-5
D.25
[解析] (x2+x+1)(x-1)5=(x3-1)(x-1)4,其展开式中 x4
中任何一种方法都不能完成这件事情,只能完成事件的某一部
分,只有当各步全部完成时,这件事情才完成.
第一章 章末归纳总结
成才之路 · 高中新课程 · 学习指导 · 人教A版 · 数学 · 选修2-3
2.排列与组合 (1)排列与组合的定义
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档