对数函数及其性质课件ppt

合集下载

4.2.3对数函数的性质与图像课件——高中数学人教B版必修第二册

4.2.3对数函数的性质与图像课件——高中数学人教B版必修第二册

(2019·厦门检测)若函数 f(x)=ax+loga(x+1)在 [0,1]上的最大值和最小值之和为 a,则 a 的值等于________. 解析:当 0<a<1 时,因为 y=ax 在[0,1]上为减函数,y=loga(x +1)在[0,1]上也是减函数, 所以 f(x)在[0,1]上为减函数, 所以 f(x)max=f(0)=1,f(x)min=f(1)=a+loga2,于是 1+a+loga2 =a,
的性质
02 新知探究
对数值的大小比较
比较下列各组中两个值的大小. (1)ln 0.3,ln 2; (2)loga3.1,loga5.2(a>0,且 a≠1); (3)log30.2,log40.2; (4)log3π,logπ3.
【解】 (1)因为函数 y=ln x 是增函数,且 0.3<2, 所以 ln 0.3<ln 2. (2)当 a>1 时,函数 y=logax 在(0,+∞)上是增函数,又 3.1< 5.2,所以 loga3.1<loga5.2; 当 0<a<1 时,函数 y=logax 在(0,+∞)上是减函数,又 3.1 <5.2,所以 loga3.1>loga5.2.
2
所以 x∈(-1,0]时,y=log1(1-x2)是减函数; 2
同理当 x∈[0,1)时,y=log1(1-x2)是增函数. 2
故函数 y=log1(1-x2)的单调增区间为[0,1),且函数的最小值 2
ymin=log12(1-02)=0.
(1)求形如 y=logaf(x)的函数的单调区间,一定要树立定义域优 先意识,即由 f(x)>0,先求定义域. (2)求此类型函数单调区间的两种思路:①利用定义求证;②借 助函数的性质,研究函数 t=f(x)和 y=logat 在定义域上的单调 性,从而判定 y=logaf(x)的单调性.

人教A版高中数学必修第一册 对数函数的图像和性质 课件(2)(共27张PPT)

人教A版高中数学必修第一册 对数函数的图像和性质 课件(2)(共27张PPT)
(1)lg 6,lg 8;
(2)log0.56,log0.54;
(3)log 13 2 与 log 15 2;
(4)log23 与 log54.
解:(1)因为函数 y=lg x 在(0,+∞)上是增函数,且 6<8,
所以 lg 6<lg 8.
(2)因为函数 y=log0.5x 在(0,+∞)上是减函数,且 6>4,
性质?
2. 反函数的概念是什么?
要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。
知识清单
1.对数函数的图象及性质
a 的范围
0<a<1
a>1
0<a<1
a>1
图 象
a 的范围
(0,+∞)
定义域

值域
R
(1,0) ,即 x= 1 时,y= 0
质 定点
单调性 在(0,+∞)上是 减函数 在(0,+∞)上是 增函数
5
2
5
10
解题方法(对数函数图象的变化规律)
1.对于几个底数都大于1的对数函数,底数越大,函数图象向右的方向越接近x
轴;对于几个底数都大于0且小于1的对数函数,底数越大,函数图象向右的方向
越远离x轴.以上规律可总结成x>1时“底大图低”.实际上,作出直线y=1,它与各
图象交点的横坐标即为各函数的底数的大小,如图所示.
人教A版必修第一册
第四章 指数函数与对数函数
4.4.2 对数函数的图像和性质
课程目标
1、掌握对数函数的图象和性质,培养学生实际应用函
数的能力;
2、通过观察图象,分析、归纳、总结对数函数的性质;
3、在对数函数的学习过程中,体验数学的科学价值并
养成勇于探索的良好习惯.

高一数学课件:2.4 对数函数及其性质(新人教版必修1)

高一数学课件:2.4 对数函数及其性质(新人教版必修1)
2

3

返回
学点三 对数函数的图像 已知a> 且 的图像只能是( 已知 >0且a≠1,函数 ,函数y=ax与y=loga(-x)的图像只能是( ) 的图像只能是 【分析】应先由函数定义域判断图像的位置,再对底 分析】应先由函数定义域判断图像的位置, 进行讨论, 数a进行讨论,最后选出正确选项 进行讨论 最后选出正确选项. 【解析】解法一:首先 曲线 首先,曲线 解析】解法一 首先 曲线y=ax 只可能在上半平面,y=loga(-x)只 只可能在上半平面 只 可能在左半平面上,从而排除 从而排除A,C. 可能在左半平面上 从而排除 其次,从单调性着眼 其次 从单调性着眼,y=ax与 从单调性着眼 y=loga(-x)的增减性正好相反 又 的增减性正好相反,又 的增减性正好相反 可排除D. 可排除 故应选B. 故应选
单调性
当0<x<1时,y∈(0,+∞) 时 ∈ 函数值的 当 x=1 时,y=0; 变化规律 当 x>1 时, y<0.
当x=1时, y=0 ; 时 当x>1时, y>0 . 时
返回
学点一 比较大小 比较大小: 比较大小:
4 6 log 1 ,log 1 ; (1) ) 2 5 2 7
2) (2) 1 3, log 1 5 ; log
) (2) y = log 2 2 ) . - x + 2x + 2 (1)∵x2-4x+6=(x-2)2+2≥2,又∵y=log2x在(0,+∞)上是增 ∵ 又 在 上是增 函数, 函数
(x2-4x+6);
∴log2(x2-4x+6)≥log22=1. ∴函数的值域是[1,+∞). 函数的值域是[ (2) ∵-x2+2x+2=-(x-1)2+3≤3, 1 1 ∴ - x 2 + 2x + 2 <0或 - x 2 + 2x + 2 ≥ 1 . 或 1 3 1 ≥ log 2 ∴ 2 log - x + 2x + 2 1 3 ∴函数的值域是 log 2 ,+∞ ,

2017-2018学年高中数学必修一(北师大版)对数函数的图像和性质ppt课件(34张)

2017-2018学年高中数学必修一(北师大版)对数函数的图像和性质ppt课件(34张)

2
.
(2)要使函数有意义,必须且满足

2x+3>0 x-1>0 3x-1>0

解得
3x-1 0

x>

3 2
x>11 x>
3
2 3
x
因此,函数的定义域为 (1,+∞) .
学点三
求下列函数的值域: (1)y log (2)
y log
1 2 2
求值域
(-x
- 4x 12);
1 2
(x - 2x - 3);
又∵x2-2x-3>0,且y=log 1 x在(0,+∞)上是减函数,
∴y∈R,
2
∴函数的值域为实数集R.
求值域: (1)y=log2 (x2-4x+6); (2) y
log 1
2
-x
2
2x 2
.
(1)∵x2-4x+6=(x-2)2+2≥2,又∵y=log2x在(0,+∞)上是增 函数, ∴log2(x2-4x+6)≥log22=1. ∴函数的值域是[1,+∞). (2) ∵-x2+2x+2=-(x-1)2+3≤3,
5
1 3
0 . 3, log
2
0 .8 .
【分析】从对数函数单调性及图象变化规律入手.
【解析】(1)∵函数y=
log
6 7
1 2
x
在(0,+∞)上Байду номын сангаас减,又∵
log 4
1 2
4 5
,

5
log
6

对数函数的图像与性质【新教材】人教A版高中数学必修第一册PPT课件

对数函数的图像与性质【新教材】人教A版高中数学必修第一册PPT课件
例 求下列函数定义域
(3) f x lg x2 2x 9 x2 解:
(3)

x2 2x 0 9 x2 0

x 0或x 2 3 x 3

对数函数的图像与性质【新教材】人 教A版高 中数学 必修第 一册PP T课件
所以定义域为3,0 2,3
对数函数的图像与性质【新教材】人 教A版高 中数学 必修第 一册PP T课件
(1,0)
O
x
f(x)=logax (0<a<1)
(1) 定义域:(0,+∞),
(2) 值域:R,无最值
(3) 过点(1,0),即x=1时,y=0
(4) 在(0,+∞)上是增函数
性质 (5) 非奇非偶
(4) 在(0,+∞)上是减函数
对数函数的图像与性质【新教材】人 教A版高 中数学 必修第 一册PP T课件
y
分析:构造两个函数 y log0.5 x,y log2 x
c b
解题技巧
O
对数函数单调性应用——
a
数形结合、找中间值0或1等.
6.7
4.3 5.6
x
对数函数的图像与性质【新教材】人 教A版高 中数学 必修第 一册PP T课件
对数函数的图像与性质【新教材】人 教A版高 中数学 必修第 一册PP T课件
例6

loga
2 3
1
,则a的取值范围是A(
).
A.
0,
2 3
1,
B.
2 3
,1
C.
2 3
,
D.
0,
2 3
2 3
,
解:loga
2 3

2.2.2对数函数及其性质运算(1)课件

2.2.2对数函数及其性质运算(1)课件
注: 例2是利用对数函数的增减性比较两个对数的大 小的,对底数与1的大小关系未明确指出时,要分情况 对底数进行讨论来比较两个对数的大小.
练习1:
比较下列各题中两个值的大小:
⑴ log106 ⑵ log0.56 < log108 log0.54 < ⑶ log0.10.5 > log0.10.6 ⑷ log1.51.6 > log1.51.4
y log 1 x
y log 1 x
2
x
3
对数函数的图象与性质:
函数 底数
y
y = log a x ( a>0 且 a≠1 ) a>1
y 1
0<a<1
图象 定义域
o
1
x
o
x
(0,+∞)
(0,+∞)
值域 定点
值分布
R (1,0)
当 x>1 时,y>0 当 0<x <1 时, y<0
R (1,0)
⑵因为函数y=log0.3x在(0,+∞)上是减函数, 且1.8<2.7,所以log 0.31.8>log 0.32.7.
小结:对于同底不同真数的对数大小比较,应利 用对数函数的单调性判断大小。
⑶ loga5.1 , loga5.9 ( a>0 , a≠1 )
解:①当a>1时,函数y=log ax在(0,+∞)上是增函 数,于是log a5.1<log a5.9; ②当0<a<1时,函数y=log ax在(0,+∞)上是 减函数,于是log a5.1>log a5.9.
例2.比较下列各组数中两个值的大小: (1) log23.4 , log28.5; ⑵ log0.31.8, log0.32.7; ⑶ loga5.1 , loga5.9 (a>0,a≠1 ).

对数函数的性质与图像(对数函数图像及其性质的应用)(课件)-高一数学(人教B版2019必修第二册)

对数函数的性质与图像(对数函数图像及其性质的应用)(课件)-高一数学(人教B版2019必修第二册)

a>1
时,f(x)=loga
x+1 x-1
的单调递减区间为(-∞,-1),(1,+∞),无单调递增区间;当 0<a<1 时,f(x)
=loga xx+-11的单调递增区间为(-∞,-1),(1,+∞),无单调递减区间.
课堂练习 【训练 1】若 a=20.2,b=log43.2,c=log20.5,则( ) A.a>b>c B.b>a>c C.c>a>b D.b>c>a
课堂总结
对数型函数 y=logaf(x)性质的研究
(1)定义域:由 f(x)>0 解得 x 的取值范围,即为函数的定义域. (2)值域:在函数 y=logaf(x)的定义域中先确定 t=f(x)的值域,再由 y=logat 的单调性确定函数的值域.
(3)单调性:在定义域内考虑 t=f(x)与 y=logat 的单调性,根据同增异减法 则判定(或运用单调性定义判定).
(1)定义域:由 f(x)>0 解得 x 的取值范围,即为函数的定义域. (2)值域:在函数 y=logaf(x)的定义域中先确定 t=f(x)的值域,再由 y=logat 的单调性确定函数的值域.
(3)单调性:在定义域内考虑 t=f(x)与 y=logat 的单调性,根据同增异减法 则判定(或运用单调性定义判定).
常见题型:解对数不等式 【典例】若-1<loga34<1(a>0 且 a≠1),求实数 a 的取值范
围. 【解析】∵-1<loga34<1,∴loga1a<loga34<logaa.
当 a>1 时,0<1a<34<a,则 a>43;当 0<a<1 时,1a>34>a>0,

对数函数及其性质课件(第一课时)

对数函数及其性质课件(第一课时)

图象位于y轴右方
定义域 : ( 0,+∞)
图象向上、向下无限延伸 值 域 : R
自左向右看图象逐渐下降 在(0,+∞)上是:减函数
2.思考:对数函数:y = loga x (a>0,且a≠ 1) 图象随着a 的取值变化图象如何变化?有规律吗?
猜猜: 对数函数 y log 3 x和y log 1 x 的图象。
湖南省长沙市一中卫星远程学校
湖南省长沙市一中卫星远程学校
湖南省长沙市一中卫星远程学校
湖南省长沙市一中卫星远程学校
湖南省长沙市一中卫星远程学校
湖南省长沙市一中卫星远程学校
湖南省长沙市一中卫星远程学校
湖南省长沙市一中卫星远程学校
湖南省长沙市一中卫星远程学校
湖南省长沙市一中卫星远程学校
(0,+∞)
非奇非偶函数
非奇非偶函数
R ( 1 , 0 ) 即 x = 1 时,y = 0 在 ( 0 , + ∞ ) 上是增函数 在 ( 0 , + ∞ ) 上是减函数
当 x>1 时,y>0
当 x>1 时,y<0
当 0<x <1 时, y<0 当 0<x<1 时,y>0
名称
指数函数
对数函数
指 数
xR
(3).y
log 3
x 1 3x 1
解:x 1 0 ( x 1)(3x 1) 0 3x 1
x 1或x 1 x {x | x 1或x 1}
3
3
小结
(1)本节要求掌握对数函数的概念、 图象和性质. (2)在理解对数函数的定义的基础 上,掌握对数函数的图象和性质的 应用是本小节的重点.



我们研究指数函数时,曾讨论过细胞分裂问题:如
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档