Feasibility of Extracting V_td from Radiative B(B_s) Decays
bcc-Fe空位浓度对辐照损伤影响的分子动力学模拟

展 , 电关 键 材 料 的损 伤 机 理 也 得 到 了广 泛 的 研 究 。 核
能 劣 化 , 劣 化 的程度 由 多种 因素 决 定 , 中子 剂 量 、 其 如
温度、 中子 的 通 量 和 钢 材 料 中有 害杂 质 ( u P S等 ) C ,, 的 含量 。为 了确 保核 反 应 堆 的安 全 运 行 , 要 监 测 反 需 应堆 压力 容 器 ( V) 料 中子辐 照 引起 的脆 化 程 度 , RP 材
J r a f e s r sesa dPiig,2 0 ou n lo su eVe s l n pn Pr 0 2,7 8):6 6 6 9( 1 3 . 9
度 也加 快并 导致 最终 产生, 倩 .反 应 堆 压 力 容 器 模 拟 钢 中 富 Cu原 子 团簇 s 洪 彭
如 三维原 子探 针分 析 结 果 表 明 , 铜 原 子 团簇 的数 密 富
度为 1 捣m 数 量 级 , 铜 原 子 团 簇 的 直 径 在 1 0 富 ~ 3 m , 步建 立 了适用 于 国产 R V 辐照 脆化 预测 模 n 初 P
型 ; ad r C le 等用 分 子动力 学 模 拟 了 b cF 辐 照 级 联 c— e
空 位浓 度 的增加 , 联 过程 中产 生 的点 缺 陷湮 灭 的速 级
t erltdp tnil o h h r eeti meh d[] h e e oet s f etemolcr to J .ND a a t c T ̄E
I t r a i n l 0 4,3 ( ):3 3 4 n e n t a ,2 0 o 7 4 21 2.
Ab t a t s r c :The n u r r a i ton o t lma e i l o d ge e a e v rou f c s whih a e c u e e t on ir d a i n me a t ra s c ul n r t a i s de e t c r a s d by dipl c me a c d s s a e ntc s a e .The d s l c m e a c d s o u r n ir dito t a i a a c o i p a e ntc s a e fne t o r a a i n wih v rousv c n y c n— c n r to n b c Fe a e sm u a e y t e — i nso lmo e u a n m is m e h . The sm ulto e t a i ns i c — r i l t d b hr e d me i na l c l r dy a c t od i a in
大亚湾反应堆中微子实验进展

宇宙线事例的模拟
31
探测器模拟
42.5cm, 91%
灵敏度和靶总靶质量的关系
中子探测效率与集光层厚度的关系
4x20 吨
15cm
PMT对液闪中不同位去
• 去年以来顺利通过了一系列重要的评审 • 2007年3月, 土建初步设计评审 • 2007年4月, 核安全评审 • 2007年4月, 美国能源部CD-1评审会 • 2007年8月, 科技部对大亚湾项目初步设计报告进
• θ13目前最好的结果由Chooz给出, 而CP破坏的相位还没有任何测量。 • 大多数理论模型预言sin22q13 ~ 0.001-0.1 • θ13的精确测量 • 其结果将决定未来轻子区CP破坏的测量, 从而有可能解决宇宙中正反
物质的不对称之谜。 • 对标准模型的扩展提供更强的约束。
90%CL
At m231 = 2.5 103 eV2, sin22 < 0.15
逊分校 ,弗吉尼亚工学院和州立大学
~ 200位研究人员
中国 (18) 高能所,北师大, 成都理工大学,原子能
院,中广核,东莞理工学院,南京大 学,南开大学,山东大学,深圳大学 ,清华大学,中国科技大学,中山大 学, 香港大学,香港中文大学,台湾
大学,交通大学,联合大学
3
为什么是θ13
• 三味中微子振荡模型由三个混合角, 两个质量方差, 一个CP相位描述, θ13是混合角之一。
16
钢罐总体机械设计
尺寸重量受严格限制 足够的强度 接口复杂
电缆穿出 4m有机玻璃罐
反射板
最小元分析 应力分布
桶底与反射板
17
支撑平台与吊具
• 支撑平台 • 中心探测器在水池中的支撑平台已完成工程设计, 并招标。 • 要求支撑110吨探测器, 水平度可调至毫米量级(刻度装置要求) • 吊具 • 装配用35吨吊具, 安装用130吨吊具。 • 已完成概念设计和详细的技术要求文档, 将由专业公司设计生产 • 2008年2月底完成设计, 2008年6月底完成生产
卢希庭原子核物理课后习题答案

解:设质子密度均匀,匀速转动,则相应的角动量为:
∫ L=
∫
∫
ρr
2drdΩ.(rsinθ)2ω=∫0r0
∫π
0
∫ 2π
0
ρr2
drsin3
θdθdφr2
ω
=
8πρωr05 15
m=
4πρr2 3
=⇒ρ=
3m 4πr2
L=
2wmr02 5
=
√ 3 2
√
=µ=⇒∫r002=π σ[ 524πmr3ω0
]
t时间后衰变掉的原子数:n
=
mα M
NA
开始时的224Ra为1µg
一天衰变的原子数:n
=
0.172×10−6 224
×
6.02
×
1022
=
4.62
×
1014
十天衰变的原子数:n
=
0.849×10−6 224
×
6.02
×
1022
=
2.28
×
1015
2.2 已知222Rn的半衰期为3.824d,问1µCi和103Bq的222Rn的质量分别是多少?
I. 第一章 原子核的基本性质
1.1、实验测得某元素的特征Kα线的能量为7.88KEV,试求该元素的原子序数Z 解:由√ν=AZ-B E=Hν,其中E=7.88KEV,
1EV=1.602176462×10−19J ν=E/H=1.9×1018s−1
代入公式得Z≈29
1.2 用均匀磁场质谱仪,测量某一单电荷正离子,先在电势差为1000V的电场中加速。然后
N ln 2×18.25%m
T1/2
A
×
1.2
Study of B - rho pi decays at Belle

a r X i v :h e p -e x /0207007v 1 1 J u l 2002BELLEBelle Prerpint 2002-18KEK Preprint 2002-59Study of B →ρπdecays at BelleBelle Collaboration A.Gordon u ,Y.Chao z ,K.Abe h ,K.Abe aq ,N.Abe at ,R.Abe ac ,T.Abe ar ,Byoung Sup Ahn o ,H.Aihara as ,M.Akatsu v ,Y.Asano ay ,T.Aso aw ,V.Aulchenko b ,T.Aushev ℓ,A.M.Bakich an ,Y.Ban ag ,A.Bay r ,I.Bedny b ,P.K.Behera az ,jak m ,A.Bondar b ,A.Bozek aa ,M.Braˇc ko t ,m ,T.E.Browder g ,B.C.K.Casey g ,M.-C.Chang z ,P.Chang z ,B.G.Cheon am ,R.Chistov ℓ,Y.Choi am ,Y.K.Choi am ,M.Danilov ℓ,L.Y.Dong j ,J.Dragic u ,A.Drutskoy ℓ,S.Eidelman b ,V.Eiges ℓ,Y.Enari v ,C.W.Everton u ,F.Fang g ,H.Fujii h ,C.Fukunaga au ,N.Gabyshev h ,A.Garmash b ,h ,T.Gershon h ,B.Golob s ,m ,R.Guo x ,J.Haba h ,T.Hara ae ,Y.Harada ac ,N.C.Hastings u ,H.Hayashii w ,M.Hazumi h ,E.M.Heenan u ,I.Higuchi ar ,T.Higuchi as ,L.Hinz r ,T.Hokuue v ,Y.Hoshi aq ,S.R.Hou z ,W.-S.Hou z ,S.-C.Hsu z ,H.-C.Huang z ,T.Igaki v ,Y.Igarashi h ,T.Iijima v ,K.Inami v ,A.Ishikawa v ,H.Ishino at ,R.Itoh h ,H.Iwasaki h ,Y.Iwasaki h ,H.K.Jang a ℓ,J.H.Kang bc ,J.S.Kang o ,N.Katayama h ,Y.Kawakami v ,N.Kawamura a ,T.Kawasaki ac ,H.Kichimi h ,D.W.Kim am ,Heejong Kim bc ,H.J.Kim bc ,H.O.Kim am ,Hyunwoo Kim o ,S.K.Kim a ℓ,T.H.Kim bc ,K.Kinoshita e ,S.Korpar t ,m ,P.Krokovny b ,R.Kulasiri e ,S.Kumar af ,A.Kuzmin b ,Y.-J.Kwon bc ,nge f ,ai ,G.Leder k ,S.H.Lee a ℓ,J.Li ak ,A.Limosani u ,D.Liventsevℓ,R.-S.Lu z,J.MacNaughton k,G.Majumder ao, F.Mandl k,D.Marlow ah,S.Matsumoto d,T.Matsumoto au,W.Mitaroffk,K.Miyabayashi w,Y.Miyabayashi v,H.Miyake ae,H.Miyata ac,G.R.Moloney u,T.Mori d,T.Nagamine ar,Y.Nagasaka i,T.Nakadaira as,E.Nakano ad, M.Nakao h,J.W.Nam am,Z.Natkaniec aa,K.Neichi aq, S.Nishida p,O.Nitoh av,S.Noguchi w,T.Nozaki h,S.Ogawa ap, T.Ohshima v,T.Okabe v,S.Okuno n,S.L.Olsen g,Y.Onuki ac, W.Ostrowicz aa,H.Ozaki h,P.Pakhlovℓ,H.Palka aa,C.W.Park o,H.Park q,L.S.Peak an,J.-P.Perroud r, M.Peters g,L.E.Piilonen ba,J.L.Rodriguez g,F.J.Ronga r, N.Root b,M.Rozanska aa,K.Rybicki aa,H.Sagawa h,S.Saitoh h,Y.Sakai h,M.Satapathy az,A.Satpathy h,e,O.Schneider r,S.Schrenk e,C.Schwanda h,k,S.Semenovℓ,K.Senyo v,R.Seuster g,M.E.Sevior u,H.Shibuya ap,V.Sidorov b,J.B.Singh af,S.Staniˇc ay,1,M.Stariˇc m,A.Sugi v, A.Sugiyama v,K.Sumisawa h,T.Sumiyoshi au,K.Suzuki h,S.Suzuki bb,S.Y.Suzuki h,T.Takahashi ad,F.Takasaki h, K.Tamai h,N.Tamura ac,J.Tanaka as,M.Tanaka h,G.N.Taylor u,Y.Teramoto ad,S.Tokuda v,S.N.Tovey u,T.Tsuboyama h,T.Tsukamoto h,S.Uehara h,K.Ueno z, Y.Unno c,S.Uno h,hiroda h,G.Varner g,K.E.Varvell an,C.C.Wang z,C.H.Wang y,J.G.Wang ba,M.-Z.Wang z,Y.Watanabe at,E.Won o,B.D.Yabsley ba,Y.Yamada h, A.Yamaguchi ar,Y.Yamashita ab,M.Yamauchi h,H.Yanai ac,P.Yeh z,Y.Yuan j,Y.Yusa ar,J.Zhang ay,Z.P.Zhang ak,Y.Zheng g,and D.ˇZontar aya Aomori University,Aomori,Japanb Budker Institute of Nuclear Physics,Novosibirsk,Russiac Chiba University,Chiba,Japand Chuo University,Tokyo,Japane University of Cincinnati,Cincinnati,OH,USAf University of Frankfurt,Frankfurt,Germanyg University of Hawaii,Honolulu,HI,USAh High Energy Accelerator Research Organization(KEK),Tsukuba,Japani Hiroshima Institute of Technology,Hiroshima,Japanj Institute of High Energy Physics,Chinese Academy of Sciences,Beijing,PRChinak Institute of High Energy Physics,Vienna,Austria ℓInstitute for Theoretical and Experimental Physics,Moscow,Russiam J.Stefan Institute,Ljubljana,Slovenian Kanagawa University,Yokohama,Japano Korea University,Seoul,South Koreap Kyoto University,Kyoto,Japanq Kyungpook National University,Taegu,South Korear Institut de Physique des Hautes´Energies,Universit´e de Lausanne,Lausanne,Switzerlands University of Ljubljana,Ljubljana,Sloveniat University of Maribor,Maribor,Sloveniau University of Melbourne,Victoria,Australiav Nagoya University,Nagoya,Japanw Nara Women’s University,Nara,Japanx National Kaohsiung Normal University,Kaohsiung,Taiwany National Lien-Ho Institute of Technology,Miao Li,Taiwanz National Taiwan University,Taipei,Taiwanaa H.Niewodniczanski Institute of Nuclear Physics,Krakow,Polandab Nihon Dental College,Niigata,Japanac Niigata University,Niigata,Japanad Osaka City University,Osaka,Japanae Osaka University,Osaka,Japanaf Panjab University,Chandigarh,Indiaag Peking University,Beijing,PR Chinaah Princeton University,Princeton,NJ,USAai RIKEN BNL Research Center,Brookhaven,NY,USAaj Saga University,Saga,Japanak University of Science and Technology of China,Hefei,PR ChinaaℓSeoul National University,Seoul,South Koreaam Sungkyunkwan University,Suwon,South Koreaan University of Sydney,Sydney,NSW,Australiaao Tata Institute of Fundamental Research,Bombay,Indiaap Toho University,Funabashi,Japanaq Tohoku Gakuin University,Tagajo,Japanar Tohoku University,Sendai,Japanas University of Tokyo,Tokyo,Japanat Tokyo Institute of Technology,Tokyo,Japanau Tokyo Metropolitan University,Tokyo,Japanav Tokyo University of Agriculture and Technology,Tokyo,Japanaw Toyama National College of Maritime Technology,Toyama,Japanay University of Tsukuba,Tsukuba,Japanaz Utkal University,Bhubaneswer,Indiaba Virginia Polytechnic Institute and State University,Blacksburg,VA,USAbb Yokkaichi University,Yokkaichi,Japanbc Yonsei University,Seoul,South KoreaB events collected with the Belle detector at KEKB.Thebranching fractions B(B+→ρ0π+)=(8.0+2.3+0.7−2.0−0.7)×10−6and B(B0→ρ±π∓)=(20.8+6.0+2.8−6.3−3.1)×10−6are obtained.In addition,a90%confidence level upper limitof B(B0→ρ0π0)<5.3×10−6is reported.Key words:ρπ,branching fractionPACS:13.25.hw,14.40.Nd1on leave from Nova Gorica Polytechnic,Nova Gorica,Sloveniamodes are examined.Here and throughout the text,inclusion of charge con-jugate modes is implied and for the neutral decay,B0→ρ±π∓,the notation implies a sum over both the modes.The data sample used in this analysis was taken by the Belle detector[9]at KEKB[10],an asymmetric storage ring that collides8GeV electrons against3.5GeV positrons.This produces Υ(4S)mesons that decay into B0B pairs.The Belle detector is a general purpose spectrometer based on a1.5T su-perconducting solenoid magnet.Charged particle tracking is achieved with a three-layer double-sided silicon vertex detector(SVD)surrounded by a central drift chamber(CDC)that consists of50layers segmented into6axial and5 stereo super-layers.The CDC covers the polar angle range between17◦and 150◦in the laboratory frame,which corresponds to92%of the full centre of mass(CM)frame solid angle.Together with the SVD,a transverse momen-tum resolution of(σp t/p t)2=(0.0019p t)2+(0.0030)2is achieved,where p t is in GeV/c.Charged hadron identification is provided by a combination of three devices: a system of1188aerogelˇCerenkov counters(ACC)covering the momentum range1–3.5GeV/c,a time-of-flight scintillation counter system(TOF)for track momenta below1.5GeV/c,and dE/dx information from the CDC for particles with very low or high rmation from these three devices is combined to give the likelihood of a particle being a kaon,L K,or pion, Lπ.Kaon-pion separation is then accomplished based on the likelihood ratio Lπ/(Lπ+L K).Particles with a likelihood ratio greater than0.6are identified as pions.The pion identification efficiencies are measured using a high momentum D∗+data sample,where D∗+→D0π+and D0→K−π+.With this pion selection criterion,the typical efficiency for identifying pions in the momentum region0.5GeV/c<p<4GeV/c is(88.5±0.1)%.By comparing the D∗+data sample with a Monte Carlo(MC)sample,the systematic error in the particle identification(PID)is estimated to be1.4%for the mode with three charged tracks and0.9%for the modes with two.Surrounding the charged PID devices is an electromagnetic calorimeter(ECL) consisting of8736CsI(Tl)crystals with a typical cross-section of5.5×5.5cm2 at the front surface and16.2X0in depth.The ECL provides a photon energy resolution of(σE/E)2=0.0132+(0.0007/E)2+(0.008/E1/4)2,where E is in GeV.Electron identification is achieved by using a combination of dE/dx measure-ments in the CDC,the response of the ACC and the position and shape of the electromagnetic shower from the ECL.Further information is obtained from the ratio of the total energy registered in the calorimeter to the particle momentum,E/p lab.Charged tracks are required to come from the interaction point and have transverse momenta above100MeV/c.Tracks consistent with being an elec-tron are rejected and the remaining tracks must satisfy the pion identification requirement.The performance of the charged track reconstruction is studied using high momentumη→γγandη→π+π−π0decays.Based on the relative yields between data and MC,we assign a systematic error of2%to the single track reconstruction efficiency.Neutral pion candidates are detected with the ECL via their decayπ0→γγ. Theπ0mass resolution,which is asymmetric and varies slowly with theπ0 energy,averages toσ=4.9MeV/c2.The neutral pion candidates are selected fromγγpairs by requiring that their invariant mass to be within3σof the nominalπ0mass.To reduce combinatorial background,a selection criteria is applied to the pho-ton energies and theπ0momenta.Photons in the barrel region are required to have energies over50MeV,while a100MeV requirement is made for photons in the end-cap region.Theπ0candidates are required to have a momentum greater than200MeV/c in the laboratory frame.Forπ0s from BE2beam−p2B and the energy difference∆E=E B−E beam.Here, p B and E B are the momentum and energy of a B candidate in the CM frame and E beam is the CM beam energy.An incorrect mass hypothesis for a pion or kaon produces a shift of about46MeV in∆E,providing extra discrimination between these particles.The width of the M bc distributions is primarily due to the beam energy spread and is well modelled with a Gaussian of width 3.3MeV/c2for the modes with a neutral pion and2.7MeV/c2for the mode without.The∆E distribution is found to be asymmetric with a small tail on the lower side for the modes with aπ0.This is due toγinteractions withmaterial in front of the calorimeter and shower leakage out of the calorimeter. The∆E distribution can be well modelled with a Gaussian when no neutral particles are present.Events with5.2GeV/c2<M bc<5.3GeV/c2and|∆E|< 0.3GeV are selected for thefinal analysis.The dominant background comes from continuum e+e−→qB events and jet-like qi,j|p i||p j|P l(cosθij)i,k|p i||p k|,r l=),where L s and L qqD0π+ decays.By comparing the yields in data and MC after the likelihood ratiorequirement,the systematic errors are determined to be4%for the modes with aπ0and6%for the mode without.Thefinal variable used for continuum suppression is theρhelicity angle,θh, defined as the angle between the direction of the decay pion from theρin the ρrest frame and theρin the B rest frame.The requirement of|cosθh|>0.3 is made independently of the likelihood ratio as it is effective in suppressing the background from B decays as well as the qB events is used[14].The largest component of this background is found to come from decays of the type B→Dπ;when the D meson decays via D→π+π−,events can directly reach the signal region while the decay D→K−π+can reach the signal region with the kaon misidentified as a pion.Decays with J/ψandψ(2S) mesons can also populate the signal region if both the daughter leptons are misidentified as pions.These events are excluded by making requirements on the invariant mass of the intermediate particles:|M(π+π−)−M D0|>0.14 GeV/c2,|M(π+π0)−M D+|>0.05GeV/c2,|M(π+π−)−M J/ψ|>0.07GeV/c2 and|M(π+π−)−Mψ(2S)|>0.05GeV/c2.The widest cut is made around the D0mass to account for the mass shift due to misidentifying the kaons in D0 decays as pions.Fig.1shows the∆E and M bc distributions for the three modes analysed after all the selection criteria have been applied.The∆E and M bc plots are shown for events that lie within3σof the nominal M bc and∆E values,respectively. The signal yields are obtained by performing maximum likelihoodfits,each using a single signal function and one or more background functions.The signal functions are obtained from the MC and adjusted based on comparisons of B+→B0are assumed to be equal.The M bc distribution for all modes isfitted with a single Gaussian and an ARGUS background function[15].The normalization of the ARGUS function is left tofloat and shape of the function isfixed from the∆E sideband:−0.25 GeV<∆E<−0.08GeV and5.2GeV/c2<M bc<5.3GeV/c2.For the mode with only charged pions in thefinal state,the∆E distribution isfitted with a single Gaussian for the signal and a linear function withfixed shape for the continuum background.The normalization of the linear function is left to float and the slope isfixed from the M bc sideband,5.2GeV/c2<M bc<5.26GeV/c2,|∆E|<0.3GeV.There are also other rare B decays that are expected to contaminate the∆E distribution.For the mode without aπ0,these modes are of the type B0→h+h−(where h denotes aπor K),B→ρρ(including all combinations of charged and neutralρmesons,where the polarizations of theρmesons are assumed to be longitudinal)and B→Kππ(including the decays B+→ρ0K+,B+→K∗0π+,B+→K∗0(1430)0π+,B+→f0(980)K+ and B+→f0(1370)K+)[16].These background modes are accounted for by using smoothed histograms whose shapes have been determined by combining MC distributions.The three B→ρρmodes are combined into one histogram. The normalization of this component is allowed tofloat in thefit due to the uncertainty in the branching fractions of the B→ρρmodes.Likewise,the B→hh and all the B→Kππmodes are combined to form one hh and one Kππcomponent.The normalizations of these components arefixed to their expected yields,which are calculated using efficiencies determined by MC and branching fractions measured by previous Belle analyses[16,17].The∆Efits for the modes with aπ0in thefinal state have the signal compo-nent modelled by a Crystal Ball function[18]to account for the asymmetry in the∆E distribution.As for the B+→ρ0π+mode,the continuum background is modelled by a linear function withfixed slope.Unlike the B+→ρ0π+mode, a component is included for the background from the b→c transition.The pa-rameterization for rare B decays includes one component for the B→Kππ0 modes(B0→ρ+K−and B0→K∗+π−)[19]and one for all the B→ρρmodes.The normalization of the B→ρρcomponent is left tofloat while the other components from B decays arefixed to their expected yields.Table1summarizes the results of the∆Efits,showing the number of events, signal yields,reconstruction efficiencies,statistical significance and branching fractions or upper limits for eachfit.The statistical significance is defined assystematic error in thefitted signal yield is estimated by independently varying eachfixed parameter in thefit by1σ.Thefinal results are B(B+→ρ0π+)=(8.0+2.3+0.7−2.0−0.7)×10−6and B(B0→ρ±π∓)=(20.8+6.0+2.8−6.3−3.1)×10−6where thefirst error is statistical and the second is systematic.For theρ0π0mode,one standard deviation of the systematic error is added to the statistical limit to obtain a conservative upper limit at90%confidence of5.3×10−6.The possibility of a nonresonant B→πππbackground is also examined.To check for this type of background,the M bc and∆E yields are determined for differentππinvariant mass bins.Byfitting the M bc distribution inππinvariant mass bins with B→ρπand B→πππMC distributions,the nonresonant contribution is found to be below4%.To account for this possible background, errors3.7%and3.2%are added in quadrature to the systematic errors of the ρ+π−andρ0π+modes,respectively.Theππinvariant mass distributions are shown in Fig.2.Two plots are shown for theρ+π−andρ0π+modes,one with events from the M bc sideband superimposed over the events from the signal region(upper)and one with events from signal MC superimposed over events from the signal region with the sideband subtracted(lower).Fig.3 shows the distribution of the helicity variable,cosθh,for the two modes with all selection criteria applied except the helicity condition.Events fromρπdecays are expected to follow a cos2θdistribution while nonresonant and other background decays have an approximately uniform distribution.The helicity plots are obtained byfitting the M bc distribution in eight helicity bins ranging from−1to1.The M bc yield is then plotted against the helicity bin for each mode and the expected MC signal distributions are superimposed.Both the ππmass spectrum and the helicity distributions provide evidence that the signal events are consistent with being fromρπdecays.The results obtained here can be used to calculate the ratio of branching frac-tions R=B(B0→ρ±π∓)/B(B+→ρ0π+),which gives R=2.6±1.0±0.4, where thefirst error is statistical and second is systematic.This is consistent with values obtained by CLEO[20]and BaBar[21,22]as shown in Table2. Theoretical calculations done at tree level assuming the factorization approx-imation for the hadronic matrix elements give R∼6[3].Calculations that include penguin contributions,off-shell B∗excited states or additionalππres-onances[4–8]might yield better agreement with the the measured value of R.In conclusion,statistically significant signals have been observed in the B→ρπmodes using a31.9×106BWe wish to thank the KEKB accelerator group for the excellent operation of the KEKB accelerator.We acknowledge support from the Ministry of Ed-ucation,Culture,Sports,Science,and Technology of Japan and the Japan Society for the Promotion of Science;the Australian Research Council and the Australian Department of Industry,Science and Resources;the National Science Foundation of China under contract No.10175071;the Department of Science and Technology of India;the BK21program of the Ministry of Education of Korea and the CHEP SRC program of the Korea Science and Engineering Foundation;the Polish State Committee for Scientific Research under contract No.2P03B17017;the Ministry of Science and Technology of the Russian Federation;the Ministry of Education,Science and Sport of the Republic of Slovenia;the National Science Council and the Ministry of Education of Taiwan;and the U.S.Department of Energy.References[1] A.E.Snyder and H.R.Quinn,Phys.Rev.D48,2139(1993).[2]I.Bediaga,R.E.Blanco,C.G¨o bel,and R.M´e ndez-Galain,Phys.Rev.Lett.81,4067(1998).[3]M.Bauer,B.Stech,and M.Wirbel,Z.Phys.C34,103(1987).[4] A.Deandrea et al.,Phys.Rev.D62,036001(2000).[5]Y.H.Chen,H.Y.Cheng,B.Tseng and K.C.Yang,Phys.Rev.D60,094014(1999).[6] C.D.Lu and M.Z.Yang,Eur.Phys.J C23,275(2002).[7]J.Tandean and S.Gardner,SLAC-PUB-9199;hep-ph/0204147.[8]S.Gardner and Ulf-G.Meißner,Phys.Rev.D65,094004(2002).[9]Belle Collaboration,A.Abashian et al.,Nucl.Instr.and Meth.A479,117(2002).[10]E.Kikutani ed.,KEK Preprint2001-157(2001),to appear in Nucl.Instr.andMeth.A.[11]G.C.Fox and S.Wolfram,Phys.Rev.Lett.41,1581(1978).[12]This modification of the Fox-Wolfram moments wasfirst proposed in a seriesof lectures on continuum suppression at KEK by Dr.R.Enomoto in May and June of1999.For a more detailed description see Belle Collaboration,K.Abe et al.,Phys.Lett.B511,151(2001).[13]CLEO Collaboration,D.M.Asner et al.,Phys.Rev.D53,1039(1996).[14]These MC events are generated with the CLEO group’s QQ program,see/public/CLEO/soft/QQ.The detector response is simulated using GEANT,R.Brun et al.,GEANT 3.21,CERN Report DD/EE/84-1,1984.[15]The ARGUS Collaboration,H.Albrecht et al.,Phys.Lett.B241,278(1990).[16]Belle Collaboration,A.Garmash et al.,Phys.Rev.D65,092005(2002).[17]Belle Collaboration,K.Abe et al.,Phys.Rev.Lett.87,101801(2001).[18]J.E.Gaiser et al.,Phys.Rev.D34,711(1986).[19]Belle Collaboration,K.Abe et al.,BELLE-CONF-0115,submitted as acontribution paper to the2001International Europhysics Conference on High Energy Physics(EPS-HEP2001).[20]CLEO Collaboration,C.P.Jessop et al.,Phys.Rev.Lett.85,2881(2000).[21]Babar Collaboration,B.Aubert et al.,submitted as a contribution paper tothe20th International Symposium on Lepton and Photon Interactions at High Energy(LP01);hep-ex/0107058.[22]BaBar Collaboration,B.Aubert et al.,submitted as a contribution paper tothe XXXth International Conference on High Energy Physics(ICHEP2000);hep-ex/0008058.Table1∆Efit results.Shown for each mode are the number of events in thefit,the signal yield,the reconstruction efficiency,the branching fraction(B)or90%confidence level upper limit(UL)and the statistical significance of thefit.Thefirst error in the branching fraction is statistical,the second is systematic.ρ0π+15424.3+6.9−6.29.68.0+2.3+0.7−2.0−0.74.4σρ+π−30144.6+12.8−13.46.820.8+6.0+2.8−6.3−3.13.7σρ0π0116−4.4±8.58.5<5.3-Experiment B(B0→ρ±π∓)×10−6B(B+→ρ0π+)×10−6RE v e n t s /16 M e VE v e n t s /3 M e V /c2(b) ρ0π+Signal backgrd02.557.51012.51517.52022.55.25.225 5.25 5.2755.3E v e n t s /18 M e VE v e n t s /2 M e V /c2(d) ρ+π-Signal backgrd051015202530355.25.225 5.25 5.2755.3∆E(GeV)E v e n t s /18 M e V(e) ρ0π024681012-0.2-0.10.10.2(GeV/c 2)E v e n t s /2 M e V /c2M bc (f) ρ0πSignal backgrd02468101214165.25.225 5.25 5.2755.3Fig.1.The ∆E (left)and M bc (right)fits to the three B →ρπmodes:ρ0π+,ρ+π−and ρ0π0.The histograms show the data,the solid lines show the total fit and the dashed lines show the continuum component.In (a)the contribution from the B →ρρand B →hh modes is shown by the cross hatched component.In (c)the cross hatched component shows the contribution from the b →c transition and B →ρρmodes.102030405060+0(GeV/c 2)E v e n t s /0.1 G e V /c2M(π+π0)(GeV/c 2)E v e n t s /0.1 G e V /c2(GeV/c 2)E v e n t s /0.1 G e V /c2+-(GeV/c 2)E v e n t s /0.1 G e V /c2M(π+ π-)510152025Fig.2.The M (ππ)distributions for B 0→ρ±π∓(left)and B +→ρ0π+(right)events in the signal region.Plots (a)and (b)show sideband events superimposed;plots (c)and (d)show the sideband subtracted plots with signal MC superimposed.-1-0.500.51M b c y i e l d (E v e n t s )cos θh-1-0.500.51M b c y i e l d (E v e n t s )cos θhFig.3.The ρmeson helicity distributions for B 0→ρ±π∓(a)and B +→ρ0π+(b).Signal MC distributions are shown superimposed.。
HBL天体中X射线和γ射线辐射研究

HBL天体中X射线和γ射线辐射研究李斯;李丙郎;王雪品;钟微;刘文广【摘要】We study the correlation coefficient between X-ray and γ-ray radiation of BL Lac object Mrk 421 using power-law function F γ-ray∝ F c/sX-ray to describe the relationship between them.Our results show that:(1)the radiation mechanism of X-rays and gamma rays can be explained by synchrotron self-Compton(SSC) model for HBL objects.In the word,X-rays are derived from synchrotron radiation,but the inverse Compton scattering originate from the interaction between the soft photons from the synchrotron radiation and the high energetic electrons,and the gamma rays are produced from the process.(2)the energy band of the X ray maybe affect the size of the index c/s.%利用幂律函数关系Fγ-rayY∝ Fc/sX-ray研究了HBL天体Mrk421的X射线和γ射线辐射流量间的相关系数.研究结果表明:(1)对HBL天体而言,X射线和γ射线的辐射机制可以用均匀自康普顿(SSC)模型来解释,即X射线源于同步辐射,同步辐射过程中产生的软光子和高能电子之间发生逆康普顿散射,产生了γ射线;(2)X射线能段范围会影响到幂律关系式中指数c/s的大小.【期刊名称】《云南师范大学学报(自然科学版)》【年(卷),期】2017(037)004【总页数】9页(P1-9)【关键词】星系;BL Lac天体;辐射机制;非热;方法;相关【作者】李斯;李丙郎;王雪品;钟微;刘文广【作者单位】云南师范大学物理与电子信息学院,云南省高校高能天体物理重点实验室,云南昆明650500;云南师范大学物理与电子信息学院,云南省高校高能天体物理重点实验室,云南昆明650500;云南师范大学物理与电子信息学院,云南省高校高能天体物理重点实验室,云南昆明650500;云南师范大学物理与电子信息学院,云南省高校高能天体物理重点实验室,云南昆明650500;云南师范大学物理与电子信息学院,云南省高校高能天体物理重点实验室,云南昆明650500【正文语种】中文【中图分类】P157.6BL Lac天体多波段能谱分布具有明显的双峰结构,低能峰位于光学波段到软X射线波段,而高能峰位于GeV到TeV区域[1].均匀同步自康普顿(SSC)模型能够较好地解释BL Lac天体的多波段能谱分布,在该模型中,低能峰由喷流内极端相对论性电子的同步辐射产生,而高能峰则由来自同一相对论性电子与同步辐射产生的软光子之间的逆康普顿散射(IC)产生,因此SSC模型认为产生X射线的电子与产生γ射线的电子是同源的.BL Lac天体根据低能峰(同步峰)的位置不同而分为低能峰BL Lac天体(Low-energy Peak BL Lacs,LBL)和高能峰BL Lac天体(High-energy Peak BL Lacs,HBL),LBL的同步峰主要位于光学波段,而HBL的同步峰主要位于紫外到X射线波段,因而研究HBL天体X射线波段和γ射线波段之间的相关性对于研究该类天体的辐射机制和物理过程有重要的意义.X射线和γ射线能段的观测[2-4]为两者流量同时性变化之间的相关性提供了直接的证据.1998年Mrk 421耀发活动的观测证明了X射线和γ射线之间存在紧密的相关性[5],证明了高能辐射的光子源于X射线耀发活动中产生的同步辐射软光子.Katarzyński等人[6]详细讨论了HBL天体Mrk 501的X射线辐射变化和TeV γ射线辐射变化之间的相关性,并且给出了一个简单的幂律函数来描述两者之间存在的关系.本文将采用他们对Mrk 501天体的研究思路,对Mrk 421天体X射线辐射变化和γ射线辐射变化之间的相关性进行详细的分析和讨论.均匀同步自康普顿(SSC)模型[6]常被作为HBL天体中X射线辐射和γ射线辐射的一种可能解释.Dermer等人[7-11]的研究工作表明SSC模型对全波段能谱分布(SED)中的X射线和γ射线的辐射机制能够给出较合理且简单的阐释.我们的目的是确定SSC模型是否可以解释光变观测到的具体特征.2.1 均匀同步自康普顿(SSC)模型均匀同步自康普顿(SSC)模型假设存在一个球形区域,且该区域无论处于膨胀状态还是压缩状态,它都是均匀分布的.为了简化物理模型、建立起描述该区域变化的数学表达式,只考虑该区域可能发生的四个基本物理过程:1)该球形区域体积的增加或减少;2)磁场强度的增强或减弱;3)粒子数密度的变化;4)粒子的加速或冷却.为了研究该区域内每个过程对辐射的影响,需要对每一个物理过程进行数学描述. 假设球形区域的半径为R,磁场强度为B.R和B随时间变化,这种变化可以用一个简单的幂律函数来表示:在(1)和(2)式中t0是初始时间, R0是初始区域半径, B0是初始磁场强度,指数re 和m都是自由参量.在初始时刻t0时,区域内电子能量分布可以用一个截断幂律函数来描述是电子洛伦兹因子(相当于电子的能量),描述的是截断的初始位置,n1是截断前的电子谱指数,n2是截断后的电子谱指数.在模型中我们假设X射线辐射和TeV γ射线辐射的主要成分均由电子能量为γbrk附近的电子产生.电子能谱的演化由下式的最小值决定其中的两个函数的具体表示如下:(5)和(6)式中,K1和K2指的是截断前后粒子数密度的变化,3rd是粒子数密度的增加或减少,粒子加速或冷却由指数ra(n1-1)或ra(n2-1)描述.如果假设的绝热膨胀或绝热压缩的区域内的粒子数密度是一个恒定的常数,那么参数re、ra和rd应该是相等的[12-13].为了分别研究上述过程的影响,需要给出详细的参数结果.电子的同步辐射系数由文献[14]确定,即(7)式中α=.因此,需要定义两个同步辐射系数,即表示低能电子辐射系数,即γ<γbrk;js2表示高能电子辐射系数,即γ>γbrk.忽略电子自吸收过程,因此可以估算出来自球形源的同步辐射强度,即可以求出同步辐射流量变化为(12)和(13)式中,s1是低能电子产生的同步辐射,s2是高能电子产生的同步辐射.以上两个流量之间的主要区别是辐射过程和磁场强度不同.2.2 逆康普顿散射IC自康普顿辐射又被称为逆康普顿散射(Inverse Compton scattering,简称IC). Tavecchio等人[15]用一个截断幂律谱详细研究了SSC辐射过程中的电子能谱.在他们的方法中,逆康普顿散射(IC)谱可以分为四个基本成分.而对于HBL天体,其中只有两个起主导作用的成分能产生自康普顿辐射,即:低能电子(K1,N1)和来自于同步辐射谱的第一部分(Is1,Fs1)共同作用而产生的F1,c,由高能电子(K2,N2)和来自于同步辐射谱的第一部分(Is1,Fs1)共同作用而产生的F2,c.因此,给出逆康普顿散射(IC)过程的主要辐射系数如下:通过类比同步辐射的推导过程,可以求出逆康普顿散射(IC)辐射强度为由此可估算出逆康普顿散射(IC)的流量值:其中c1描述的是在Thomson限制下的逆康普顿散射(IC)散射演化,c2描述的是在Klein-Nishina限制下的逆康普顿散射(IC)散射演化.为了研究HBL天体中X射线和γ射线之间的相关性,所选取的光变曲线必须满足以下条件[6]:1)X射线和γ射线的数据在同一时期内获得;2)两条光变曲线所选取的数据点的样本率相同,即在两条光变曲线上所选取的数据点的个数一致.在HBL天体中,时间变化的尺度非常短,可获得的数据点就比较多,因此光变曲线上的数据点也应该是比较密集的;3)额外的同时性能谱观测提供能谱演化的基本信息,例如,确定同步辐射产生的X射线Fs低于或者高于νFs(ν)峰.在实际的研究工作中,很难找到同时满足以上的所有条件的观测结果,仅在特殊情况下,X射线和γ射线的活动相关性可以被详细地研究和分析.图1展示了在2010年2月观测到的Mrk 421的光变活动.光变曲线分别是由Swift-XRT(0.5-2 keV)、RXTE-ASM(1.5-12 keV)、RXTE-PCA(2-20 keV)、Swift-BAT(15-50 keV)、Fermi-LAT(0.2-300 GeV)和HAGAR(>250 GeV)观测到的.其中X射线波段的光变曲线由Swift-XRT(0.5-2 keV)、RXTE-ASM(1.5-12 keV)、RXTE-PCA(2-20 keV)和Swift-BAT(15-50 keV)观测给出,γ射线波段的光变曲线由Fermi-LAT(0.2-300 GeV)和HAGAR(>250 GeV)观测给出.为了研究两者之间的相关性,需要对不同设备观测到的数据进行两两组合(如表1).观测数据在时间上是随机分布的,为了研究X射线波段和γ射线波段之间的相关性,需要对两个波段观测到的光变曲线进行比较,即选取在同一时段内两个波段同时性或者准同时性数据.但只按照这种方法进行,可能会出现如下情况:光变曲线上虽然有多个数据点,但是满足同时性或者准同时性的数据点相对较少.为了解决这一问题,可以在光变曲线中插入一个同时性的数据点,但注意这样做需要满足光变曲线有相似的采样,采样应该等于或者小于源的光变时间尺度特性变化.某些情况下光变曲线上的观测数据点之间存在着时间偏移,但由于这些数据点均为一天内的基本观测平均值,因此,采用插值法依然可以得到有效的结果.对(12)和(13)式进行对数处理,有对(17)、(18)式进行对数处理,得根据(19)、(20)、(21)、(22)式,得到关系式由(23)式可得在(24)式中,Fs(t)是同步辐射流量,其主要来源于SED图中同步辐射峰附近光子流量,即X射线流量,即FX-ray(t)≡Fs(t),Fc(t)是逆康普顿(IC)散射流量,其主要来源于SED图中IC峰附近光子流量,即γ射线流量,即有Fγ-ray(t)≡Fc(t).所以3.3 数据处理结果根据(23)、(24)、(25)式,对图1中Mrk 421天体光变曲线给出的X射线和γ射线辐射流量进行一元线性回归分析,分析结果如图2和表2所示.根据(23)式,在表2中自变量x表示logFs(t),因变量y表示logFc(t),线性关系的表达式为y=kx+b,其中k=c/s,b-er 是截距的误差范围的绝对值,k-er是斜率的误差范围的绝对值,N是数据点的个数,r为线性相关系数,p为置信度,SD为回归方程的标准偏差.由于k=c/s,根据(24)、(25)式,又可以得到如表3所示的结果.通过分析表2和表3中数据,可以得到以下结果:(1)图2(a)统计的logFXRT和logFLAT间呈现出显著的相关性,其相关系数为r=0.881 13,置信度P=0.020 35;图2(b)统计的logFASM和logFLAT之间也存在着显著的相关性,它的相关系数为r=0.767 62,置信度P=0.015 73;同样地,图2(c)、图2(d)分别统计的logFPCA和logFLAT、logFBAT和logFLAT的相关性也是特别显著的,其中图2(c)的相关系数为r=0.835 71,置信度P=0.019 19,图2(d)的相关系数为r=0.876 88,置信度P=0.004 25.(2)图2(e)、(f)、(g)、(h)中的统计结果分别表明logFXRT和logFHAG、logFASM和logFHAG、logFPCA和logFHAG、logFBAT和logFHAG之间呈现的相关性较弱,因为它们的相关系数r均小于0.5.(3) 当使用Swift-XRT(0.5-2 keV)和Fermi-LAT(0.2-300 GeV)观测时,得到的关系是用RXTE-ASM(1.5-12 keV) 和Fermi-LAT(0.2-300 GeV)观测时,得到的关系是用RXTE-PCA(2-20 keV) 和Fermi-LAT(0.2-300 GeV)观测时,得到的关系是用Swift-BAT(15-50 keV)和Fermi-LAT(0.2-300 GeV)观测时,得到的关系是用Swift-XRT(0.5-2 keV)、RXTE-ASM(1.5-12 keV)、RXTE-PCA(2-20 keV)、Swift-BAT(15-50 keV)探测到的X射线波段的辐射流量与用Fermi-LAT(0.2-300 GeV)观测到的γ射线波段的辐射流量之间存在着显著的相关性.这表明, HBL天体X射线和γ射线的辐射可以用均匀同步自康普顿(SSC)过程来描述,即X射线光子源于同步辐射,GeVγ光子产生于同源电子的逆康普顿散射.用Swift-XRT(0.5-2 keV)、RXTE-ASM(1.5-12 keV)、RXTE-PCA(2-20 keV)、Swift-BAT(15-50 keV)探测到的X射线波段的辐射流量与用HAGAR(E>250 GeV)观测到的γ射线波段的辐射流量之间没有相关性.对此做出如下解释:一般认为HAGAR探测到的γ射线的能量范围E>250 GeV,在这个能量范围以上产生的γ射线为次级γ射线,关于次级γ射线的产生,一种可能的解释是耀变体加速产生的高能宇宙线质子与河外背景光(EBL)光子、宇宙微波背景光(CMB)光子相互作用(pγ相互作用)产生了次级γ射线[17-19],或者高能光子之间作用产生的正负电子对可能通过逆康普顿散射过程散射微波背景光子,从而产生次级γ射线.如果采用简单的幂律公式来表示X射线和γ射线之间的关系,结合表3中的数据,X射线和γ射线的关系谱指数c/s≤1.Katarzyński等人[6]根据RXTE-PCA观测到的X射线辐射的光变曲线和用HEGRA观测到的TeV γ射线辐射的光变曲线,研究了两者的辐射流量之间的相关性,得到的结果是这个结果与我们的一致.但是我们研究的RXTE-PCA和Fermi-LAT 分别探测到的两条光变曲线的变化比Katarzyński等人用RXTE-PCA和HEGRA观测到的光变曲线的变化更好.根据表3给出的结果,发现X射线能段范围会影响到谱指数c/s的大小,即X射线能段范围不同,谱指数c/s也会不同.这个结论与Katarzyński等人[6]在研究Mrk 501天体时给出的结论是类似的,即相关性斜率可能依赖于谱带宽度.【相关文献】[1] URRY C M.BL Lac Objects and Blazars:Past,Present,and Future[J].ASP Conference series,1999,159:3-19.[2] BUCKLEY J H,AKERLOF C W,BILLER S,et al.Gamma-ray variability of the BL Lacertae object Markarian 421[J].The Astrophysical Journal Letters,1996,472(1):L9.[3] CATANESE M,BRADBURY S M,BRESLIN A C,et al.Multiwavelength observations of a flare from Markarian 501[J].The Astrophysical Journal Letters,1997,487(2):L143.[4] 李斯, 王艳芳, 龙光波,等. 费米耀变体多波段辐射流量相关性研究[J].云南师范大学学报:自然科学版,2015,35(6):1-7.[5] MARASCHI L,FOSSATI G,TAVECCHIO F,et al.Simultaneous X-Ray and TEV observations of a rapid flare from Markarian 421[J].The Astrophysical Journal Letters,1999,526(2):L81.[6] KATARZY SKI K, GHISELLINI G, TAVECCHIO F, et al. Correlation between the TeV and X-ray emission in high-energy peaked BL Lac objects[J].Astronomy &Astrophysics,2005,433(2):479-496.[7] DERMER,CHARLES D,SCHLICKEISER,et al.Model for the High-Energy Emission from Blazars[J]. Astrophysical Journal,1993,416(2):458-484.[8] BEDNAREK W,PROTHEROE R J.Testing the homogeneous synchrotron self Compton model for gamma ray production in Mrk 421[J].Monthly Notices of the Royal Astronomical Society,1997,292(3):646-650.[9] MASTICHIADIS A,KIRK J G.Variability in the synchrotron self-Compton model of blazar emission[J].Astronomy & Astrophysics,1997,320(1):19-25.[10]PIAN E,VACANTI G,TAGLIAFERRI G,et al.BeppoSAX Observations of Unprecedented Synchrotron Activity in the BL Lac Object Mkn 501[J].AstrophysicalJournal,1998,492(1):L17-L20.[11]KATARZY SKI K,SOL H,KUS A.The multifrequency emission of Mrk 501-From radio to TeV gamma-rays[J].Astronomy & Astrophysics,2001,367(3):809-825.[12]KARDASHEV N S.Nonstationarity of Spectra of Young Sources of Nonthermal Radio Emission[J].Soviet Astronomy,1962,6(12):317-327.[13]LONGAIR M S.Book-Review-High Energy Astrophysics-V.1-Particles Photons and TheirDetection-ED.2[J].Science,1992,257(5071):822-823.[14]RYBICKI G B,LIGHTMAN A P.Radiative processes in astrophysics[J].Weinheim:Wiley-VcH Verlag GmbH&Co.KGaA,2007.[15]TAVECCHIO F,MARASCHI L,GHISELLINI G.Constraints on the Physical Parameters of TeV Blazars[J].Astrophysical Journal,1998,509(2):608-619.[16]SHUKLA A,CHITNIS V R,VISHWANATH P R,et al.Multiwavelength study of the TeV blazar Mrk 421 during a giant flare[J].Astronomy & Astrophysics,2012,541(3):1053-1060.[17]ESSEY W,&KUSENKO A. A new interpretation of the gamma-ray observations of distant active galactic nuclei[J].Astropart. Phys.,2010,33(1):81-85.[18]ESSEY W,KALASHEV O E,KUSENKO A,et al.Secondary Photons and Neutrinos from Cosmic Rays Produced by Distant Blazars[J].Phys. Rev. Lett.,2010,104(14):141102.[19]ZHENG Y G,&KANG T.Evidence for secondary emission as the origin of hard spectra in TeV blazars[J].ApJ,2013,764(2):113-118.。
240Am半衰期的测量

240Am半衰期的测量夏子恒;师全林;解峰;凡金龙;李雪松;余功硕【摘要】240 Am的半衰期对准确测量241 Am(n,2n)240 Am反应截面具有重要作用,当前评价的数据50.8(3)h是对240 Am的987.8keVγ射线用Ge(Li)探测器跟踪测量6d的结果,测量时间不到3个半衰期,使得测量结果的不确定度偏大.本文利用Geant4模拟软件建立了阱型HPGe探测器的测量模型,模拟计算了不同Pb 吸收厚度下240 Am高能γ射线的探测效率,确定使用阱型HPGe探测器配合吸收X射线和低能γ射线的Pb吸收体可有效提高240 Am高能γ射线的探测效率.根据Geant4模拟计算的结果,Pb吸收体厚度为1mm时,对240 Am的888.8keV和987.8keV两条特征γ射线的探测效率分别为14.1%和13.3%.在中国原子能科学研究院的HI-13串列加速器上通过242Pu(p,3n)反应生产了240 Am,制备了约700Bq的240 Am测量源,用上述方法跟踪测量240 Am的888.8keV和987.8keV两条特征γ射线的强度,时间超过18d,用最小二乘法拟合得到其半衰期为50.79(5)h,结果与评价结果一致,但减小了不确定度.%The half-life of 240 Am is of importance to determine the cross section of neutron reaction 241 Am(n, 2n)240 Am and the currently evaluated datum is 50. 8(3)h, which is an experimental result by mon itoring the intensity of 987. 8keVγ-ray with a Ge(Li) detector over a period of 6d, less than 3times of the half-life of 240 Am. In this work, the detection efficiency of the high energyγ-rays for 240 Am increases greatly by using a well-type HPGe detector and an absorber made of Pb to attenuate the X-rays and low energyγ-rays. According to the simulation result from Geant4, the detection efficiency of the 888. 8keV and 987. 8keVγ-rays for 240 Am are 14. 1% and 13. 3% when the thicknessof Pb absorber is 1 mm. Recently, about 500μg 242Pu was irradiated by protons on HI-13tandem accelerator in China Institute of Atomic Energy to produce240 Am by the reaction of 242Pu(p, 3n)240 Am. The solution source containing 240 Am about 700Bq was measured with the well-type HPGe detector. The intensities of 888. 8keV and 987. 8keVγ-rays for 240 Am were measured continuously more than 18dand the half-life of 240 Am is calculated to be 50. 79(5)h by least square method, which is consistent with the evaluated datum.【期刊名称】《原子能科学技术》【年(卷),期】2018(052)004【总页数】6页(P577-582)【关键词】240 Am;半衰期;阱型HPGe探测器【作者】夏子恒;师全林;解峰;凡金龙;李雪松;余功硕【作者单位】西北核技术研究所,陕西西安 710024;西北核技术研究所,陕西西安710024;西北核技术研究所,陕西西安 710024;西北核技术研究所,陕西西安710024;西北核技术研究所,陕西西安 710024;西北核技术研究所,陕西西安710024【正文语种】中文【中图分类】O571.31240Am是一种缺中子的放射性同位素,主要通过β+衰变和轨道电子俘获方式衰变到240Pu,发射多条γ射线和X射线,此外以1.9×10-6的分支比通过α衰变到236Np。
Fe 元素对重水堆 Zr-2.5Nb 合金压力管辐照变形的作用
Fe 元素对重水堆 Zr-2.5Nb 合金压力管辐照变形的作用作者:严斌赵冠楠来源:《有色金属材料与工程》2021年第06期摘要:现行标准体系中, Fe 元素作为重水堆 Zr-2.5Nb 合金压力管中的杂质元素,含量上限受到严格控制。
对已建成重水堆用 Zr-2.5Nb 合金压力管材料的堆内辐照试验表明, Fe 元素含量较高会降低辐照生长及辐照蠕变导致的变形应变。
归因于 Fe 元素对空位在α-Zr 晶粒内的移动性的增强作用。
空位的加速运动促进了空位<c>型位错环的形成,同时位错应力场的对称性减小了位错环的拉伸应变区。
考虑到 Fe 元素在保障压力管堆形状稳定性方面的积极作用,在制订重水堆压力管用 Zr-2.5Nb 合金的技术条件时,除满足标准要求外,还应对 Fe 元素含量下限作出规定。
关键词:压力管; Zr-2.5Nb 合金;辐照蠕变;辐照增长; Fe 元素中图分类号: TG 146 文献标志码: AEffect of Fe Element on the Irradiation Deformation of Zr-2.5Nb Alloy Pressure Tube of CANDU ReactorYAN Bin, ZHAO Guannan(Shanghai Nuclear Engineering Research & Design Institute Co., Ltd., Shanghai 200233,China)Abstract: In the current standard system, Fe is an impurity element in Zr-2.5Nb alloy pressure tube of CANDU reactor, and its upper limit of content is strictly controlled. The in-reactor irradiation test of Zr-2.5Nb pressure tube used in the established water reactor shows that higher Fe element content reduces the deformation strain caused by irradiation growth and irradiation creep. This phenomenon is attributed to the enhanced mobility of vacancies in α-Zr grains by impurity Fe. The acceleration of vacancy promotes the formation ofvacancy<c>-type dislocation loops, and the symmetry of dislocation stress field reduces the tensile strain region of dislocation loops. Considering the positive role of Fe element in ensuring the shape stability of pressure tube reactor, when formulating the technical conditions of Zr-2.5Nb alloy for CANDU reactor pressure tube, in addition to meeting the standard requirements, the lower limit ofFe element content should also be specified.Keywords: pressure tube ; Zr-2.5Nb alloy; irradiation creep ; irradiation growth; Fe elementZr-2.5Nb 合金無缝管被用作燃料通道内的压力管(以下简称 Zr-2.5Nb 合金压力管)是加拿大重水铀反应堆[Canadian deuterium uranium(reactor),简称 CANDU 重水堆]中最重要的核心部件之一。
钽铌矿冶炼中的放射性污染及活度计算方法_黄膑
收稿日期:2020-05-14第一作者:黄膑(1996—),男,硕士研究生,主要研究方向为辐射防护与环境保护。
E-mail :hbin5380@摘要:钽铌矿通常伴生有天然放射性元素铀、钍、镭,在其冶炼过程中,会对工作人员产生不同程度的放射性危害,且冶炼后的矿渣如未经处理直接堆放会对周边环境造成放射性危害。
综述了钽铌矿冶炼过程中的放射性污染现状,大部分矿渣的放射性活度高于国家标准,属于中低放废渣,废水中残留的部分放射性核素使水体放射性升高,另外氡作为铀、钍的放射性子体,扩散到空气中造成一定的大气放射性污染。
对某厂矿的钽铌矿渣进行X 射线荧光光谱分析和X 射线衍射分析,分析得出矿渣是由多种金属氧化物和放射性元素铀钍组成,金属元素中铁含量最高,铀钍含量相对较高。
钽铌矿渣的放射性活度在冶炼后遭到破坏,其活度浓度应该用非平衡情况下的几个特征核素活度共同计算得到。
根据各核素的不同衰变性质,在特定衰变时间范围内,对3个放射系在平衡与非平衡状态下的活度进行计算,由衰变链和各核素的半衰期得出,总活度计算公式可简化为某些特定核素活度的相关计算。
关键词:铌冶炼;放射性污染;废渣;非平衡中图分类号:P619.1文献标志码:A文章编号:2096-7705(2020)03-0091-05HUANG Bin(College of Nuclear Science and Engineering,East China University of Technology,Nanchang 330013,China)Tantalum niobium ore is usually associated with natural radioactive elements such as uranium,thorium and radium,in the smelting process,it will cause different degrees of radioactive hazards to workers,if the slag is directly piled up without treatment,it will cause radioactive damage to the surrounding environment.The present situation of radioactive pollution in tantalum niobium smelting process is reviewed.The radioactivity of most of the slag is higher than the national standard,which belongs to low and medium level radioactive waste,the residual radionuclides in the wastewater increase the radioactivity of water,in addition,radon,as the radioactive daughter of uranium and thorium,diffuses into the air will causes certain air radioactive pollution.The tantalum niobium slag was analyzed by X-ray fluorescence spectrometry and X-ray diffraction,it is concluded that the slag is composed of various metal oxides and radioactive elements uranium and thorium,the content of iron is the highest,while that of uranium and thorium is relatively high.The activity of tantalum niobium slag is destroyed after smelting,so the activity concentration should be calculated by the activity of several characteristic nuclides under non-equilibrium condition.According to the different decay properties of each nuclide,within a specific decay time range,Calculating the activities of 3radiation systems in equilibrium and unbalanced states,from the decay chain and the half-life of each nuclide,the calculation formula of total activity can be simplified to the related calculation of certain specific nuclideactivity.Ta-Nb smelting;radioactive pollution;waste residue;disequilibriumDOI :10.16056/j.2096-7705.2020.03.019钽铌矿冶炼中的放射性污染及活度计算方法黄膑(东华理工大学核科学与工程学院,南昌330013)引言钽和铌是稀有金属,呈灰白色金属光泽,粉末则呈现深灰色,被广泛应用于电子领域、原子能领域、航空航天领域、军事领域、冶金领域、医疗器械领域和化工领域等。
2022物理三十五放射性元素的衰变核能含解析
放射性元素的衰变核能(建议用时40分钟)1.下列关于原子核的叙述中正确的是()A.居里夫人通过α粒子轰击铝原子核,首次发现了中子B.核反应堆中的“慢化剂”是为了减慢反应速度,防止反应过于剧烈C.轻核聚变过程中,会有质量亏损,要释放能量D.原子核的质量越大,比结合能就越小【解析】选C。
查德威克通过α粒子轰击铍核的实验发现了中子,故A错误;核反应堆中的“慢化剂”是为了减慢中子速度,故B 错误;轻核聚变过程中,会有质量亏损,要释放核能,故C正确;原子核质量数越大,原子核结合能越大,但该原子的比结合能不一定越小,故D错误。
【加固训练】在人类对微观世界进行探索的过程中,科学实验起到了非常重要的作用。
下列说法正确的是()A.查德威克用α粒子轰击铍原子核,发现了质子B.卢瑟福通过对α粒子散射实验的研究,揭示了原子核有复杂的结构C.汤姆孙通过对阴极射线的研究,发现阴极射线是原子核中的中子变为质子时产生的β射线D。
居里夫妇从沥青铀矿中分离出了钋(Po)和镭(Ra)两种新元素【解析】选D。
查德威克用α粒子轰击铍原子核,发现了中子.卢瑟福用α粒子轰击氮原子核,发现了质子,故A错误;贝可勒尔通过对天然放射性现象的研究,证明原子核有复杂结构,故B错误;汤姆孙通过对阴极射线的研究发现了电子,但阴极射线不是原子核中的中子变为质子时产生的β射线,故C错误;居里夫妇从沥青铀矿中分离出了钋(Po)和镭(Ra)两种新元素,故D正确,故选D.2.(2020·朝阳区模拟)位于广东东莞的国家大科学工程-—中国散裂中子源(CSNS)首次打靶成功,获得中子束流。
这标志着CSNS 主体工程顺利完工,进入试运行阶段。
对于有关中子的研究,下面说法正确的是()A.中子和其他微观粒子,都具有波粒二象性B.一个氘核和一个氚核经过核反应后生成氦核和中子是裂变反应C.卢瑟福通过分析α粒子散射实验结果,发现了质子和中子Po→y82X+错误!He中的y=206,X的中子个数D.核反应方程21084为128【解析】选A。
反应堆物理题库
西安交通大学——核反应堆物理分析(共470题)从反应堆物理的角度看,良好的慢化剂材料应具有什么样的性能?答案:慢化剂是快中子与它的核发生碰撞后能减速成热中子的材料,这与它的三种中子物理性能有关:δ-平均对数能量缩减;Σs-宏观散射截面;Σa-宏观吸收截面。
综合评价应是δ和Σs都比较大而Σa又较小的材料才是较好的慢化材料,定量地用慢化能力δΣs和慢化比δ和Σs/Σa来比较。
试列出常用慢化剂的慢化能力和慢化比。
核力所具有的特点是什么?答案:基本特点是:核力是短程力,作用范围大约是1~2×10-13cm;核力是吸引力,中子与中子,质子与中子,质子与质子之间均是强吸引力。
核力与电荷无关。
核力具有饱和性,每一核子只与其邻近的数目有限的几个核子发生相互作用。
4. 定性地说明:为什么燃料温度Tf越高逃脱共振吸收几率P越小?答案:逃脱共振吸收几率P是快中子慢化成热中子过程中逃脱238U共振吸收峰的几率,在燃料温度低的时候,ζa共振峰又高又窄,如图所示,当燃料温度升高后,238U的ζa的共振峰高度下降了,然而却变宽了,因而不仅原来共振峰处能量的中子被吸收,而且该能量左右的中子也会被吸收。
温度越高共振峰变得越宽,能被该共振峰吸收的中子越多,逃脱共振吸收几率P就越小,这种效应也称为多谱勒展宽。
试定性地解释燃料芯块的自屏效应。
答案:中子在燃料中穿行一定距离时的吸收几率,可表示为:P(a)=1-e-X/λ其中λ为吸收平均自由程,X为中子穿行距离。
一般认为X=5λ时,中子几乎都被吸收了[P(a)→1]。
对于压水堆,燃料用富集度为3.0%的UO2,中子能量为6.7ev,穿行距离在5λa=0.0315cm内被吸收的几率为99.3%,所以很难有6.7ev的中子能进入到燃料芯块中心,这种现象称为自屏效应。
6. 什么是过渡周期?什么是渐近周期?答案:在零功率时,当阶跃输入-正反应性ρ0(ρ0<β)后,反应堆功率的上升速率(或周期)是随ρ0输入后的时间t而改变的(如图所示)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a rXiv:h ep-ph/948373v125Aug1994SLAC-PUB-6635BNL-60709TECHNION-PH-94-11Feasibility of Extracting V td from Radiative B (B S )Decays D.Atwood,a )B.Blok,b )and A.Soni c )a )Stanford Linear Accelerator Center,Stanford,CA 94309b )Institute for Theoretical Physics,Technion,Haifa,Israel c )Brookhaven National Laboratory,Upton,NY 11973Abstract We use existing measurements of D −→K ∗0ρ−and B →ψ+K ∗,coupled with flavor independence of QCD,and with vector meson dominance to show that long distance contributions to B →ρ+γare potentially very serious.We note that long distance (LD)contributions can be appreciably different in B −→ρ−+γand B 0→ρ0(ω)+γ.All radiative decays of B ,B S are shown to be governed essentially by two LD and two short-distance (SD)hadronic entities.Separate measurements of B −→ρ−+γ,B 0→ρ0(ω)+γ,along with B →K ∗+γappear necessary for a meaningful extraction of V td .Measurements ofB S →φ+γand K ∗0+γcould also provide very useful consistency checks.11IntroductionThe Cabibbo-Kobayashi-Maskawa(CKM)mixing angle V td is a parameterof crucial importance to the Standard Model(SM)and it is still very poorlyknown[1].Considerable experimental effort is directed towards its determi-nation via the rare decay K+→π+ν¯ν[2].This process is considered to be theoretically clean for extraction of V td[3].However its branching ratio is ex-tremely rare being about a few times10−10rendering a precise determinationof V td very challenging.In B-physics one well known method for determiningV td is via the experimentally measured B-¯B mixing.This requires a knowl-edge of the pseudoscalar decay constant f B and the“bag parameter”B B.Neither of these quantities is directly accessible to experiment,at least notin the near future.f B could eventually be measured directly in B decays,say via B→τ+ντ;but this will surely take a long time.The reliabilityof the theoretical calculations for f B and B B may therefore be a cause forconcern.In any case the importance of V td demands that we determine it inmany ways and with as much precision as possible.One B-decay in which V td enters is B→ρ+γ[4,5,6].Since the relateddecay B→K∗+γhas already been detected[7]it is useful to understandwhat we may learn about V td through a measurement of B→ρ+γ.Roughestimates indicate that LD contribution to B→ρ+γare potentially veryserious.Since it is very difficult to accurately estimate these LD contributionsa precise extraction of V td from B→ρ+γ[8]therefore also appears ratherdifficult.In this paper we try to quantify various LD and SD sources for radiativedecays of all of the B(B S)meson,i.e.for:B−→ρ−+γ(1)B0→ρ0+γ(2)B0→ω+γ(3)2B−→K∗−+γ(4)(1)B0→K∗0+γ(5)B S→φ+γ(6)B S→K∗0+γ(7)We show that two types of LD and essentially two types of SD contributions determine all of these decays.Thus separate experimental measurements of as many of these reactions as possible could allow a model independent determination of the hadronic entities and provide useful self consistency checks.Consequently,extraction of V td to a meaningful level of accuracy in the long run may become possible.Clearly the necessary effort is then many times more than what is needed for a single measurement of B→ρ+γ. On the other hand,we anticipate intense experimental activity in the area. Improvements at existing e+e−facilities such as CESR and LEP as well as construction of new e+e−based B-factories at SLAC and KEK will lead to an increased sample of B’s.Furthermore many dedicated B experiments are being proposed or planned at hadron machines.Bearing all that in mind we give a general strategy for attempting to extract V td precisely from radiative B-decays.2A Close Look at B→ρ+γ.2.1The Long Distance Contribution from u¯u States. It has been known for a long time[9]that for b→dflavor-changing loop transitions(unlike for b→s)the tree graphs(i.e.long-distance)become appreciably large and can easily dominate over the loop(i.e.the SD)process.A simple example is the processB−→d¯uγ→ρ−γ(2)3via the non-spectator(or the annihilation)mechanism shown in Fig.1a.No-tice that this graph goes via V ub,i.e.another poorly known CKM parameter. So the reaction B→ρ+γcan occur,in principle,even if V td is vanishingly small.Although it is very difficult to accurately calculate such a contribu-tion there are several ways of estimating its size,i.e.within a factor of two or three.We outline below two ways of calculating such contributions.In thefirst method we invoke the correspondence of such annihilation graphs with spectator plusfinal state interactions(FSI)to note that Fig.1(a) is exactly the same as Fig.1(b).Fig.1(b)shows the color allowed simple spectator contribution to B−→ρ−+ρ0V followed byρ0V→γ(where the sub-script V stands for virtual).Thefirst step of B−→ρ−+ρ0can be estimatedby normalizing with the observed analogous decay:D−→ρ−+K∗0via Fig.1(c).This correspondence between the two decays should hold because of theflavor(b↔c)symmetry of QCD.To the extent that m c(m b)≫ΛQCD the effects of QCD do note care about theflavor-label charm or bottom[10].Also SU(3)flavor symmetry ensures that the change from K∗0toρ0in D versus B decay is mild apart from phase-space correction.The conversion fromρ→γcan be dealt with by using vector-meson dominance.ThusBR(B−→ρ−ρ0)m c 5 V ubτD+χps(3)whereχps is the phase space ratio.The conversion fromρ0to photon can be crudely estimated by using VMD to amount a multiplicative factor of about3∗10−3[11,12].Using V ubA second method for estimating the same contribution is to use bound state method of Ref.13for writing down the amplitude for B−→¯u dγ: A(B−→¯u dγ)1a≃fB m2W1Γ(B−→¯u dγ)1a≃18π2f2ρm2ρm2B ≃7×10−3(7)Using(5)and(7)we arrive at a second estimate for the LD correction due to¯u u statesBR(B−→ρ−γ)L u2≃8×10−8(8) where we have used f B=180MeV[15]and m u=330MeV.In passing we note from eqns.5–7that the inclusive branching ratio for the reaction B−→¯u dγvia the annihilation graph is given by:BR(B−→u¯dγ)≈1.1×10−5(9) Given the intrinsic uncertainties in each of the two methods outlined above the resulting numbers in eqns.(4)and(8)should be regarded as in qualitative agreement.Thus for one class of long distance contributions, namely those due to u¯u states we will take the mean of the two numbers5from eqn.(4)and eqn.(8)and rather arbitrarily assign a factor of four uncertainty.Thus for the corresponding amplitude we getA(B−→ρ−γ)L u=(2−4)×10−4(10) Now let us address the case of the neutral B i.e.the corresponding LD contributions from¯u u states to(B0→ρ0γ).Then Fig.1(a)gets redrawn as Fig.1(d)and Fig.1(b)gets redrawn as Fig.1(e).In each case we see thatthe graphs for B0are color suppressed.ThusA(B0→ρ0γ)L u=− 12×12 ×(2−4)×10−4(11)A(B0→ωγ)L u=12(2−4)×10−4(12) 2.2The Long Distance Contributions from c¯c States. We next turn our attention to the LD contributions to B−→ρ−+γfrom c¯c states.The most notable origin is the chain B−→ρ−+ψV followed by ψV→γ.Using the measured rateBR(B0→K∗0ψ)=(1.6±.3)×10−3(13) we immediately getBR(B−→ρ−ψ)=2BR(B0→ρ0ψ)=λ2Br(B0→K∗0ψ)p sK∗ρ(14) whereλ≡sinθc=.22and p sK∗ρis a phase space correction factor estimated to be about1.4due to the mass difference betweenρand K∗[16].Following Ref.11conversion factor fromψ→γis estimated at5×10−3.However, in thisψ→γconversion we want to include only the transversely polarized fraction ofψ’s.These are estimated to be about30%[17].Thus,for the amplitude of LD contributions from c¯c states we get6A(B−→ρ−γ)L c=(2−6)×10−4(15) where in specifying the range we are again estimating about a factor of two uncertainty(in the amplitude).2.3The Short-Distance Contributions to B→ρ+γThe SD(or penguin)contributions arise from loop graphs,such as Fig.1(f) and1(g).It is known for a long time that QCD corrections play an important role here.We recall that this is due to the fact that in the pure electroweak penguin(Fig.1(f))there is an accidental cancellation of the coefficients of terms that maintain GIM unitarity with a logarithmic dependence on the internal quark mass(i.e.m u,m c,m t).As a result the leading terms exhibit a power law dependence on that mass.On switching on QCD the coefficient of the log term becomes nonvanishing and results in enhanced QCD radiative effects.By now there is an extensive literature describing the effects of QCD on radiative decays of B’s.For our purpose it is useful tofirst discuss the b→s process namely the one relevant to B−(B0)→K∗−(K∗0)+γ(or to B S→φ+γ).Recall the CKM unitarity for this channel:v q u+v q c+v q t=0(16) where v q j=V jb V∗jq,j=u,c,t and q=s or d.Recall also that[1]V us=λ≃.22(17)V ubto the other two terms in eqn.(16).This has two important consequences. First is that one gets the usual relation:V ts≃−V cb(20) to a very good approximation.The second important consequence of the smallness of V ub V∗us is that in the b→s penguin loop the u quark contribution is forced to become so small that the precise dependence on m u is not at all important.Such is not the case for b→d penguins as we will soon elaborate.The penguin(SD)contributions can be written asA q p= j f j v q j(21) For q=s,we can use eqn.(16)and rewriteA s p=(f t−f c)v s t+(f u−f c)v s u(22) Since v s u is extremely small the second term is bound to make a negligibly small contribution and consequently the assumption that f c=f u that one usually makes[18]becomes a very safe assumption.Then for b→s with a very good approximation one getsA s p=(f t−f c)v s t≡(f t−f c)V ts(23) For the case of b→d transitions the u quark in the loop no longer appears with the small parameter V us(≡λ)multiplying its effects and the charm and the top quark both now have smaller CKM factors monitoring their con-tributions to the penguin amplitude.The u quark contribution is no longer necessarily negligible in comparison to the others and the assumption f c=f u is no longer a good approximation since it forces a potentially important(u quark)contribution to unnaturally vanish.Any reasonable deviation of f c/f u away from unity would have important corrections.To make the best use of8the experimental information that one gets from measurement of B→K∗γ, it is prudent now to use unitarity and rewrite the b→d penguin as:A d p=(f t−f c)v d t+(f u−f c)v d u(24) Taking ratios of equations(23)and(24):A d p/A s p=V tdf t−f c V ubemerging from lattice calculations along with the measured B-¯B mixing givesV td2.4The Long-and Short Distance Contributions toB→K∗+γThe LD contribution from¯u u states is easily estimated from eqn.(10)A s(B−→K∗−γ)L u≃(4−8)×10−5(38)A s(B0→K∗0γ)L u≃(2−4)×10−5(39) Similarly,from eqn.(13),with use of theψ→γconversion factor of5×10−3 and incorporating a factor of0.3for the fraction of transversely polarizedψ’s we get=(1−3)×10−3(40)A(B→K∗+γ)LcSo for B→K∗γthe LD contributions due to c¯c completely dominate over the u¯u ones[19].Recall now the recent experimental result[7]BR(B→K∗γ)=(4.5±1.5±0.9)×10−5(41) For the amplitude we translate this asA(B→K∗γ)|expt≃(6.7±1.7)×10−3(42) From equations(40)and(42)we see that there can be about15–50%LD con-tributions in the observed experimental bining those two equa-tions we arrive at the SD componentA s p≡A(B→K∗+γ)SD=(4.7±2.7)×10−3(43) In arriving at eqn.(43)we have made a strong assumption that the SD and LD(c¯c)amplitudes for B→K∗+γhave the same relative sign.This11assumption is based on the belief that an opposite choice of signs would make the exclusive to inclusive ratio for the short distance component alone,i.e.Γ(B→K∗+γ)H K∗=2.3×10−4∼9.6%(49)12to be more in the ball park of the lattice results.If,on the other hand,we take the LD and SD contributions to B→K∗γto have a relative negative sign then the SD fraction would have to be(8.7×10−3)2[1+∆]×(4.7±2.7)×10−3(50)V ts∼(5−15)×10−4(51) From eqn.(15)and(51)we see that for B−→ρ−+γthe LD c¯c states are at least15%of(and could even dominate over)the SD ones.Indeed even that minimum value of15%implies a contamination of these LD effects on the rate for B−→ρ−γto approach30%.From eqn.(10)we see that the u¯u states seem to be somewhat less important than the c¯c but are roughly comparable.We emphasize again that the numbers given for L u in eqn.10 assume V ubsame for B0and B−(i.e.eqns.(50)and(51)).Thus B0→ρ0+γmay have appreciable advantages over B−→ρ−+γfor learning about V td.In any event,it seems clear from the preceding estimates that the rates for B−→ρ+γmay be quite different from that of B0→ρ+γ.Since the SD contributions(which scale with V td)are the same for B−and B0and the LD ones are not,separate measurements of B−and B0radiative decays are important to understanding the dynamics of these decays and they are essential for facilitating any reliable determination of V td.3Four Hadronic Entities Essentially Deter-mine all the Radiative B-Decays.In the preceding section we have discussed the long and short distance con-tributions to charged and neutral B decays toρ+γand K∗+γ.During the course of that discussion we had to introduce two LD(namely L u and L c) and two short distance(namely S tc and S uc)entities.Indeed all the radiative B,B S decays to the sevenfinal states given in eqn.(1)are governed by the same four hadronic entities[22].Of course the dependence on CKM angles are not the same(also there are obvious differences in N c dependence and onflavor SU(3))that have to be taken into account.Thus we can writeA(B−→ρ−+γ)=e u (N C−1)v d u L u+v d c L c+k b c BρT1Bρ(v d t S tc+v d u S uc) (52) A(B0→ρ0+γ)=−12 (e u−e d)v d u L u+e u v d c L c+k b c BρT1Bρ v d t S tc+v d u S uc (53) AlsoA(B0→ω+γ)=12 (e u+e d)v d u L u+e u v d c L c+k b c BρT1Bρ v d t S tc+v d u S uc (54)14A(B−→K∗−+γ)=e u[v s u N c L u+v s c L c+k b c BK∗T1BK∗(v s t S tc+v s u S uc)]+≃e u[v s c L c+k b c BK∗T1BK∗v s t S tc](55) A(B0→K∗0+γ)=e u[v s u L u+v s c L c+k b c BK∗T1BK∗(v s t S tc+v s u S uc)]≃e u[v s c L c+k b c BK∗T1BK∗v s t S tc](56) Similarly for related decays of B S:A(B S→φ+γ)=e u v s u L u+v s c L c+k b c B sφT1B sφ(v s t S tc+v s u S uc)≃e u v s c L c+k b c B sφT1B sφv s t S tc (57) A(B S→K∗+γ)=e u v d u L u+v d c L c+k b c B s K∗T1B s K∗(v d t S tc+v d u S uc) (58) Here k b is a normalization constant designed so that the width for theflavor-changing transition coming from the short distance piece alone is related properly to the factors S tc and S uc.ThusΓ(b→dγ)SD≡Γ(b→dγ)penguin=[e u k b(v d t S tc+v d u S uc)]2(59) T1is the only form factor(at q2=0)that determines the exclusive to inclusive ratio from the short-distance penguin part[19].ThusΓ(B→γρ)SD1−m2ρm b 3Table1:Numerical EstimatesReaction|Amplitudes|/10−4Branching Ratio/10−7 (u¯u)LD SD Total3±110±6.4–68 B0→ρ0γ2.8±1.41–12.2±.17±42–23B→K∗γ20±1040–6401.5±.510±62–58B S→φγ20±1040–640ρ−+γ,ρ0+γandω+γwould be an excellent indicator of the extent of the LD contamination.If the LD contributions are small then the BR s for these modes should follow the expected factor of two difference due to the difference in their naive quark content.Indeed from eqns.(52–54)onefinds:|A(B−→ρ−+γ)|−√2|A(B0→ω+γ)|=V d u L u[3e u+e d].(63) Thus experimental determination of the differences in the BR’s can be used to quantitatively deduce the long distance piece due to u¯u.Lattice calculations of B→K∗+γcould also play a very useful role. If improved lattice calculations for B→K∗γalso do not agree in their determination of the ratio H K∗≡[BR(B→K∗+γ)/BR(b→s+γ)]with improved experimental measurements then the difference between the two must be attributed to long distance pieces(presumably due to c¯c states) that the lattice calculations do not include. Acknowledgements:We are grateful to Ahmed Ali,Ikaros Bigi,Nilendra Deshpande,Bill Marciano,Hubert Simma,Sheldon Stone and Ed Thorndike for discussions. Work of D.A.and A.S.was supported in part by the US-Israel Binational Science Foundation Grant and DOE contracts DE-AC03-76SF00515and DE-AC02-76CH0016.Work of B.B.was supported in part by the Israel Science Foundation administered by the Israel Academy of Sciences and Humanities and Technion V.P.R.fund.Figure CaptionsFig.1a–e A partial set of long distance contributions due to u¯u states.Those due to c¯c states typically result by replacing u→c in Fig.1e.17Fig.1f–g Show typical penguin(short-distance)contributions. References[1]For a recent review of the status of the CKM parameters see M.With-erell,preprint UCSB-HEP-94-02.[2]See e.g.L.Littenberg and G.Valencia,Ann.Rev.of Nucl.and Part.Phys.43,729(1993);L.Littenberg,preprint BNL-48087.[3]See e.g.G.Buchalla and A.J.Buras,Nucl.Phys.B412,106(1994).[4]A.Ali,V.Braun and H.Simma,preprint CERN-TH7118/93.[5]J.M.Soares,Phys.Rev.D49,283(1994).[6]A.Soni in“Particle Phenomenology in the90’s,”Eds.A.Data et al.(World Scientific,1991)p.272.[7]R.Ammar et al(CLEO Collaboration),Phys.Rev.Lett.71,674(1993).[8]We will use the notation B when we mean B±and/or B0(¯B0),i.e.whenwe do not mean to make a distinction between charged and neutral B-mesons.[9]See e.g.G.Hou,A.Soni,and H.Steger,Phys.Rev.Lett.59,1521(1987).[10]This is analogous to the notion of heavy quark(i.e.Isgur-Wise)symme-try.See,e.g.N.Isgur and M.Wise p.158in“B-Physics”edited by S.Stone.[11]For a relatively recent similar use of VMD see:N.G.Deshpande,J.Trampetic,and K.Panose,Phys.Lett.B214,467(1988);see also Ref.12.18[12]E.Golowich and S.Pakvasa,Phys.Lett.205B,393(1988).[13]M.Bander,D.Silverman,and A.Soni,Phys.Rev.Lett.44,7(1980);E44,962(1980).See also Ref.14.[14]G.Eilam et al.,Phys.Lett.B185,145(1986).[15]C.Bernard,brenz,and A.Soni,Phys.Rev.D49,2536(1994).[16]This is based on formulas given in Ref.11.See also N.Deshpande andJ.Trampetic,preprint OITS-546(1994).[17]M.S.Alam et al.(CLEO),CLNS94-1270,CLEO94-5;CDF Collabora-tion,Fermilab Conf-94/127-E.[18]A.J.Buras,M.Misiak,M.Munz and S.Pokorski,preprint MPI-PH-93-77.[19]For another estimate on long distance contributions to B→K∗+γdueonly to u¯u states see:C.E.Carlson and ana,preprint UMD-PP-94-129.[20]C.Bernard,P.Hsieh,and A.Soni,Phys.Rev.Lett.72,1402(1994).See also K.C.Bowler et al.,Phys.Rev.Lett.72,1398(1994).[21]B.Barish et al.(CLEO Collaboration),preprint CLEO-Conf94-1.[22]This is reminiscent of the situtation in the non-leptonic two body decaysof D mesons.See B.Blok and M.Shifman,Sov.J.Nucl.Phys.45,135, 301,522(1987).19This figure "fig1-1.png" is available in "png" format from: /ps/hep-ph/9408373v1。