2012年全国各地中考数学解析汇编 特殊的平行四边形

合集下载

中考数学专题复习31特殊平行四边形专题(全国通用解析版)

中考数学专题复习31特殊平行四边形专题(全国通用解析版)

特殊平行四边形考点1:菱形的性质与判定1.(2021·安徽中考真题)如图.在菱形ABCD 中.2AB =.120A ∠=︒.过菱形ABCD 的对称中心O 分别作边AB .BC 的垂线.交各边于点E .F .G .H .则四边形EFGH 的周长为( )A .33B .23+C .23+D .13+【答案】A【分析】 依次求出OE =OF =OG =OH .利用勾股定理得出EF 和OE 的长.即可求出该四边形的周长.【详解】∵HF ∵BC ,EG ∵AB ,∵∵BEO =∵BFO =90°.∵∵A =120°.∵∵B =60°.∵∵EOF =120°.∵EOH =60°.由菱形的对边平行.得HF ∵AD ,EG ∵CD .因为O点是菱形ABCD的对称中心.∵O点到各边的距离相等.即OE=OF=OG=OH.∵∵OEF=∵OFE=30°.∵OEH=∵OHE=60°.∵∵HEF=∵EFG=∵FGH=∵EHG=90°.所以四边形EFGH是矩形;设OE=OF=OG=OH=x.∵EG=HF=2x.()2223EF HG x x x==-=.如图.连接AC.则AC经过点O.可得三角形ABC是等边三角形.∵∵BAC=60°.AC=AB=2,∵OA=1,∵AOE=30°.∵AE=1 2 .∵x=OE2213 12⎛⎫-=⎪⎝⎭∵四边形EFGH的周长为EF+FG+GH+HE=33 23223233 x x+=+=,故选A.2.(2021·陕西中考真题)如图.在菱形ABCD 中.60ABC ∠=︒.连接AC 、BD .则AC BD的值为( )A .12B .22C .32D .33【答案】D【分析】设AC 与BD 的交点为O .由题意易得1,2ABD CBD ABC AB BC ∠=∠=∠=.,,AC BD BO DO AO CO ⊥==.进而可得∵ABC 是等边三角形.3BO AO =.然后问题可求解.【详解】解:设AC 与BD 的交点为O .如图所示:∵四边形ABCD 是菱形. ∵1,2ABD CBD ABC AB BC ∠=∠=∠=.,,AC BD BO DO AO CO ⊥==.∵60ABC ∠=︒.∵∵ABC 是等边三角形.∵30,ABO AB AC ∠=︒=. ∵12AO AB =. ∵223OB AB AO OA -=. ∵23,2BD OA AC AO ==. ∵3323AC BD OA==; 故选D .3.(2021·四川凉山彝族自治州·中考真题)菱形ABCD 中.对角线10, 24AC BD ==.则菱形的高等于___________. 【答案】12013【分析】过A 作AE ∵BC .垂足为E .根据菱形的性质求出菱形边长.再利用菱形的面积公式得到方程.解之可得AE .【详解】解:如图.过A 作AE ∵BC .垂足为E .即AE 为菱形ABCD 的高.∵菱形ABCD 中.AC =10.BD =24.∵OB =12BD =12.OA =12AC =5. 在Rt ∵ABO 中.AB =BC 22125+=13.∵S 菱形ABCD =12AC BD BC AE ⨯⨯=⨯.∵11024132AE ⨯⨯=⨯.解得:AE=120 13.故答案为:120 13.4.(2021·江苏镇江·中考真题)如图.四边形ABCD是平行四边形.延长DA.BC.使得AE =CF.连接BE.DF.(1)求证:ABE CDF△≌△;(2)连接BD.∵1=30°.∵2=20°.当∵ABE=°时.四边形BFDE是菱形.【答案】(1)见解析;(2)当∵ABE=10°时.四边形BFDE是菱形【分析】(1)根据平行四边形的性子和“SAS”可证∵ABE∵∵CDF;(2)先证明四边形BFDE 是平行四边形.再通过证明BE =DE .可得结论.【解析】解:(1)证明:∵四边形ABCD 是平行四边形.∵AB =CD .∵BAD =∵BCD .∵∵1=∵DCF .在∵ABE 和∵CDF 中.1AE CF DCF AB CD =⎧⎪∠=∠⎨⎪=⎩. ∵∵ABE ∵∵CDF (SAS );(2)当∵ABE =10°时.四边形BFDE 是菱形.理由如下:∵∵ABE ∵∵CDF .∵BE =DF .AE =CF .∵BF =DE .∵四边形BFDE 是平行四边形.∵∵1=30°.∵2=20°.∵∵ABD =∵1-∵2=10°.∵∵DBE =20°.∵∵DBE =∵EDB =20°.∵BE =DE .∵平行四边形BFDE 是菱形.故答案为10.5.(2021·四川遂宁市·中考真题)如图.在平行四边形ABCD 中.对角线AC 与BD 相交于点O .过点O 的直线EF 与BA 、DC 的延长线分别交于点E 、F .(1)求证:AE =CF ;(2)请再添加一个条件.使四边形BFDE 是菱形.并说明理由.【答案】(1)见解析;(2)EF ∵BD 或EB =ED .见解析【分析】(1)根据平行四边形的性质和全等三角形的证明方法证明AOE COF ≌.则可得到AE =CF ;(2)连接BF .DE .由AOE COF ≌.得到OE = OF .又AO =CO .所以四边形AECF 是平行四边形.则根据EF ∵BD 可得四边形BFDE 是菱形.【详解】证明:(1)∵四边形ABCD 是平行四边形∵OA =OC .BE ∵DF∵∵E =∵F在∵AOE 和∵COF 中E F AOE COF OA OC ∠=∠⎧⎪∠=∠⎨⎪=⎩∵AOE COF ≌()AAS∵AE=CF(2)当EF∵BD时.四边形BFDE是菱形.理由如下:如图:连结BF.DE∵四边形ABCD是平行四边形∵OB=OD≌∵AOE COF=∵OE OF∵四边形BFDE是平行四边形∵EF∵BD.∵四边形BFDE是菱形⨯的正方形网格中.网格线的交点称为格点. 6.(2021·浙江嘉兴市·中考真题)如图.在77B在格点上.每一个小正方形的边长为1.(1)以AB为边画菱形.使菱形的其余两个顶点都在格点上(画出一个即可).(2)计算你所画菱形的面积.【答案】(1)答案不唯一.见解析;(2)6或8或10(答案不唯一)【分析】(1)根据菱形的定义并结合格点的特征进行作图;(2)利用菱形面积公式求解.【详解】解:(1)根据题意.菱形ABCD即为所求(2)图1中AC=2.BD=6∵图1中菱形面积1266 2=⨯⨯=.图2中.AC 224442.BD 22222+=∵图2中菱形面积1224282=⨯=. 图3中.222425AC BD =+=∵图3菱形面积12525102=⨯=.考点2:矩形的性质与判定7.(2021·江苏扬州市·中考真题)如图.在ABC 中.AC BC =.矩形DEFG 的顶点D 、E 在AB 上.点F 、G 分别在BC 、AC 上.若4CF =.3BF =.且2DE EF =.则EF 的长为________.【答案】125【分析】根据矩形的性质得到GF ∵AB .证明∵CGF ∵∵CAB .可得72x AB =.证明∵ADG ∵∵BEF .得到AD =BE =34x .在∵BEF 中.利用勾股定理求出x 值即可. 【详解】解:∵DE =2EF .设EF =x .则DE =2x . ∵四边形DEFG 是矩形.∵GF∵AB.∵∵CGF∵∵CAB.∵44437GF CFAB CB===+.即247xAB=.∵72x AB=.∵AD+BE=AB-DE=722xx-=32x.∵AC=BC.∵∵A=∵B.又DG=EF.∵ADG=∵BEF=90°.∵∵ADG∵∵BEF(AAS).∵AD=BE=1322x⨯=34x.在∵BEF中.222BE EF BF+=.即222 33 4x x⎛⎫+=⎪⎝⎭.解得:x=125或125-(舍).∵EF=12 5.故答案为:125.8.(2021·山东泰安市·中考真题)如图.将矩形纸片ABCD折叠(AD AB>).使AB落在AD上.AE为折痕.然后将矩形纸片展开铺在一个平面上.E点不动.将BE边折起.使点B落在AE上的点G处.连接DE.若DE EF=.2CE=.则AD的长为________.【答案】422+【分析】根据矩形的性质和正方形的性质.证明BEF GEF ≅△△.从而2BF FG ==.又因为)21AG FG AE EG AB ==-=.代入求解即可. 【详解】 解:∵四边形ABCD 是矩形,AB AB '=.∵AB CD =,AD BC =,90B C ∠=∠=,且四边形ABEB '是正方形.∵AB BE =.∵BE CD =.又∵DE EF =.∵BEF CDE ≅△△.∵2BF CE ==又∵BEF GEF ≅△△(折叠.∵2BF FG ==.BE GE =,90FGE B ∠=∠= .设AB x =,则2AE x =. ∵)21AG AE GE AE BE AE AB x =-=-=-=. 又∵AE 是正方形ABEB '对角线.∵45GAF ∠= .∵45AFG ∠= .∵FG AG = . ∵()212x = .解得:222x =.即222AB BE == . ∵2222422AD BC BE EC ==+=+=+ 故答案为:4+229.(2021·湖北十堰市·中考真题)如图.O 是矩形ABCD 的对角线AC 的中点.M 是AD 的中点.若AB=5.AD=12.则四边形ABOM 的周长为_______.【答案】20.【详解】∵AB =5.AD =12.∵根据矩形的性质和勾股定理.得AC =13.∵BO 为R t∵ABC 斜边上的中线∵BO =6.5∵O 是AC 的中点.M 是AD 的中点.∵OM 是∵ACD 的中位线∵OM =2.5∵四边形ABOM 的周长为:6.5+2.5+6+5=20故答案为2010.(2021·江苏连云港市·中考真题)如图.点C 是BE 的中点.四边形ABCD 是平行四边形.(1)求证:四边形ACED是平行四边形;.求证:四边形ACED是矩形.(2)如果AB AE【答案】(1)见解析;(2)见解析【分析】(1)由平行四边形的性质以及点C是BE的中点.得到AD∵CE.AD=CE.从而证明四边形ACED是平行四边形;(2)由平行四边形的性质证得DC=AE.从而证明平行四边形ACED是矩形.【详解】证明:(1)∵四边形ABCD是平行四边形.∵AD∵BC.且AD=BC.∵点C是BE的中点.∵BC=CE.∵AD=CE.∵AD∵CE.∵四边形ACED是平行四边形;(2)∵四边形ABCD是平行四边形.∵AB=DC.∵AB=AE.∵DC =AE .∵四边形ACED 是平行四边形.∵四边形ACED 是矩形.考点3:正方形的性质与判定11.(2021·重庆中考真题)如图.正方形ABCD 的对角线AC .BD 交于点O .M 是边AD 上一点.连接OM .过点O 做ON ∵OM .交CD 于点N .若四边形MOND 的面积是1.则AB 的长为( )A .1B 2C .2D .22【答案】C【分析】 先证明()MAO NDO ASA ≅.再证明四边形MOND 的面积等于.DAO 的面积.继而解得正方形的面积.据此解题.【详解】解:在正方形ABCD 中.对角线BD ∵AC .90AOD ∴∠=︒ON OM ⊥90MON ∴∠=︒AOM DON ∴∠=∠又45,MAO NDO AO DO ∠=∠=︒=()MAO NDO ASA ∴≅MAO NDO S S ∴=四边形MOND 的面积是1.1DAO S ∴=∴正方形ABCD 的面积是4.24AB ∴=2AB ∴=故选:C .12.(2021·重庆中考真题)如图.把含30°的直角三角板PMN 放置在正方形ABCD 中.30PMN ∠=︒.直角顶点P 在正方形ABCD 的对角线BD 上.点M .N 分别在AB 和CD 边上.MN 与BD 交于点O .且点O 为MN 的中点.则AMP ∠的度数为( )A .60°B .65°C .75°D .80°【答案】C【分析】 根据斜边中线等于斜边一半.求出∵MPO =30°.再求出∵MOB 和∵OMB 的度数.即可求出AMP ∠的度数.【详解】解:∵四边形ABCD 是正方形中.∵∵MBO =∵NDO =45°.∵点O 为MN 的中点∵OM =ON .∵∵MPN =90°.∵OM =OP .∵∵PMN =∵MPO =30°.∵∵MOB =∵MPO+∵PMN =60°.∵∵BMO =180°-60°-45°=75°.180753075AMP ∠=︒-︒-︒=︒.故选:C .13.(2021·四川自贡市·中考真题)如图.在正方形ABCD 中.6AB =.M 是AD 边上的一点.:1:2AM MD =.将BMA △沿BM 对折至BMN △.连接DN .则DN 的长是( )A .52B .58C .3D 65 【答案】D【分析】延长MN 与CD 交于点E.连接BE.过点N 作NF CD ⊥.根据折叠的正方形的性质得到NE CE =.在Rt MDE 中应用勾股定理求出DE 的长度.通过证明MDE NFE ∽.利用相似三角形的性质求出NF 和DF 的长度.利用勾股定理即可求解.【详解】解:如图.延长MN 与CD 交于点E.连接BE.过点N 作NF CD ⊥.∵6AB =.M 是AD 边上的一点.:1:2AM MD =. ∵2AM =.4DM =.∵将BMA △沿BM 对折至BMN △.四边形ABCD 是正方形. ∵90BNE C ∠=∠=︒.AB AN BC ==.∵Rt BNE Rt BCE ≌(HL).∵NE CE =.∵2EM MN NE NE =+=+.在Rt MDE 中.设DE x =.则628ME x x =-+=-. 根据勾股定理可得()22248x x +=-.解得3x =. ∵3NE DE ==.5ME =.∵NF CD ⊥.90MDE ∠=︒.∵MDE NFE ∽. ∵25EF NF NE DE MD ME ===. ∵125NF =.95EF =. ∵65DF =.∵2265+. DN DF NF故选:D.。

2012年全国中考数学试题分类解析汇编(159套63专题)专题58:开放探究型问题

2012年全国中考数学试题分类解析汇编(159套63专题)专题58:开放探究型问题

2012年全国中考数学试题分类解析汇编(159套63专题)专题58:开放探究型问题一、选择题二、填空题1. (2012陕西省3分)在同一平面直角坐标系中,若一个反比例函数的图象与一次函数y=2x+6-的图象无.公共点,则这个反比例函数的表达式是 ▲ (只写出符合条件的一个即可). 【答案】5y x=(答案不唯一)。

【考点】开放型问题,反比例函数与一次函数的交点问题,一元二次方程根与系数的关系。

【分析】设反比例函数的解析式为:k y x =, 联立y=2x+6-和k y x=,得k 2x+6x -=,即22x 6x+k 0-= ∵一次函数y=2x+6-与反比例函数k y x= 图象无公共点, ∴△<0,即268k 0<--(),解得k >92。

∴只要选择一个大于92的k 值即可。

如k=5,这个反比例函数的表达式是5y x=(答案不唯一)。

2. (2012广东湛江4分) 请写出一个二元一次方程组 ▲ ,使它的解是x=2y=1⎧⎨-⎩. 【答案】x+y=1x+2y=0⎧⎨⎩(答案不唯一)。

【考点】二元一次方程的解。

【分析】根据二元一次方程解的定义,围绕x=2y=1⎧⎨-⎩列一组等式,例如: 由x +y=2+(-1)=1得方程x +y=1;由x -y=2-(-1)=3得方程x -y=3;由x +2y=2+2(-1)=0得方程x +2y=0;由2x +y=4+(-1)=3得方程2x +y=3;等等,任取两个组成方程组即可,如x+y=1x+2y=0⎧⎨⎩(答案不唯一)。

3. (2012广东梅州3分)春蕾数学兴趣小组用一块正方形木板在阳光做投影实验,这块正方形木板在地面上形成的投影是可能是▲ (写出符合题意的两个图形即可)【答案】正方形、菱形(答案不唯一)。

【考点】平行投影。

【分析】根据平行投影的特点:在同一时刻,平行物体的投影仍旧平行。

所以,在同一时刻,这块正方形木板在地面上形成的投影是平行四边形或特殊的平行四边形,例如,正方形、菱形(答案不唯一)。

第十八章全国通用版中考数学:《平行四边形》与坐标系结合压轴题(二)—解析版

第十八章全国通用版中考数学:《平行四边形》与坐标系结合压轴题(二)—解析版

第十八章专题:《平行四边形》与坐标系结合压轴题(二)1.如图,在平面直角坐标系中,AB //OC, A (0, 12), B (a, c) , C (b, 0),并且a, b满足b= 府市 /口' + 16. 一动点P从点A出发,在线段AB上以每秒2个单位长度的速度向点 B 运动;动点Q 从点。

出发在线段OC上以每秒1个单位长度的速度向点C运动,点P、Q分别从点A、O同时出发,当点P 运动到点B时,点Q随之停止运动.设运动时间为t (秒)(1)求B、C两点的坐标;(2)当t为何值时,四边形PQCB是平行四边形?并求出此时P、Q两点的坐标;(3)当t为何值时,APQC是以PQ为腰的等腰三角形?并求出P、Q两点的坐标.(1) •, b= ^a-21 J^T^+16,••.a=21, b=16,故B (21, 12) C (16, 0); (2)由题意得:AP=2t, QO=t,贝U: PB=21-2t , QC=16-t,•••当PB=QC时,四边形PQCB是平行四边形,.•.21-2t=16-t,解得:t=5,,P (10, 12) Q (5, 0);(3)当PQ=CQ 时,过Q 作QN^AB,由题意得:122+t2=(16-t) 2, 解得:t=3.5,故P (7, 12), Q (3.5, 0),当PQ=PC时,过P作PM ±x轴,由题意得:QM=t , CM=16-2t ,则t=16-2t,解得:t=16, 2t=32, 3 3故P( 32,12), Q(16,3 30).2.如图1,在平面直角坐标系中, AB ,y 轴于点A, BC ,x 轴于点B,点D 为线段BC 的中点,若AB=a , CD=b ,且J 2 a 8 v 5 +/4我 a +2屈=b .连接AD ,在线段OC 上取一点E,使/ EAD= / DAB .(1)贝U a=, b=(2)求证:AE=OE+CD ;【解答】(1) a =4 v15 , b =2 后,(2)由(1)可知 AB=4 75, CD=BD=2 V 5 , • . AB=CB ,,.AB ±y 轴于点 A, BC±x 轴于点 B,,乙 BAO= / B= / AOC=90° ,••・四边形ABCO 是矩形,••・AB=CB , ••・四边形ABCO 是正方形,延长 CO 至u M ,使得 OM=BD ,贝u ^ABD AOM , ,/4=/M, Z1 = Z2=Z3,. OA//BC, . ・/4=/2+/5=/5+/3=/EAM , . . / M= / EAM , • . AE=EM=OE+OM=OE+BD ••• BD=CD , .1. AE=OE+CD .(3)如图 2 中,设 AE=EM=x .在 RtAAOE 中,AO 2+OE 2=AE 2, - x 2= (4<5 ) 2+ (x-2 J 5 ) 2, . . x=5石, OE=3 而,•.D (4V 5, 2 45), E (3V5 , 0), •. F (0, -6V5 )风0)3.如图,在平面直角坐标系中,有一矩形ABCD,其中A(0, 0), B (m, 0) , D (0, n), m是最接近质的整数,n是16的算术平方根,若将4ABC沿矩形又•角线AC所在直线翻折,点B落在点E处,AE与边CD相交于点M .(1)求AC的长;(2)求4AMC的面积;(3)求点E的坐标.【解答】(1)•' m是最接近#5的整数,• ' m=8,.「n 是16 的算术平方根,,n=4,,B (8, 0), D (0, 4),.••点C 矩形ABCD 的一个顶点,..C (8, 4),,AB=8, BC=4 ,AC=4 J5 ,(2)由折叠有,CE=AD=BC=4 , AE=AB=8 ,设DM=x 则CM=8-x ,・. /ADM= / CEM , /AMD=/CME, /.A ADM ^ACEM , • .AM=CM=8-x , ME=MD , 在RtAADM 中,AD=4 , DM=x , AM=8-x ,根据勾股定理有:AD2+DM 2=AM 2,即:16+x2= (8-x) 2, •1- x=3 , DM=3 , CM=5 , S AAMC = —Ch/|X AD=)>^M=10,2 2(3)过点E作EFXCD,如图,由(2)有,CM=5 , CE=4, ME=DM=3在Rt^CEM 中,由射影定理得,CE2=CFXCM , 16=CFX5,,CF=3.2,••・Ma CE=CMK EF (直角三角形的面积的两种计算) ,,EF=2.4,• . DF=CD -CF=4.8 , BC+EF=6.4 , . . E (4.8, 6.4)4 .已知正方形OABC 在平面直角坐标系中,点 A, C 分别在x 轴,y 轴的正半轴上,等腰直角三角形OEF 的直角顶点O 在原点,E, F 分别在OA, OC 上,且OA=4 , OE=2 .将AOEF 绕点O 逆 时针旋转,得△OE I F I ,点E, F 旋转后的对应点为Ei, Fi.(I )①如图①,求EiFi 的长;②如图②,连接CFi, AEi,求证△OAEi^^OCFi;「(II)将AOEF 绕点O 逆时针旋转一周,当 OEi//CFi 时,求点Ei 的坐标(直接写出结果即可)姝 姝CB C 石【解答】(I )①解:二.等腰直角三角形 OEF 的直角顶点O 在原点,OE=2, / EOF=90 , OF=OE=2 ,「. EF=2 血,・ ••将AOEF 绕点 O 逆时针旋转,得△OE i F i, ••.E i F i =EF=2 J 2 ; ②证明:四边形OABC 为正方形,OC=OA .・ •・将AOEF 绕点 O 逆时针旋转,得 △OE i F i,AOE i =/COF i, • △OEF 是等腰直角三角形,・•.△OEiFi 是等腰直角三角形, ••OE i =OF i.在 AOAE i 和 ^OCF i 中,OA=OC, /AOEi=/COF i, OEi=OFi% E・•.△OAE 卢^OCF i (SAS);(n)解:••• OEXOF,卜过点F与OE平行的直线有且只有一条,并与OF垂直,当三角板OEF绕。

2025年中考数学总复习专题16 特殊的平行四边形(附答案解析)

2025年中考数学总复习专题16 特殊的平行四边形(附答案解析)

2025年中考数学总复习专题16
特殊的平行四边形
一、矩形的性质与判定
1.矩形的性质:
1)四个角都是直角;2)对角线相等且互相平分;3)面积=长×宽=2S△ABD=4S△AOB
.(如图)
2.矩形的判定:
1)定义法:有一个角是直角的平行四边形;2)有三个角是直角;3)对角线相等的平行四边形.
二、菱形的性质与判定
1.菱形的性质:
1)四边相等;2)对角线互相垂直、平分,一条对角线平分一组对角;3)面积=底×高=对角线乘积的一半.2.菱形的判定:
1)定义法:有一组邻边相等的平行四边形;2)对角线互相垂直的平行四边形;3)四条边都相等的四边形.三、正方形的性质与判定
1.正方形的性质:
1)四条边都相等,四个角都是直角;2)对角线相等且互相垂直平分;3)面积=边长×边长=2S△ABD=4S△AOB.2.正方形的判定:
1)定义法:有一个角是直角,且有一组邻边相等的平行四边形;2)一组邻边相等的矩形;
3)一个角是直角的菱形;4)对角线相等且互相垂直、平分.
四、联系
第1页(共36页)。

全国中考数学平行四边形的综合中考真题汇总附答案

全国中考数学平行四边形的综合中考真题汇总附答案

∠ B,∠ D 都不是直角,则当∠ B 与∠ D 满足等量关系
时,仍有 EF=BE+DF;
(3)联想拓展
如图 3,在△ ABC 中,∠ BAC=90°,AB=AC,点 D、E 均在边 BC 上,且∠ DAE=45°,猜想 BD、DE、EC
满足的等量关系,并写出推理过程。
【答案】(1)详见解析;(2)详见解析;(3)详见解析. 【解析】 试题分析:(1)把△ ABE 绕点 A 逆时针旋转 90°至△ ADG,可使 AB 与 AD 重合,证出 △ AFG≌ △ AFE,根据全等三角形的性质得出 EF=FG,即可得出答案; (2)把△ ABE 绕点 A 逆时针旋转 90°至△ ADG,可使 AB 与 AD 重合,证出△ AFE≌ △ AFG, 根据全等三角形的性质得出 EF=FG,即可得出答案;
BCFD=3× 3
3=9
3
,S△
ACF=
1 2
×3× 3
3 = 9 3 ,S = 平行四边形 ADBC 27 3 .
2
2
【点睛】
本题考查平行四边形的判定和性质、直角三角形斜边中线定理、等边三角形的性质、解直
角三角形、勾股定理等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考
题型.
2.如图所示,矩形 ABCD 中,点 E 在 CB 的延长线上,使 CE=AC,连接 AE,点 F 是 AE 的 中点,连接 BF、DF,求证:BF⊥DF.
∠ BAD=60°,∴ ∠ BAD=∠ ABC=60°,∵ E 为 AB 的中点,∴ AE=BE,又∵ ∠ AEF=∠ BEC,
∴ △ AEF≌ △ BEC,在△ ABC 中,∠ ACB=90°,E 为 AB 的中点,∴ CE= 1 AB,BE= 1 AB,

2012年中考数学分类解析(159套63专题)专题54_图形的旋转变换

2012年中考数学分类解析(159套63专题)专题54_图形的旋转变换

2012年全国中考数学试题分类解析汇编(159套63专题)专题54:图形的旋转变换一、选择题1. (2012天津市3分)将下列图形绕其对角线的交点逆时针旋转900,所得图形一定与原图形重合的是【 】(A )平行四边形 (B )矩形 (C )菱形 (D )正方形 【答案】D 。

【考点】旋转对称图形【分析】根据旋转对称图形的性质,可得出四边形需要满足的条件:此四边形的对角线互相垂直、平分且相等,则这个四边形是正方形。

故选D 。

2. (2012广东佛山3分)如图,把一个斜边长为2且含有300角的直角三角板ABC 绕直角顶点C 顺时针旋转900到△A 1B 1C ,则在旋转过程中这个三角板扫过的图形的面积是【 】A .πB ..3+42π.11124π【答案】D 。

【考点】旋转的性质,勾股定理,等边三角形的性质,扇形面积。

【分析】因为旋转过程中这个三角板扫过的图形的面积分为三部分扇形ACA 1、 BCD 和△ACD 计算即可:在△ABC 中,∠ACB=90°,∠BAC=30°,AB=2,∴BC=12AB=1,∠B=90°-∠BAC=60°。

∴AC =∴AB C 1S B C A C 22∆=⨯⨯=设点B 扫过的路线与AB 的交点为D ,连接CD , ∵BC=DC,∴△BCD 是等边三角形。

∴BD=CD=1。

∴点D 是AB 的中点。

∴AC D AB C 11S S 2224∆∆==⨯=S 。

∴1AC D AC A BC D ABC S S S ∆∆=++扇形扇形的面扫过积26013113603604464124ππππ⨯⨯=+=++=+故选D 。

3. (2012广东汕头4分)如图,将△ABC 绕着点C 顺时针旋转50°后得到△A′B′C′.若∠A=40°.∠B′=110°,则∠BCA′的度数是【 】A .110° B.80° C.40° D.30° 【答案】B 。

初二数学特殊的平行四边形试题答案及解析

初二数学特殊的平行四边形试题答案及解析1.如图,已知矩形纸片ABCD,点E是AB的中点,点G是BC上的一点,∠BEG>60°,现沿直线EG将纸片折叠,使点B落在纸片上的点H处,连接AH,则与∠BEG相等的角有________个.【答案】3【解析】由折叠可得∠BEG=∠HEG,又因为AE=EB=EH,所以∠EAH=∠EHA.过点E作EM⊥AH,则∠EHA+∠MEH=90°,易知∠GEH+∠MEH=90°,所以∠GEH=∠EHA,所以∠BEG=∠GEH=∠EHA=∠EAH,所以与∠BEG相等的角有3个.2. (2014重庆)如图,在矩形ABCD中,对角线AC、BD相交于点O,∠ACB=30°,则∠AOB 的大小为()A.30°B.60°C.90°D.120°【答案】B【解析】在矩形ABCD中,OA=OB=OC=OD,所以∠OBC=∠OCB=30°,所以∠AOB=∠OCB+∠OBC=60°.3. (2011江苏淮安)在四边形ABCD中,AB=DC,AD=BC.请再添加一个条件,使四边形ABCD是矩形.你添加的条件是________.(写出一个即可)【答案】∠A=90°【解析】在四边形ABCD中,AB=DC,AD=BC,所以四边形ABCD为平行四边形.若∠A=90°,则□ABCD是矩形.本题答案不唯一.4.已知矩形的一条对角线与一边的夹角是40°,则两条对角线所成的锐角的度数是()A.50°B.60°C.70°D.80°【答案】D【解析】注意是两对角线所成的锐角.5.(2013江苏苏州)如图,在矩形ABCD中,点E是边CD的中点,将△ADE沿AE折叠后得到△AFE,且点F在矩形ABCD内部.将AF延长交边BC于点G.若,则(用含k的代数式表示).【答案】【解析】∵点E是边CD的中点,∴DE=CE.∵将△ADE沿AE折叠后得到△AFE,∴DE=EF,AF=AD,∠AFE=∠D=90°.∴CE=EF.连接EG.在Rt△ECG和Rt△EFG中,∵EG=EG,CE=EF,∴Rt△ECG≌Rt△EFG(HL),∴CG=FG,设CG=a,∵,∴GB=ka.∴BC=CG+BG=a+ka=a(k+1).在矩形ABCD中,AD=BC=a(k+1),∴AF=a(k+1),AG=AF+FG=a(k+1)+a=a(k+2).在Rt△ABG中,.∴.6.如图,四边形ABCD的对角线互相平分,要使它变成矩形,需要添加的条件是()A.AB=CDB.AD=BCC.AB=BCD.AC=BD【答案】D【解析】对角线相等的平行四边形是矩形,故选D7.如图,要使□ABCD成为矩形,需添加的条件是()A.AB=BCB.AC⊥BDC.∠ABC=90°D.∠1=∠2【答案】C【解析】有一个角是直角的平行四边形是矩形.8.(2013呼和浩特)如图,在四边形ABCD中,对角线AC⊥BD,垂足为O,点E、F、G、H 分别为边AD、AB、BC、CD的中点.若AC=8,BD=6,则四边形EFGH的面积为________.【答案】12【解析】∵点E、F、G、H分别为四边形ABCD的边AD、AB、BC、CD的中点,∴EF∥BD∥GH,且.同理求得EH∥AC∥GF,且,∴四边形EFGH为平行四边形.∵AC⊥BD,∴EF⊥FG.∴四边形EFGH是矩形.∴四边形EFGH的面积=EF·EH=3×4=12.9.(2013玉林)如图,在直角梯形ABCD中,AD∥BC,AD⊥DC,点A关于对角线BD的对称点F刚好落在腰DC上,连接AF交BD于点E,AF的延长线与BC的延长线交于点G,M,N分别是BG,DF的中点.(1)求证:四边形EMCN是矩形;(2)若AD=2,,求矩形EMCN的长和宽.【答案】见解析【解析】(1)证明:∵点A、F关于BD对称,∴AD=DF,DE⊥AF.又∵AD⊥DC,∴△ADF、△DEF都是等腰直角三角形,∴∠DAF=∠EDF=45°.∵AD∥BC,∴∠G=∠GAD=45°,∴△BGE是等腰直角三角形.∵M,N分别是BG,DF的中点,∴EM⊥BC,EN⊥CD.又∵AD∥BC,AD⊥DC,∴BC⊥CD,∴四边形EMCN是矩形.(2)解:由(1)可知∠EDF=45°,BC⊥CD,∴△BCD是等腰直角三角形,∴BC=CD,∴,即CD2+2CD=15=0,即(CD+1)2=16,解得CD=3或CD=-5(舍去).∵△ADF、△DEF都是等腰直角三角形,∴DF=AD=2.∵N是DF的中点,∴,∴CN=CD-DN=3-1=2.∴矩形EMCN的长和宽分别为2和1.10.如图,四边形ABCD的对角线互相平分,要使它变为矩形,需要添加的条件是()A.AB=CDB.AD=BCC.∠AOB=45°D.∠ABC=90°【答案】D【解析】因为四边形ABCD的对角线互相平分,所以四边形ABCD为平行四边形,A、B两选项为平行四边形具有的性质,C选项添加后也不是矩形,根据矩形的定义知D正确.故选D.11.矩形具有而平行四边形不一定具有的性质是()A.对角相等B.对角线互相平分C.一组对边平行另一组对边相等D.对角线相等【答案】D【解析】矩形的对角线相等,而平行四边形的对角线不一定相等.12.如图所示,在矩形ABCD中,对角线AC,BD相交于点O,∠AOD=120°,AB+AC=9,求对角线BD的长及矩形ABCD的面积.【答案】见解析【解析】∵四边形ABCD是矩形,∴∠ABC=90°,,,AC=BD,∴OA=OB.∵∠AOD=120°,∴∠AOB=60°,∴△AOB是等边三角形.∴.又∵AB+AC=9,∴AB=3,AC=6,∴BD=AC=6.在Rt△ABC中,.∴.13.如图,正方形ABCD中,对角线AC、BD相交于点O,则图中的等腰三角形有( )A.4个B.6个C.8个D.10个【答案】C【解析】在正方形ABCD中,AB=BC=CD=AD,OA=OB=OC=OD,所以等腰三角形有△ABC,△ADC,△ABD,△CBD,△OAB,△OBC,△OCD,△OAD.14.(2013辽宁铁岭)如图,△ABC中,AB=AC,AD是△ABC的角平分线,点O为AB的中点,连接DO并延长到点E,使OE=OD,连接AE,BE.(1)求证:四边形AEBD是矩形;(2)当△ABC满足什么条件时,矩形AEBD是正方形?并说明理由.【答案】见解析【解析】(1)证明:∵点O为AB的中点,OE=OD,∴四边形AEBD是平行四边形.∵AB=AC,AD是△ABC的角平分线.∴AD⊥BC,∴四边形AEBD是矩形.(2)当△ABC是等腰直角三角形时,矩形AEBD是正方形.理由:∵△ABC是等腰直角三角形,AB=AC,AD平分∠BAC,∴∠BAD=∠CAD=∠DBA=45°.∴BD=AD,由(1)知四边形AEBD是矩形,∴四边形AEBD是正方形.15.同学们在小学阶段做过这样的折纸游戏:把一个长方形纸片经过折叠可以得到新的四边形.如图,将长方形ABCD沿DE折叠,使点A与CD边上的点F重合,再沿EF剪开,即得到四边形DAEF.求证:四边形DAEF为正方形.【答案】∵矩形ABCD沿DE折叠,使点A与CD边上的点F重合,∴△DAE和△DFE关于直线DE对称,∴DA=DF,∠DFE=∠A.∵四边形ABCD是矩形,∴∠ADF=∠A=∠DFE=90°.∴四边形DAEF为矩形.∵DA=DF,∴矩形DAEF为正方形.【解析】欲证明四边形DAEF为正方形,只需先证明四边形DAEF为矩形,再证明有一组邻边相等.16.如图,EG、FH与正方形ABCD的两条对角线的交点为O,EG⊥FH,求证:四边形EFGH是正方形.【答案】∵四边形ABCD为正方形,∴OB=OC,∠ABO=∠BCO=45°,∠BOC=90°=∠2+∠3.∵EG⊥FH,∴∠1+∠3=90°.∴∠1=∠2.∴△COF≌△BOE,∴OF=OE.同理可证OE=OH=OG.∴EO+GO=FO+HO,即EG=FH.又∵EG⊥FH,∴四边形EFGH为正方形.【解析】由EG⊥FH想到只需证EG、FH互相平分且相等即可.17.(2013六盘水)在平面中,下列命题为真命题的是()A.四个角相等的四边形是矩形B.对角线垂直的四边形是菱形C.对角线相等的四边形是矩形D.四边相等的四边形是正方形【答案】A【解析】A.根据四边形的内角和得出,四个角相等即四个内角是直角,故此四边形是矩形,故此选项正确;B.对角线互相平分且垂直的四边形是菱形,故此选项错误;C.对角线互相平分且相等的四边形是矩形,故此选项错误;D.四边相等的四边形是菱形,故此选项错误.故选A.18.(2013聊城)下列命题中的真命题是()A.有三个角相等的四边形是矩形B.对角线互相垂直且相等的四边形是正方形C.顺次连接矩形四边中点得到的四边形是菱形D.正五边形既是轴对称图形又是中心对称图形【答案】C【解析】根据矩形、菱形、正方形的判定以及正五边形的性质即可得出答案.A.四个角相等的四边形是矩形,故此命题是假命题,故此选项错误;B.对角线互相垂直平分且相等的四边形是正方形,故此命题是假命题,故此选项错误;C.顺次连接矩形四边中点得到的四边形是菱形,故此命题是真命题,故此选项正确;D.正五边形是轴对称图形但不是中心对称图形,故此命题是假命题,故此选项错误.故选C.19.(2013济宁)如图中图(1),在正方形ABCD中,E、F分别是边AD、DC上的点,且AF⊥BE.(1)求证:AF=BE.(2)如图中图(2),在正方形ABCD中,M、N、P、Q分别是边AB、BC、CD、DA上的点,且MP⊥NQ.MP与NQ是否相等?并说明理由.【答案】(1)证明:如图(1),在正方形ABCD中,AB=DA,∠BAE=∠D=90°,∴∠DAF+∠BAF=90°,∵AF⊥BE,∴∠ABE+∠BAF=90°,∴∠ABE=∠DAF,∵在△ABE和△DAF中,∴△ABE≌△DAF(ASA),∴BE=AF.(2)解:MP与NQ相等.理由如下:如图(2),过点A作AF∥MP交CD于F,过点B作BE∥NQ交AD于E,则BE=NQ,AF=MP.只需证BE=AF即可.与(1)的情况完全相同.【解析】(1)根据正方形的性质可得AB=DA,∠BAE=∠D=90°,再根据同角的余角相等求∠ABE=∠DAF,然后利用“角边角”证明△ABE和△DAF全等,再根据全等三角形的性质证明即可;(2)过点A作AF∥MP交CD于F,过点B作BE∥NQ交AD于E,然后解法与(1)相同.20.(2013凉山州)如图,菱形ABCD中,∠B=60°,AB=4,则以AC为边的正方形ACEF的周长为()A.14B.15C.16D.17【答案】C【解析】∵四边形ABCD是菱形,∴AB=BC.∵∠B=60°,∴△ABC是等边三角形,∴AC=AB=4.∴正方形ACEF的周长是4AC=4×4=16,故选C.21.(2013铁岭)如图,△ABC中,AB=AC,AD是△ABC的角平分线,点O为AB的中点,连接DO并延长到点E,使OE=OD,连接AE,BE.(1)求证:四边形AEBD是矩形.(2)当△ABC满足什么条件时,矩形AEBD是正方形?并说明理由.【答案】见解析【解析】(1)证明:∵点O为AB的中点,∴OA=OB,又∵OE=OD,∴四边形AEBD是平行四边形,∵AB=AC,AD是△ABC的角平分线,∴AD⊥BC,∴∠ADB=90°,∴平行四边形AEBD是矩形.(2)解:当∠BAC=90°时,矩形AEBD是正方形.理由:∵∠BAC=90°,AB=AC,AD是△ABC的角平分线,∴AD=BD=CD,∴矩形AEBD是正方形.22.已知,在四边形ABCD中,∠A=∠B=∠C=90°,如果添加一个条件即可推出该四边形是正方形,那么这个条件可以是( )A.∠D=90°B.AB=CDC.AD=BCD.BC=CD【答案】D【解析】由∠A=∠B=∠C=90°可判定为矩形,根据正方形的定义,再添加条件“一组邻边相等”即可判定为正方形,故选D.23.如图,若要使平行四边形ABCD成为菱形,则需要添加的条件是( )A.AB=CDB.AD=BCC.AB=BCD.AC=BD【答案】C【解析】因为一组邻边相等的平行四边形是菱形,所以由选项知可添加的条件是AB=BC.故选C.24.(2013四川遂宁)如图,已知四边形ABCD是平行四边形,DE⊥AB,DF⊥BC,垂足分别是E、F,并且DE=DF.求证:(1)△ADE≌△CDF;(2)四边形ABCD是菱形.【答案】见解析【解析】证明:(1)∵DE⊥AB,DF⊥BC,∴∠AED=∠CFD=90°.∵四边形ABCD是平行四边形,∴∠A=∠C.在△AED和△CFD中,∴△AED≌△CFD(AAS).(2)∵△AED≌△CFD,∴AD=CD.∵四边形ABCD是平行四边形,∴四边形ABCD是菱形.25.如图,在菱形ABCD中,AB=5,∠BCD=120°,则△ABC的周长等于( )A.20B.15C.10D.5【答案】B【解析】∵四边形ABCD是菱形,∴BA=BC,CA平分∠BCD.∵∠BCD=120°,∴∠BCA=60°.∵BA=BC,∴△ABC是等边三角形.∵AB=5,∴△ABC 的周长为5×3=15.故选B.26.如图,平行四边形ABCD的两条对角线AC和BD相交于点O,并且BD=4,AC=6,.(1)AC与BD有什么位置关系?为什么?(2)四边形ABCD是菱形吗?为什么?【答案】见解析【解析】(1)AC⊥BD,理由如下:∵四边形ABCD为平行四边形,∴,.在△OBC中,OC2+OB2=9+4=13=BC2,∴△OBC为直角三角形,即OC⊥OB,∴AC⊥BD.(2)四边形ABCD是菱形,理由如下:∵AC⊥BD.∴平行四边形ABCD是菱形.27.如图,在Rt△ABC中,∠B=90°,,∠C=30°.点D从点C出发沿CA方向以每秒2个单位长的速度向点A匀速运动,同时点E从点A出发沿AB方向以每秒1个单位长的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(t>0).过点D作DF⊥BC于点F,连接DE、EF.(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,请说明理由;(3)当t为何值时,△DEF为直角三角形?请说明理由.【答案】见解析【解析】(1)证明:在△DFC中,∠DFC=90°,∠C=30°,DC=2t,∴DF=t,又∵AE=t,∴AE=DF.(2)能.理由如下:∵AB⊥BC,DF⊥BC,∴AE∥DF.又∵AE=DF,∴四边形AEFD为平行四边形.在Rt△ABC中,设AB=x,则由∠C=30°,得AC=2x,由勾股定理,得AB2+BC2=AC2,即,解得x=5(负根舍去),∴AB=5.∴AC=2AB=10.∴AD=AC-DC=10-2t.若使□AEFD为菱形,则需AE=AD,即t=10-2t,解得.故当s时,四边形AEFD为菱形.(3)①当∠EDF=90°时,四边形EBFD为矩形.在Rt△AED中,∠ADE=∠C=30°,∴AD=2AE,即10-2t=2t,解得.②当∠DEF=90°时,由(2)知EF∥AD,∴∠ADE=∠DEF=90°.∵∠A=90°-∠C=60°.∴∠AED=30°.∴AE=2AD,即t=2(10-2t),解得t=4.③当∠EFD=90°时,△DEF不存在.综上所述,当s或4s时,△DEF为直角三角形.28.如图所示,在△ABC中,CD平分∠ACB,DE∥AC,DF∥BC,四边形DECF是菱形吗?试说明理由.【答案】四边形DECF是菱形.理由如下:∵DE∥AC,DF∥BC,∴四边形DECF是平行四边形.∵CD平分∠ACB,∴∠1=∠2.∵DF∥BC,∴∠2=∠3,∴∠1=∠3.∴CF=DF.∴四边形DECF是菱形.【解析】根据菱形的定义去判断,由DE∥AC,DF∥BC知四边形DECF是平行四边形,再由角相等推导出邻边相等即可.29.如图所示,已知菱形ABCD的边长为2cm,∠BAD=120°,对角线AC和BD相交于点O,求这个菱形的面积.【答案】解法一:因为四边形ABCD是菱形,所以AC⊥BD,.在Rt△AOB中,∠ABO=90°-∠BAO=30°,所以(cm),所以(cm).因为,,所以AC=2AO=2cm,cm,所以cm2.解法二:过点A作AH⊥BC,垂足为H,因为∠BAD=120°,所以∠BAH=120°-90°=30°,所以(cm),所以(cm),所以m2.【解析】选取Rt△AOB,利用菱形对角线的性质求出各角,由“30°角所对的直角边等于斜边的一半”及勾股定理求出对角线的长后,用求面积.也可以过点A作BC边上的高,利用直角三角形的性质求高,进而求面积.30.如图,在△ABC中,∠BAC=90°,AH⊥BC于H,∠ABC的平分线交AC于D,交AH于E,DF⊥BC于F.求证:四边形AEFD是菱形.【答案】∵∠ABD=∠FBD,BD=BD,∠BAD=∠DFB=90°,∴△ABD≌△FBD,∴AD=DF,AB=FB.又∠ABE=∠FBE,BE=BE,∴△ABE≌△FBE.∴∠BAE=∠BFE.又∠BAE=90°-∠ABC=∠C.∴∠BFE=∠C,∴EF∥AD,∵DF⊥BC,AH⊥BC,∴AE∥DF.∴四边形AEFD是平行四边形.又AD=DF,∴四边形AEFD是菱形.【解析】要证四边形AEFD是菱形,可证这个四边形是平行四边形,且有两条邻边相等.。

(江西人教)数学中考复习方案【第20课时】特殊的平行四边形(34页)

+∠BEF,而∠EBG= 90 °-∠ABE ,△BEF是等腰直角三角形.
考情分析 考点聚焦 赣考探究
图20-3
第20课时
特殊的平行四边形
解:(1)证明:∵四边形 ABCD 是正方形, ∴AB=BC,∠ABC=90°. ∵BE⊥BF, ∴∠EBF=90°, ∴∠ABE=∠CBF. AB=CB, 在△ABE 和△CBF 中,∠ABE=∠CBF, BE=BF, ∴△ABE≌△CBF,∴AE=CF.
考情分析 考点聚焦 赣考探究
第20课时
特殊的平行四边形
【归纳总结】
正方形的性质
正方形的判定
①正方形对边平行;②正方形四边________ 相等 ;③
正方形四个角都是________ 直角 ;④正方形的对角线 ①有一组邻边相等的 相等,互相垂直平分,且每条对角线 矩形 是正方形;② ________
角线互相平分并且
三 (2)有________ 个角是直
角的四边形是矩形;(3)
相等 ;(3)矩形是一 ________
个轴对称图形,它有
相等 的平行 对角线________
四边形是矩形
两 ________ 条对称轴
考情分析
考点聚焦
赣考探究
第20课时
考点2
特殊的平行四边形
菱形
1 .在菱形 ABCD 中,∠ B = 60 °, AB = 5 ,则对角线 AC = ________ . 5
________________ 平分一组对角 ;⑤正方形既是轴对称图形也 有一个角是直角的 中心对称 图形,对称轴有四条,对称中心是 ________ 菱形 是__________ 是正方形
对角线的交点
考情分析
考点聚焦

第十八章全国通用版中考数学:《平行四边形》最值问题(一)—解析版

第十八章专题:《平行四边形》最值问题(一)1.如图,∠MON=90°,矩形ABCD在∠MON的内部,顶点A,B分别在射线OM,ON上,AB=4,BC=2,则点D到点O的最大距离是()A.222+C.252-D.22-B.222+【答案】B【解析】取AB中点E,连接OE、DE、OD,∵∠MON=90°,∴OE=AB=2.在Rt△DAE中,利用勾股定理可得DE=2.在△ODE中,根据三角形三边关系可知DE+OE>OD,∴当O、E、D三点共线时,OD最大为OE+DE=2+2.2.如图,矩形ABCD中,AB=2,BC=6,P为矩形内一点,连接P A,PB,PC,则P A+PB+PC的最小值是()A.433+B.221C.236+D.45【答案】B【解析】将△BPC绕点C逆时针旋转60°,得到△EFC,连接PF、AE、AC,则AE的长即为所求.由旋转的性质可知:△PFC是等边三角形,∴PC=PF,∵PB=EF,∴P A+PB+PC=P A+PF+EF,∴当A、P、F、E共线时,P A+PB+PC的值最小,∵四边形ABCD是矩形,∴∠ABC=90°,∴∠ACB=30°,AC=2AB=4,∵∠BCE=60°,∴∠ACE=90°,∴AE==2,3.如图,已知∠XOY=60°,点A在边OX上,OA=2,过点A作AC⊥OY于点C,以AC为一边在∠XOY内作等边△ABC,点P是△ABC围成的区域(包括各边)内的一点,过点P作PD∥OY 交OX于点D,作PE∥OX交OY于点E.设OD=a,OE=b,则a+2b最大值是.【答案】5【解析】如图1,过P作PH⊥OY交于点H,∵PD∥OY,PE∥OX,∴四边形EODP是平行四边形,∠HEP=∠XOY=60°,∴EP=OD=a,Rt△HEP中,∠EPH=30°,∴EH=EP=a,∴a+2b=2(a+b)=2(EH+EO)=2OH,当P在点B时,如图2,OC=1,AC=BC=,Rt△CHP中,∠HCP=30°,∴PH=,CH =,则OH的最大值是:OC+CH=1+=,即(a+2b)的最大值是5,4.如图,在平面直角坐标系中,已知正方形ABCO,A(0,3),点D为x轴上一动点,以AD为边在AD的右侧作等腰Rt△ADE,∠ADE=90°,连接OE,则OE的最小值为()A.B.2C.22D.32【答案】A【解析】如图,作EH⊥x轴于H,连接CE.∵∠AOD=∠ADE=∠EHD=90°,∴∠ADO+∠EDH=90°,∠EDH+∠DEH=90°,∴∠ADO=∠DEH,∵AD=DE,∴△ADO≌△DEH(AAS),∴OA=DH=OC,OD=EH,∴OD=CH=EH,∴∠ECH=45°,∴点E在直线y=x﹣3上运动,作OE′⊥CE,则△OCE′是等腰直角三角形,∵OC=3,∴OE′=,∴OE的最小值为.5.如图,四边形ABCD中,AB∥CD,AB=BC=2,∠BCD=30°,∠E=45°,点D在CE上,且CD=BC,点H是AC上的一个动点,则HD+HE最小值为.【答案】【解析】∵AB∥CD,CD=BC=AB,∴四边形ABCD是平行四边形,∵AB=BC,∴四边形ABCD是菱形,∴B、D关于AC对称,连接BE交AC于H′,连接DH′,此时DH′+EH′的值最小,最小值=BE,作AM⊥EC于M,EN⊥BA交BA的延长线于N.∵四边形ABCD是菱形,∴AD∥BC,∴∠ADM=∠BCD=30°,∵AD=2,∴AM=AD=1,∵∠AEC=45°,∴AM=EM=1,∵AM⊥CE,EN⊥BN,CE∥NB,∴∠AME=∠N=∠MAN=90°,∴四边形AMEN是矩形,∵AM=EM=1,∴四边形AMEN是正方形,∴AN=EM=AM=EN=1,在Rt△BNE中,BE===,6.如图,正方形ABCD的边长为4,点E为AD的延长线上一点,且DE=DC,点P为边AD上一动点,且PC⊥PG,PG=PC,点F为EG的中点.当点P从D点运动到A点时,则CF的最小值为.【答案】22【解析】∵正方形ABCD的边长为4,∴AB=BC=4,∠B=90°,∴AC=42,当P与D重合时,PC=ED=P A,即G与A重合,∴EG 的中点为D ,即F 与D 重合,当点P 从D 点运动到A 点时,则点F 运动的轨迹为DF ,∵D 是AE 的中点,F 是EG 的中点,∴DF 是△EAG 的中位线,∴DF ∥AG ,∵∠CAG =90°,∠CAB =45°,∴∠BAG =45°,∴∠EAG =135°,∴∠EDF =135°,∴∠FDA =45°,∴F 为正方形ABCD 的对角线的交点,CF ⊥DF ,此时CF 最小,此时CF =AG =AC =22,7. 如图,在Rt △ABC 中,∠BAC=90°,∠B=60°,AB=1,点P 为BC 上任意一点,连接PA ,以PA 、PC 为邻边作▱PAQC ,连接PQ ,则PQ 的最小值为 __________。

中考数学 真题精选 专题试卷 特殊的平行四边形(含答案解析) (含答案解析)

特殊的平行四边形一.选择题(共19小题)1.(•河北)如图,点A,B为定点,定直线l∥AB,P是l上一动点,点M,N分别为PA,PB的中点,对下列各值:①线段MN的长;②△PAB的周长;③△PMN的面积;④直线MN,AB之间的距离;⑤∠APB 的大小.其中会随点P的移动而变化的是()A.②③ B.②⑤ C.①③④ D.④⑤考点:三角形中位线定理;平行线之间的距离.分析:根据三角形的中位线平行于第三边并且等于第三边的一半可得MN=AB,从而判断出①不变;再根据三角形的周长的定义判断出②是变化的;确定出点P到MN的距离不变,然后根据等底等高的三角形的面积相等确定出③不变;根据平行线间的距离相等判断出④不变;根据角的定义判断出⑤变化.解答:解:∵点A,B为定点,点M,N分别为PA,PB的中点,∴MN是△PAB的中位线,∴MN=AB,即线段MN的长度不变,故①错误;PA、PB的长度随点P的移动而变化,所以,△PAB的周长会随点P的移动而变化,故②正确;∵MN的长度不变,点P到MN的距离等于l与AB的距离的一半,∴△PMN的面积不变,故③错误;直线MN,AB之间的距离不随点P的移动而变化,故④错误;∠APB的大小点P的移动而变化,故⑤正确.综上所述,会随点P的移动而变化的是②⑤.故选B.点评:本题考查了三角形的中位线平行于第三边并且等于第三边的一半,等底等高的三角形的面积相等,平行线间的距离的定义,熟记定理是解题的关键.2.(•山西)如图,在△ABC中,点D、E分别是边AB,BC的中点.若△DBE的周长是6,则△ABC 的周长是()A.8 B.10 C.12 D.14考点:三角形中位线定理.分析:首先根据点D、E分别是边AB,BC的中点,可得DE是三角形BC的中位线,然后根据三角形中位线定理,可得DE=AC,最后根据三角形周长的含义,判断出△ABC的周长和△DBE的周长的关系,再结合△DBE的周长是6,即可求出△ABC的周长是多少.解答:解:∵点D、E分别是边AB,BC的中点,∴DE是三角形BC的中位线,AB=2BD,BC=2BE,∴DE∥BC且DE=AC,又∵AB=2BD,BC=2BE,∴AB+BC+AC=2(BD+BE+DE),即△ABC的周长是△DBE的周长的2倍,∵△DBE的周长是6,∴△ABC的周长是:6×2=12.故选:C.点评:(1)此题主要考查了三角形中位线定理的应用,要熟练掌握,解答此题的关键是要明确:三角形的中位线平行于第三边,并且等于第三边的一半.(2)此题还考查了三角形的周长和含义的求法,要熟练掌握.3.(•铁岭)如图,点D、E、F分别为△ABC各边中点,下列说法正确的是()A.DE=DF B.EF=AB C.S△ABD=S△ACD D.AD平分∠BAC考点:三角形中位线定理.分析:根据三角形中位线定理逐项分析即可.解答:解:A、∵点D、E、F分别为△ABC各边中点,∴DE=AC,DF=AB,∵AC≠AB,∴DE≠DF,故该选项错误;B、由A选项的思路可知,B选项错误、C、∵S△ABD=BD•h,S△ACD=CD•h,BD=CD,∴S△ABD=S△ACD,故该选项正确;D、∵BD=CD,AB≠AC,∴AD不平分∠BAC,故选C.点评:本题考查了三角形中位线定理的运用,解题的根据是熟记其定理:三角形的中位线平行于第三边,并且等于第三边的一半.4.(•安顺)如图,在▱ABCD中,点E是边AD的中点,EC交对角线BD于点F,则EF:FC等于()A.3:2 B.3:1 C.1:1 D.1:2考点:平行四边形的性质;相似三角形的判定与性质.专题:几何图形问题.分析:根据题意得出△DEF∽△BCF,进而得出=,利用点E是边AD的中点得出答案即可.解答:解:∵▱ABCD,故AD∥BC,∴△DEF∽△BCF,∴=,∵点E是边AD的中点,∴AE=DE=AD,∴=.故选:D.点评:此题主要考查了平行四边形的性质以及相似三角形的判定与性质等知识,得出△DEF∽△BCF是解题关键.5.(•衢州)如图,在▱ABCD中,已知AD=12cm,AB=8cm,AE平分∠BAD交BC边于点E,则CE的长等于()A.8cm B.6cm C.4cm D.2cm考点:平行四边形的性质.分析:由平行四边形的性质得出BC=AD=12cm,AD∥BC,得出∠DAE=∠BEA,证出∠BEA=∠BAE,得出BE=AB,即可得出CE的长.解答:解:∵四边形ABCD是平行四边形,∴BC=AD=12cm,AD∥BC,∴∠DAE=∠BEA,∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BEA=∠BAE,∴BE=AB=8cm,∴CE=BC﹣BE=4cm;故答案为:C.点评:本题考查了平行四边形的性质、等腰三角形的判定;熟练掌握平行四边形的性质,并能进行推理计算是解决问题的关键.6.(•玉林)如图,在▱ABCD中,BM是∠ABC的平分线交CD于点M,且MC=2,▱ABCD的周长是在14,则DM等于()A.1 B. 2 C. 3 D. 4考点:平行四边形的性质.分析:根据BM是∠ABC的平分线和AB∥CD,求出BC=MC=2,根据▱ABCD的周长是14,求出CD=5,得到DM的长.解答:解:∵BM是∠ABC的平分线,∴∠ABM=∠CBM,∵AB∥CD,∴∠ABM=∠BMC,∴∠BMC=∠CBM,∴BC=MC=2,∵▱ABCD的周长是14,∴BC+CD=7,∴CD=5,则DM=CD﹣MC=3,故选:C.点评:本题考查的是平行四边形的性质和角平分线的定义,根据平行四边形的对边相等求出BC+CD 是解题的关键,注意等腰三角形的性质的正确运用.7.(•绥化)如图,▱ABCD的对角线AC、BD交于点O,AE平分∠BAD交BC于点E,且∠ADC=60°,AB=BC,连接OE.下列结论:①∠CAD=30°;②S▱ABCD=AB•AC;③OB=AB;④OE=BC,成立的个数有()A.1个B.2个C.3个D.4个考点:平行四边形的性质;等腰三角形的判定与性质;等边三角形的判定与性质;含30度角的直角三角形.分析:由四边形ABCD是平行四边形,得到∠ABC=∠ADC=60°,∠BAD=120°,根据AE平分∠BAD,得到∠BAE=∠EAD=60°推出△ABE是等边三角形,由于AB=BC,得到AE=BC,得到△ABC是直角三角形,于是得到∠CAD=30°,故①正确;由于AC⊥AB,得到S▱ABCD=AB•AC,故②正确,根据AB=BC,OB=BD,且BD>BC,得到AB≠OB,故③错误;根据三角形的中位线定理得到OE=AB,于是得到OE=BC,故④正确.解答:解:∵四边形ABCD是平行四边形,∴∠ABC=∠ADC=60°,∠BAD=120°,∵AE平分∠BAD,∴∠BAE=∠EAD=60°∴△ABE是等边三角形,∴AE=AB=BE,∵AB=BC,∴AE=BC,∴∠BAC=90°,∴∠CAD=30°,故①正确;∵AC⊥AB,∴S▱ABCD=AB•AC,故②正确,∵AB=BC,OB=BD,∵BD>BC,∴AB≠OB,故③错误;∵CE=BE,CO=OA,∴OE=AB,∴OE=BC,故④正确.故选C.点评:本题考查了平行四边形的性质,等边三角形的判定和性质,直角三角形的性质,平行四边形的面积公式,熟练掌握性质定理和判定定理是解题的关键.8.(•河南)如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E.若BF=6,AB=5,则AE的长为()A.4 B. 6 C.8 D.10考点:平行四边形的性质;等腰三角形的判定与性质;勾股定理;作图—基本作图.专题:计算题.分析:由基本作图得到AB=AF,加上AO平分∠BAD,则根据等腰三角形的性质得到AO⊥BF,BO=FO=BF=3,再根据平行四边形的性质得AF∥BE,所以∠1=∠3,于是得到∠2=∠3,根据等腰三角形的判定得AB=EB,然后再根据等腰三角形的性质得到AO=OE,最后利用勾股定理计算出AO,从而得到AE的长.解答:解:连结EF,AE与BF交于点O,如图,∵AB=AF,AO平分∠BAD,∴AO⊥BF,BO=FO=BF=3,∵四边形ABCD为平行四边形,∴AF∥BE,∴∠1=∠3,∴∠2=∠3,∴AB=EB,而BO⊥AE,∴AO=OE,在Rt△AOB中,AO===4,∴AE=2AO=8.故选C.点评:本题考查了平行四边形的性质:平行四边形的对边相等;平行四边形的对角相等;平行四边形的对角线互相平分.也考查了等腰三角形的判定与性质和基本作图.9.(•本溪)如图,▱ABCD的周长为20cm,AE平分∠BAD,若CE=2cm,则AB的长度是()A.10cm B.8cm C.6cm D.4cm考点:平行四边形的性质.分析:根据平行四边形的性质得出AB=CD,AD=BC,AD∥BC,推出∠DAE=∠BAE,求出∠BAE=∠AEB,推出AB=BE,设AB=CD=xcm,则AD=BC=(x+2)cm,得出方程x+x+2=10,求出方程的解即可.解答:解:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,AD∥BC,∴∠DAE=∠BAE,∵AE平分∠BAD,∴∠DAE=∠BAE,∴∠BAE=∠AEB,∴AB=BE,设AB=CD=xcm,则AD=BC=(x+2)cm,∵▱ABCD的周长为20cm,∴x+x+2=10,解得:x=4,即AB=4cm,故选D.点评:本题考查了平行四边形的在,平行线的性质,等腰三角形的判定的应用,解此题的关键是能推出AB=BE,题目比较好,难度适中.10.(•福建)如图,在▱ABCD中,O是对角线AC,BD的交点,下列结论错误的是()A.AB∥CD B.AB=CD C.AC=BD D.OA=OC考点:平行四边形的性质.分析:根据平行四边形的性质推出即可.解答:解:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,OA=OC,但是AC和BD不一定相等,故选C.点评:本题考查了平行四边形的性质的应用,能熟记平行四边形的性质是解此题的关键,注意:平行四边形的对边相等且平行,平行四边形的对角线互相平分.11.(•陕西)在▱ABCD中,AB=10,BC=14,E,F分别为边BC,AD上的点,若四边形AECF为正方形,则AE的长为()A.7 B.4或10 C.5或9 D.6或8考点:平行四边形的性质;勾股定理;正方形的性质.专题:分类讨论.分析:设AE的长为x,根据正方形的性质可得BE=14﹣x,根据勾股定理得到关于x的方程,解方程即可得到AE的长.解答:解:如图:设AE的长为x,根据正方形的性质可得BE=14﹣x,在△ABE中,根据勾股定理可得x2+(14﹣x)2=102,解得x1=6,x2=8.故AE的长为6或8.故选:D.点评:考查了平行四边形的性质,正方形的性质,勾股定理,关键是根据勾股定理得到关于AE的方程.12.(•营口)▱ABCD中,对角线AC与BD交于点O,∠DAC=42°,∠CBD=23°,则∠COD是()A.61° B.63° C.65° D.67°考点:平行四边形的性质.分析:由平行四边形的性质可知:AD∥BC,进而可得∠DAC=∠BCA,再根据三角形外角和定理即可求出∠COD的度数.解答:解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAC=∠BCA=42°,∴∠COD=∠CBD+∠BCA=65°,故选C.点评:本题考查了平行四边形的性质以及三角形的外角和定理,题目比较简单,解题的关键是灵活运用平行四边形的性质,将四边形的问题转化为三角形问题.13.(•巴彦淖尔)如图,P为平行四边形ABCD的边AD上的一点,E,F分别为PB,PC的中点,△PEF,△PDC,△PAB的面积分别为S,S1,S2.若S=3,则S1+S2的值为()A.24 B.12 C.6 D.3考点:平行四边形的性质;三角形中位线定理.分析:过P作PQ平行于DC,由DC与AB平行,得到PQ平行于AB,可得出四边形PQCD与ABQP都为平行四边形,进而确定出△PDC与△PCQ面积相等,△PQB与△ABP面积相等,再由EF为△BPC的中位线,利用中位线定理得到EF为BC的一半,且EF平行于BC,得出△PEF与△PBC 相似,相似比为1:2,面积之比为1:4,求出△PBC的面积,而△PBC面积=△CPQ面积+△PBQ 面积,即为△PDC面积+△PAB面积,即为平行四边形面积的一半,即可求出所求的面积.解答:解:过P作PQ∥DC交BC于点Q,由DC∥AB,得到PQ∥AB,∴四边形PQCD与四边形APQB都为平行四边形,∴△PDC≌△CQP,△ABP≌△QPB,∴S△PDC=S△CQP,S△ABP=S△QPB,∵EF为△PCB的中位线,∴EF∥BC,EF=BC,∴△PEF∽△PBC,且相似比为1:2,∴S△PEF:S△PBC=1:4,S△PEF=3,∴S△PBC=S△CQP+S△QPB=S△PDC+S△ABP=S1+S2=12.故选:B.点评:此题考查了平行四边形的性质,相似三角形的判定与性质,熟练掌握平行四边形的判定与性质是解本题的关键.14.(•常州)如图,▱ABCD的对角线AC、BD相交于点O,则下列说法一定正确的是()A.AO=OD B.AO⊥OD C.AO=OC D.AO⊥AB考点:平行四边形的性质.分析:根据平行四边形的性质:对边平行且相等,对角线互相平分进行判断即可.解答:解:对角线不一定相等,A错误;对角线不一定互相垂直,B错误;对角线互相平分,C正确;对角线与边不一定垂直,D错误.故选:C.点评:本题考查度数平行四边形的性质,掌握平行四边形的对边平行且相等,对角线互相平分是解题的关键.15.(•淄博)如图,在平行四边形ABCD中,∠B=60°,将△ABC沿对角线AC折叠,点B的对应点落在点E处,且点B,A,E在一条直线上,CE交AD于点F,则图中等边三角形共有()A.4个B.3个C.2个D.1个考点:平行四边形的性质;等边三角形的判定;翻折变换(折叠问题).分析:根据折叠的性质可得∠E=∠B=60°,进而可证明△BEC是等边三角形,再根据平行四边形的性质可得:AD∥BC,所以可得∠EAF=60°,进而可证明△EFA是等边三角形,由等边三角形的性质可得∠EFA=∠DFC=60°,又因为∠D=∠B=60°,进而可证明△DFC是等边三角形,问题得解.解答:解:∵将△ABC沿对角线AC折叠,点B的对应点落在点E处,∴∠E=∠B=60°,∴△BEC是等边三角形,∵四边形ABCD是平行四边形,∴AD∥BC,∠D=∠B=60°,∴∠B=∠EAF=60°,∴△EFA是等边三角形,∵∠EFA=∠DFC=60°,∠D=∠B=60°,∴△DFC是等边三角形,∴图中等边三角形共有3个,故选B.点评:本题考查了平行四边形的性质、折叠的性质以及等边三角形的判定和性质,解题的关键是熟记等边三角形的各种判定方法特别是经常用到的判定方法:三个角都相等的三角形是等边三角形.16.(•连云港)已知四边形ABCD,下列说法正确的是()A.当AD=BC,AB∥DC时,四边形ABCD是平行四边形B.当AD=BC,AB=DC时,四边形ABCD是平行四边形C.当AC=BD,AC平分BD时,四边形ABCD是矩形D.当AC=BD,AC⊥BD时,四边形ABCD是正方形考点:平行四边形的判定;矩形的判定;正方形的判定.分析:由平行四边形的判定方法得出A不正确、B正确;由矩形和正方形的判定方法得出C、D不正确.解答:解:∵一组对边平行且相等的四边形是平行四边形,∴A不正确;∵两组对边分别相等的四边形是平行四边形,∴B正确;∵对角线互相平分且相等的四边形是矩形,∴C不正确;∵对角线互相垂直平分且相等的四边形是正方形,∴D不正确;故选:B.点评:本题考查了平行四边形的判定、矩形的判定、正方形的判定;熟练掌握平行四边形、矩形、正方形的判定方法是解决问题的关键.17.(•台湾)坐标平面上,二次函数y=﹣x2+6x﹣9的图形的顶点为A,且此函数图形与y轴交于B 点.若在此函数图形上取一点C,在x轴上取一点D,使得四边形ABCD为平行四边形,则D点坐标为何?()A.(6,0)B.(9,0)C.(﹣6,0)D.(﹣9,0)考点:平行四边形的判定;二次函数的性质.分析:首先将二次函数配方求得顶点A的坐标,然后求得抛物线与y轴的交点坐标,根据电C和点B的纵坐标相同求得点C的坐标,从而求得线段BC的长,根据平行四边形的性质求得AD的长即可求得点D的坐标.解答:解:∵y=﹣x2+6x﹣9=﹣(x﹣3)2,∴顶点A的坐标为(3,0),令x=0得到y=﹣9,∴点B的坐标为(0,﹣9),令y=﹣x2+6x﹣9=﹣9,解得:x=0或x=6,∴点C的坐标为(6,﹣9),∴BC=AD=6,∴OD=OA+AD=3+6=9,∴点D的坐标为(9,0),故选B.点评:本题考查了平行四边形的判定、二次函数的性质等知识,主要利用了抛物线与坐标轴交点的求法,平行四边形的对边平行且相等的性质,综合题,但难度不大.18.(•绵阳)如图,在四边形ABCD中,对角线AC,BD相交于点E,∠CBD=90°,BC=4,BE=ED=3,AC=10,则四边形ABCD的面积为()A.6 B.12 C.20 D.24考点:平行四边形的判定与性质;全等三角形的判定与性质;勾股定理.分析:根据勾股定理,可得EC的长,根据平行四边形的判定,可得四边形ABCD的形状,根据平行四边形的面积公式,可得答案.解答:解:在Rt△BCE中,由勾股定理,得CE===5.∵BE=DE=3,AE=CE=5,∴四边形ABCD是平行四边形.四边形ABCD的面积为BC•BD=4×(3+3)=24,故选:D.点评:本题考查了平行四边形的判定与性质,利用了勾股定理得出CE的长,又利用对角线互相平分的四边形是平行四边形,最后利用了平行四边形的面积公式.19.(•泰安)如图,∠ACB=90°,D为AB的中点,连接DC并延长到E,使CE=CD,过点B作BF∥DE,与AE的延长线交于点F.若AB=6,则BF的长为()A.6 B.7 C.8 D.10考点:三角形中位线定理;直角三角形斜边上的中线.分析:根据直角三角形斜边上的中线等于斜边的一半得到CD=AB=3,则结合已知条件CE=CD 可以求得ED=4.然后由三角形中位线定理可以求得BF=2ED=8.解答:解:如图,∵∠ACB=90°,D为AB的中点,AB=6,∴CD=AB=3.又CE=CD,∴CE=1,∴ED=CE+CD=4.又∵BF∥DE,点D是AB的中点,∴ED是△AFB的中位线,∴BF=2ED=8.故选:C.点评:本题考查了三角形中位线定理和直角三角形斜边上的中线.根据已知条件求得ED的长度是解题的关键与难点.二.填空题(共11小题)20.(•泰安)如图,在矩形ABCD中,M、N分别是边AD、BC的中点,E、F分别是线段BM、CM 的中点.若AB=8,AD=12,则四边形ENFM的周长为20.考点:三角形中位线定理;勾股定理;矩形的性质.分析:根据M是边AD的中点,得AM=DM=6,根据勾股定理得出BM=CM=10,再根据E、F分别是线段BM、CM的中点,即可得出EM=FM=5,再根据N是边BC的中点,得出EM=FN,EN=FM,从而得出四边形EN,FM的周长.解答:解:∵M、N分别是边AD、BC的中点,AB=8,AD=12,∴AM=DM=6,∵四边形ABCD为矩形,∴∠A=∠D=90°,∴BM=CM=10,∵E、F分别是线段BM、CM的中点,∴EM=FM=5,∴EN,FN都是△BCM的中位线,∴EN=FN=5,∴四边形ENFM的周长为5+5+5+5=20,故答案为20.点评:本题考查了三角形的中位线,勾股定理以及矩形的性质,是年中考常见的题型,难度不大,比较容易理解.21.(•巴中)如图,在△ABC中,AB=5,AC=3,AD、AE分别为△ABC的中线和角平分线,过点C作CH⊥AE于点H,并延长交AB于点F,连结DH,则线段DH的长为1.考点:三角形中位线定理;等腰三角形的判定与性质.分析:首先证明△ACF是等腰三角形,则AF=AC=3,HF=CH,则DH是△BCF的中位线,利用三角形的中位线定理即可求解.解答:解:∵AE为△ABC的角平分线,CH⊥AE,∴△ACF是等腰三角形,∴AF=AC,∵AC=3,∴AF=AC=3,HF=CH,∵AD为△ABC的中线,∴DH是△BCF的中位线,∴DH=BF,∵AB=5,∴BF=AB﹣AF=5﹣3=2.∴DH=1,故答案为:1.点评:本题考查了等腰三角形的判定以及三角形的中位线定理,正确证明HF=CH是关键.22.(•盐城)如图,点D、E、F分别是△ABC各边的中点,连接DE、EF、DF.若△ABC的周长为10,则△DEF的周长为5.考点:三角形中位线定理.分析:由于D、E分别是AB、BC的中点,则DE是△ABC的中位线,那么DE=AC,同理有EF=AB,DF=BC,于是易求△DEF的周长.解答:解:如上图所示,∵D、E分别是AB、BC的中点,∴DE是△ABC的中位线,∴DE=AC,同理有EF=AB,DF=BC,∴△DEF的周长=(AC+BC+AB)=×10=5.故答案为5.点评:本题考查了三角形中位线定理.解题的关键是根据中位线定理得出边之间的数量关系.23.(•无锡)已知:如图,AD、BE分别是△ABC的中线和角平分线,AD⊥BE,AD=BE=6,则AC的长等于.考点:三角形中位线定理;勾股定理.专题:计算题.分析:延长AD至F,使DF=AD,过点F作平行BE与AC延长线交于点G,过点C作CH∥BE,交AF于点H,连接BF,如图所示,在直角三角形AGF中,利用勾股定理求出AG的长,利用SAS 证得△BDF≌△CDA,利用全等三角形对应角相等得到∠ACD=∠BFD,证得AG∥BF,从而证得四边形EBFG是平行四边形,得到FG=BE=6,利用AAS得到三角形BOD与三角形CHD全等,利用全等三角形对应边相等得到OD=DH=3,得出AH=9,然后根据△AHC∽△AFG,对应边成比例即可求得AC.解答:解:延长AD至F,使DF=AD,过点F作FG∥BE与AC延长线交于点G,过点C作CH∥BE,交AF于点H,连接BF,如图所示,在Rt△AFG中,AF=2AD=12,FG=BE=6,根据勾股定理得:AG==6,在△BDF和△CDA中,∴△BDF≌△CDA(SAS),∴∠ACD=∠BFD,∴AG∥BF,∴四边形EBFG是平行四边形,∴FG=BE=6,在△BOD和△CHD中,,∴△BOD≌△CHD(AAS),∴OD=DH=3,∵CH∥FG,∴△AHC∽△AFG,∴=,即=,解得:AC=,故答案为:点评:本题考查了三角形全等的判定和性质,三角形相似的判定和性质,平行四边形的判定和性质以及勾股定理的应用,作出辅助线构建直角三角形和平行四边形是解题的关键.24.(•宿迁)如图,在Rt△ABC中,∠ACB=90°,点D,E,F分别为AB,AC,BC的中点.若CD=5,则EF的长为5.考点:三角形中位线定理;直角三角形斜边上的中线.分析:已知CD是Rt△ABC斜边AB的中线,那么AB=2CD;EF是△ABC的中位线,则EF应等于AB的一半.解答:解:∵△ABC是直角三角形,CD是斜边的中线,∴CD=AB,又∵EF是△ABC的中位线,∴AB=2CD=2×5=10cm,∴EF=×10=5cm.故答案为:5.点评:此题主要考查了三角形中位线定理以及直角三角形斜边上的中线等知识,用到的知识点为:(1)直角三角形斜边的中线等于斜边的一半;(2)三角形的中位线等于对应边的一半.25.(•广州)如图,四边形ABCD中,∠A=90°,AB=3,AD=3,点M,N分别为线段BC,AB 上的动点(含端点,但点M不与点B重合),点E,F分别为DM,MN的中点,则EF长度的最大值为3.考点:三角形中位线定理;勾股定理.专题:动点型.分析:根据三角形的中位线定理得出EF=DN,从而可知DN最大时,EF最大,因为N与B重合时DN最大,此时根据勾股定理求得DN=DB=6,从而求得EF的最大值为3.解答:解:∵ED=EM,MF=FN,∴EF=DN,∴DN最大时,EF最大,∵N与B重合时DN最大,此时DN=DB==6,∴EF的最大值为3.故答案为3.点评:本题考查了三角形中位线定理,勾股定理的应用,熟练掌握定理是解题的关键.26.(•云南)如图,在△ABC中,BC=1,点P1,M1分别是AB,AC边的中点,点P2,M2分别是AP1,AM1的中点,点P3,M3分别是AP2,AM2的中点,按这样的规律下去,P n M n的长为(n 为正整数).考点:三角形中位线定理.专题:规律型.分析:根据中位线的定理得出规律解答即可.解答:解:在△ABC中,BC=1,点P1,M1分别是AB,AC边的中点,点P2,M2分别是AP1,AM1的中点,点P3,M3分别是AP2,AM2的中点,可得:P1M1=,P2M2=,故P n M n=,故答案为:点评:此题考查三角形中位线定理,关键是根据中位线得出规律进行解答.27.(•珠海)如图,在△A1B1C1中,已知A1B1=7,B1C1=4,A1C1=5,依次连接△A1B1C1三边中点,得△A2B2C2,再依次连接△A2B2C2的三边中点得△A3B3C3,…,则△A5B5C5的周长为1.考点:三角形中位线定理.专题:规律型.分析:由三角形的中位线定理得:A2B2、B2C2、C2A2分别等于A1B1、B1C1、C1A1的一半,所以△A2B2C2的周长等于△A1B1C1的周长的一半,以此类推可求出△A5B5C5的周长为△A1B1C1的周长的.解答:解:∵A2B2、B2C2、C2A2分别等于A1B1、B1C1、C1A1的一半,∴以此类推:△A5B5C5的周长为△A1B1C1的周长的,∴则△A5B5C5的周长为(7+4+5)÷16=1.故答案为:1点评:本题主要考查了三角形的中位线定理,关键是根据三角形的中位线定理得:A2B2、B2C2、C2A2分别等于A1B1、B1C1、C1A1的一半,所以△A2B2C2的周长等于△A1B1C1的周长的一半.28.(•衢州)如图,小聪与小慧玩跷跷板,跷跷板支架高EF为0.6米,E是AB的中点,那么小聪能将小慧翘起的最大高度BC等于 1.2米.考点:三角形中位线定理.专题:应用题.分析:先求出F为AC的中点,根据三角形的中位线求出BC=2EF,代入求出即可.解答:解:∵EF⊥AC,BC⊥AC,∴EF∥BC,∵E是AB的中点,∴F为AC的中点,∴BC=2EF,∵EF=0.6米,∴BC=1.2米,故答案为:1.2.点评:本题考查了三角形的中位线性质,平行线的性质和判定的应用,解此题的关键是求出BC=2EF,注意:垂直于同一直线的两直线平行.29.(•昆明)如图,在△ABC中,AB=8,点D、E分别是BC、CA的中点,连接DE,则DE=4.考点:三角形中位线定理.分析:根据三角形的中位线等于第三边的一半即可得出DE=AB=4.解答:解:∵在△ABC中,点D、E分别是BC、CA的中点,AB=8,∴DE是△ABC的中位线,∴DE=AB=×8=4.故答案为4.点评:本题考查了三角形中位线定理,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.30.(•陕西)如图,AB是⊙O的弦,AB=6,点C是⊙O上的一个动点,且∠ACB=45°.若点M,N分别是AB,BC的中点,则MN长的最大值是3.考点:三角形中位线定理;等腰直角三角形;圆周角定理.分析:根据中位线定理得到MN的最大时,AC最大,当AC最大时是直径,从而求得直径后就可以求得最大值.解答:解:∵点M,N分别是AB,BC的中点,∴MN=AC,∴当AC取得最大值时,MN就取得最大值,当AC时直径时,最大,如图,∵∠ACB=∠D=45°,AB=6,∴AD=6,∴MN=AD=3故答案为:3.点评:本题考查了三角形的中位线定理、等腰直角三角形的性质及圆周角定理,解题的关键是了解当什么时候MN的值最大,难度不大.1.(•苏州)如图,在△ABC中,CD是高,CE是中线,CE=CB,点A、D关于点F对称,过点F 作FG∥CD,交AC边于点G,连接GE.若AC=18,BC=12,则△CEG的周长为27.考点:三角形中位线定理;等腰三角形的性质;轴对称的性质.分析:先根据点A、D关于点F对称可知点F是AD的中点,再由CD⊥AB,FG∥CD可知FG是△ACD的中位线,故可得出CG的长,再根据点E是AB的中点可知GE是△ABC的中位线,故可得出GE的长,由此可得出结论.解答:解:∵点A、D关于点F对称,∴点F是AD的中点.∵CD⊥AB,FG∥CD,∴FG是△ACD的中位线,AC=18,BC=12,∴CG=AC=9.∵点E是AB的中点,∴GE是△ABC的中位线,∵CE=CB=12,∴GE=BC=6,∴△CEG的周长=CG+GE+CE=9+6+12=27.故答案为:27.点评:本题考查的是三角形中位线定理,熟知三角形的中位线平行于第三边,并且等于第三边的一半是解答此题的关键.2.(•铜仁市)如图,∠ACB=9O°,D为AB中点,连接DC并延长到点E,使CE=CD,过点B作BF∥DE交AE的延长线于点F.若BF=10,则AB的长为8.考点:三角形中位线定理;直角三角形斜边上的中线.分析:先根据点D是AB的中点,BF∥DE可知DE是△ABF的中位线,故可得出DE的长,根据CE=CD可得出CD的长,再根据直角三角形的性质即可得出结论.解答:解:∵点D是AB的中点,BF∥DE,∴DE是△ABF的中位线.∵BF=10,∴DE=BF=5.∵CE=CD,∴CD=5,解得CD=4.∵△ABC是直角三角形,∴AB=2CD=8.故答案为:8.点评:本题考查的是三角形中位线定理,熟知三角形的中位线平行于第三边,并且等于第三边的一半是解答此题的关键.3.(•淮安)如图,A,B两地被一座小山阻隔,为测量A,B两地之间的距离,在地面上选一点C,连接CA,CB,分别取CA,CB的中点D、E,测得DE的长度为360米,则A、B两地之间的距离是720米.考点:三角形中位线定理.专题:应用题.分析:首先根据D、E分别是CA,CB的中点,可得DE是△ABC的中位线,然后根据三角形的中位线定理,可得DE∥AB,且DE=,再根据DE的长度为360米,求出A、B两地之间的距离是多少米即可.解答:解:∵D、E分别是CA,CB的中点,∴DE是△ABC的中位线,∴DE∥AB,且DE=,∵DE=360(米),∴AB=360×2=720(米).即A、B两地之间的距离是720米.故答案为:720.点评:此题主要考查了三角形中位线定理的应用,要熟练掌握,解答此题的关键是要明确:三角形的中位线平行于第三边,并且等于第三边的一半.4.(•梅州)如图,在▱ABCD中,BE平分∠ABC,BC=6,DE=2,则▱ABCD的周长等于20.考点:平行四边形的性质.分析:根据四边形ABCD为平行四边形可得AE∥BC,根据平行线的性质和角平分线的性质可得出∠ABE=∠AEB,继而可得AB=AE,然后根据已知可求得结果.解答:解:∵四边形ABCD为平行四边形,∴AE∥BC,AD=BC,AD=BC,∴∠AEB=∠EBC,∵BE平分∠ABC,∴∠ABE=∠EBC,∴∠ABE=∠AEB,∴AB=AE,∴AE+DE=AD=BC=6,∴AE+2=6,∴AE=4,∴AB=CD=4,∴▱ABCD的周长=4+4+6+6=20,故答案为:20.点评:本题考查了平行四边形的性质,解答本题的关键是根据平行线的性质和角平分线的性质得出∠ABE=∠AEB.5.(•大连)如图,在▱ABCD中,AC,BD相交于点O,AB=10cm,AD=8cm,AC⊥BC,则OB=cm.考点:平行四边形的性质;勾股定理.分析:由平行四边形的性质得出BC=AD=8cm,OA=OC=AC,由勾股定理求出AC,得出OC,再由勾股定理求出OB即可.解答:解:∵四边形ABCD是平行四边形,∴BC=AD=8cm,OA=OC=AC,∵AC⊥BC,∴∠ACB=90°,∴AC===6,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新世纪教育网 www.xsjjyw.com 精品资料 版权所有@新世纪教育网 新世纪教育网 -- 中国最大型、最专业的中小学教育资源门户网站。 版权所有@新世纪教育网 2012年全国各地中考数学解析汇编 特殊的平行四边形

(2012湖南益阳,7,4分)如图,点A是直线l外一点,在l上取两点B、C,分别以A、C为圆心,BC、AB长为半径画弧,两弧交于点D,分别连结AB、AD、CD,则四边形ABCD一定是( )

A.平行四边形 B.矩形 C.菱形 D.梯形 【解析】从题目中(BC、AB长为半径画弧,两弧交于点D,)可以得到四边形ABCD的两组对边分别相等,所以得到四边形ABCD是平行四边形。 【答案】A 【点评】根据尺规作图得到对边相等,只要考生记住两组对边分别相等的四边形是平行四边形这一定义,就可以得到答案,难度不大。

23.1 矩形 (2012湖北襄阳,9,3分)如图4,ABCD是正方形,G是BC上(除端点外)的任意一点,DE⊥AG于点E,BF∥DE,交AG于点F.下列结论不一定成立的是 A.△AED≌△BFA B.DE-BF=EF C.△BGF∽△DAE D.DE-BG=FG

【解析】由ABCD是正方形,得AD=BA,∠BAD=∠ABG=90°,∴∠DAE+∠BAF=90°.又∵DE⊥AG,BF∥DE,∴BF⊥AG,∠BAF+∠ABF=90°.∴∠DAE=∠ABF.而∠AED=∠BFA=90°,∴△AED≌△BFA.∴DE=AF,AE=BF.∴DE-BF=AF-AE=EF.由AD∥BC得∠DAE=∠BGF及∠AED=∠GFB=90°,可知△BGF∽△DAE.可见A,B,C三选项均正确,只有D选项不能确定. 【答案】D 【点评】此题是由人教课标版数学教材八年级下册第104页的第15题改编而成,并将九年级下册第48页练习2融合进来,源于教材而又高于教材,综合考查了正方形的性质、全等三角形、相似三角形知识,是一道不可多得的基础好题.

(2012山东泰安,9,3分)如图,在矩形ABCD中,AB=2,BC=4,对角线AC的垂直平分线分别交AD、AC

图4 A C B

D E F

G 新世纪教育网 www.xsjjyw.com 精品资料 版权所有@新世纪教育网

新世纪教育网 -- 中国最大型、最专业的中小学教育资源门户网站。 版权所有@新世纪教育网 于点E、O,连接CE,则CE的长为( )

A. 3 B.3.5 C.2.5 D.2.8

【解析】设CE的长为x,因为EO垂直平分AC,所以AE=CE=x,所以ED=4-x, 在Rt△CED中,由勾股定理得CD2+ED2=CE2,22+(4-x)2=x2,解得x=2.5. 【答案】C. 【点评】本题在矩形中综合考查了线段垂直平分线的性质、勾股定理等知识,用方程的思想解几何问题是一种行之有效的思想方法。

(2012安徽,14,5分)如图,P是矩形ABCD内的任意一点,连接PA、PB、PC、PD,得到△PAB、△PBC、△PCD、△PDA,设它们的面积分别是S1、S2、S3、S4,给出如下结论: ①S1+S2=S3+S4 ② S2+S4= S1+ S3 ③若S3=2 S1,则S4=2 S2 ④若S1= S2,则P点在矩形的对角线上 其中正确的结论的序号是_________________(把所有正确结论的序号都填在横线上).

解析:过点P分别向AD、BC作垂线段,两个三角形的面积之和42SS等于矩形面积的一半,同理,过点P分别向AB、CD作垂线段,两个三角形的面积之和31SS等于矩形面积的一半. 31SS=42SS,又因为21SS,则32SS=ABCDSSS2141,所以④一定成立 答案:②④. 点评:本题利用三角形的面积计算,能够得出②成立,要判断④成立,在这里充分利用所给条件,对等式进行变形.不要因为选出②,就认为找到答案了,对每个结论都要分析,当然感觉不一定对的,可以举反例即可.对于 ④这一选项容易漏选.

A B C D E

O 新世纪教育网 www.xsjjyw.com 精品资料 版权所有@新世纪教育网

新世纪教育网 -- 中国最大型、最专业的中小学教育资源门户网站。 版权所有@新世纪教育网 (2012江苏盐城,15,3分)如图,在四边形ABCD中,已知AB∥DC,AB=DC,在不添加任何辅助线的前提

下,要想该四边形为矩形,只需加上的一个条件是 (填上你认为正确的一个答案即可).

【解析】本题考查了矩形的判定.掌握矩形的定义和判定方法是关键.由四边形ABCD的两组对边AB=DC,AD=BC知:四边形ABCD是平行四边形,而“有一个角是直角或对角线相等”的平行四边形的矩形,故可填的条件是:四边形ABCD内有一个直角或AC=BD. 【答案】答案不唯一,如∠A=90°或AC=BD,等. 【点评】本例考查平行四边形和矩形的判定,解题的关键是熟练掌握平行四边形和矩形的判定方法,及其相互关系.

(2012湖南湘潭,20,6分)如图,某中学准备在校园里利用围墙的一段,再砌三面墙,围成一个矩形花园ABCD(围墙MN最长可利用m25),现在已备足可以砌m50长的墙的材料,试设计一种砌法,使

矩形花园的面积为2300m.

【解析】要利用条件确定矩形的长和宽,设矩形的长为X,宽为x300, 根据条件要求:0<X≤25且0<X+x600≤50,且X≥x300, 从而确定20≤X≤25,再设计一种具体砌法,若X取20,则x300=15, 矩形花园ABCD的BC长20米,AB长15米。若X取25,则x300=12,矩形花园ABCD的BC长25米,AB长12米。等等。 【答案】设矩形的长为X,宽为x300, 根据条件要求:0<X≤25且0<X+x600≤50,且X≥x300, 从而确定20≤X≤25,再设计一种具体砌法,如,

25mMABCDN新世纪教育网 www.xsjjyw.com 精品资料 版权所有@新世纪教育网

新世纪教育网 -- 中国最大型、最专业的中小学教育资源门户网站。 版权所有@新世纪教育网 矩形花园ABCD的BC长20米,AB长15米。或矩形花园ABCD的BC长25米,AB长12米。等等。

【点评】此题考查了矩形的面积和不等式的解集。根据限制条件列不等式,确定矩形的长和宽的取值范围, 并由矩形面积选取矩形的长和宽的具体值。

(2012浙江省绍兴,15,5分)如图,在矩形ABCD中,点E,F分别在BC,CD上,将△ABE沿AE折叠,使点B落在AC上的点B`处,又将△CEF沿EF折叠,使点C落在直线EB`与AD的交点C`处.则BC∶AB的值为 ▲ .

【解析】连接CC′,根据题意可知∠AEF=90°,又C、C′关于EF对称,所以CC′⊥EF,所以AE∥CC′,又AC′∥EC,所以四边形AECC′是平行四边形,又∠B=∠AB′E=90°,所以四边形AECC′是菱形,所以

∠EAC=∠ECA,又∠EAC=∠BAE,所以∠EAC=∠ECA=∠BAE=30°,在Rt△ABC中,BC:AB=3:1. 【答案】3 【点评】解答折叠问题的关键是利用折叠前后其中相等的边和相等的角之间的等量关系..

(2012湖南湘潭,19,6分)如图,矩形ABCD是供一辆机动车停放的车位示意图,已知mBC2, mCD4.5,30DCF,请你计算车位所占的宽度EF约为多少米?

(73.13,结果保留两位有效数字.) EFCDA

B

【解析】运用直角三角形边角关系或三角函数值求出DE和DF的长。 【答案】在直角三角形CDF中,30DCF,DF=21CD=2.7,∠ADE=900-∠CDF=∠DCF=300, 在直角三角形

ADE中,DE=ADcos∠ADE=2×23=3,FE=DF+DE=2.7+3≈4.43. 新世纪教育网 www.xsjjyw.com 精品资料 版权所有@新世纪教育网 新世纪教育网 -- 中国最大型、最专业的中小学教育资源门户网站。 版权所有@新世纪教育网 【点评】此题考查了矩形和直角三角形边角关系及三角函数值的运用。[来源:学+

23.2菱形 (2012四川成都,9,3分)如图.在菱形ABCD中,对角线AC,BD交于点O,下列说法错误..的是( )

A.AB∥DC B.AC=BD C.AC⊥BD D.OA=OC

ABCD

O 解析:本题考查的是菱形的性质,菱形是特殊的平行四边形,所以四边形具有的性质,菱形都有,所以选项A、D都是对的;另外菱形还有自己特殊的性质,对角线互相垂直等等,所以选项C也是对的。所以,根据排除法可知,选项B是错误。 答案:选B 点评:平行四边形及各种特殊的平行四边形的性质,是一个重要的考点,同学们要能结合图形熟练掌握它们的性质和判定。

(2012山东省临沂市,17,3分)如图,CD与BE互相垂直平分,AD⊥DB,∠BDE=700,则∠CAD= 0.

【解析】∵CD与BE互相垂直平分,∴四边形BDEC是菱形,又∵AD⊥DB, ∠BDE=700,∴∠ADE=200,∠DEF=550,

∴∠DAE=350,∴∠CAD=700. 【答案】700 【点评】此题主要考查了学生对线段垂直平分线及菱形的性质和判定的理解及运用.菱形的特性是:对角线互相垂直、平分,四条边都相等.

(2012山东省聊城,19,8分)矩形ABCD对角线相交与O,DE//AC,CE//BD. 求证:四边形OCED是菱形.

相关文档
最新文档