Fast parameterized inexact Uzawa method for complex symmetric linear systems
THE PARAMETERIZED SR ALGORITHM FOR SYMPLECTIC (BUTTERFLY) MATRICES

H. FA BENDER
Key words. Symplectic Matrix; Eigenvalue Problem; SR algorithm. AMS(MOS) subject classi cations. 65F15. 1. Introduction. Symplectic (generalized) eigenvalue problems occur in many
Abstract. The SR algorithm is a structure-preserving algorithm for computing the spectrum of symplectic matrices. Any symplectic matrix can be reduced to symplectic butter y form. A symplectic matrix B in butter y form is uniquely determined by 4n ? 1 parameters. Using these 4n ? 1 parameters, we show how one step of the symplectic SR algorithm for B can be carried out in O(n) arithmetic operations compared to O(n3 ) arithmetic operations when working on the actual symplectic matrix. Moreover, the symplectic structure, which will be destroyed in the numerical process due to roundo errors when working with a symplectic (butter y) matrix, will be forced by working just with the parameters.
Trypsin 10X Solution 产品说明书

StorageStore trypsi n at -10 to -40 C. Do not use after expi rati on date. Repeated cycles of freezi ng and thawi ng reduce enzymatic activity and should be avoided.Indications of DeteriorationTrypsin solutions should be clear of particulates and flocculent materi al. Do not use i f soluti on i s cloudy or contai ns precipitate. Other evidence of deterioration may include color change or degradati on of physi cal or performance characteristics.Preparation InstructionsHow to dilute trypsin 10X solutions:1.Frozen products can be thawed ei ther i n a 37 C water bath or overnight at 2 to 8 C.2.Asepti cally transfer 100 mL of trypsi n 10X to a steri le 1 L container.3.Add 800 mL of a sterile calcium- and magnesium-free salt solution (as listed below) to the container.Dulbecco’s Phosphate Buffered Saline (DPBS) (Catalog No.59321C), orHanks’ Balanced Salt Solution (HBSS) (Catalog No. 55025C).4.Mix well for several minutes. Determine the pH of a smallsample. If necessary, adjust the pH to 7.2 - 7.8 wi th NaOH 1N (Catalog No. 59223C) or HCl 1N .DescriptionTryps i n i s a porc i ne pancreas-der i ved enzyme that i s commonly used for the di ssoci ati on and di saggregati on of anchorage-dependent mammal i an cells and t i ssues. The concentrat on of tryps n necessary to d slodge cells from their substrate is dependent primarily on the cell type and the age of the culture.Ethylened am netetracet c ac d (EDTA), a chelat ng agent,often i s added to trypsi n soluti ons to enhance enzymati c acti vi ty by neutrali zi ng calci um and magnesi um i ons that enhance cell-to-cell adhesion and obscure the peptide bonds on which trypsin acts.This 10X concentrated solution can be diluted with calcium-and magnesi um-free Dulbecco’s Phosphate Buffered Sali ne (DPBS).SAFC Bi osci ences ®has val i dated a process us i ng gamma rad at on to s gn f cantly reduce the r sks assoc ated w th adventitious agents such as Porcine Parvovirus (PPV), Porcine Respiratory and Reproduct i ve Syndrome (PRRS) and Mycoplasma hyorhinis wh i le ma i nta i n i ng product performance. The use of gamma irradiated trypsin requires no change to the end user’s methods or procedures whi le giving additional assurance against microbial contaminants associated with animal-derived products.All tryps i n i s obta i ned from the Un i ted States or other countr i es deemed free of Bov i ne Spong i form Encephalopathy (BSE).PrecautionsUse aseptic technique when handling or supplementing this solution. This product is for further manufacturing use. THIS PRODUCT IS NOT INTENDED FOR HUMAN OR THERAPEUTIC USE.United StatesSAFC Biosciences, Inc. 13804 W. 107th Street Lenexa, Kansas 66215 USA Phone +1 913-469-5580Toll free-USA 1 800-255-6032Fax +1 913-469-5584E-mail ****************EuropeSAFC Biosciences Ltd.Smeaton Road, West Portway Andover, Hampshire SP10 3LF UNITED KINGDOM Phone +44 (0)1264-333311Fax +44 (0)1264-332412E-mail ****************Asia PacificSAFC Biosciences Pty. Ltd.18-20 Export DriveBrooklyn, Victoria 3025 AUSTRALIA Phone +61 (0)3-9362-4500Toll free-AUS 1 800-200-404Fax +61 (0)3-9315-1656E-mail ****************Product Informationwww.safcbiosciences .comTrypsin-EDTA Solution 10X0.5% trypsin, 0.2% EDTA, trypsin gamma irradiated by SER-TAIN TM Process, without phenol red, in saline CATALOG NO. 59418CWarranty, Limitation of RemediesSAFC Biosciences warrants to the purchaser for a period of one year from date of delivery that this product conforms to ts speci fi cati ons. Other terms and condi ti ons of thi s warranty are contai ned i n SAFC Bi osci ences’ wri tten warranty, a copy of which is available upon request. ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING THE IMPLIED WARRANTY OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE EXCLUDED. In no case will SAFC Biosciences be liable for any special, incidental, or consequential damages arising out of this product or the use of this product by the customer or any third party based upon breach of warranty, breach of contract, negligence, strict tort,or any other legal theory. SAFC Biosciences expressly disclaims any warranty against claims by any third party by way of infringement or the like. THIS PRODUCT IS INTENDED FOR PURPOSES DESCRIBED ONLY AND IS NOT INTENDED FOR ANY HUMAN OR THERAPEUTIC USE.Additional Terms and Conditions are contained in the product Catalog, a copy of which is available upon request.SAFC Biosciences ®is a registered trademark of and SER-TAIN TM is a trademark of Sigma-Aldrich Biotechnology L.P . and Sigma-Aldrich Co. © 2009 SAFC Biosciences, Inc.Issued September 2009 P5941811065.Bring the final volume up to 1000 mL with the salt solution chosen from Step 3 and either sterile filter into appropriate use volumes or, after sterile filtration, aseptically dispense into smaller volumes.6.Store trypsin at -10 to -40 C.Methods for Use1.Frozen trypsin can be thawed either in a 37 C water bath or overnight at 2 to 8 C.2.Aspirate and discard the spent medium from the culture vessel.3.Rinse the monolayer with either a small amount of trypsin or a calcium- and magnesium-free balanced salt solution;aspirate and discard.4.Add enough trypsin solution, prewarmed in a 37 C water bath, to completely cover the cell monolayer.5.Incubate the flask at 37 C, or for more sensitive cultures,at room temperature or 2 to 8 C.6.When the trypsi ni zati on process i s complete, cells wi ll appear rounded upon mi croscopi c exami nati on and the soluti on i n the flask wi ll appear cloudy. Check the flask often to avoid overexposure which can damage the cells.7.The trypsi n should be neutrali zed ei ther wi th serum-containing medium or trypsin inhibitor. Gently centrifuge the cell suspensi on and di scard the trypsi n-contai ni ng supernatant.8.Resuspend the cell pellet with fresh medium and count or culture as desired.CharacteristicsAdventitious Viral Agents (AVA) (PPV)None detected in bulk powder raw material AppearanceClear colorless solutionEndotoxin (at 1X concentration)≤100.0 EU/mL Enzymatic ActivityCells dislodged ≤ 30 minutes MycoplasmaNone detectedOsmolality (at 1X concentration)270 - 325 mOsm/kg H 2O pH (at 25 C)7.2 - 7.8SterilityNo microbial growth detectedReferences1.Hodges, G. M., Linvingston, D. C., and Franks, L. M., J. Cell Sci. (1973) 12:887.2.McKeehan, W. L., Cell Biol. Intl. Rep.(1977) 1:335.3.Safton, B. M. and Rubin, H., Nature (1970) 227:843.United StatesSAFC Biosciences, Inc. 13804 W. 107th Street Lenexa, Kansas 66215 USA Phone +1 913-469-5580Toll free-USA 1 800-255-6032Fax +1 913-469-5584E-mail ****************EuropeSAFC Biosciences Ltd.Smeaton Road, West Portway Andover, Hampshire SP10 3LF UNITED KINGDOM Phone +44 (0)1264-333311Fax +44 (0)1264-332412E-mail ****************Asia PacificSAFC Biosciences Pty. Ltd.18-20 Export DriveBrooklyn, Victoria 3025 AUSTRALIA Phone +61 (0)3-9362-4500Toll free-AUS 1 800-200-404Fax +61 (0)3-9315-1656E-mail ****************www.safcbiosciences .com。
参数寻优算法的英文缩写

参数寻优算法的英文缩写When it comes to parameter optimization, we often refer to it in shorthand as POA, standing for Parameter Optimization Algorithm. In the world of data science and machine learning, POA is a must-have tool for finding the best set of parameters that maximize the performance of a model.For those looking for a more technical abbreviation, HPA, or Hyperparameter Optimization Algorithm, is also commonly used. HPA focuses on fine-tuning those hyperparameters that can significantly impact the accuracy and efficiency of a machine learning model.In the fast-paced world of AI research, people often just say "param opt" or "param tuning" when referring to the process of optimizing parameters. These informal terms capture the essence of the task in a concise and to-the-point manner.Another informal yet widely recognized abbreviation is PO for Parameter Optimization. This shorthand is popular among practitioners who value brevity and speed of communication.Lastly, in some circles, people might use OA for Optimization Algorithm, though this is a broader term that covers all types of optimization, not just parameter optimization. Still, it's a term that gets the point across in a quick and easy-to-remember way.。
DFTMAX Ultra新技术白皮书:解决关键测试挑战的方法说明书

White PaperDFTMAX UltraNew Technology to Address Key Test ChallengesAuthorCy Hay,Marketing ManagerRohit Kapur,Synopsys ScientistIntroductionFor most design-for-test (DFT) and test engineers, achieving very high defect coverage with minimaldesign impact and low manufacturing test cost are fundamental objectives. Almost all of today’s largedigital designs require scan compression to meet these goals. This paper explains how DFTMAX™ Ultradelivers new scan compression technology that further reduces test cost and simplifies design impact,providing improvements in test quality.Achieving High Test QualityAdvanced manufacturing process nodes introduce new types of defects that require additional testpatterns to detect. There are several reasons why additional test patterns are needed, and why higherlevels of scan compression are required to manage test cost. First, the test coverage of traditional faultmodels, such as stuck-at and transition faults, needs to increase. Even a 1% increase in test coveragefor these fault models can sometimes double the number of patterns generated. ATPG coverage versuspattern count is an asymptotic function because each additional pattern detects fewer and fewerpreviously undetected faults.Second, new fault models need to be included in the test generation flow to detect defect types thatare not sufficiently covered by the established fault models already mentioned: bridging and dynamicbridging faults for metal shorts, internal cell faults for complex library cells, and slack-based transitionfaults for small delay defects. These new fault models are more difficult to sensitize, meaning the numberof detections per pattern will be lower. Thus, achieving even nominal coverage of these new fault modelsrequires a significant increase in the total number of test patterns.Delivering Higher Compression and Faster Shift SpeedsDFTMAX Ultra uses a new compression architecture to reduce total scan test data and test time by2-3X over existing compression technologies. DFTMAX Ultra also achieves higher compression whenfewer chip pins or tester channels are available for manufacturing test. The architecture uses streaming,bidirectional compressors and decompressors (CODECs) for the scan input and scan output data.This new CODEC design allows both very efficient test generation that maximizes the number of faultsdetected per pattern, as well as independent control over unknown values that typically degradecompression efficiency. Figure 1 shows a high-level view of the new architecture.September 2013Using compression to reduce the number of scan test cycles is one factor in reducing overall test time. Another factor is reducing the time for each test cycle. The DFMTAX Ultra compression architecture shown in Figure 1 is highly pipelined to minimize per-cycle timing delays from the chip pins, through the CODECs, and to the scan chains. To maximize scan shift frequency, multicycle paths are used on all signals that might require significant routing length. These optimizations mean that scan shift speeds are limited by external factors, such as timing and power limitations of the tester or the device under test, rather than by the scan compression logic. A higher scan shift frequency provides additional and significant test cost reductions.Reducing Test Cost with Multisite Testing and Fewer Test PinsThe widespread use of multisite testing has shifted the requirements for scan compression. Compared to using all available tester channels on a single die, testing multiple dies in parallel has proven to be a more effective and predictable method for reducing manufacturing test cost. This is because the former method relies on a large number of available chip pins and very wide CODEC configurations (with more routing congestion) to achieve the same total cost reduction.Several important trends are reducing the number of chip pins available for test. Smaller form factors and tighter packaging for today’s mobile electronics mean that the total number of pins is shrinking relative to the increase in device gate counts. And, more analog functions are being integrated into many of these designs,Simplified DFT Implementation on Large SoC DesignsToday’s largest designs contain tens or even hundreds of cores, each with potentially independent clockand/or power domains. For such designs, top-level integration becomes particularly cumbersome and unpredictable. DFTMAX Ultra greatly simplifies the task of top-level DFT integration. Foremost, the flexibility ofthis new architecture enables each core to have one or more dedicated CODEC, regardless of the size of thecore. This means that all of the scan compression logic for a core is fully contained within that core, and that CODECs do not need to be shared across multiple cores.Just like traditional scan, DFTMAX Ultra uses a single clock for shifting tester scan data, CODEC pipelines,and internal scan chains. Thus, no additional clock generation or clock gating is required within each core,and more importantly, at the top level. Also like traditional scan, this architecture uses a single scan-enablesignal for CODECs and scan chains. This simplifies DFT connections between each core and the top-level test control module.Because all CODECs can be fully contained within a single core, there is no dependency on completion ofother cores or top-level logic for each core’s DFT closure. The result is that ATPG and timing closure (includingall test modes) can be run on each core as soon as it is completed.ConclusionDFTMAX Ultra delivers significant new technology to simplify DFT implementation and reduce manufacturingtest cost in the face of increasing design sizes and test quality requirements. This technology builds onthe strengths of the Synopsys synthesis-based test platform and is easily deployed in the industry’s mostcommon design flows. For customers already using DFTMAX, DFTMAX Ultra requires only incrementalchanges to existing DFT synthesis scripts. Lastly, TetraMAX ATPG is fully optimized for both test pattern generation and failure diagnostics for DFTMAX Ultra designs.Synopsys, Inc. • 700 East Middlefield Road • Mountain View, CA 94043 • ©2013 Synopsys, Inc. All rights reserved. Synopsys is a trademark of Synopsys, Inc. in the United States and other countries. A list of Synopsys trademarks is。
Caliper LabChip XT和XTe产品说明书

• Reduce wasted “non-align” reads with tight size selection • Increase average read length by excluding shorter fragments • Faster sample processing maximizes use of sequencer • Reduce waste and exposure to harmful reagents • Improve efficiency with high recoveryCurrent next generation sequencing workflows have numerous manual processes that bottleneck throughput and contribute to process inefficiency. One of the most time consuming tasks is gel-based size-selection during the library generation process. In addition to being labor intensive and not scalable, manual methods introduce run-to-run and operator-to-operator variability. The imprecision of manual excision results in low precision and low sizing accuracy.The LabChip XT and XTe perform fast, automated nucleic acid fractionation accurately and reproducibly using Caliper’s proprietary microfluidics. By using intersecting microfluidic channels, optical detection and computer control, we can automatically extract a target band during separation and route the selected material to a collection well. The resulting sample is accurately sized and is delivered in a sequencing compatible buffer. The XT and XTe improves laboratory efficiency and provides sizingthat is difficult to obtain using manual methods.LabChip |XT/XTeAdvanced Nucleic Acid Size Selection and CollectionLABCHIP XT/XTeAutomated Nucleic Acid FractionationHow Does it Work?The LabChip XT and XTe use amicrofluidic network to extract a targetband during separation and route theselected material to a collection well ona disposable plastic chip. DNA samplesare mixed with a sample buffer and areloaded into the individual sample wells of the chip. When the chip is loaded into the LabChip XT or XTe system, the electrodes on top of the chip interface with the pins of the instrument to provide voltage and current control.Individual samples are separated electrophoretically and the DNA is stained with a DNA intercalating dye, which is detected via laser induced fluorescence at the detection point. Sizing and concentration for the sample is determined using both a ladder and an internal marker. A switch is located downstream of the optical detection which divides the channel into the waste arm and collection arm. At the appropriate time, the voltage is switched to the collection arm causing migration of the selected sample to the collection well. Because each of the 4 channels operate independent of each other and there is no direct buffer contact, cross-contamination is eliminated.Dry Electrode ContactThe LabChip XT and XTe use chips that incorporate disposable electrodes that makes dry metal to metal contact with the instrument. The disposable pin electrodes are sealed to the surface of the chip and extend below into the buffer. The buffer from the chips or DNA sample does not touch the instrument interface.Reusable electrodes that dip into the liquidcan potentially cause cross contamination.The LabChip XT and XTe allow for thecollection of the unselected nucleic acidsfrom the recovery port since there is noconcern about cross-contamination withthe dry electrode contact. This allows theuse of precious samples to be maximized.The wet electrode contact also requiresthe electrodes to be washed for propermaintenance of the instrument. No washingof electrodes required for the LabChip XT,which allows the runs to be completed backto back chips without tedious instrumentcleaning in between.Advanced Software ControlThe LabChip XT and XTe software allowsfor precise control of the fractionation.A built in method ladder allows forsizing without using a physical ladder,maximizing throughput. Extractionscan be selected by size range, peakor manually using the Collect on Clickfeature. Multiple collections can betaken for each channel.LABCHIP XT/XTe Five Simple Steps Makes the LabChip XT Easy to Use1) Samples are loaded onto the prepared chip2) Place chip on instrument. Barcode reader identifies chip and assay3) Select sizes for Extraction. Choose from several different collection modes4) Sizing and extraction isautomated via software5) Fractionated samples can be pipettedout of the collection well and isready for downstream processingAdditional Features Only on the XTThe LabChip XT offers additional software features for data analysis and sample tracking needs.•Sample Quantitation and smear analysis allows for comparison of samples within a chip as well as across multiple chips •Data can be displayed in Virtual Gel, Graph, or Data Summary table formats.•Data can be filtered by variable and value range•Formatted results tables can be exported to reports or LIMS4 additional features are available on the LabChip XT to enhance the amount of recovered matieralfor different applications•Extraction by Fluorescence:Extract when an optical threshold is reached•Extraction by Peak Max:Ideal for samples with a narrow distribution (i.e., samples that have previously been size selected) •Extraction by Smear Max: Ideal for samples that are sheared to a broad distribution in which no defined peak can be found •Skip Extraction:Ideal for avoiding adapter dimer peaks generated during library construction.©2011 Caliper Life Sciences, Inc. All rights reserved. Caliper, the Caliper logo and LabChip are tradenames and/or trademarks of Caliper Life Sciences, Inc.All other names are trademarks of their respective companies.LCXT-BR-01 Apr 11Tel: 1.508.435.9500Email:**************************Supporting Regulatory ComplianceThe LabChip XT with LabChip GxP Software is a computerized system designed to automate the analysis and size selection of DNA. The system allows the users to create, modify, and maintain the records in electronic form and allow the users to perform electronic signatures on the records generated from the system. It takes a combination of administrative controls, procedural controls, and technical controls for the users of a computerized system to comply with 21 CFR Part 11 regulations. The LabChip GxP Software contains built-in technical controls and features specifically designed to support the users for 21 CFR Part 11 compliance. These technical controls and features include user account management and access controls, device check, enforcing permitted sequencing of steps, audit trails, record copying, record retention, system documentation, and electronic signature controls.Compliance Features:• User Account Management • Audit trails• Electronic Signature Controls • Central Data Repositoryand Features• Fast and reproducible size selection • < 30 minute processing• Up to 4 samples processed simultaneously per chip• Independent channels and dry electrode contact minimizes potential for cross contamination e。
柳纱科技 AAAnalyst 400 原子吸收光谱仪器说明书

Atomic Absorption AAnalyst 400 AASpectrometerControl and Data SystemUser Interface Complete PC control of all functions of the AAnalyst™ 400 using WinLab32™ for AA software. WinLab32 for AA includes an innovative user interface that makes the software easy to learn and use, including a clear graphical design, task-oriented organization of the windows, an understandablevocabulary, extensive tool tips in multiple languages, simple data displays and Wizards for the simplification of many tasks.WinLab32 is fully multitasking, allowing the analyst to report analytical results, view data or add priority samples without interrupting the analysis in progress.Using WinLab32 software, setup is flexible and easy. Standard operating conditions for flame, graphite furnace and FIAS techniques are included.Auto Analysis Control links methods for each technique with a sample-information file. The sample list can be created by third-party software orLIMS and downloaded to the system.WinLab32 software provides many tools to increase lab productivity. With WinLab32 Offline, method and sample-information files can be createdand data reviewed or reprocessed without interrupting the current analysis.WinLab32 software provides extensive QC protocols to meet internal and regulatory requirements. Data Reprocessing allows changes to manymethod and sample-information parameters after data collection and the recalculation of the results using the new parameters. With DataReprocessing, the raw data are never altered, thereby ensuring data integrity is maintained.WinLab32 Reporter provides the ability to generate post-run reports in a variety of formats. The Export feature of Data Manager can be used toexport results as comma-delimited ASCII files for compatibility with commercial third-party programs such as Microsoft® Excel®, Access® and Word.21 CFR Part 11 An optional WinLab32 Enhanced Security™ package is available for labs needing to be compliant with 21 CFR Part 11 regulations.HardwareSystem True double-beam echelle optical system. Front surfaced, reflecting optics with protective coating. Deuterium background corrector and two built-in EDL power supplies.Optical System Echelle monochromator. Focal length: 300 mm. Grating: 36 x 185 mm area, 79 lines/mm, blaze angle 76˚. Fused-quartz prism: 95 x 40 mm, 60°.Wavelength: 189-900 nm. Spectral bandpass: 0.15 nm at 200 nm. Reciprocal linear dispersion: 2.4 nm/mm. The photometer optics are covered toprotect against dust and corrosive vapors. For maximum protection, the optical system can be purged with an inert gas.Detector High-efficiency, segmented solid-state detector.Light Sources Hollow cathode or electrodeless discharge lamps (EDLs). EDLs provide much higher light output and longer lifetime when compared to conventional hollow cathode lamps. Lamp elements, recommended operating currents and slit selection are automatically recognized and set when usingPerkinElmer® Lumina™ series AA lamps. Lamp alignment is completely automatic with the four-lamp turret.E-box All electronics are located in a single user-replaceable module that the operator can easily replace without requiring a service visit.For a complete listing of our global offices, visit /ContactUsCopyright ©2004-2010, PerkinElmer, Inc. All rights reserved. PerkinElmer ® is a registered trademark of PerkinElmer, Inc. All other trademarks are the property of their respective owners. PerkinElmer reserves the right to change this document at any time without notice and disclaims liability for editorial, pictorial or typographical errors. 006675E_01PerkinElmer, Inc. 940 Winter Street Waltham, MA 02451 USA P: (800) 762-4000 or (+1) Gas Controls and Burner SystemFlame GasFully automated gas box with computer-controlled oxidant selection, automatic gas sequencing, oxidant and fuel monitoring and control.ControlSoftware-actuated ignition with air/acetylene. Acetylene flow is automatically adjusted when switching to or from nitrous-oxide/acetylene operation.Flame SafetyFully interlocked operation prevents ignition if the proper burner head, the nebulizer, end cap or burner drain system are not correctly Featuresinstalled, the level of the liquid in the drain vessel is incorrect, or gas pressures are too low. Interlocks will automatically shut d own thegases if a flame is not detected. The flame is automatically and safely extinguished in the event of a power failure or when theemergency flame-off button is used.Burner SystemAn inert-polymer mixing chamber provides superior analysis of corrosive and high-solid matrices. The spray chamber is manufactured froma high-strength composite, eliminating the need for pressure-relief devices. The high-precision inert nebulizer maximizes stability andsensitivity. A 10-cm single-slot solid titanium burner head for air/acetylene operation is included. Optional burner heads include: 5-cmnitrous-oxide/acetylene, 10-cm three-slot air/acetylene and 5-cm single-slot air/acetylene.Sample Area 25 cm wide x 25 cm deep sample compartment for easy access to burner components.Accessories for the AAnalyst 400AutosamplersFlame autosamplers automate standard and sample introductions for instrument calibration and sample analysis, extending thespectrometer’s capabilities to those of a fully automated analytical workstation. Sample Dilution The AutoPrep 50 sample-dilution system provides an optimized tool for truly automated flame AA. With automatic, intelligent on-line dilution capabilities, the AutoPrep 50 eliminates the time-consuming, manual, error-prone portion of your flame AA analyses.Mercury/Hydride For the analysis of mercury or hydride-forming elements, an optional automated flow injection system or a manual mercury/hydride System system can be added. Flow Injection Atomic Spectroscopy (FIAS) combines the advantages of mercury/hydride AA with those of the flow injection, enabling mercury/hydride AA procedures to be truly automated.System SpecificationsDimensions70 x 65 (0.46 m 2) x 65 cm (W x D x H)Weight49 kg Power100-230 V (±10%), 50/60 Hz (±1%), 300 VA (maximum)TechnicalClassified as a laboratory instrument. Complies with the applicable European Union directives and standards for safety and electro-magnetic compatibility for CE Marking, the safety requirements for Canada and the United States for CSA/NRTL certification and the FCC requirements for radio-frequency emissions. The instrument was developed and produced in compliance with ISO 9001.Environmental Dust-free, free of vibrations, ambient temperatures: +15 ˚C to +35 ˚C with a change rate of a maximum 3 ˚C per hour. Relative humidity: 20% to 80% non-condensing.。
Renishaw RESOLUTE
L-9517-9530-03-BRESOLUTE™ UHV absolute optical encoderRenishaw’s true-absolute optical encoder, RESOLUTE™, offers Ultra-High Vacuum compatibilityin both linear and rotary (angle) encoder formats.The RESOLUTE encoder determines position immediately upon switch-on, without the need for any movement or battery back-up. This means complete control of axes can be achieved immediately, thus eliminating risks of unchecked movements or collisions, a critical advantage in applications such as wafer handling where safe extraction of high-value products is essential afterloss of power.RESOLUTE encoders have inherently very low sub-divisional error (SDE), so the fidelity of feedback is improved. This has several benefits, including minimising velocity ripple, reducing vibration, increasing scanning performance and cutting the amount of heat generated in motors. The RESOLUTE system also has low positional noise (jitter) of less than 10 nm RMS, so positional stability is significantly improved. Resolutions are available to 1 nm (linear) or 32 bit (rotary), with a maximum speed up to 100 m/s. RESOLUTE UHV encoders are available with a range of serial protocols for excellent noise immunity, including BiSS® C and Panasonic.• Clean residual gas analysis (RGA)• Low outgassing rate• Bake-out temperature of 120 °C • True-absolute non-contact optical encoder system:no batteries required• Wide set-up tolerances for quick and easy installation• Resolutions to 1 nm linear or 32 bit rotary• Up to 100 m/s maximum speed (36 000 rev/min)• ±40 nm sub-divisional errorfor smooth velocity control• Less than 10 nm RMS jitter for improved positional stability • Built-in separate position-checking algorithm provides inherent safety• Integral set-up LED enables easy installation and provides diagnostics at a glance• Operates up to 75 °C• Integral over-temperature alarm • Compatible with a wide range of linear and rotary scales• Optional Advanced Diagnostic Tool ADTa-100* ADT a-100 compatible readheads are marked with the symbolSystem featuresUnique single-track absolute optical scaleu Absolute position is determined immediately upon switch-on u No battery back-upu No yaw de-phasing unlike multiple-track systemsuFine pitch (30 µm nominal perio d) optical scale for superior motion control compared to inductive, magnetic or other non-contact optical absolute encodersuHigh-accuracy graduations marked directly onto tough engineering materials for outstanding metrology and reliabilityUnique detection methoduReadhead acts like an ultra-fast miniature digital camera, taking photos of a coded scaleuPhotos are analysed by a high-speed digital signal processor (DSP) to determine absolute position uBuilt-in position-check algorithm constantly monitors calculations for ultimate safety and reliabilityuAdvanced optics and position determination algorithms are designed to provide low noise ( j itter < 10 nm RMS) and low sub-divisional error (SDE ±40 nm)Optional Advanced Diagnostic ToolThe RESOLUTE encoder system is compatible with theAdvanced Diagnostic T ool ADT a-100* and ADT View software, which acquire detailed real-time data from the readhead to allow easy set-up, optimisation and in-field fault finding. The intuitive software interface provides:u Digital readout of encoder position and signal strength u Graph of signal strength over the entire axis travel u Ability to set a new zero position for the encoder system uSystem configuration information* For RTLA30-S axis lengths > 2 m, FASTRACKcarrier with RTLA30 is recommended.1.5 mm × 14.9 mm 1.6 mm × 14.9 mm Up to 1 m : ±1 µm 1 m to 1.5 m : ±1 µm/mUp to 1 m : ±1.5 µm 1 m to 2 m : ±2.25 µm 2 m to 3 m : ±3 µm 3 m to 5 m : ±4 µm1.5 m5 m0.4 mm × 8 mm including adhesiveRTLA30 scale: 0.2 mm × 8 mm FASTRACK carrier: 0.4 mm × 18 mmincluding adhesive±5 µm/m ±5 µm/m RTLA30 lengths up to 21 mcarrier lengths up to 25 m±1.9 arc second (Typical installed accuracy for 550 mm diameter RESA30 ring)±1 arc second *otal installed accuracy for 417 mm diameter REXA30 ring)52 mm to 550 mm52 mm to 417 mm15.5 ±0.5 µm/m/°C15.5 ±0.5 µm/m/°C* When using two RESOLUTE readheads.Resolutions, speed and scale lengthsRESOLUTE encoder system with BiSS C(uni-directional)RESOLUTE readheads using BiSS C (uni-directional) protocol are available with three options for the position word length:36 bit, 32 bit and 26 bit. The maximum scale length is determined by the readhead resolution and the number of position bits in the serial word.Shorter word lengths combined with fine resolution limit maximum scale length. Conversely, coarser resolutions or longer word lengths enable the use of longer scale lengths.The 36 bit and 32 bit position word facilitates longer lengths that can be a significant benefit, especially at fine resolutions.RESOLUTE encoder system with PanasonicRESOLUTE readheads using Panasonic serial comms are available with 1 nm, 50 nm and 100 nm resolution options.For the Panasonic protocol, maximum scale length is available at all resolutions.Contact your local Renishaw representative for details of other serial protocols.ResolutionRESOLUTE encoders are available with a variety of resolutions, to meet the needs of a wide range of applications.The choice of resolutions depends on the serial protocol being used, but there are no limitations due to ring size; for example BiSS 26 bit resolution is available on all ring sizes.RESOLUTE encoders with BiSS serial comms are available with the following resolution options:RESOLUTE encoders with Panasonic serial comms are available with the following resolution options:For resolution options on other protocols, contact your local Renishaw representative. * 32 bit resolution is below the noise floor of the RESOLUTE encoder.†The maximum speed depends on the driver, motor and mechanical components. Contact Renishaw or Panasonic regarding the maximum speed.‡ ‘T ypical’ installations are a result of graduation and installation errors combining and, to some magnitude, cancelling.Speed and accuracyCAUTION: Very high speed motion axes require additional designconsideration. For applications that will exceed 50% of the rated maximum reading speed of the ring, contact your local Renishaw representative.For REXA30 speed and accuracyfigures, refer to the REXA30 ultra-high accuracy absolute angle encoder datasheet (Renishaw part no. L-9517-9405).General specifications(angle and linear)Power supply5 V ±10% 1.25 W maximum (250 mA @ 5 V)NOTE: Current consumption figures refer to terminated RESOLUTEsystems. Renishaw encoder systems must be powered from a5 Vdc supply complying with the requirements for SELV of standardIEC 60950-1.Ripple200 mVpp maximum @ frequency up to 500 kHz maximum Temperature Storage0 °C to +80 °COperating0 °C to +75 °CBake-out (non-operating)120 °CHumidity95% relative humidity (non-condensing) to IEC 60068-2-78 Sealing IP30Acceleration(readhead)Operating500 m /s2, 3 axesShock (readhead)Non-operating1000 m /s2, 6 ms, ½ sine, 3 axesMaximum acceleration of scale with respect to readhead 2000 m /s2NOTE: This is the worst-case figure that is correct for the slowest communications request rates. For faster request rates, the maximum acceleration of scale with respect to the readhead can be higher.For more details, contact your local Renishaw representative.Vibration Operating100 m /s2 max @ 55 Hz to 2000 Hz, 3 axesRandom vibration 0.15 g2/Hz ASD 20 -1000 Hz, −6dB roll off 1-2 kHz Mass Readhead19 gCable19 g /mCable Mechanical option ‘U’Silver-coated copper braided single screen.FEP core insulation, over tin-plated copper wire.Mechanical option ‘F’Stainless steel cable braid.Communication format - BiSS RS485 / RS422 differential line-driven signalCompatible Panasonic Drivers A5 family drivers (only compatible with RESOLUTE linear):A5, A5II, A5L, A5N, A5NL, A5BL.A6 family drivers (RESOLUTE rotary will be available for all A6 family drivers):A6SM, A6SL, A6NM, A6NL.Test scheduleA quadrupole mass spectrometer (AccuQuad 200 RGA) was used to collect RGA data. Chamber pressure was measured with an Ion Gauge (G8130). After initial conditioning of the system, a background spectrum was recorded together with the total pressure in the test chamber.The component was placed in the vacuum system (0.0035 m 3) which was then pumped using an KJL Lion 802 (800/s) diode ionpump and a Divac diaphragm pump at ambient temperature for 24 hours, after which a background scan and the total pressure in the test chamber were recorded again. If the system pressure was better than 5 × 10-9 mbar, the test specimen was baked at 120 °C for 48 hours. The system was then allowed to cool to ambient temperature before a final mass spectrum and total pressure measurement were taken. The final RGA scans are shown below.NOTE: Exact reproduction of these results should not be expected, as RGA data depends on the condition, specification andperformance of the vacuum system. However, the RGA results shows no significant contamination attributable to RESOLUTE UHVencoders and that UHV conditions can be achieved in the presence of this product.P a r t i a l p r e s s u r e /m b a rRESOLUTE readhead with 1.0 m cable after bake-out (total pressure = 8 × 10−10 mbar)Mass/AMUP a r t i a l p r e s s u r e /m b a rMass/AMURESA30 (Ø115 mm) after bake-out (total pressure = 7.76 × 10−10mbar)P a r t i a l p r e s s u r e /m b a rRTLA30-S linear scale (300 mm length) after bake-out (total pressure = 1.69 × 10−10mbar)P a r t i a l p r e s s u r e /m b a rRSLA30 linear scale (180 mm length) with 2 clips and 1 clamp after bake-out (total pressure = 3.0 × 10−10 mbar)Mass/AMUMass/AMURESOLUTE UHV readhead installation drawing (on RSLA30/RELA30 scale)n t o f m o u n t i n g f a c e s .e a d d e p t hf r o m m o u n t i ng f a c e . R e c o m m e n d e d th r e a d e n g a g e m e n t 5 m m (8i n c l u d i n g c o u n t e r b o r e ). R e c o m m e n d e d t i g h t e n i n g t o r q u e 0.5 t o 0.7 N m .Dimensions and tolerances in mm11RESOLUTE readhead side exit cable installation drawing (on RSLA30 / RELA30 scale)* E x t e n t o f m o u n t i n g f a c e s .† T h r e a d d e p t h f r o m m o u n t i n g f a c e . R e c o m m e n d e d t h r e a d e n g a g e m e n t 5 m m (8 i n c l u d i n g c o u n t e r b o r e ). R e c o m m e n d e d t i g h t e n i n g t o r q u e 0.5 t o 0.7 N m .Dimensions and tolerances in mm12RL 32B US 001C 30 VSeriesR = RESOLUTE Scale form L = Linear Protocol26B = BiSS 26 bit 32B = BiSS 32 bit 36B = BiSS 36 bit48P = Panasonic 48 bitMechanical option F = Ultra High Vacuum(stainless steel cable braid) U = Ultra High Vacuum(silver coated copper braid cable)Gain optionT = RTLA30 / RTLA30-S S = RSLA30E = RELA30Resolution 001 = 1 nm005 = 5 nm (BiSS only)050 = 50 nm100 = 100 nm (Panasonic only)Scale code optionB = RTLA30 / RTLA30-S (20 mm to 10 m)C = RSLA30 (20 mm to 5 m )/RELA30 (> 1.13 m to 1.5 m)D = RELA30 ( 20 mm to 1.13 m)E = RTLA30 / RTLA30-S (> 10 m to 21 m)Cable length 02 = 0.2 m 05 = 0.5 m 10 = 1 m 15 = 1.5 m 30 = 3 m 50 = 5 m 90 = 9 m 99 = 10 mTerminationV = Vacuum flying leadRESOLUTE angle readhead nomenclatureRA 26B U A 052B 30 VSeriesR = RESOLUTE Scale form A = AngularProtocol18B = BiSS 18 bit 26B = BiSS 26 bit 32B = BiSS 32 bit23P = Panasonic 23 bit 32P = Panasonic 32 bitMechanical option F = Ultra High Vacuum(stainless steel cable braid)U = Ultra High Vacuum(silver coated copper braid cable)Gain option A = StandardRing diameter 052 = 52 mm ring 057 = 57 mm ring 075 = 75 mm ring 100 = 100 mm ring 103 = 103 mm ring 104 = 104 mm ring 115 = 115 mm ring 150 = 150 mm ring183 = 183 mm ring (REXA30 only)200 = 200 mm ring 206 = 206 mm ring 209 = 209 mm ring 229 = 229 mm ring 255 = 255 mm ring 300 = 300 mm ring 350 = 350 mm ring413 = 413 mm ring (RESA30 only)417 = 417 mm ring489 = 489 mm ring (RESA30 only)550 = 550 mm ring (RESA30 only)Scale code optionB = Standard scale code Cable length 02 = 0.2 m 05 = 0.5 m 10 = 1 m 15 = 1.5 m 30 = 3 m 50 = 5 m 90 = 9 m 99 = 10 mTerminationV = Vacuum flying leadRESOLUTE linear readhead nomenclatureNOTE: Not all combinations are valid. Check valid options online at /epcRenishaw plcNew Mills, Wotton-under-Edge, Gloucestershire GL12 8JR United KingdomT +44 (0)1453 524524F +44 (0)1453 524901E ***************RESOLUTE UHV series compatible products:RESA30 stainless steel ringREXA30 high-accuracystainless steel ringRELA30 self-adhesive or clip / clamp mounted ZeroMet spar scaleRTLA30 tape scale and FASTRACK carrierRSLA30 self-adhesive or clip / clamp mountedstainless steel spar scaleRTLA30-S self-adhesivetape scaleRENISHAW HAS MADE CONSIDERABLE EFFORTS TO ENSURE THE CONTENT OF THIS DOCUMENT IS CORRECT A T THE DA TE OF PUBLICA TION BUT MAKES NO WARRANTIES OR REPRESENT ATIONS REGARDING THE CONTENT. RENISHAW EXCLUDES LIABILITY , HOWSOEVER ARISING, FOR ANY INACCURACIES IN THIS DOCUMENT .© 2010-2022 Renishaw plc. All rights reserved.Renishaw reserves the right to change specifications without notice.RENISHAW and the probe symbol used in the RENISHAW logo are registered trade marks of Renishaw plc in the United Kingdom and other countries. apply innovation and names and designations of other Renishaw products and technologies are trade marks of Renishaw plc or its subsidiaries.BiS S is a registered trademark of iC-Haus GmbH.All other brand names and product names used in this document are trade names, trade marks or registered trade marks of their respective owners.For worldwide contact details, visit /contactPart no.: L-9517-9530-03-BIssued: 12.2022For more information about the ADT a-100 and the scale, refer to the relevant data sheets and installation guides which can be downloaded from /opticalencoders.Advanced Diagnostic Tool ADTa-100 (A-6525-0100) Compatible with RESOLUTE readheads showing themark.RKLA30-S self-adhesive tape scale。
中科院机器学习题库-new
机器学习题库一、 极大似然1、 ML estimation of exponential model (10)A Gaussian distribution is often used to model data on the real line, but is sometimesinappropriate when the data are often close to zero but constrained to be nonnegative. In such cases one can fit an exponential distribution, whose probability density function is given by()1xb p x e b-=Given N observations x i drawn from such a distribution:(a) Write down the likelihood as a function of the scale parameter b.(b) Write down the derivative of the log likelihood.(c) Give a simple expression for the ML estimate for b.2、换成Poisson 分布:()|,0,1,2,...!x e p x y x θθθ-==()()()()()1111log |log log !log log !N Ni i i i N N i i i i l p x x x x N x θθθθθθ======--⎡⎤=--⎢⎥⎣⎦∑∑∑∑3、二、 贝叶斯假设在考试的多项选择中,考生知道正确答案的概率为p ,猜测答案的概率为1-p ,并且假设考生知道正确答案答对题的概率为1,猜中正确答案的概率为1,其中m 为多选项的数目。
Parameterization in finite precision
parameterization based on algebraic geometry have been given in 1], 2], 3], 4], 18], and some will be analyzed here. There is also a numerical method due to Jacobi which works by iteratively converting a conic or quadric to standard form (see 12]). Functionally, rational parameterization takes one implicit equation in n variables, and for each implicit variable returns a rational function in n ? 1 parameters. Since the rational functions have a common denominator, the output can be viewed as consisting of n + 1 polynomials. While the input implicit equation is assumed to have rational coe cients, the output polynomials may p require algebraic number coe cients, which are (informally speaking) roots of polynomials, such as 2. The algorithms based on algebraic geometry assume exact computations. While techniques exist for manipulating algebraic numbers exactly, they are expensive. In this work, we consider parameterization algorithms in a nite precision domain. This paper is organized as follows. We choose a nite precision numerical domain and explain our general approach to rederiving a parameterization algorithm to work in this domain. First, we analyze algorithms for conics and quadrics, and then analyze an algorithm for singular cubic curves. The error in each algorithm is described algebraically. We then use the algebraic error analysis to derive simple geometric error bounds for conics and quadrics. Finally, we consider singular cubic parameterization from another standpoint, showing that they can in fact be parameterized exactly using only rational arithmetic. Finally, we conclude by brie y discussing extensions of this approach, e.g. to cubic surfaces.
Inovance H2U Series PLC用户手册说明书
1423H2U Series PLC User ManualCode: 19010034 V2.0Thank you for purchasing the H2U series programmable logic controller (PLC) independently developed by Inovance Control Technology Co., Ltd. Read the manual carefully to be familiar with the product features and be able to use the product safely.This manual describes the specification, features and usage of the H2U series PLC. For the developing environment and design method of user programs, see the Autoshop On-line Help of Inovance.The H2U series PLC has the following features:◆The built-in program memory space reaches up to 16K steps.◆The internal large-capacity power supply can directly apply power tosensors, HMI, and external auxiliary relays.◆It provides multiple high-speed I/O terminals, and has rich motion andpositioning control functions.◆It has four independent communication ports and supports variouscommunication protocols including Modbus, facilitating system integration.◆The comprehensive encryption function protects intellectual propertyrights of the user.◆It comes with fast execution speed and supports up to 128subprograms and 21 interrupt subprograms. Each subprogram has the parameter call and independent password security functions.Safety Information and PrecautionsIn Design◆Provide a safety circuit outside the PLC in the application so that thecontrol system can still work safely even if external power failure or PLC fault occurs.◆In the external circuit of the PLC, an emergency stop circuit, aprotection circuit, an interlock circuit of forward/reverse rotation operation, and position upper/lower limit interlock circuit are necessary to prevent equipment damage ◆The PLC is designed for indoor electric environment and is installed in an overvoltage category 2 environment. A lightning protection device must be installed for the power supply system, so that lighteningovervoltage is not applied on terminals of the PLC, avoiding damage to the equipment.During Installation◆Install the PLC in places free from dust, oil smoke, conducting dust,corrosive gas, combustible gas, high temperature, condensation, wind & rain, vibration and shock. In addition, electric shock, fi re, malfunction may also cause damage and deterioration to the equipment.◆During screw hole processing and wiring, ensure that no metal filingand cable end fall into the ventilation hole of the controller, because such stuff may cause a fi re, fault, or malfunction.◆After installation of the newly purchased PLC is complete, ensure thatthere is no foreign stuff on the surface of ventilation. Failure to comply may result in poor cooling effect during running, which may lead to a fi re, fault or malfunction.◆The installation and wiring must be secure and reliable. Poor contactmay cause malfunction.◆Ensure that all power supplies are cut off before installation or wiring.◆During screw hole processing and wiring, ensure that no metal filings or cable end drops into ventilation holes of the controller. Failure to comply may result in a fi re, fault or malfunction.◆Perform wiring or plug/remove the cable connector only after power-off.◆The specification and installation requirement of external cables mustcomply with the local safety regulations and related IEC standards. The size in the table below is for recommendation.Copper Wire Cross-section Area Recommended CodeAC power wire 1.0–2.0 mm²AWG 12, 18Earthing wire 2.0 mm²AWG12Input signal wire0.8–1.0 mm²AWG18, 20◆The terminal of wire must be insulated according to the local safetyregulations. Ensure that the insulation distance shall not be reduced when the wire is connected to the terminals. Otherwise, electric shock or damage to circuit may result .During Running and Maintenance◆Connection or removal of the communication cable, cables of theextension card and cables of the control unit, or other servicing can be performed only after power-off. Failure to comply may result in damage to the equipment or malfunction.◆Operations such as online modification, forcible output, RUN and STOPProduct Information■Designation RulesH2u-3232MRAX-XP123456789No. NameDescription1Product information H: Inovance controller2Series No.2U: Second generation of controller 3Input points 32: 32 inputs 4Output points 32: 32 outputs5Module classifi cation M: Main module of general-purpose controller, P: Positioning controller, N: Network controller, E: Extension module 6Output type R: Relay, T: Transistor7Power supply type A: 220 VAC (220 VAC by default if null), B: 110 VAC, C: 24 VAC output, D: 24 VDC8Special functionHigh-speed input/output, analog function9XP auxiliary version -◆Basic ParametersPLC Model Total I/Os I/O Features (Input Voltage: 24 VDC)Order Code Total Inputs Hi-Speed Inputs Total Outputs High-Speed Outputs Output TypeH2U-1010MR-XP 2010 2 x 60 kHz6 x 10 kHz 10-Relay 01022078H2U-1010MT-XP 3 x 100 kHz Transistor01022079H2U-1616MR-XP 3216 6 x 60 kHz 16-Relay01022040H2U-1616MT-XP 3 x 100 kHz Transistor01022041H2U-2416MR-XP 4024 2 x 60 kHz4 x 10 kHz 16-Relay 01022048H2U-2416MT-XP 2 x 100 kHzTransistor01022049H2U-2416MTQ-F01 6 x 100 kHz 5 x 100 kHz01028063H2U-3624MR-XP 6036 2 x 60 kHz4 x 10 kHz 24-Relay 01022046H2U-3624MT-XP 2 x 100 kHz Transistor01022047H2U-3232MR-XP 6432 6 x 60 kHz32-Relay01022050H2U-3232MT-XP 3 x 100 kHzTransistor01022045H2U-3232MTQ 6 x 100 kHz 5 x 100 kHz 01022015H2U-3232MTP -8 x 100 kHz01022061H2U-4040MR-XP 8040 6 x 60 kHz 40-Relay01022042H2U-4040MT-XP 3 x 100 kHz Transistor01022062H2U-6464MR-XP 12864 6 x 60 kHz 64-Relay01022043H2U-6464MT-XP3 x 100 kHz Transistor01022044Note: Total inputs include hi-speed inputs. High-speed input terminals can be used for common inputs. Total frequency of H2U-XP high-speed inputs cannot exceed 70 kHz. Total frequency of H2U-3232MTQ and H2U-2416MTQ high-speed inputs cannot exceed 600 kHz. Total frequency of high-speed inputs of other H2U models cannot exceed 100 kHz.At Wiring◆Use shielded cables for high-frequency signal input/output inapplications with severe interference to enhance anti-interference capacity of the system.◆Suitable earthing connection shall be provided by the end system. Theearth wire must be connected only to the earthing point on terminal which is marked with the earth symbol. The earth must be over 2 mm².◆Installation or removal of the extension card can be performed only afterpower-off.◆Make sure to replace button cell after power-off. If replacement at power-on is required, only authorized electrical technician is allowed to complete replacement within 30 seconds. Failure to comply may result in data loss. ◆Treat scrapped PLC as ordinary industrial waste.Environment ParametersUse TransportationStorageTypeParameterUnit M e c h a n i c a l s t r e sSine vibration Shift mm 3.5 (5–9 Hz)--Acceleration m/s 210 (9–150 Hz)--Random vibrationAcceleration spectral density m 2/s 3 (dB/Oct)-5–20 Hz: 1.92 dB 20–200 Hz: -3 dB-Frequency range Hz -5–200-Vibration direction --X/Y/Z -Shock Type--Half-sine -Acceleration m/s 2-180-DipDip heightm-1-Mechanical DesignModel Total I/Os Mounting Dimension Dimension W × H × D (mm)A (mm) B (mm)H2U-1010M_2012080130 x 90 x 88H2U-1616M_32 16080170 x 90 x 88H2U-2416M_4016080170 x 90 x 88H2U-3624M_6021080220 x 90 x 88H2U-3232M_6421080220 x 90 x 88H2U-4040M_8027580285 x 90 x 88H2U-6464M_12834080350 x 90 x 88■Requirements on Installation Position1) Do not remove the paper tape that prevents foreign objects from droppinginto the unit during installation. Once installation is completed, remove the paper tape before power-on so as to prevent overheating.2) To prevent overheating inside the PLC, wall-mount PLC with 300 mmclearance at top and bottom for heat dissipation, as shown in Figure 2.3) Leave 50 mm or more space between PLC and other devices orstructures. Keep PLC far away from high-voltage cables and devices, and power devices.■Mounting Methods1) Mounting or removing PLC Figure 1 Mount or remove PLCDAW BHMounting Hole Ф5 × 4■ Product Structure11. Special function adapter board knock-down hole (It need be cut off before installation of the board.); 12. Wiring terminal for RS485 communication port (COM1/COM2); 13. Special function extension card and special function adapter board interface; 14. System program downloading port (Unauthorized operation is prevented here.); 15. Battery socket (BAT) (Neber reverse the polarity.); 16. Coin battery (provided by Inovance); 17. Special function extension card and special function adapter board fi xed bolts; 18. RUN/STOP switch; 19. User program downloading port (COM0)Note: Fix PLC at both ends with DIN rail slot dampers to prevent it from sliding left and right.2) Mounting and fi xing PLC with screws (wall-mounting mode)In applications with big impct, mount and fi x PLC with four M4 screws.Figure 2 Mount and fi x PLC with four M4 screws2. Buckle the catching groove of PLC base into the DIN rail .3. Press PLC vertically down to the DIN rail .1. Fix the DIN rail onto the mounting plate4. Ensure that the PLC tongue shaped card is locked into the DIN rail .Mounting plate1. Pull down the tongue shape card to make PLC away from the DIN rail .2. Lift the PLC toward you.■Communication Interface Defi nitionThe H2U series PLC has two communication ports and H2U-XP has four communication ports. The COM0 hardware is standard RS485 and RS422, determined by jumper JP0. If JP0 is connected, RS422 is selected. If JP0 is disconnected, the RS422 and RS485 are compatible. COM0 hardware of H2U-XP is standard RS422, which does not require jumper connection. Otherwise, the PLC cannot work normally. The terminal interface is mini-DIN8 socket.⑧①②③④⑤⑥⑦Figure 3 User program downloading port 421485+ 485-COM13485+ 485-COM2Figure 4 RS 485 communication port 421485+ 485-COM13485+ 485-COM25GNDFigure 5 RS 485 communication portNote: Figure 4 is the communication port of H2U-XP . Figure 5 is the communication port of H2U-1010M_XP . COM2 is the COM0 of H2U.PLC can be connected to PC or HMI through COM0 in the following ways:1) (JP0 connected): PLC side is RS422 and PC side is USB. PC isconnected to the PLC COM0 port via the dedicated USB downloading cable (see Figure 3). (The H2U-XP does not require JP0 connection.)2) (JP0 connected): PLC side is RS422 and the PC side is RS232. PC isconnected to the PLC COM0 port via the dedicated serial port download cable (see Figure 3). (The H2U-XP does not require JP0 connection.)3) (JP0 disconnected): PLC side is RS485 and PC side is RS485. They areconnected through the terminal as shown in Figure 4. The connecting cable is determined by the user.■General Specifi cationsEnvironment ParametersUse Transportation Storage Type Parameter Unit C l i m a t e c o n d i t i o nAmbient temperature Low temperature °C -5-40-40High temperature °C 557070Humidity Relative humidity %95 (30 ± 2 °C)95( 40 ± 2 °C)-Air pressureLow pressure kPa 707070High pressurekPa106106106Electrical DesignThe following fi gures show the I/O terminals of the main H2U series PLC unit. The H2U series PLC has different output types, relay and transistor, but has the same terminal confi guration.M4 screwsMounting plate1. Foldaway2. Power supply, auxiliary power supply and detachable terminals for signal input3. Input status indicators4. Running status indicators PWR: Power indicator; RUN: Running indicator: Flashing indicates PLC normal running); B AT: B a t t e r y l o w -v o l t a g e indicator; ERR: Fault indicator5. Mounting holes x 4;6. Cover of extension module interface (R: Relay; T: Transistor)7. DIN rail slot dampers x 2;8. Output status indicator LEDs;9. Detachable terminals for signal output; 10. Cover of user program downloading port (COM0)COM1/COM2 hardware is standard RS485 and is interface terminal. For defi nition of COM1/COM2 , see Figure 4. They are connected to other devices via on-site wiring by the user. Both support the half-duplex communication mode only. COM3 of H2U-XP can be available through extension card.Pin No.Signal DescriptionPin No.Signal Description1RXD-Receive negative data.5+5VProvide power supply +5 V to external devices.It is the same with the internal logic +5 V.2RXD+Receive positive data.6CCSCommunication directioncontrol cable3GNDMust be grounded.No electrical connections for 9 and 107TXD+/RXD+Send positive data toexternal devices.If it is RS485, it can receivepositive data.4TXD-/RXD-Send negative data to external devices.If it is RS485, it can receive negative data (H2U).8NC Non-pinThe following figure shows the internal equivalent circuit of PLC in the relay output mode. The output terminals are divided into several groups, and the groups are electrically isolated. The output contacts of different groups are connected with different power circuits.Figure 8 Internal equivalent circuit of PLC in the relay output mode The following figure shows the internal equivalent circuit of PLC in the transistor output mode.The output terminals are divided into several groups, and the groups are electrically isolated. The transistor output can be used for 24 VDC load circuit only.Figure 9 Internal equivalent circuit of PLC in the transistor output modeProduct Warranty CardCustomerinformationAddress:Company name:Postcode:Contact person:Tel or Email:ProductinformationProduct model:Serial No (Attach here):Name of supplier who supplied you the unit:Failure Description (eg. Fault code)Maintenance personnel:The soft components within [ ] are the battery backup area.• Note 1: Non-battery backup area can be changed into battery backup areavia parameter setting.• Note 2: Battery backup area can be changed into non-battery backup areavia parameter setting.• Note 3: Such permanent battery backup area cannot be changed.■ Programming requirements1) One PC with Microsoft Windows XP or Windows 7 system2) Inovance AutoShop (version 2.0 or above) for the purpose of writing anddownloading user programs3) Inovance USB-mini DIN8 download cable or mouse head download cablefor PC with DB9-type RS232 port■Input SpecificationsThe internal signal circuit composition and external wiring mode of the H2U Series PLC are desribed here. The terminal names in the wiring example vary with the PLC models.The connecting mode is effective to all input points of the PLC.■Output SpecificationsThe H2U series PLC has relay output and transistor output. Their parametersare quite differently. Please select the correct output type so as to avoid misuse. Failure to comply may result in damage to the PLC.The current of transistor output terminals must be less than the allowable maximum current. If the output current of multiple transistor terminals is greater than 100 mA, they should be evenly arranged but not be arranged adjacently, convenient for heat dissipation.It is suggested that the output points, which are set to ON simultaneously, doPLC has a built-in power supply (24 VDC) to detect user switch status, so you only need to connect input signals of dry contact. OC output type is needed if you connect an active transistor or sensor.Output group 0Output group 1Output group 3Output group 0Output group 1Output group 3and for the inductive load in DC circuit, you need add a freewheeling diode, as shown in the following figure.Figure 10 Inductive load absorption circuit,2 WPLC signal input and internal equivalent circuit are shown as Figure 6 below. Circuit of the user and the PLC internal circuit are connected by the terminal. Figure 6 shows the SINK input mode, determined by short connection of the terminal S/S and the terminal 24V.Figure 6 SINK input modeFigure 7 SOURCE input mode24VCOMS /SX0X1X2X2Xn24VDC For self-powered deviceV a r i o u s s i g n a l i n p u t d e v i c e sUser signal wiringI n t e r n a l e q u i v a l e n t c i r c u i t o f P L COutput 3 applies power to sensor. It can also provide external power supply to special function modules. Output 2 provides power supply to the main module and the relay of I/Os of expansion module. Output1 provides power to all modules. During system configuration, make sure that the demand of each power supply does not exceed its maximum capacity.■Terminal Block Definition◆Terminal block definition of H2U-1010MR-XP and H2U-1010MT-XPWhen using H2U-1010MT-XP, Y0, Y1 and Y2 require external powersupply. The user can connect 24VDC(24 V ± 20%) power supply toterminals V+ and V-. Terminal V- hasbeen shorted to COM0 internally. ◆Terminal block definition of H2U-1616MR and H2U-1616MT◆Terminal block definition of H2U-2416MR and H2U-2416MT◆Terminal block definition of H2U-2416MTQ-F01◆Terminal block definition of H2U-3232MTQ (same as that of H2U-3232MTP)■Power S upply Capacitance and Expansion CapacityThe main module and active expansion module of PLC provide power supply toexpansion modules, extension cards and adapters. The I/O points of expansion modules and the number of special function expansion modules must be within the power supply capacitance of the main module or active expansion module.For calculation on power supply capacitance, take the following aspects into considerations:• Each power supply capacitance should be calculated independently.• The expansion capacity is decided by the smaller power supplycapacitance.For example: 24VDD allows connection of six expansion modules, while +5V only allows connection of eight expansion modules. So the system can only be extended up to six expansion modules.■Selection of Extension DeviceWhen designing an H2U series PLC system, we must consider the followingaspects:◆Total I/Os should be within 256 for a main PLC system.◆Power supply capacitance (see Power Supply Specification)◆main modules and active expansion modules can provide 24 VDC and 5VDC power supply to expansion modules and special modules. But total power consumption of all expansion units should be restricted within the power supply capacitance of main module or the active expansion module. ◆The H2U series PLC can be connected to maximum 8 special modules.◆Terminal block definition of H2U-3232MTQ (same as that of H2U-3232MTP)◆Terminal block definition of H2U-6464MR and H2U-6464MT◆。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Fast parameterized inexact Uzawa method for complex symmetric linear systemsqQing-Qing Zheng,Chang-Feng Ma ⇑School of Mathematics and Computer Science,Fujian Normal University,Fuzhou 350007,PR Chinaa r t i c l e i n f o Keywords:Complex symmetric linear system Iterative methods Correction technique The PIU methodConvergence analysis Numerical experimentsa b s t r a c tIn previous years,Bai and Wang presented a class of parameterized inexact Uzawa (PIU)methods for solving the generalized saddle point problems.In this paper,we consider the same method for iteratively solving the complex symmetric linear systems.Our main contribution is accelerating the convergence of the parameterized inexact Uzawa method by correction technique.First,the corrected model for the PIU method is established and the corrected PIU method is presented.Then we study the convergence property of the cor-rected PIU method.In fact,the corrected PIU method can converge faster than some Uza-wa-type and HSS-like methods.Finally,numerical experiments on a few model problems are presented to illustrate the theoretical results and examine the numerical effectiveness of the new method.Ó2015Elsevier Inc.All rights reserved.1.IntroductionLet n be a positive integer.We consider the iterative solution of systems of linear equations of the formAx ¼b ;A 2C n Ân and x ;b 2C n ;ð1:1Þwhere A 2C n Ân is a complex symmetric matrix of the formA ¼W þi T ð1:2Þand W ;T 2R n Ân are real,symmetric,and positive definite matrices.Here and in the sequel,we use i ¼ffiffiffiffiffiffiffiÀ1p to denote theimaginary unit.Complex symmetric linear systems of this kind arise in many important problems in scientific computing and engineering applications.For example,FFT-based solution of certain time-dependent PDEs [1],diffuse optical tomography [2],algebraic eigenvalue problems [3,4],molecular scattering [5],numerical solutions of the complex Helmholtz equation and numerical computations in eddy current problems.For more examples,we refer to [6–12]and the references therein.Hence,there is a strong need for the fast solution of complex symmetric linear systems.For solving the complex symmetric linear system (1.1)efficiently,van derVorst and Mellissen [9]proposed the conjugate orthogonal conjugate gradient (COCG)method,which is regarded as an extension of the Conjugate Gradient (CG)method [13].Relatively complicated but robust methods such as QMR [14],CSYM [15],and Bi-CGCR [16]are also useful.QMR is/10.1016/j.amc.2015.01.0230096-3003/Ó2015Elsevier Inc.All rights reserved.qThe Project supported by National Natural Science Foundation of China (Grant Nos.11071041,11201074),Fujian Natural Science Foundation (Grant No.2013J01006),The University Special Fund Project of Fujian (Grant No.JK2013060)and R&D of Key Instruments and Technologies for Deep Resources Prospecting (the National R&D Projects for Key Scientific Instruments)under Grant No.ZDYZ2012-1-02-04.⇑Corresponding author.E-mail address:macf88@ (C.-F.Ma).derived from the complex symmetric Lanczos method,CSYM is obtained from the idea of QMR and tridiagonalization of A by Householder reflections,and Bi-CGCR is derived from a particular case in Bi-CG [17]for solving non-Hermitian linear sys-tems.In [18]Sogabe and Zhang extended the conjugate residual (CR)method described in [19,20]to complex symmetric linear systems based on an observation of deriving CG,CR,and COCG.Moreover,Based on the Hermitian and skew-Hermi-tian splitting (HSS)A ¼H þS ;of the matrix A 2C n Ân ,withH ¼12ðA þA ÃÞand S ¼12ðA ÀA ÃÞbeing the Hermitian and skew-Hermitian parts and A Ãbeing the conjugate transpose of the matrix A 2C n Ân ,we can apply theHSS iteration method [21]or its preconditioned variant PHSS (i.e.,the preconditioned HSS,see [22])which were proposed by Bai and his co-authors to compute an approximate solution of the linear system (1.1).In addition,the convergence properties of the PHSS method can be found in [23].In [24],Bai,Golub and Ng further generalized the technique for constructing HSS iteration method for solving large sparse non-Hermitian positive definite system of linear equations to the normal/skew-Hermitian (NS)splitting obtaining a class of normal/skew-Hermitian splitting (NSS)iteration methods.Theoretical analyses shown that the NSS iteration method converges unconditionally to the exact solution of the system of linear Eq.(1.1).A potential difficulty with the HSS iteration approach is the need to solve the shifted skew-Hermitian sub-system of linear equations at each iteration step.Hence,Bai,Benzi and Chen presented a modification of the HSS iteration scheme in [25]and some of its basic properties are studied.In [26],the authors proposed a preconditioned variant of the modified HSS (PMHSS)iteration method for solving the complex symmetric systems of linear equations.Moreover,the authors in [27]pre-sented analytical and extensive numerical comparisons of some available numerical solution methods for the complex val-ued linear algebraic systems (1.1).In this paper,we study the corrected parameterized inexact Uzawa method for solving the complex symmetric linear sys-tem (1.1).We call this new method CPIU method for the sake of simplicity.We also introduce the overall reduction coeffi-cient a ði Þto measure the effectiveness of the correction process.If the overall reduction coefficient a ði Þ<1is satisfied in each iteration step,then the corrected PIU method will converge faster than the PIU method.Moreover,sufficient conditions for the convergence of the CPIU method for the linear system (1.1)are also provided in the paper.The paper is organized as follows.In Section 2,we introduce the parameterized inexact Uzawa method and establish the corrected PIU model for the Eq.(1.1),then the CPIU method is presented.In Section 3,The corrected PIU model is solved.Moreover,we analyze the convergence property of the CPIU method.In Section 4,some numerical experiments are given to show the efficiency of the CPIU method.Finally,some conclusion remarks are proposed in Section 5.The following notations will be used throughout this paper.We denote the identity matrix and the 0-matrix by I and O ,respectively.½u ;v denote the inner product of vectors u and v .For a matrix A ,we denote the spectral norm of A by k A k 2.And denote the range and the null spaces of A by R ðA Þand N ðA Þ,respectively.The conjugate transpose of A is denoted by A H .More-over,the Moore–Penrose inverse of A is defined as the unique matrix A þwhich satisfies the following four matrix equations:AA þA ¼A ;A þAA þ¼A þ;ðAA þÞH¼AA þ;ðA þA ÞH¼A þA :2.The corrected PIU methodLet x ¼y þiz and b ¼p þiq ,then from (1.1)and (1.2),we can get ðW þiT Þðy þiz Þ¼p þiq ,which implies that we can obtain the following block two-by-two systems of linear equationDX ¼W ÀT TWyz¼p q¼g :ð2:1ÞConversely,from the linear Eq.(2.1),we can get the complex symmetric linear system (1.1).So the complex symmetric linear system (1.1)is formally identical to the above block two-by-two systems of linear Eq.(2.1).Based on the PMHSS precondi-tioning matrix,Bai in [28]constructed a class of rotated block triangular preconditioners for linear system (2.1),and analyze the eigen-properties of the corresponding preconditioned matrices.Moreover,the block two-by-two systems of linear Eq.(2.1)can be formally regarded as a special case of the generalized saddle point problem [29,30].It frequently arises from finite element discretizations of elliptic partial differential equation (PDE)-constrained optimization problems such as dis-tributed control problems [31–35]and so on.Based on the parameterized inexact Uzawa (PIU)iteration method for solving the following generalized saddle point problemA B B >ÀCe y e z¼e p e q;ð2:2Þ12Q.-Q.Zheng,C.-F.Ma /Applied Mathematics and Computation 256(2015)11–19in this section we derive a corrected PIU iteration method for solving the block two-by-two systems of linear Eq.(2.1).To this end,we first introduce the PIU iteration method proposed in Bai and Wang [36]for the Eq.(2.2).This PIU iteration method is methodically described in the following.Method 2.1.Given initial vectors e y ð0Þ2R n and ez ð0Þ2R n and two relaxation factors x ;s with x ;s –0.For k ¼0;1;2;...,until the iteration sequence fðe y ðk Þ>;ez ðk Þ>Þ>g converges to the exact solution of the saddle point problem (2.2),compute e y ðk þ1Þ¼e y ðk Þþx P À1ðe p ÀA e y ðk ÞÀB e z ðk ÞÞ;e z ðk þ1Þ¼e z ðk Þþs Q À1ðB >e y ðk þ1ÞÀC ez ðk ÞÀe q Þ;(where P 2R n Ân and Q 2R n Ân are prescribed symmetric positive definite matrices.If P –A and x ¼s ¼1then the PIU iteration Method 2.1yields inexact Uzawa method [37–39]for solving the saddle point problems.Here,in this paper we consider the case that P ¼Q ¼A and x ¼1.Based on the above Method 2.1,we can get the following iteration method.Method 2.2.Given initial vectors y ð0Þ2R n ;z ð0Þ2R n and the relaxation factor s with s –0.For k ¼0;1;2;...,until the iter-ation sequence fðy ðk Þ>;z ðk Þ>Þ>g converges to the exact solution of the saddle point problem (2.1),computey ðk þ1Þ¼W À1ðp þTz ðk ÞÞ;z ðk þ1Þ¼z ðk ÞÀs W À1ðT >y ðk þ1ÞþWz ðk Þþq Þ:(Denote X ðk Þ¼y ðk Þz ðk Þ,then the PIU Method 2.2can be rewritten as X ðk þ1Þ¼HX ðk ÞþM À1g ;ð2:3ÞwhereH ¼OW À1TO I Às W À1ðC þTW À1T Þ!and M ¼W O T1s W!:Let N ¼M ÀD ¼O T O1s À1ÀÁW,thenD ¼M ÀN ð2:4Þdefines a splitting of the coefficient matrix D of the block two-by-two systems of linear Eq.(2.1),and the PIU Method 2.2can also be induced by the matrix splitting (2.4).Easily,we see that H ¼M À1N is the iteration matrix of the PIU Method 2.2.Therefore,the PIU Method 2.2is convergent if and only if the spectral radius of the iteration matrix H is less than one,i.e.,q ðH Þ<1.See [40–42].Assume X 1;X 2;...;X m are approximate solutions of Eq.(2.1),where m >1is a positive integer and DX i –g ði ¼1;2;...;m Þ.The basic idea of the correction model for the parameterized inexact Uzawa Method 2.2is:construct a vector b Xwhich is a better approximate solution of Eq.(2.1)than X i ði ¼1;2;...;m Þ.That is,k g ÀD b X k 2<min 16i 6mk g ÀDX i k 2:ð2:5ÞThe vector b Xthat satisfies (2.5)is called the corrected solution of X 1;X 2;...;X m ,and the progress to determine the vector X is called CPIU process.The corrected model for the PIU is presented as follows.The CPIU model.b X¼a 1X 1þa 2X 2þÁÁÁþa c X m ;a 1þa 2þÁÁÁþa m ¼1;k g ÀD b Xk 2¼min :ð2:6ÞWith the above CPIU model we can obtain the following detailed methodic description of the CPIU method for the blocktwo-by-two system of linear Eq.(2.1).The CPIU method.Give an initial vector X ð0Þ2R 2n ,let k ¼0. WhileX ðk Þ1¼X ðk À1ÞFor ðj ¼2;3;...;m ÞX ðk Þj¼HX ðk Þj À1þM À1gend ForX ðk Þ¼a ðk Þ1X ðk Þ1þa ðk Þ2X ðk Þ2þÁÁÁþa ðk Þm X ðk Þm k ¼k þ1End WhileQ.-Q.Zheng,C.-F.Ma /Applied Mathematics and Computation 256(2015)11–1913Here aðkÞiði¼1;2;...;mÞis determined by the k th CPIU progress.How to solve the above CPIU model will be illustrated detailedly in Section3.From the Eq.(2.5),we can see that if the iteration(2.3)is convergent,i.e.,qðHÞ<1,then the sequence f XðkÞg will converge.3.Analysis for the CPIU methodIn this section,we will solve the CPIU model(2.6).Moreover,the sufficient conditions for the convergence of the CPIU method are also provided.When the linear system EX¼r is consistent,then the vector X02C2n that satisfies k X0k2¼min EX¼r k X k2is called the min-imum norm solution of linear system EX¼r.When the linear system EX¼r is not consistent,then the vector X02C2n thatsatisfies k X0k2¼min min k EXÀr k2k X k2is called the minimal norm least squares solution of linear system EX¼r.Lemma3.1.If the linear system EX¼r is consistent,then the minimum norm solution X0of EX¼r is unique and X0¼Eþr.Proof.Firstly,we prove X02RðE HÞholds true.If X0R RðE HÞ,then we can obtain the decomposition X0¼X1þX2;X12RðE HÞ;X22NðEÞ¼½RðE HÞ ?;X2–0:Note X1?X2,we obtaink X0k22¼k X1k22þk X2k22>k X1k22:Because EX1¼EX1þEX2¼EX0¼r,then we get X0is not the minimum norm solution of EX¼r.This is a contradiction,so X02RðE HÞ.Then we illustrate the uniqueness of minimum norm solution X0.If Z0is another minimum norm solution of EX¼r,then Z02RðE HÞ.So we haveX0ÀZ02RðE HÞ¼½NðDÞ ?:Moreover,because EðX0ÀZ0Þ¼0,then we have X0ÀZ02NðEÞ.So X0ÀZ0¼0,which implies X0¼Z0.Now we illustrate X0¼Eþr.Obviously,the general solution of the equation EX¼r isX¼EþrþðIÀEþEÞy;ðy2C nÞ:Take y¼0,then we obtain that X0¼Eþr is a solution of EX¼r.Because½ðIÀEþEÞy;X0 ¼y HðIÀEþEÞH X0¼y HðIÀEþEÞEþr¼y HðEþÀEþEEþÞr¼0;then we havek X k22¼k X0k22þkðIÀEþEÞy k22P k X0k22;which implies that X0¼Eþr is the minimum norm solution of linear system EX¼r.The proof is completed.hLemma3.2.If the linear system EX¼r is not consistent,then the minimal norm least squares solution X0of EX¼r is unique and X0¼Eþr.Proof.From Lemma3.1,we can demonstrate that the result holds true.hTogether with Lemmas3.1and3.2we prove the following result which show how to solve the CPIU model(2.6).Theorem3.1.If X1;X2;...;X m are approximate solutions of Eq.(2.1),for k¼1;2;3;...,let r k¼gÀDX k.Denoteb i¼r iÀr1ði¼2;3;...;mÞ;Q¼ðb2;b3;...;b mÞ;ð3:1Þy 1¼ða2;a3;...;a mÞ>¼ÀQþr1;a1¼1ÀX mi¼2a i:ð3:2ÞThen b X¼a1X1þa2X2þÁÁÁþa m X m is the corrected solution of X1;X2;...;X m.Proof.Assume b X¼b1X1þb2X2þÁÁÁþb m X m is the corrected solution of X1;X2;...;X m of CPIU model(2.6),where b1þb2þÁÁÁþb m¼1.Then we haveb X¼X1þX mi¼2b iðX iÀX1Þ;14Q.-Q.Zheng,C.-F.Ma/Applied Mathematics and Computation256(2015)11–19which impliesrðb XÞ¼gÀD b X¼r1þX mi¼2b iðr iÀr1Þ:From(3.1)and(3.2),we obtain that the above equation can be rewritten as rðb XÞ¼r1þQðb2;b3;...;b mÞ>.This implies thatfinding a vector b X which can minimize k rðb XÞk2is equivalent tofinding y2C mÀ1which can minimize k r1þQ y k2.By making use of Lemmas 3.1and 3.2,the minimum norm solution satisfies k y1k2¼min k r1þQ y k2k y k2isy1¼ða2;a3;...;a mÞ>¼Qþr1.Let a1¼1ÀP mi¼2a i,then we can obtain thatb X¼a1X1þa2X2þÁÁÁþa m X m is the correctedsolution of X1;X2;...;X m of the CPIU model(2.6).The proof is completed.hRemark3.1.Take j2f1;2;...;m g,and denotebi¼r iÀr jði–jÞ;Q j¼ðb1;...;b jÀ1;b jþ1;...;b mÞ;y j ¼ða1;...;a jÀ1;a jþ1;...;a mÞ>¼ÀQþjr j;a1¼1ÀX mi¼2a i:Then from the proof of Theorem 3.1,we can obtain that b X¼a1X1þa2X2þÁÁÁþa m X m is the corrected solution of X1;X2;...;X m of the CPIU model(2.6).Lemma3.3.Let A2R nÂn;P2R nÂn and Q2R nÂn be symmetric positive definite,and B2R nÂn is nonsingular.When C¼d Q with d>0a real constant,then the PIU Method2.1for the generalized saddle point problem(2.2)is convergent,provided that x sat-isfies0<x<2gmaxand s satisfies0<s<2dand s½2dþðl maxÀd g maxÞx <2ð2Àg max xÞ;ð3:3Þwhere g max is the largest eigenvalue of the matrix PÀ1A,and l max is the largest eigenvalue of the matrix J¼QÀ1B>PÀ1B.Proof.See Theorem2.2of[36].hTheorem3.2.If W2R nÂn and T2R nÂn are symmetric positive definite,then the PIU Method2.2for solving the block two-by-two systems of linear Eq.(2.1)is convergent,provided that s satisfies0<s<2and sð1þl maxÞ<2;ð3:4Þwhere l max is the largest eigenvalue of the matrix WÀ1T>WÀ1T.Proof.Let A¼C¼W;B¼ÀT;P¼Q¼A and x¼1,then we can obtain d¼1;PÀ1A¼I and J¼QÀ1B>PÀ1B¼WÀ1T>WÀ1T. Also from PÀ1A¼I we have g max¼1,then from Lemma3.3,we can get the result directly.hIn order to measure the effect of the CPIU correction process,we introduce the overall reduction coefficient a¼k rðXÞk2min16i6m k r i k2:ð3:5ÞFrom(2.5)we have06a<1.If a¼1,then the CPIU process(2.6)is failed.If06a<1,then the CPIU process is successful. And the smaller a is,the better of the effect of the CPIU progress is.In particular,if a¼0,then the CPIU process isfinished, i.e.,the corrected solution is the exact solution of Eq.(2.1).Denote the overall reduction coefficient of the k th correction progress as aðkÞ,thenaðkÞ¼k rðX ðkÞÞk2min16j6m k rðkÞj k 2;where rðkÞj ¼gÀDXðkÞjðj¼1;2;...;mÞand rðXðkÞÞ¼gÀDXðkÞ,with XðkÞiði¼1;2;...;mÞis the approximate solutions of k thCPIU progress and XðkÞis the corrected solution of XðkÞ1;XðkÞ2;...;XðkÞm.With the overall reduction coefficient of the k th correction progress aðkÞ,we can get the following result.Theorem3.3.If W2R nÂn and T2R nÂn are symmetric positive definite,then the CPIU method for solving the block two-by-two systems of linear Eq.(2.1)is convergent,provided that s satisfiesQ.-Q.Zheng,C.-F.Ma/Applied Mathematics and Computation256(2015)11–19150<s<2and sð1þl maxÞ<2;ð3:6Þwhere l max is the largest eigenvalue of the matrix WÀ1T>WÀ1T.Moreover,if aðkÞ<1is satisfied,then the CPIU method will con-verge faster than the PIU method.Proof.If0<s<2and sð1þl maxÞ<2,then from Theorem3.2and the CPIU method which we have presented in Section2 for solving the block two-by-two system of linear Eq.(2.1)is convergent.Moreover,if aðkÞ<1is satisfied,then the CPIU method will converge faster than the PIU method.This complete the proof.h4.Numerical experimentsIn this section,we perform some numerical examples to illustrate the theoretical results and show the effectiveness of the CPIU iteration method for solving the complex symmetric linear system(1.1)in terms of both iteration steps(denoted as IT) and computing time(in s,denoted as CPU),and the norm of the residual(denoted as‘‘RES’’)defined byRES¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffik pÀWyðkÞþTzðkÞk22þk qþTyðkÞþWzðkÞk22 q:In actual computations,the iteration schemes are started from the zero vector and terminated if the current iterations satisfy ERR610À6or the number of the prescribed iteration steps k¼500are exceeded,whereERR¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffik pÀWyðkÞþTzðkÞk22þk qþTyðkÞþWzðkÞk22 qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffik pÀWyð0ÞþTzð0Þk22þk qþTyð0ÞþWzð0Þk22 q:All experiments are performed in MATLAB(version7.4.0.336(R2010b))with machine precision10À16,and all experiments are implemented on a personal computer with2.20GHz central processing unit(Intel(R)Core(TM)i3–2310M),2.00G mem-ory and Win7operating system.The CPIU iteration method is compared with the preconditioned Uzawa(PU)method[39]and PMHSS[26]methods.For the tests reported in this section we used the optimal values of the parameter s(denoted by s opt)for the CPIU,PU and PMHSS iteration methods.The experimentally found optimal parameters s opt are the ones resulting in the least numbers of iterations for the three methods for each of the numerical examples and for each choice of the spatial mesh-sizes.Example4.1(See[10,25,26]).The system of linear Eq.(1.1)is of the formKþ3Àffiffiffi3ps I!þi Kþ3þffiffiffi3ps I!"#x¼b;ð4:1Þwhere s is the time step-size and K is thefive-point centered difference matrix approximating the negative Laplacian oper-ator L¼ÀD with homogeneous Dirichlet boundary conditions,on a uniform mesh in the unit square½0;1 ½0;1 with the mesh-size h¼1.The matrix K2R nÂn possesses the tensor-product form K¼I V lþV l I,with V l¼hÀ2tridiag ðÀ1;2;À1Þ2R lÂl.Hence,K is an nÂn block-tridiagonal matrix,with n¼l2.We takeW¼Kþ3Àffiffiffi3ps I;and T¼Kþ3þffiffiffi3ps Iand the right-hand side vector b with its j th entry½bjbeing given by½bj ¼ð1ÀiÞjsðjþ1Þ2;j¼1;2;...;n:In our tests,we take s¼h.Furthermore,we normalize coefficient matrix and right-hand side by multiplying both by h2.For more details,we refer to[10].With respect to different sizes of the coefficient matrix,we list IT,CPU and RES about the PU,PMHSS and CPIU(m¼8) methods in Table1for Example4.1.By comparing the results in Table1,we observe that the CPIU iteration method outper-forms the PU and PMHSS methods,as it requires much less time and iteration steps to achieve the stopping criterion.Moreover,we also take m¼2;3;4;5;6;7in this numerical experiment to illustrate the special property of the CPIU method.The results for different parameters m of the CPIU iteration method for Example4.1are presented in Table2.From the results of Table2we observe that the iteration steps of the CPIU iteration method become smaller when the parameter m becomes larger which means that the CPIU iteration method converges faster if the parameter m becomes larger.Moreover, the solution that our CPIU iteration method found is more accurate than the other two methods,because the norm of the residual(RES)is more smaller than the PU and PMHSS methods.So we can get a good approximate solutions by taking a proper parameter m in our actual calculation.That illustrates that CPIU iteration method is a very good method for solving the complex symmetric linear systems.16Q.-Q.Zheng,C.-F.Ma/Applied Mathematics and Computation256(2015)11–19Example 4.2(See [11,25,26]).The system of linear Eqs.(1.1)is of the form½ðÀx 2M þK Þþi ðx C V þC H Þ x ¼b ;ð4:2Þwhere M and K are the inertia and the stiffness matrices,C V and C H are the viscous and the hysteretic damping matrices,respectively,and x is the driving circular frequency.We take C H ¼l K with l a damping coefficient,M ¼I ;C V ¼10I ,and K the five-point centered difference matrix approximating the negative Laplacian operator with homogeneous Dirichletboundary conditions,on a uniform mesh in the unit square [0,1]Â[0,1]with the mesh-size h ¼1.The matrix K 2R n Ân pos-sesses the tensor-product form K ¼I B l þB l I ,with B l ¼h À2tridiag ðÀ1;2;À1Þ2R l Âl .Hence,K is an n Ân block-tridiagonalmatrix,with n ¼l 2.In addition,we set x ¼p ;l ¼0:02,and the right-hand side vector b to be b ¼ð1þi ÞA 1,with 1being thevector of all entries equal to 1.As before,we normalize the system by multiplying both sides through by h 2.In fact,this com-plex symmetric system of linear equation arises in direct frequency domain analysis of an n -degree-of-freedom (n -DOF)lin-ear system.For more details,we refer to [10,40].With respect to different sizes of the coefficient matrix,we list IT,CPU and RES about the PU,PMHSS and CPIU (m ¼8)methods in Table 3for Example 4.2.By comparing the results in Tables 2,we observe that the CPIU iteration method out-performs the PU and PMHSS methods,as it requires much less time and iteration steps to achieve the stopping criterion.Moreover,we also take m ¼2;3;4;5;6;7in this numerical experiment.The results for different parameters m of the CPIU iteration method for Example 4.2are presented in Table 4.As we can see from the results of Table 4,we can always get a good approximate solutions by taking a proper parameter m in our actual calculation.Example 4.3(See [25,26]).The system of linear Eq.(1.1)is of the form ðW þi T Þx ¼b ,withT ¼I V þV Iand W ¼10ðI V c þV c I Þþ9ðe 1e >l þe l e >1Þ I ;where V ¼tridiag ðÀ1;2;À1Þ2R l Âl ;V c ¼V Àe 1e >l Àe l e >12R l Âl ;e 1and e l are the first and the last unit vectors in R l ,respec-tively.We take the right-hand side vector b to be b ¼ð1þi ÞA 1,with 1being the vector of all entries equal to 1.Here T and W correspond to the five-point centered difference matrices approximat-ing the negative Laplacian operator with homogeneous Dirichlet boundary conditions and periodic boundary conditions,respectively,on a uniform mesh in theunit square ½0;1 ½0;1 with the mesh-size h ¼1.This problem is an artificially constructed one,but it is quite challenging for iterative solvers.Table 1IT,CPU and RES for PU,PMHSS and CPIU methods for Example 4.1.Method l8162432PUs opt0.1960.2160.2260.210IT 252384164CPU 0.0080.085 1.1677.485RES5.09e À8 3.94e-8 3.15e À8 2.30e À8PMHSSs opt1.091 1.356 1.350 1.120IT 21212121CPU 0.0090.104 1.245 3.099RES4.33e À8 2.02e À8 3.04e À8 3.20e À7CPIUs opt0.1960.2160.2260.210IT 2222CPU 0.0070.0790.056 2.771RES1.53e À133.29e À113.57e À101.29e À9Table 2Numerical results for different parameters m of CPIU method for Example 4.1.l IT CPU RES IT CPU RES IT CPU RES m ¼2m ¼3m ¼48190.0947.80e À870.0598.18e À840.042 1.50e À816230.126 3.84e À890.095 1.71e À850.087 3.85e À924240.875 2.94e À890.633 1.83e À860.606 1.92e À93231 4.007 1.82e À810 3.103 1.12e À86 2.9867.79e À9m ¼5m ¼6m ¼7830.030 1.63e À920.007 3.44e À920.021 1.97e À111630.079 2.68e À930.094 1.46e À1020.089 1.93e À92440.655 1.71e À930.6519.59e À1020.561 1.74e À93242.9526.34e À932.8693.36e À933.0343.28e À11Q.-Q.Zheng,C.-F.Ma /Applied Mathematics and Computation 256(2015)11–1917。