第六讲微分中值定理及导数的应用

合集下载

微分中值定理及其应用

微分中值定理及其应用

第六章 微分中值定理及其应用§1、拉格朗日定理和函数的单调性1、试讨论下列函数的指定区间内是否存在一点ξ,使()0f ξ'=:(1) 11sin ,0()0,0x x f x x x π⎧≤≤⎪=⎨⎪=⎩;(2) (),11f x x x =-≤≤.分析:验证()f x 是否满足罗尔罗尔中值定理的三个条件:(1)()f x 在闭区间[a,b]上连续;(2)()f x 在开区间(a,b)内可导;(3) ()()f a f b =解: (1)因为()f x 在10,π⎡⎤⎢⎥⎣⎦上连续,在1(0,)π内可导,且1(0)f f π⎛⎫= ⎪⎝⎭,所以由罗尔中值定理存在一点10,ξπ⎛⎫∈ ⎪⎝⎭,使得()0f ξ'=.(2)虽然()f x 在[]1,1-上连续(1)(1)f f -=,但()f x 在(1,1)-内0x =点不可导.可见,()f x 在[]1,1-上不满足罗尔中值定理的条件,因此未必存在一点(1,1)ξ∈-,使得()0f ξ'=事实上,由于1,0()1,x f x x >⎧'=⎨-<⎩, 所以不存在一点(1,1)ξ∈-,使得()0f ξ'=.2、证明1)方程330x x c -+=(这里c 为常数)在区间[]0,1内不可能有两个不同的实根; (2)方程0n x px q ++=(n 为正整数, p 、q 为实数)当n 为偶数时至多有两个实根;当n 为奇数时至多有三个实根.分析:作辅助函数()f x ,应用反证法和罗尔中值定理。

证明: (1)记3()3f x x x c =-+,用反证法.假设()0f x =在[0,1]内有两个不同的实根12,x x ,那么12()()f x f x =,又因为()f x 在[]0,1上连续,在(0,1)内可导,所以由罗尔中值定于是知:存在一点(0,1)ξ∈,使得()0f ξ'=.但2()3(1)f x x '=-只有两个实根1x =±,因此不存在(0,1)ξ∈,使得()0f ξ'=.于是推出矛盾.(2)设()n f x x px q =++,用反证法1)当2(1,2,)n k k ==为偶数时,假设()0f x =至少有三个实根123,,x x x ,不妨设123x x x <<,则由罗尔中值定理知:存在112223(,),(,)x x x x ξξ∈∈,使得2211122()20,()20k k f k p f k p ξξξξ-''=+==+=,但由于幂函数21k x -在(,)-∞+∞上严格递增,从而211()2k f x k p ξ-'=+也存在(,)-∞+∞上来格递增,而122x ξξ<<,所以12()()f f ξξ''<,于是推出矛盾.2) 当21(0,1,2,)n k k =+=为奇数时,若0k =,结论显然成立.若1,2,,k =假设()0f x =至少有四个实根,则由罗尔中值定理知,2()(21)0,k f x k x p '=++=即20021k px x k +⋅+=+ 至少有三个实根,这与1)的结论矛盾.3、证明定理6.2推论2.证明: 设()()()F x f x g x =-,则因为()F x 的区间I 上可导,且()()()0F x f x g x '''=-=,所以由定理6.2的推论1知: ()F x 为I 上的一个常量函数,即()()()F x f x g x c =-=(c 为某一定数), 从而,在I 上有()()f x g x c =+(c 为某一定数)4、证明 (1)若函数f 在[],a b 上可导,且(),f x m '≥则()()()f b f a m b a ≤+-; (2)若函数f 在[],a b 上可导,且(),f x M '≥则 ()()()f b f a M b a ≤≤-; (3) 对任意实数,都有1221s i n s i n x x x x -≤-. 分析:利用拉格朗日中值定理。

微分中值定理及其应用

微分中值定理及其应用

微分中值定理的应用4 微分中值定理的应用 4.1 证明有关等式在证明一些出现导数的等式时,进行适当的变形后,考虑应用微分中值定理加以证明.还有,就是我们在证明一些与中值定理有关的题目时,构造辅助函数是解决问题的关键.在证明题中巧妙选用和构造辅助函数,进行系统分析和阐述,从而证明相关结论.例 4.1.1[5]()f x 是定义在实数集R 上的函数,若对任意,x y R ∈,有2()()()f x f y M x y -≤-,其中M 是常数,则()f x 是常值函数.证明 对任意x R ∈,x 的改变量为x ∆,由条件有2()()()f x x f x M x +∆-≤∆,即()()f x x f x M x x+∆-≤∆∆,两边关于0x ∆→取极限得()()0limlim 0x x f x x f x M x x∆→∆→+∆-≤≤∆=∆所以()0f x '=.由中值定理()(0)()0f x f f x ξ'-==,即()(0)f x f =, 故在R 上()f x 是常值函数.思路总结 要想证明一个函数()f x 在某区间上恒为常数一般只需证明该函数的导函数()f x '在同一区间上恒为零即可.例4.1.2[2] 设()f x =112112321343x x x x x x ------,证明:存在(0,1)ξ∈,使得()0f ξ'=.证明 由于()f x 在[0,1]上连续,在(0,1)内可导,111(0)1220133f --=--=--,11(1)111121f =--0= .符合罗尔中值定理的条件,故存在ξ(0,1)∈,使()0f ξ'=例4.1.3 若()f x 在[0,1]上有三阶导数,且(0)(1)f f =0=,设3()()F x x f x =,试证在(0,1)内至少存在一个ξ,使()0F ξ'''=.证明 由题设可知()F x ,()F x ',()F x '',()F x '''在[0,1]上存在,又(0)(1)F F =,由罗尔中值定理,∃1ξ(0,1)∈使1()0F ξ'=,又23(0)[3()()]|0x F x f x x f x =''=+=可知()F x '在上1[0,]ξ满足罗尔中值定理,于是21(0,)ξξ∃∈,使得2()0F ξ''=,又23(0)[6()6()()]|0x F xf x x f x x f x ='''''=++=对()F x ''存在21(0,)(0,)(0,1)ξξξ∈⊂⊂,使 ()0F ξ'''=.例4.1.4[4](达布定理的推论) 若函数()f x 在[,]a b 内有有限导数,且()()0f a f b +-''< ,则至少存在(,)c a b ∈,使得()0f c '=.证明 ()()0f a f b +-''<,不妨设()0f a +'<,()0f b -'>,因为()lim [()()]/()0x af a f x f a x a ++→'=--<由极限的局部保号性可知,∃1δ0>,当1(,)x a a δ∈+时,()()0f x f a -<,即()()f x f a <.同样∃20δ>,当2(,)x b b δ∈-时,()()0f x f b -<,即()()f x f b <.取12m in{,,}2b a δδδ-=,于是在(,)a a δ+,(,)b b δ-中,分别有()()f x f a <和()()f x f b <.故()f a ,()f b 均不是()f x 在[,]a b 中的最小值,最小值一定是在内部的一点处取得,设为c 由费马定理可知,()0f c '=.小结 证明导函数方程()()0n f x =的根的存在性的证明方法有如下几种:①验证函数()f x 在[,]a b 上满足罗尔中值定理的三个条件,由此可直接证明()0f ξ'=.②在大多数情况下,要构造辅助函数()F x ,验证在[,]a b 上满足罗尔中值定理的三个条件,证明()0F ξ'=,进而达到证明问题的目的.③验证x ξ=为函数的极值点,应用费马定理达到证明问题的目的. 例 4.1.5 设()f x 在[,]a b 上连续,在(,)a b 内可导,0a b <<,试证:,(,)a b ξη∃∈使()()2a b f f ξηη+''=.证明 由于0a b <<,2(),()f x g x x =,()20g x x '=≠,(,)x a b ∈由于(),()f x g x 在[,]a b 上满足柯西中值定理 ,所以(,)a b η∃∈使22()()()2f f b f a b aηη'-=-()()()()()2f f b f a b a f b aηξη'-'⇒+==-,(,)a b ξ∈由上面二式可得,(,)a b ξη∃∈使得:()()2a b f f ξηη+''=.例4.1.6 设函数()f x 在[0,1]上连续,在(0,1)内可导,且(0)0,(1)1f f ==.试证:对任意给定的正数,a b 在(0,1)内不同的ξ,η使()()a b a bf f ξη+=+''.证明 由于,0a b >所以01a a b<<+.又由于()f x 在[0,1]上连续且(0)0,(1)1f f ==.由介值性定理,(0,1)τ∃∈使得()a f a bτ=+,()f x 在[0,],[,1]ττ上分别用拉格朗日中值定理有()(0)(),(0,)f f f ττξξτ'-=∈即()(),(0,)f f ττξξτ'=∈ (1)()(1)(),(,1)f f f ττηητ'-=-∈即1()(1)(),(,1)f f ττηητ'-=-∈于是由上面两式有1()1()()()f b f a b f ττηη--==''+()()()()f a f a b f ττξξ==''+将两式相加得1()()()()a b a b f a b f ξη=+''++即()()a b a bf f ξη+=+''.小结 大体上说,证明在某区间内存在,ξη满足某种等式的方法是:①用两次拉格朗日中值定理.②用一次拉格朗日中值定理,一次罗尔中值定理. ③两次柯西中值定理.④用一次拉格朗日中值定理,一次柯西中值定理. 4.2 证明不等式在证明不等式时,可以考虑从微分中值定理入手,找出切入点,灵活运用相关微分中值定理,进行系统的分析,从而得以巧妙解决. 例4.2.1[3] 设 ⑴(),()f x f x '在[,]a b 上连续;⑵()f x ''在(,)a b 内存在; ⑶()()0;f a f b ==⑷在(,)a b 内存在点c ,使得()0;f c >求证在(,)a b 内存在ξ,使()0f ξ''<.证明 由题设知存在1(,)x a b ∈,使()f x 在1x x =处取得最大值,且由⑷知1()0f x >,1x x =也是极大值点,所以1()0f x '=.由泰勒公式:211111()()()()()(),(,)2!f f a f x f x a x a x a x ξξ'''-=-+-∈.所以()0f ξ''<.例4.2.2 设0b a <≤,证明lna b a a b abb--≤≤.证明 显然等式当且仅当0a b =>时成立. 下证 当0b a <<时,有lna b a a b ab b--<< ①作辅助函数()ln f x x =,则()f x 在[,]b a 上满足拉格朗日中值定理,则(,)b a ξ∃∈使ln ln 1a b a bξ-=- ②由于0b aξ<<<,所以111a bξ<<③由②③有1ln ln 1a b aa bb-<<-,即lna b a a b ab b--<<.小结 一般证明方法有两种①利用泰勒定理把函数()f x 在特殊点展开,结论即可得证. ②利用拉格朗日中值定理证明不等式,其步骤为:第一步 根据待证不等式构造一个合适的函数()f x ,使不等式的一边是这个函数在区间[,]a b 上的增量()()f b f a -;第二步 验证()f x 在[,]a b 上满足拉格朗日中值定理的条件,并运用定理,使得等式的另一边转化为()()f b a ξ'-; 第三步 把()f ξ'适当放大或缩小.4.3 利用微分中值定理求极限及证明相关问题例4.3.1 设函数在0x x =点的某一邻域内可导,且其导数()f x '在0x 连续,而0nn x αβ<<当n →∞时00,n n x x αβ→→,求 ()()limn n n n nf f βαβα→∞--.解 设00{},{}()nn u x αβ⊂,则由拉格朗日中值定理有()()(),()n n n n n n n nf f f βαξαξββα-'=<<-. 已知0()nx n ξ→→∞,又()f x '在0x 连续,即00()lim ()x x f x f x →''=,所以0()()limlim ()lim ()()n n n n n x x n nf f f f x f x βαξβα→∞→∞→--'''===.例4.3.2 若()f x 在(,)a +∞内可导,且lim[()()]0x f x f x →∞'+=,求lim ()x f x →∞.分析 由式[()()][()]xxf x f x e f x e ''+=,引进辅助函数()(),()xxF x f x e g x e==,显然()0g x '≠.解 由lim[()()]0x f x f x →∞'+=,知0ε∀>,0X ∃>当x X >时()()f x f x ε'+<,令()()xF x f x e=,()xg x e =对x X>,在[,]X x 上利用柯西中值定理有()()()()()()F x F X F g x g X g ξξ'-='-,(,)X x ξ∈即()()[()()]xXxXf x e f X ef f ee eeξξξξ'-+=-,亦有[()()]()()1X xX xf x f X ef f eξξ---'=+-,或|()||()||()()|(1)X xX xf x f X ef f e ξξ--'≤+++由于lim0X xx e-→+∞=,所以1,x X ∃>当1x x >时有X xeε-<和1X xe-<,于是1x x ∀>,使|()||()|2f x f X εε≤+即lim ()x f x →∞=.小结方法1 选择适当的函数和区间利用拉格朗日中值定理并结合导函数的特点及极限的迫敛性求的最终结果.方法2 选择适当的函数和区间利用柯西中值定理结合具体题意求的最终结果.4.4 证明零点存在性在证明方程根的存在性时,出现满足中值定理的相关条件时,可以考虑运用微分中值定理加以解决.从某种意义来说,微分中值定理为证明方程根的存在性提供了一种方法.例4.4.1 设iaR ∈且满足120 (02)31n a a a a n ++++=+,证明方程12012...0nn a a x a x a x ++++=在(0,1)内至少有一个实根.证明 引进辅助函数23112() (2)31n nxxxF x ax a a a n +=+++++,显然(0)(1)0F F ==,()F x 又是多项式函数在[0,1]上连续,在(0,1)可导,()F x 满足罗尔中值定理的条件,故存在(0,1)ξ∈使()0F ξ'=而1212()...nnF x a a x a x a x '=++++故方程1212...0nna a x a x a x ++++=在(0,1)内至少有一个实根ξ.注 本题构造()F x 的依据是使()F x 得导数恰好是所证方程的左边. 例4.4.2 证明:方程510x x +-=有唯一正根. 证明 (存在性)令5()1f x x x =+-,显然()f x 是连续函数,取区间[0,]N 则()f x 在[0,]N 上连续,在(0,)N 内可导,且4()510f x x '=+>,由连续函数的零点定理,知存在0x (0,)N ∈使0()0f x =即方程有正根(0)N >.(唯一性)下面用反证法证明正根的唯一性,设处0x 外还有一个10x >不妨设01x x <使1()0f x =则()f x 在01[,]x x 上满足罗尔中值定理条件,于是存在01(,)x x ξ∈使()0f ξ'=这与上面的4()510f x x '=+>矛盾.所以,方程有唯一的正根.例 4.4.3 设(),(),()f x g x h x 在[,]a b 上连续,在(,)a b 内可导,证明(,)a b ξ∃∈使()()()()()()0()()()f ag ah a f b g b h b f g h ξξξ='''并由此说明拉格朗日中值定理和柯西中值定理都是它的特例.证明 作辅助函数()()()()()()()()()()f ag ah a F x f b g b h b f x g x h x =由于()()0F a F b ==,由罗尔中值定理知(,)a b ξ∃∈使()()()0()()()()()()()f ag ah a F f b g b h b f g h ξξξξ'==''',①若令()1h x =,则由①式有()()10()()()1()()f ag a F f b g b f g ξξξ'=='',②由②式可得()()()()()()f b f a fg b g a g ξξ'-='-此即柯西中值定理.若令()1h x =,()g x x =由①式有()10()()1()1f a aF f b bf ξξ'==',③由③可得()()()f b f a f b aξ-'=-此即为拉格朗日中值定理.此类型题的一般解题方法小结 证明根的存在性有以下两种方法(1)构造恰当的函数()F x ,使()()F x f x '=;对()F x 使用洛尔定理即可证得结论存在ξ,使得()0f ξ=;(2)对连续函数()f x 使用介值定理;证明根的唯一性一般用反证法,结合题意得出矛盾,进而结论得证.4.5 函数的单调性例4.5.1[6] 证明:若函数()f x 在[0,)a 可导,()f x '单调增加,且(0)0f =,则函数()f x x在(0,)a 也单调增加.证明 对任意12,(0,)x x a ∈,且12x x <,则()f x 在1[0,]x 与12[,]x x 均满足拉格朗日中值定理条件,于是分别存在11212(0,),(,)c x c x x ∈∈,使111()(0)()0f x f f c x -'=-, 21221()()()f x f x f c x x -'=-,由于()f x '单调增加,且(0)0f =,所以121121()()()f x f x f x x x x -≤-,从而1212()()f x f x x x ≤,即函数()f x x在(0,)a 也单调增加.4.6 导数的中值估计例4.6.1[7] 设()f x 在[,]a b 上二次可微, ()()0f a f b ''==,则至少存在一点(,)a b ξ∈,使得22()()()()f f b f a b a ξ''≥--.证明 因为函数()f x 在[,]2a b a +与[,]2a b b +上可导,所以由中值定理有11()()2(),(,),22a bf f a a b f c c a a b a +-+'=∈+- (1)22()()2(),(,),22a bf b f a b f c c b a b b +-+'=∈+-(2)(1)(2)+,并整理得212()()[()()]f c f c f b f a b a''+=--,(3)又()()0f a f b ''==,且()f x 在[,]a b 上二次可微,则分别在1(,)a c 与2(,)c b 内至少存在1ξ与2ξ,使11111()(),(,),f c f a c c aξξ'''=∈-(4)22222()(),(,),f c f c b c bξξ'''=∈-(5) (4)(5)+,并整理得211122()()()()()(),f c f c f c a fc b ξξ''''''+=-+-(6) 将(6)式代入(3)式得11222()()()()()()f b f a f c a f c b b aξξ''''-=-+--令12()max{(),()}f f f ξξξ''''''=,则11222()()()()f b f a f c a f c b b aξξ''''-≤-+--()f b aξ''≤-即22()()()()f f b f a b a ξ''≥--,(,)a b ξ∈.解题方法小结选择适当的区间分别利用拉格朗日中值定理并进行适当处理,再结合具体题目采用适当的手段最终证得所求结论. 4.7 证明函数在区间上的一致连续例4.7.1 设函数()f x 在(0,1]内连续且可导,有0lim ()0x x f x +→'=,证明:()f x 在(0,1]内一致连续.证明 由函数极限的局部有界性知,存在0M >和(0,1)c ∈,使(),(0,]x f x M x c '≤∈于是12,(0,]x xc ∀∈,且12x x ≠不妨设12xx <由柯西中值定理,12(,)x x ξ∃∈,有2121()()()2()1/(2)f x f x f f x x ξξξξ'-'==-即221212212x x x x x x x -=+-≤-故0,ε∀>2m in{(),}2c Mεδ∃=,当12,(0,]x x c ∈,且21x x δ-<时,由上面两式得到212121()()22f x f x M x x M x x ε-≤-≤-<于是知()f x 在(0,]c 上一致连续,由于()f x 在(0,1]上连续,所以()f x 在[,1]c 上一致连续, 由定理知()f x 在(0,1]内一致连续.证明函数在区间上的一致连续解题小结:利用一致连续的定义并结合有关一致连续的定理即可证得结论成立. 4.8 用来判定级数的敛散性例 4.8.1 设函数()f x 在点0x =的某邻域内有二阶连续导数,且()limx f x x→=,证11()n f n ∞=∑绝对收敛. 证明 由0()limx f x x→=且()f x 在0x =可导,知(0)0,(0)0f f '==故()f x 在点x =处的一阶泰勒公式为:2211()(0)(0)()()2!2!f x f f x f x f x ξξ'''''=++=,(0,)x ξ∈因()f x M''≤,故221()()2!2M f x f x xξ''=≤.取1x n=有211()()2M f n n≤ 由于211()2n Mn∞=∑收敛,由比较判别知11()n f n∞=∑绝对收敛. 定理[8] 已知()f x 为定义在[1,)+∞上的减函数,()F x 为定义在[1,)+∞上的连续函数,且()()0F x f x '=>,(1,)x ∈+∞. ⑴当极限l i m ()n F n →∞存在时,正项级数1()n f n ∞=∑收敛,设其和为a,则lim ()(1)lim ()(1)(1)n n F n F a F n F f →∞→∞-≤≤-+;⑵当极限lim ()n F n →∞=∞时,正项级数1()n f n ∞=∑发散.证明 下面只证定理的前半部分.因为函数()F x 在区间[,1]k k +上满足中值定理的条件(其中1k ≥),所以在(,1)k k +内至少存在ξ使得(1)()()F k F k f ξ+-=成立,又()f x 为减函数,故有(1)(1)()(),1,2,,f k F k F k f k k n +<+-<=⋅⋅⋅.将上述n 个不等式相加得(2)(3)...(1)(1)(1)(1)(2)...()f f f n F n F f f f n ++++<+-<+++. 令(1)(2)...()nS f f f n =+++, 则(1)(1)(1)(1)nnS f f n F n F S -++<+-<,(1)第10页 因极限lim ()n F n →∞存在,()f x 为减函数,从而数列{()}F n 有界,(1)(1)f n f +<,所以数列{}nS 单调递增且有上界,故极限lim nn S →∞存在,即级数1()n f n ∞=∑收敛.从而lim()0n f n →∞=,由(1)可得1lim ()(1)()lim ()(1)(1)n n n F n F f n F n F f ∞→∞→∞=-≤≤-+∑.例4.8.2 判定级数21nn n e∞=∑是否收敛?若收敛,请估计其和.解 令2()xf x x e -=,2()(22)xF x x x e -=-++,则()()F x f x '=,()(2)xf x x x e -'=-,故当2x ≥时,()0f x '≤,此时()f x 为减函数,又lim ()n F n →∞0=,由定理知级数21nn n e∞=∑收敛,且22lim ()(2)lim ()(2)(2)nn n n n F n F F n F f e∞→∞→∞=-≤≤-+∑,所以210(2)(1)0(2)(2)(1)nn n F f F f f e∞=-+≤≤-++∑即2212111014nn n eeeee∞----=+≤≤+∑.判定级数的敛散性的一般解题方法方法一 一般先运用泰勒定理并结合题意,再运用比较判别法即可得到所要证明的结论;方法二 先验证级数满足相关定理的条件,即可得到相应结论;。

微分中值定理及其应用

微分中值定理及其应用

第2章 微分和微分法·导数的简单应用90 §2-4 微分中值定理及其应用读者知道,常数(作为区间上的常值函数)的导数恒等于零,那么相反的结论也是正确的吗?又当函数)(x f 在区间),(b a 内单调增大时,由于0(0)()()0(0)x f x x f x x ≥∆>⎧+∆-⎨≤∆<⎩, 从而0)()(≥∆-∆+x x f x x f , 所以它的导数(若存在的话)()()()lim0∆→+∆-'=≥∆x f x x f x f x x那么反过来,若)(0)(b x a x f <<≥'时,函数)(x f 在区间),(b a 内一定是单调增大的吗?要回答这样的问题,就要用到微分学中最重要的一个定理,即微分中值定理(或称拉格朗日中值定理).1.微分中值定理 为了证明微分中值定理,通常都是先证明罗尔定理作为引理. 罗尔定理 若函数)(x f 在闭区间],[b a 上连续,在开区间),(b a 内有导数,且0)()(==b f a f ,则至少有一点),(b a c ∈,使()0f c '=(图2-14)(*).证 因为函数)(x f 在闭区间],[b a 上连续,所以它在区间],[b a 上有最大值M 和最小值m .若=m M ,则()0()≡≤≤f x a x b ,结论显然成立;若<m M ,则)(x f 在区间),(b a 内某点c 取到最大值或最小值(即不可能同时在两个端点上取到最大值和最小值).根据定理2-1,有()0f c '=.【注】下面的结论有时也称为罗尔定理: 设函数()f x 在闭区间[,]a b 上连续且()()f a f b =.若()f x 在开区间(,)a b 内有导数,则至少有一点(,)c a b ∈,使()0f c '=.(图2-15)只要作辅助函数()()()F x f x f a =-,则()()0F a F b ==.根据已证的罗尔定理,就会有点),(b a c ∈,使()()0F c f c ''==.微分中值定理 若函数)(x f 在闭区间],[b a 上连续且在开区间),(b a 内有导数,则至少有一点),(b a c ∈使)()()()(b c a ab a f b fc f <<--=' (2-6)(*)罗尔一生从未接受微积分.他是一个代数学家.他可能是在研究代数方程的根时得出类似的结论.后来人们习惯上称它为罗尔定理(他的结论不可能是这种形式).)图2-14)§2-4 微分中值定理及其应用 91特别,当)()(b f a f =时,它就是罗尔定理(见罗尔定理后的注).因此,微分中值定理是罗尔定理的推广.[分析] 如图2-16,曲线)(x f y =上必有一点(,())C c f c ,它在该点处切线的斜率等于弦AB 的斜率(切线与弦平行),即式(2-6).证 考虑函数(曲线与弦的差))]()()()([)()(a x ab a f b f a f x f x ---+-=δ(图2-17)显然,函数)(x δ在闭区间],[b a 上连续,在开区间),(b a 内有导数,且0)()(==b a δδ(在区间两端等于零).根据罗尔定理,必有点),(b a c ∈,使0)(='c δ,即)()()()(b c a ab a f b fc f <<--='【注】微分中值定理的上述证明方法的优点是直观, 而下面的证明方法容易推广(用于证明§2-9中的泰勒公式).设待定常数C 满足条件()()()f b f a C b a =+- (※)再作辅助函数()()[()()]()F t f t f a C t a a t b =-+-≤≤, 则函数()F t 在区间[,]a b 上满足罗尔定理的条件,因此有中值(,)c a b ∈, 使()0F c '=, 即()()0()F c f c C C f c '''=-=⇔=.把它代入上面的等式(※), 则得()()()()()f b f a f c b a a c b '=+-<< 或 ()()()()f b f a f c a c b b a-'=<<-等式(2-6)又称为拉格朗日中值公式或微分中值公式.它有很多变形,例如,若令)10(<<--=θθab a c则拉格朗日中值公式为()()[()]()(01)f b f a f a b a b a θθ'-=+--<< (2-7)它对b a >也成立.又如,若函数)(x f 在开区间),(b a 内有导数,则对任意),(b a x ∈和()(,)x x a b +∆∈,都有)10()()()(<<∆∆+'=-∆+θθx x x f x f x x f (2-8) 通常称它为有限增量公式(其中x ∆为有限增量....),以便区别于无穷小量形式(或极限形式)的公式图2-17图2-16第2章 微分和微分法·导数的简单应用92 ()()()()f x x f x f x x o x '+∆-=∆+∆其中x x d =∆为无穷小量.请读者注意两者的区别........... 微分中值定理和罗尔定理,只断定那个中值)(b c a c <<的存在性,而没有指出它在区间),(b a 内的具体位置.尽管如此,仍不失它在微积分中的重要性,因为在几乎所有的应用中,并不需要知道它在区间),(b a 内的具体位置.微分中值定理使我们能够根据函数的导数..................)(x f '所提供的信息,反过来去推断函数本身所具有的某些特性或变化状态............................... 推论 若函数)(x f 在区间),(b a 内处处有导数,且0)(≡'x f )(b x a <<,则()≡f x 常数()<<a x b证 设),(0b a x ∈为任意固定一点.根据拉格朗日中值公式,对于任意),(b a x ∈,都有)10(0))](([)()(0000<<=--+'=-θθx x x x x f x f x f即))(()(0b x a x f x f <<≡.对于定义在区间,a b 上的函数)(x f ,若另有定义在区间,a b 上的可微函数()F x 使d ()()d F x f x x = 或 ()()F x f x '=则称函数()F x 为)(x f 的一个原函数.函数)(x f 在区间,a b 上的原函数不是唯一的,若函数()G x 也是它在区间,a b 上的原函数,因为[]()()()()()()0F x G x F x G x f x f x '''-=-=-=根据上述推论,所以()()F x G x c -≡(常数)或()()F x G x c ≡+.因此,若函数()f x 在区间,a b 上有原函数,则它在该区间上就会有无穷多个原函数,而且每两个原函数之间只能相差一个常数.2.函数单调性的判别法 下面的结论实际上也是微分中值定理的推论.它指出了用导数判别函数单调性的方法.定理2-2 设函数)(x f 在闭区间],[b a 上连续且在开区间),(b a 内处处有导数. ⑴ 若()0()f x a x b '><<,则)(x f 在区间],[b a 上是增函数; ⑵ 若()0()f x a x b '<<<,则)(x f 在区间],[b a 上是减函数. (在有限个点上有0)(='x f 时,结论仍成立)证 设1x 和2x 为区间],[b a 上任意两点且21x x <,根据拉格朗日公式,则有2112121()()[()]()f x f x f x x x x x θ'-=+--若()0()f x a x b '><<,则21()()0f x f x ->,即)()(21x f x f <,因此()f x 是增函数;若()0()f x a x b '<<<,则21()()0f x f x -<,即12()()f x f x >,因此()f x 是减函数. 例18 设13)(23-+=x x x f ,则)2(363)(2+=+='x x x x x f 于是,方程0)(='x f 有根12x =-和20x =. 用这两个根把函数)(x f 的定义域),(+∞-∞分§2-4 微分中值定理及其应用 93成三个小区间 (图2-18):]0)([),0(],0)([)0,2(],0)([)2,(>'+∞<'->'--∞x f x f x f可见,函数)(x f 在区间)2,(--∞和),0(+∞内增大,而在区间)0,2(-内减小.3.证不等式的方法情形Ⅰ 设函数)(x f 和)(x g 在区间),[b a 上连续且在),(b a 内有导数.若满足条件:()i )()(a g a f = 和 ()ii ()()()f x g x a x b ''><<则))(()(b x a x g x f <<>.(见图2-19)情形Ⅱ 设函数)(x f 和)(x g 在区间],(b a 上连续且在),(b a 内有导数.若满足条件:()i )()(b g b f = 和 ()ii ()()()f x g x a x b ''><<则))(()(b x a x g x f <<<.(见图2-20)证 譬如证情形Ⅰ(图2-19).令)()()()(b x a x g x f x h <≤-=.根据条件()i ,则0)(=a h ;根据条件()ii ,()0()h x a x b '><<.因此,)(x h 是增函数.于是,)()()(0b x a x h a h <<<=所以有))(()(b x a x g x f <<>.例19 证明:⑴ 当0>x 时,x x <+)1ln(; ⑵ 当1->x 且0≠x 时,xx x +>+1)1ln(.因此,当0>x 时,有x x xx <+<+)1ln(1.证 ⑴令)1ln()(,)(x x g x x f +==,则0)0()0(==g f 且)0(11)(1)(>+='>='x xx g x f [属于情形Ⅰ]因此,有)0()1ln(>+>x x x .图2-19图2-20图2-18•2-·0x第2章 微分和微分法·导数的简单应用94 ⑵ 令)1ln()(,1)(x x g xx x f +=+=. 在区间]0,1(-上,0)0()0(==g f 且 )(11)1(1)(2x g xx x f '=+>+=' [属于情形Ⅱ]因此,有)1ln(1x xx +<+)01(<<-x .其次,在区间),0[+∞上,0)0()0(==g f 且 )(11)1(1)(2x g xx x f '=+<+=' [属于情形Ⅰ]因此,有)1ln(1x xx +<+)0(+∞<<x .习 题1.不求导数,而根据罗尔定理证明:函数22)(23+--=x xx x f在区间)1,1(-内必有点c ,使0)(='c f .2.证明:不论m 为何值,多项式m x x x P +-=3)(3在区间]1,1[-上不会有两个实根.3.设多项式nn x a x a x a a x P ++++= 2210)(的系数满足等式01321210=+++++n a aa a n 证明:多项式)(x P 在区间)1,0(内必有实根. 提示:考虑函数1210121)(+++++=n n x n a x a x a x f .4.设函数)(x f 在有限开区间),(b a 内有导数,且A x f x f bx ax ==-+→→)(lim )(lim (有限值)证明:在),(b a 内至少有一点c ,使0)(='c f .提示:将函数()f x 连续延拓到闭区间[,]a b 上.5.设函数()f x 在闭区间[,]a b 上连续,在开区间),(b a 内可微分,且()()0f a f b ==.证明:对任意实数λ,必存在点(,)a b ξ∈,使()()f f ξλξ'=提示:令()e()xF x f x λ-=.6.对于下列函数,在所示区间上应用拉格朗日中值公式,求出中值c :⑴)51()(2≤≤=x x x f ; ⑵)42(1)(≤≤=x xx f ;⑶)94()(≤≤=x x x f ; ⑷)e 1(ln )(≤≤=x x x f .答案:⑴3=c ;⑵22=c ;⑶4/25=c ;⑷1e -=c .7.证明:对于0≥x ,则有)(x θθ=使§2-4 微分中值定理及其应用 95θ+=-+x x x 211而且)(x θθ=满足01111;lim ;lim 4242x x θθθ+→+∞→≤≤==8.设函数)(x f 在闭区间],[b a 上连续且在开区间),(b a 内有导数.证明:必有点),(b a c ∈,使)()()()(c f c c f ab a af b bf '+=-- [ 提示:考虑函数)()(x xf x g =]9.设函数()f x 在点a 连续且有极限lim ()x af x →'.证明:必有导数()f a '且()lim ()x af a f x →''= [点a 的导数等于近旁导数的极限]同样,若函数()f x 在点a 左连续[右连续]且有左极限lim ()x af x -→'[右极限lim ()x af x +→'],则必有左导数()f a -'[右导数()f a +']且()lim ()x a f a f x --→''= ()lim ()x a f a f x ++→⎡⎤''=⎢⎥⎣⎦提示:()()()f a x f a f a x x θ'+∆-=+∆∆(01)θ<<.【注1】根据这个结论, 函数1,()0,x a f x x a=⎧=⎨≠⎩在含点a 的区间内没有原函数(用反证法证)。

微分中值定理及其应用

微分中值定理及其应用

微分中值定理及其应用微分中值定理是微积分中的一个重要定理,也是微分学中的基本定理之一。

该定理通常用于研究函数在某一点的变化情况,可以推导出许多与函数极值、单调性、零点和曲率等相关的性质。

微分中值定理的数学表述如下:若函数f(x)在[a, b]区间内满足以下条件:1、f(x)在[a, b]区间内可导;2、f(a)和f(b)存在;则在[a, b]内必有一个点c满足:f'(c) = [f(b) - f(a)] / (b - a)其中,f'(c)表示在点c处的导数。

这个定理的意义可以用图示表示为以下:此外,微分中值定理也可以用于求函数的 Taylor 展开式和曲率等问题。

下面我们来看一些微分中值定理的应用实例。

例1:证明一次函数f(x) = kx + b的图像线性。

我们知道,要证明一条直线呈现线性图像,需要证明其斜率k是恒定不变的。

因此,我们可以利用微分中值定理进行证明。

由于f(x)是一个一次函数,因此它在[a, b]区间内可导。

我们设该区间的两个端点为a和b,于是由微分中值定理可知,在[a, b]区间内必有一个点c满足:f'(c) = [f(b) - f(a)] / (b - a)根据f(x) = kx + b的定义,我们可以计算出其导数:f'(x) = k因此,有:即k是[b, a]区间上两个点间f(x)的变化率的平均值。

也就是说,k是线性函数在任何两个点间斜率的平均值,从而证明了一次函数的图像呈现线性。

例2:证明一段周期函数的平均值等于零。

假设f(x)是一个具有周期T的函数,即f(x+T) = f(x),我们需要证明其平均值为0,即:(1/T) * ∫f(x)dx = 0 (其中,积分区间为一个周期)我们首先对函数进行平移(或反演)操作,得到:由于g(x)的平均值为0,那么根据微分中值定理,我们可以得到:∃c∈[x, x+T],使得g'(c) = g(x+T) - g(x) / T = 0即:由此可得:因此,f(x)的周期平均值为f(c),而由于函数具有周期性,因此f(c)等于函数的平均值,即证明了我们的论点。

数学《微分中值定理及其应用》讲义

数学《微分中值定理及其应用》讲义

第六章微分中值定理及其应用1. 教学框架与内容教学目标①掌握罗尔中值定理和拉格朗日中值定理,会用导数判别函数的单调性.②了解柯西中值定理,掌握用洛必达法则求不定式极限.③理解带佩亚诺余项和带拉格朗日余项的泰勒公式、麦克劳林公式.④掌握函数的极值与最大(小)值的概念.⑤掌握函数的凸性与拐点的概念,应用函数的凸性证明不等式.⑥掌握函数图象的大致描绘.教学内容①罗尔中值定理;拉格朗日中值定理;用导数判别函数的单调性.②柯西中值定理;洛必达法则求各种不定式极限.③带佩亚诺余项和带拉格朗日余项的泰勒公式、麦克劳林公式及其在近似计算中的应用.④函数的极值的第一、二充分条件; 求闭区间上连续函数的最值及其应用.⑤函数的凸性与拐点的概念,应用函数的凸性证明不等式; 左、右导数的存在与连续的关系.⑥根据函数的性态表以及函数的单调区间、凸区间,大致描绘直角坐标系下显式函数图象.2. 重点和难点①中值定理证明中辅助函数的构造.②洛必达法则定理的证明.③带佩亚诺余项和带拉格朗日余项的泰勒公式、麦克劳林公式的证明.④函数的极值的第三充分条件.⑤运用詹森不等式证明或构造不等式.⑥参数形式的函数图象.3. 研究性学习选题● 如何运用中值定理对一些习题整理归类,思考中值定理的应用技巧(构造函数).● 利用导数证明不等式总结利用导数证明不等式的方法.● 不定式极限回顾总结求函数极限的方法.● 运用泰勒公式求极限,等价无穷小的代换问题.总结常见函数的泰勒公式,举例说明其在求不定式极限中的应用, 分析等价无穷小的代换问题.● 凸函数性质研究总结凸函数的性质.4. 综合性选题,写小论文★如何构造辅助函数.5. 评价方法◎课后作业,计30分.◎研究性学习布置的五个选题(选最好的两个计分)合计30分.◎小论文计10分.◎小测验计30分§1 中值定理和函数的单调性在这一章,我们主要由导函数f '的性质来推断函数f 本身的性质(主要研究f 的单调性,凸凹性,图像等) 而微分中值定理是我们研究的主要工具(微分中值定理主要包括Rolle 中值定理,Lagrange 中值定理,Cauchy 中值定理及Taylor 公式) 我们首先介绍Rolle 中值定理. 一、中值定理 1.Rolle 中值定理定理 (Rolle ) 设函数f 满足下列条件: 1) f 在闭区间[,]a b 上连续; 2) f 在开区间(,)a b 上可导; 3) ()()f a f b =,则在(,)a b 内至少存在一点ξ,使得()0f ξ'=.Rolle 中值定理的几何意义:在每一点都可导的连续曲线上,如果两端点的高度相同,则该曲线至少存在一条水平切线.注1 Rolle 定理的条件仅充分而不必要且缺一不可. (作图说明)例1 证明: 10x x ++=3只有一个实根且在(1,0)-中. 2.Lagrange 中值定理定理 (Lagrange ) 设函数f 满足下列条件:1) f 在闭区间[,]a b 上连续; 2) f 在开区间(,)a b 上可导, 则在(,)a b 内至少∃一点ξ,使得()()()f b f a f b aξ-'=-.几何意义 在满足定理条件的曲线()y f x =至少存在一点(())P f ξξ,, 使得 曲线在该点处的切线平行于曲线端点的连线.注 2 中值点(,)a b ξ∈对ξ的不同表示有不同形式的Lagrange 公式a) ()()()()f b f a f b a ζ'-=-, (,)a b ξ∈; b) ()()(())()f b f a f a b a b a θ'-+--=, 01θ<<; c) ()()()f a h f a f a h h θ'+-=+, 01θ<<.推论1 若函数f 在区间I 上可导,且()0f x '≡,x I ∈, 则f 在I 上恒为常数.推论 2 设f ,g 在区间I 上均可导, 且()()f x g x ''≡, x I ∈则存在常数c , 使得()()f x g x c =+,x I ∈.推论3 设f 在区间I 上可导,且()f x M '≤,则任何12x x I ∈,,1212()()f x f x M x x -≤-从而导函数有界的函数必一致连续 (Lipschitz 连续).推论4 (导数极限定理) 设f 在0x 点某邻域0()U x +内连续,在00()U x +内可导, 且极限00lim ()(0)x x f x f x +→''=+存在,则f 在0x 右可导,且 000()lim ()(0)x x f x f x f x ++→'''+==对左导数有类似的结论,事实上,我们有下面的定理.定理 设函数f 在0x 的某邻域0()U x 内连续,在0()U x ︒可导,若极限0lim ()x x f x →'存在,则0()f x '存在且00()lim ()x x f x f x →''=.注 3 由导数极限定理与导数具有介值性(Darboux 定理)知, 若函数f 在区间I 上可导,则在区间I 上的每一点,要么是()f x '的连续点,要么是'f 的第二间断点,即导函数不可能有第一类间断点.推论5 若f 在[,]a b 上可导,且f '单调,则f '必连续. (导数极限定理适用于求分段函数的导数) 例2 求分段函数()f x 的导数. [说明定理的作用]sin ,()ln(1),x x x f x x x ≤⎧+=⎨>+⎩20,0,注4 对推论5,当0(0)f x '+不存在时,未必有0()f x '不存在.例3 设sin , () 0,x x f x xx ⎧≠⎪=⎨⎪=⎩210,0,求(00)f '+,(0)f '.3. Cauchy 中值定理定理 (Cauchy ) 设函数f 和g 满足1) 在[,]a b 上连续; 2) 在(,)a b 上可导; 3) ()f x '和()g x '不同时为零; 4) ()()g a g b ≠,则存在(,)a b ξ∈,使得()()()()()()f f b f ag g b g a ξξ'-='- 几何意义证明 (先给一个错误证明)(如何构造函数?)一般的中值定理 设f ,g [,]a b R →连续且(,)a b 内可导,则存在(,)a b ξ∈, 使得[()()]()()[()()]f b f a g f g b g a ξξ''-=-.注5 上式不过是Cauchy 定理形式上的变形,但条件更简单,因而更具一般性. 例 4 考察2()f x x =,3()g x x =,[1,1]x ∈-相应的中值形式.二、中值定理的应用1. 证明中值点的存在--------关键构造函数例5 1) 设f 在闭区间[,]a b (0)a >上连续,(,)a b 内可导, 则存在(,)a b ξ∈, 使得()()ln()()bf b f a f aξξ'-=⋅⋅.2) 对函数()f x x =2确定()()()f x h f x h f x h θ'+-=⋅+中的θ, 1()2θ=.例6 设函数f 在闭区间[,]a b 上连续,(,)a b 上可导, 且()()0f a f b ==,试证明:存在(,)a b ξ∈使()()0f f ξξ' +=. (多种变形)2. 证明恒等式 (原理: 证明其导数为0,再任取一特殊值) 例7 证明: 对任何x R ∈,arctan arccot x x π+=2.例8 设f ,g 可导且()f x ≠0,又()()0()'()f xg x f x g x=',则存在常数c , 使得()()g x c f x =⋅. (若条件改作()()()()0f x g x f x g x ''+=,则结论应为?)例9 设函数f 对任何,x h R ∈,2()()f x h f x Mh +-≤,0M >为常数,则f 为常值函数.3. 证明不等式 (利用中值定理,估计中值或(0,1)θ∈) 例10 证明0h >时,2arctan 1hh h h <<+例11 (Bernoulli 不等式) 对1x >-有 1) (1)1p x px +≥+,若0p ≤或1p ≥; 2) (1)1p x px +≥+,若0p ≤≤1; 等号当且仅当0p =或1p =或0x =成立.4. 证明方程根的存在性 [注意利用连续函数介值性与导数中值定理的区别] 例12 证明: 方程sin cos 0x x x +⋅=在(0,)π内有实根.例13 证明: 方程32432+ax bx cx a b c ++=+在(0,1)内有实根.5. 研究函数的单调定理 设f 在区间I 上可导,则f 在I 上递增(减)⇔()()00f x x '≥≤,x I ∈.定理 设f 在(,)a b 上可导,则f 在(,)a b 内单调严格递增(减)⇔ 1) (,)x a b ∀∈,()()00f x '≥≤2) f 在(,)a b 的任何区间上()0f x '≡推论 6 若f 在区间I 上可导, ()()00f x '><,则f 在I 上严格递增(减)推论 7 若f 在区间I 上可导,则f 在f '的相邻零点之间必严格单调. (说明多项式函数必有有限个单调区间)例14 设()f x x x =-3,求f 的单调区间.例15 证明: 1) 1x x >+e ,()0x ≠;2) ()()22ln 1221x x x x x x -<+<-+. 0x >.例16 利用函数单调性,重证Bernoulli 不等式(利用()f x '')例17 证明: 0x >时,sin x x x >-33!.练习 1) x >12时,2ln(1)arctan 1x x +>-.2) tan (0)sin 2x x x x x π<<<.习 题1. 用中值定理证明sin sin x y x y -≤-,,x y R ∀∈.2. 若f 在[,]a b 上可导,且'()f x m ≥,则()()()f x f a m x a ≥+- [,]x a b ∀∈3. 证明:函数()f x 在1(0,)π上存在ξ,使得'()0f ξ=,其中11sin 0()0x x f x xx π⎧⋅<≤⎪=⎨⎪=⎩4. 求函数2()3f x x x =-的单调区间.5. 证明: 若函数g f ,在区间],[b a 上可导,且)()(),()(a g a f x g x f ='>', 则在],(b a 内有)()(x g x f >.6. 应用函数的单调性证明下列不等式:1) )3,0(,3tan 3π∈->x x x x ;2)2sin xx x π<< (0,)2x π∈.3) 0,)1(2)1ln(222>+-<+<-x x x x x x x . 7. 设f 在[,]a b 上二阶可导,且()()0f a f b ==,且存在点(,)c a b ∈使得()0f c >, 证明: 至少存在一点(,)a b ξ∈使得"()0f ξ<.8. 设f 在[,]a b 上n 阶可导,若f 在[,]a b 上有1n +个零点,求证:()n f 在[,]a b 上 至少有一个零点.9. 试问函数32)(,)(x x g x x f ==在区间]1,1[-上能否应用Cauchy 中值定理得到 相应的结论, 为什么?10. 设函数f 在点a 处具有连续的二阶导数, 证明: )()(2)()(lim2a f ha f h a f h a f h ''=--++→. 11. 设函数f 在点a 的某个领域具有二阶导数, 证明: 对充分小的h ,存在θ,10<<θ,使得2)()()(2)()(2h a f h a f h a f h a f h a f θθ-''++''=--++. 12. 若f 在[,]a b 上可微,则存在(,)a b ξ∈, 使得22'2[()()]()()f b f a b a f ξξ-=-.13. 设f 在[,]a b 上连续, (,)a b 上可导,且()()0f a f b ==,证明:对任何R λ∈, 存在c R ∈,使得 '()()f c f c λ=.14. 设f 在R 上可导,且x R ∀∈,'()1f x ≠, 证明: 方程()f x x =至多有一个根. 15. 设)(x p 为多项式, a 为0)(=x p 的r 重实根. 证明: a 必定是函数)(x p '的1-r 重实根.16. 设0,>b a .证明方程b ax x ++3=0不存在正根. 17. 证明:x x x x sin tan >,)2,0(π∈x .§2 未定型极限未定型(不定式)00 ∞∞(∞⋅∞∞-∞∞000,,0,1,等) 以导数为工具研究上述未定型极限,该方法称为'L Hospital 法则一、0型未定型极限定理 ('L Hospital ) 若函数f 和g 满足1) 0lim ()lim ()0x x x x f x g x →→==; 2) 在0x 的某去心邻域0()U x ︒都可导且()g x '≠0;3) 0()lim()x x f x A g x →'='()A R A ∈=±∞∞,,,则 00()()limlim ()()x x x x f x f x A g x g x →→'=='. 例1 1) 0sin lim x xx→ 2) 132lim 1x x x x x x →-+--+3323) lim (arctan )x x x π→+∞-2 4) 21cos lim cos tan x xx xπ→++5) 0lim x +→ 6) 012limln(1)xx e x x →-++122()7) 20ln(1sin 4)lim arcsin x x x x →++() 8) 02lim sin x x x e e x x x-→---注1 1) 在定理中,0x x →可改作0x x x x →→±∞→∞+,,等2) 若f g '',或f g '''',满足定理条件,可多次应用L 法则 3) 'L Hospital 条件仅是充分的,而不必要,即()lim()x x f x g x →''不存在0()lim ()x x f x g x →⇒不存在.例2 1) cos lim x x x x →∞+ 2) 0sinlim sin x x x x →⋅21二、∞∞型未定型极限 定理 ('L Hospital ) 若函数f 和g 满足 1) 0lim ()() (lim ())x x x x g x f x →→=+∞-∞未必为无穷;2) 若0x 的某右去心邻域0()U x ︒内f ,g 都可导且()g x '≠0;3) 0()lim()x x f x A g x →'='()A A =±∞∞可看作实数或,, 则 00()()limlim ()()x x x x f x f x A g x g x →→'=='. 例3 1) ln lim x xx→+∞ 2) lim x x x e →+∞3----------回顾阶的比较3) 0ln(sin )limln(sin )x ax bx → 4) 2tan lim tan 3x xx π→三、其他未定型极限 1. 0⋅∞型 000∞⋅∞==∞ 例4 1) 0lim ln x x x +→ 2) 01limcot ln 1x xx x→+⋅-.2.∞-∞型 110000∞-∞=-= 例5 1) 011lim()sin x x x →- 2) 11lim()-1ln x x x x→-.3. 00型 0ln 00ln 000ee e ⋅⋅∞===例6 1) 0lim xx x +→ 2) 1ln 0lim sin kxx x ++→.4.1∞型ln1ln101ee e ∞∞∞⋅∞⋅===例7 1) 111lim xx x -→ 2) ()21lim cos x x x →.5: 0∞型ln 0ln 0ee e ∞⋅∞⋅∞∞===.例8 1) ln lim ()xx x →+∞1 2) ln 0lim(cot )xx x +→1.练习 P 133 5.例9 设()()0x g x f x xx ≠⎧⎪=⎨⎪=⎩00, 已知(0)(0)0g g '==,(0)g ''=3,试求(0)f '.例10 证明2()x f x x e -=3为R 上的有界函数.习 题1. 求下列未定型极限1) 01lim sin x x e x →- 2) 612sin lim cos3x xx π→-3) 0ln(1)lim1cos x x x x →+-- 4) 0tan lim sin x x xx x→--5) 011lim()1x x x e →-- 6) 111lim xx x -→7) sin 0lim(tan )x x x → 8) 22011lim()sin x x x→- 2. 考虑下列极限应用'L Hospital 法则的可能性.1) lim x →+∞ 2) sin lim sin x x xx x →∞-+3. 计算1) 0ln(1)lim ln(1)x x x x x →-++ 2) 211000lim x x e x -→3) 30tan sin limx x x x →- 4) 201cot lim x x xx →⎛⎫- ⎪⎝⎭ 5) ln lim(ln )xx x x x →+∞ 6) 10(1)lim xx x e x→+-7) 20()lim x x x a x a x →+- 8) 10lim()x xx x e →+9) 1110lim (,,0)xx xnn x a a a a n →⎛⎫++> ⎪⎝⎭4. 教材1337P .5. 证明: 2()ln(1)/f x x x =+在(1,)+∞上有界.§3 Taylor 公式多项式函数是一种简单的函数,因而对任一函数,我们考察是否存在相应的多项式去逼近该函数. 在讨论这个问题之前,我们还是应先讨论一下多项式函数本身的性质.设012()...()n n n P x a a x a x a x a ++++≠2n=0, 易见0(0)n a P =,1(0)n a P '=,……,()(0)!n nn P a n =自然对于一般的函数f , 假设它在0x 处有直到n 阶的导数,由这些导数构成了一个新的多项式,记为:()00000()()()()()()!n n n f x T x f x f x x x x x n '= +- +...+-此时n T 与f 有何类的性质?00()()k k n T x f x =()() k n ≤≤(0)因而我们说()n T x 与f 在某种意义下“很接近” , 称()n T x 为f 在0x 处的Taylor多项式,而()n T x 的系数()0()!k f x k 称为Taylor 系数,记()()()n n R x f x T x =-称为余项. 我们将证明0()n n R x x x =-o(()),这实际就是带Peano 余项的Taylor 展式.一、带Peano 余项的Taylor 公式——误差的定性刻画定理 若函数f 在0x 处存在直至n 阶导数,则有0()()n n f x T x x x =+-o(())即()200000000()()()()()()()()!n n n f x f x f x f x f x x x x x x x x x n '''=+-+-++-+-...o(())2!.上述公式我们就称为f 在0x 处的Taylor 公式, ()()()n n R x f x T x =-称为Taylor 公式的余项,形如0n o x x -(())的余项称为带Peano 余项的Taylor 公式.注 1 00x =时,称()2(0)(0)()(0)(0)!n nn f f f x f f x x x x n '''=+++++...o()2!为带Peano 余项的Maclaurin 公式. 例1 验证下列Maclaurin 公式.1) 1!nxn x x e x o x n =+++++2...()2!2) ()11sin 1 (1)(1)!m m m x x x x o x m --=-+++-+-35223!5!2 3) 1cos 1...(1)(2)!m m m x x x x o x m +=-+++-+2422()2!4! 4) 1ln(1)1...(1)nn n x x x x o x n-+=-+++-+23()23 5)11n n x x x o x x=+++++-21...() 6) (1)(1)1(1)1!n n n x x x x o x n ααααααα--⋅⋅⋅-++=+++++2()...()2!1(1)(23)!!1(2)!!n nn n x x x o x n ---=+++++211!!...()24!! 二、带Lagrange 型余项的Taylor 公式——误差的定量刻画定理 若函数f 在[,]a b 上存在直到n 阶的连续导函数,在(,)a b 内存在1n +阶导函数,则对任何0[,]x x a b ∈,至少存在一点(,)a b ξ∈使得()20000000()()()()()()()()!n nf x f x f x f x f x x x x x x x n '''=+-+-++-...2!(1)10()()(1)!n n f x x n ξ+++-+称为Lagrange 型余项,故上式又称为带有Lagrange 型余项的Taylor 公式,而00x =时,()(1)21(0)(0)()()(0)(0)!(1)!n n n n f f f x f x f f x x x x n n θ++'''=++++++...2! (0,1)θ∈ 称为(带Lagrange 型余项的) Maclaurin 公式. 例 2 将例1中的公式改为带Lagrange 型余项的Maclaurin 公式1) 11!1n xxn x x e e x x n n θ+=++++++2...2!()!, 01θ<<,(,)x ∈-∞+∞ 2) 1121cos sin 1...(1)(1)(1)!(21)!m m m m x x x x x xm m θ--+=-+++-+--+3523!5!2 01θ<<,(,)x ∈-∞+∞3) 122cos cos 1...(1)(1)(2)!(22)!mm m m x x x x x x m m θ++=-+++-+-+2422!4! 01θ<<,(,)x ∈-∞+∞4) 111ln(1)1...(1)(1)(1)(1)nn n nn x x x x x n n x θ+-++=-+++-+-++2323 01θ<<,(,)x ∈-∞+∞5) 1111(1)n nn x x x x x x θ++=+++++--21... 01θ<<,(,)x ∈-∞+∞ 6) (1)(1)1(1)1!n n x x x x n ααααααα--⋅⋅⋅-++=++++2()...2!11(1)(1)(1)!n n n x x n ααααθ--+-⋅⋅⋅-+++()01θ<<,(,)x ∈-∞+∞三、函数的Taylor 公式(Maclaurin 公式) 1. 直接展开(例1,例2)例3 将tan y x =展到含5x 的具Peano 余项的Maclaurin 公式2. 间接展开 利用已知的展开式施行代数运算或变量代换,求得新的展开式. 例4 1) 分别求2sin x ,22x e -具Peano 余项的Maclaurin 展式;2) 求2cos x 的具Peano 余项的Maclaurin 展式; 3) 求35x+1在0x =处具Peano 余项的Maclaurin 展式;4) 分别求23x x --21在0x =处具Peano 余项的Maclaurin 展式;在1x =处具Peano 余项的Taylor 展式;5) 求2x x -21+3在1x =处具Peano 余项的Taylor 展式.四.Taylor 公式的应用举例 1. 利用Taylor 公式求极限例5 1) 2240cos lim x x x e x -→-.2) 02lim x x x a a x-→+-2.3) 21lim[ln(1)]x x x x →∞-+.2. 利用Taylor 公式求高阶导数值例6 设22()x f x e -=,求98(0)f ,99(0)f .3. 计算函数的近似值例7 证明: e 为无理数,并求e 精确到610-的近似值.4. 利用展式证明不等式例8 若函数f 在区间[,]a b 上恒有()0f x ''≥,则对(,)a b 内任何两点12,x x 都有1212()()()2f x f x x xf ++≥2例9 设函数f 在[,]a b 上二阶可导,()()0f a f b ''==,证明: 存在一点(,)a b ξ∈使得 2()()()()f f b f a b a ξ''≥--4.例10 当[0,2]x ∈时,() ()f x f x ''≤≤1,1, 证明: |'()| 2.f x ≤5. 中值点的存在性及其性质例11 设f 在[,]a b 上三阶可导,证明: 存在(,)a b ξ∈, 使得3()()()[()()]()()2f b f a b a f a f b b a f ξ'''''=+-+--1112例12 证明:若函数f 在点a 处二阶可导,且()f a ''≠0,则对Lagrange 公式()()()f a h f a f a h h θ'+-=+⋅ 01θ<<中的θ,有0lim h θ→=12.练习 证明:若0x >,则存在11()[,]42x θ∈, 使得=;2. 01lim ()4x x θ→=,1lim ()2x x θ→+∞=.习 题一、给出下列函数带Peano 型余项的Maclaurin 公式.1. ()f x =2. arctan x 到含5x 的项3.()tan f x x =到含5x 的项4. 2()sin f x x =5. ln(2)x +6. ln(1)x e x +到3x 的项 二、利用Taylor 公式求下列函数极限1. 30sin (1)lim x x e x x x x →-+2. 201cot lim x x x x →⎛⎫- ⎪⎝⎭ 3. 21lim[ln(1)]x x x x→∞-+4. 20lim sin x x e x x x →+-5. 74lim x x →+∞三、求下列函数在指定点处的带Lagrange 型余项的Taylor 公式 1. ln(1)x +在1x =处 2.2123x x --在2x =处 3.sin x 在4x π=处四、求下列极限1. 12ln(1)1lim(1)x x x --→- 2. 20ln(1)lim x x xe x x→-+ 3. 201sinlimsin x x x x→⋅ 4. sin lim sin x x x x x →+∞-+ 五、设函数f 在[0,]a 上具有二阶导数,且"()f x M ≤,f 在(0,)a 内取最大值,求证 ''(0)()f f a Ma +≤. 六、设f 在[,]a b 上二阶可导, ''()()0f a f b ==. 证明:'2[,]4sup ()()()()x a b f x f b f a b a ∈≥--.§4 函数的极值与最值一、极值判别1.可微极值的必要条件----Fermat 定理定理 (Fermat ) 若f 在0x 可导,且0x 为f 的极值点,则0()0f x '=. (可导的极值点必为驻点) . 可疑极值点: 驻点,不可导点. 2. 极值点的充分条件定理 (极值的第一充分条件) 设f 在0x 连续,在其去心邻域0(,)U x δ︒内可导 若 1) 当00(,)x x x δ∈-,()f x '≤0,而00(,)x x x δ∈+时,()f x '≥0; 2) 当00(,)x x x δ∈-,()f x '≥0,而00(,)x x x δ∈+时,()f x '≤0; [1),2)说明f '在0x 两侧异号时] 则f 在0x 处取得极值. 若f '在0x 两侧不异号时,则f 在0x 处不能取得极值. 注 在上述定理条件中未假设f 在0x 处可导.⎡⎤⎣⎦分析引入第二充分条件 当f 在0x 不仅可导而且是二阶可导时,我们有 定理 (极值的第二充分条件) 设f 在0x 的某邻域0U x δ(,)内一阶可导,在0x x = 处二阶可导,且00()0,()f x f x '''=≠0, 则 1) 若0()0f x ''<,则f 在0x 处取得极大值; 2) 若0()0f x ''>,则f 在0x 处取得极小值.[()]f x x =2利用去记忆例1 求()(2f x x =-的极值点与极值.例2 求()f x x x=+2432的极值与极值点.第二充分条件中0()0f x '=,0()f x ''≠0,若0()f x ''还等于0怎么办? 则我们可考察更高阶导数,一般地, 我们有定理 (极值的第三充分条件) 设f 在0x 的某邻域内存在直到1n -阶导数,而在0x 处存在n 阶导数(n 阶可导) 且0()0k f x =,1,2,...,1k n =-, ()0()0n f x ≠, 则1) 当n 为奇数时,f 在0x 不能取得极值;2) 当n 为偶数时,f 在0x 处取得极值且当()0()0n f x <时,取得极大值; 而()0()0n f x >时, 取得极小值. 例3 求3()(1)f x x x =-4的极值.注 上述三个定理均为极值的充分条件,而非必要.例4 1) ,,()0,0,x x e f x x -⎧≠⎪=⎨=⎪⎩210在0x =处取得极小值,而()(0)0n f = ()n N ∀∈.2) 2,sin ,(),,x x f x xx ⎧≠⋅⎪=⎨=⎪⎩41000在0x =处取得极小值,考察f 在0x =是否满足第一第二充分条件.二、函数的最值最值与极值的区别与联系,整体与局部,最值点(,)a b ∈,则最值点必为相应的极值点,所以可能的最值点为端点,极值点,进一步设f 在闭区间[,]a b 上连续,且仅有有限个可疑极值点12,(,)n x x x a b ∈,..., 则 {}1[,]max ()max (),(),(),...,()n x a b f x f a f b f x f x ∈=;{}1[,]min ()min (),(),(),...,()n x a b f x f a f b f x f x ∈=.注 1) 由最值性定理,闭区间上的连续函数必有最大最小值.2) 上述结论中可疑点为导数不存在及导数为0的点,而无需判断 它们是否真的是极值点.例5 ()2912f x x x x =-+32在闭区间15[,]42-上的最大值与最小值.函数最值的几种特例 1) 单调函数的最值;2) 如果函数f 在区间[,]a b 上连续,且仅有唯一的极值点. 则若0x 是f 的 极大(小) 值点,则0x 必是()f x 在[,]a b 上的最大(小) 值点. (反证) 3) 如果函数f 在区间[,]a b 上可导,且仅有一个驻点0x ,则结论与2)同. 4) 对某具有实际意义的函数,可常用实际判断确定函数的最大(小)值.例6 设,A B两村距输电线分别为1km,1.5km,CD长为3km,现两村合用一变压器供电,问变压器设在何处使输电线总长AE BE最短.例7 如图所示,剪去正方形四角同样大小的正方形后制成一个无盖盒子,问剪去小方块的边长为何值时使盒子的容积最大?例8 [无盖水箱的例子]习 题1. 求下列函数的极值:1) 212)(x x x f +=; 2) )1ln(21arctan )(2x x x f +-= 2. 求函数543551y x x x =-++在[1,2]-上的最值与极值.3. 求函数242(1)()1x x f x x x +=-+的极值.4. 设421sin ,0,()0,0,x x f x xx ⎧≠⎪=⎨⎪=⎩ 1) 证明:0=x 是极小值点;2) 说明f 的极小值0=x 处是否满足极值的第一充分条件或第二充分条件. 5. 设)(x f 在区间I 上连续,并且在I 上仅有唯一的极限值0x , 证明: 若0x 是f 的 极大(小)值点, 则0x 必是)(x f 在I 上的最大(小)值点.6.有一个无盖的圆柱形容器,当给定体积为V 时,要使容器的表面积为最小, 问底的半径与容器高的比例应该怎样?§5 函数的凸性, 拐点, Jensen 不等式一、凸性定义及判定 1. 凸函数定义(由直观引入,强调曲线弯曲方向与上升方向以2y x =,y =) 定义 设f 为定义在区间I 上的函数,若对I 上的任意两点,x x 12和任意实数(0,1)λ∈,总有22((1))()(1)()f x x f x f x λλλλ+-≤+-11,则称f 为I 上的凸函数. 反之若总有22((1))()(1)()f x x f x f x λλλλ+-≥+-11,则称f 为I 上的凹函数. 如果上两式中的不等式均为严格不等式,则相应的函数称为严格凸函数和严格凹函数. 易见f 为I 上的凸函数⇔f -为I 上的凹函数 几何意义(凸函数) 曲线上任两点的连线(线段) 总在区间的上方. (引出割线斜率) 2. 凸函数性质与判定引理 f 为区间I 上的凸函数⇔对I 上任意三点123x x x <<总有32212132()()()()f x f x f x f x x x x x --≤--注 同理可证 f 为I 上的凸函数⇔对区间I 上任意三点123x x x <<有313221213132()()()()()()f x f x f x f x f x f x x x x x x x ---≤≤---割线的极限 → 切线↓ ↓割线斜率递增 → 切线斜率应该为递增定理 设f 为区间I 上的可导函数,则下列命题等价 1) f 为I 上的凸函数(严格凸函数); 2) f '为I 上的增函数(严格增函数);3) 对I 上的任两点12,x x ,有21121()()()()f x f x f x x x '≥+-,12,x x I ∈,(21121()()()()f x f x f x x x '>+-, 12,x x I ∈, 12x x ≠) .注 由定理可见凸函数的几何意义1) 曲线上任两点的割线在曲线的上方(定义) ; 2) 切线的斜率(割线的斜率) 递增; 3) 曲线在其上任一点处切线的上方.推论 1) 设f 为I 上的二阶可导函数,则f 为凸函数⇔()0f x ''≥(x I ∈) ;2) ()0f x ''≥且在I 的任何子区间上f f ''≡⇔0在I 上严格凸; 3) ()0f x ''>则f 在I 上严格凸.注 f ''的符号确定函数f 的凸凹性,f '的符号确定单调性例1 讨论函数()f x =()arctan g x x =的凸凹性。

微分中值定理及其应用Word

微分中值定理及其应用Word
2)几何意义
, ,
例1 证明: .
即证
证明: Cauchy中值定理的条件,即证。
二 、不定式极限 ( 法则)
1、 型不定式极限
定理6.6若 满足: ;
证明:补充定义 ,
用 Cauchy中值定理得:
.
注:1)定理中 ,
仍为 型不定式,可再次用 法则
例2 求
例3 求
解:
例4 求
2、 型不定式集极限
定理:若 满足 ;
3、能利用泰勒公式计算某些不定式的极限。
4、掌握泰勒公式在近似计算上的应用。
重点:带有佩亚诺余项型的泰勒公式及带有拉格朗日型余项的泰勒公式。
难点:泰勒公式在近似计算中的应用。
多项式逼近函数为其实质
一、 带有 型余项的 公式
在 可微,则
用一次多项式 代替 ,误差为 一次项的高阶无穷小,对实际问题需要误差更高阶无穷小 为此,设
证明:若f为增函数, 当 时, ,由不等式性知 ,反之,若f在I上恒有 ,则对 且 对f在 上用Lagrange中值定理,当 ,s.t. 在I上增。
例4 设f(x)=x3-x, 试讨论函数f(x) 的单调区间.
定理6.4若f在 内可导,则f在 内严格单增(单减)的充要条件是(ⅰ)
(ⅱ) 在 内的任何子区间上
2、掌握罗比塔法则,并能熟练地运用罗比塔法则求各种类型的不定式极限。
【教学重点】:柯西中值定理与罗比塔法则。
【教学难点】:将其他类型不定式极限转化为 或 型的极限的技巧。
一 、 Cauchy
设 满足: 在 上都连续; ; ; ;
证明:作辅助函数 ,易知 上满足Roll定理的条件,故有结论。
注: 1)可否对 分别用Lagnange中值定理证之

微分中值定理与导数应用.ppt

拉格朗日中值公式又称有限增量公式. 拉格朗日中值定理又称有限增量定理.
定理 如果函数 f (x) 在区间 I 上的导数恒为零, 那末 f (x) 在区间 I 上是一个常数.
第一节 中值定理
例2 证明 arcsin x arccos x (1 x 1). 2
证 设 f ( x) arcsin x arccos x, x [1,1]
f (b) F (b)
f (a) F (a)
f '( F '(
). )
第一节 中值定理
证: 作辅助函数
( x) f ( x) f (a) f (b) f (a) [F ( x) F (a)]. F(b) F(a)
( x) 满足罗尔定理的条件, 则在(a, b)内至少存在一点,使得 () 0.
弦AB方程为 y f (a) f (b) f (a) ( x a).
ba 曲线 f ( x) 减去弦 AB,
所得曲线a, b两端点的函数值相等.
第一节 中值定理
作辅助函数
F ( x) f ( x) [ f (a) f (b) f (a) ( x a)]. ba
F( x) 满足罗尔定理的条件, 则在(a, b)内至少存在一点,使得 F () 0. 即 f () f (b) f (a) 0
y f (x)
2 b x
第一节 中值定理
第一节 中值定理
二、拉格朗日(Lagrange)中值定理
拉格朗日(Lagrange)中值定理 如果函数 f(x)满足
(1)在闭区间[a, b]上连续; (2)在开区间(a, b) 内可导; 那么在(a, b)内至少有一点(a b) ,使得
f (b) f (a) f ' ()(b a) .

第六章 微分中值定理及其应用 - 琼州学院质量工程


∞,)与(,+∞)分别严格单调。
11、讨论函数
(1)在x=0点是否可导? (2)是否存在x=0的一个邻域,使f在该邻域内单调? 12、设函数f在[a,b]上二阶可导,。证明存在一点,使得

13、设函数f在[0,a]上具有二阶导数,且,f在(0,a)内取得最 大值。试证
。 14、设f在[0,+∞)上可微,且。证明:在[0,+∞)上f(x) ≡0。 15、设f(x)满足,其中g(x)为任一函数。证明:若,则f在 [,]上恒等于0。 16、证明:定圆内接正n边形面积将随n的增加而增加。 17、证明:f为I上凸函数的充要条件是对任何,,函数
1、(1)凹区间,凸区间,拐点; (2)凹区间,凸区间; (3)凹区间,凸区间,拐点; (4)凹区间,凸区间,拐点; (5)凹区间,凸区间,拐点。 2、。
§6函数图象的讨论
(1)
x
-5
-2
1
+
0
— —— 0
+
——
— 0+
+
+
y
增凹 ↗
极大值
减凹 ↘
拐点
减凸 ↘
极小值
增凸 ↗
(2)
x
-3
0
+
0

+
0
+

6、设为n个正数,且
f(x)=。
证明:(1);
(2)。
7、求下列极限:
(1); (2);
(3)。
8、设h>0,函数f在内具有n+2阶连续导数,且,f在内的泰勒公式


证明:。
9、设k>0,试问k为何值时,方程arctanx – kx = 0存在正实根。

微分中值定理的应用

微分中值定理的应用微分中值定理是微积分中的一个重要定理,它通过与导数相关的理论和概念,揭示了函数在某些特定条件下的性质和变化规律。

本文将讨论微分中值定理在实际问题中的应用。

一、速度与加速度微分中值定理可以应用于描述物体的速度和加速度问题。

假设一个物体沿直线运动,由于速度是位移对时间的导数,所以可以利用微分中值定理计算某一时刻的速度。

同样地,加速度是速度对时间的导数,也可以通过微分中值定理计算某一时刻的加速度。

例如,某车沿直线行驶,已知车辆的位移函数为s(t),其中t表示时间。

根据微分中值定理,存在某个时刻t=a,使得车辆在该时刻的瞬时速度等于平均速度。

根据函数关系式,瞬时速度可以通过求导数得到,平均速度可以通过位移差除以时间差得到。

因此可以利用微分中值定理求解该时刻的速度。

二、斜率与切线微分中值定理还可以应用于描述函数图像的斜率和切线问题。

函数的导数表示了函数在某一点处的切线斜率。

根据微分中值定理,存在某一点c,使得函数曲线在c点的切线斜率等于曲线上任意两点间的平均斜率。

以函数y=f(x)为例,其中f(x)在区间[a,b]上连续且可导。

根据微分中值定理,存在某一点c∈(a,b),使得曲线上任意两点(x1, f(x1))和(x2,f(x2))的斜率等于函数在c点处的切线斜率。

这意味着,在求解函数曲线上某点的切线斜率时,可以寻找合适的区间进行计算,从而简化问题的求解。

三、最值与极值微分中值定理还可以应用于求解函数的最值和极值问题。

首先,函数的最大值和最小值出现在函数的驻点和端点处。

其次,驻点是函数导数等于零的点,也是函数极值点的候选点。

利用微分中值定理,可以将函数极值的求解转化为导数的求解。

假设函数f(x)在[a,b]上连续且可导,根据微分中值定理,存在某点c∈(a,b),使得函数在c点的导数等于函数在[a,b]上的平均变化率。

因此,可以通过求解导数等于零的方程,得到函数在该区间上的驻点。

进一步通过计算二阶导数和边界条件,可以判断这些驻点是极大值还是极小值。

《微分中值定理》课件

《微分中值定理》ppt课件
目录
• 微分中值定理的概述 • 罗尔定理 • 拉格朗日中值定理 • 柯西中值定理 • 泰勒中值定理
01
微分中值定理的概述
微分中值定理的定义
微分中值定理
若函数$f(x)$在闭区间$[a, b]$上连续,在开区间$(a, b)$上可导, 则存在$c in (a, b)$,使得$f'(c) = frac{f(b) - f(a)}{b - a}$。
罗尔定理
若函数$f(x)$在闭区间$[a, b]$上连续,在开区间$(a, b)$上可 导,且$f(a) = f(b)$,则存在$c in (a, b)$,使得$f'(c) = 0$。
拉格朗日中值定理
若函数$f(x)$在闭区间$[a, b]$上连续,在开区间$(a, b)$上可导, 则存在$c in (a, b)$,使得$f'(c) = frac{f(b) - f(a)}{b - a}$。
详细描述
如果函数f(x)在闭区间[a, b]上连续,开区间(a, b)上可导,那么在开区间(a, b)内 至少存在一点ξ,使得f'(ξ)=(f(b)-f(a))/(b-a)。
拉格朗日中值定理的证明
总结词
详细介绍了拉格朗日中值定理的证明 过程。
详细描述
通过构造辅助函数g(x)=f(x)-f(a)[f(b)-f(a)]*(x-a)/(b-a),利用罗尔定 理证明存在ξ属于(a, b),使得g'(ξ)=0 ,从而得到拉格朗日中值定理的结论 。
应用三
研究极值问题。柯西中值定理可以用于研究函数的极值问题,通过分 析导数的符号变化,可以判断函数在某点是否存在极值。
05
泰勒中值定理
泰勒中值定理的表述
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第六讲微分中值定理及导数的应用 6 . 1 微分中值定理及导数应用的基本概念 一、微分中值定理 1 .罗尔定理

( l )罗尔定理:函数 f满足: ① 在],[ba上连续; ② 在),(ba上可导; ③ )()(bfaf,

则ba, ,使得0'f

注: ① 定理的条件是充分而非必要的. ② 几何意义:在定理的条件下,在曲线上必存在一点,使过该点的切线平行于x轴.

例 6 . 1 设函数f具有 n 阶导数,若0xf有 n + 1 个相异的实根,则方程0xfn

至少有一个实根. 证明:不妨设 0xf的 n 十 l 个相异的实根为:....121nxxx.在每一个区间1,iixx 上,f满足罗尔定理条件,11,iiixx,使得nifi,...,2,101',即

0'xf至少有 n 个不同的实根11211...n.在每个区间111,ii上,xf'满足

罗尔定理条件,1112,iii,使得1,...,2,102''nifi,即0''xf至少有两个不同的实根:212221...n.类推下去,01xfn至少有两个不同的实根: 1211nn.在区间1211,nn上,xfn1满足罗尔定理,1211,nn

使得

0nf,即方程0xfn至少有一个实根.

( 2 )罗尔定理的推广:若xf在有限开区间ba,内可导,且0,0bfaf存在且相等,则ba, ,使0'f。

证明:记 Abfaf00,令baxAbaxxfxF,,,,,则F在ba,上满足罗尔定理条件,ba,,使得 0''fF。 2 .拉格朗日中值定理 函数 f满足: ( 1 )在ba,上连续; ( 2 )在ba,上可导,则ba,,使得abafbff

'

注: ① 定理的条件是充分而非必要的. ② 几何意义:在定理的条件下,在曲线上必存在一点,使过该点的切线平行于连接afa,, bfb,两点的弦.

③ 它是罗尔定理的推广,当 bfaf时,即为罗尔定理. ④ 其他表达形式: 10''ababafafbf

abfafbf

例 6 . 2 证明:若0x,则 ( 1 )



214

1,21

1xxxxx

( 2 )21lim,4

1

lim0xx

xx

证明:令0xxxf,在区间1,xx上,由拉格朗日中值定理,有 xfxfxf'1

显然是x的函数,记为 x,且10x,即

xxxx2

11

解出2141xxxx 而2121xxxx故2141x,于是有 412141

limlim00xxxx

xx

212141

limlimxxxx

xx

3 .柯西中值定理 函数gf,满足: ( l )在ba,上连续; ( 2 )在ba,上可导; ( 3 ) baxxg,,0',

则ba,使得

''

gfagbgafbf

注: ① 定理的条件是充分而非必要的. ② 几何意义:在定理的条件下,用参数方程xfvxgu,bax,表示的曲线上必存在一 点,使过该点的切线平行于连接( g ( a ) , f ( a ) ) , ( g ( b ) , f ( b ) )的弦. ③ 它是拉格朗日定理的推广,当xxg时,就是拉格朗日定理.

④ 若条件 ③ 改为0'xf,则只需将结论分子、分母互调即可. 例 6 . 3 设函数 f 在ba,上连续,在ba,内可导, a · b > 0 .证明ba, ,使

得 

'

1

ffbfbafaba

分析:要证结论右边是函数xxf的导数的分子,左边是aafbbf的基本形式,要消除多余的部分,只需令xxg1即可,注意到0ba,即原点不在区间ba,内.可用柯西中值定理。 证明:令:xxgxxfxF1, ,则因0ba,即原点不在区间ba,内,故 F , g 在ba,上连续,在ba,内可导,且baxxxg,,012',所以满足柯西中值定理条

件,于是ba,,使得 ''gFagbgaFbF代入整理即得要证的结论。 4 .泰勒中值定理 若xf在ba,上存在 n 阶连续导数,在ba,内 n + 1 阶导数存在,则对任意的x, bax,0,存在ba,,使得

1010000'0!1!...nnn

n

xxnfxxnxfxxxfxfxf

其中:介于x与0x之间. 注:当0n时,即为拉格朗日中值定理,所以泰勒中值定理是拉格朗日中值定理在高阶导数时的推广.这个公式又称为带有拉格朗日型余项的泰勒公式.

例 6 . 4 设 0h,函数在邻域 ha;内具有 n + 2 阶连续导数,且02afn, f 在 ha;内的泰勒公式为

10,!1!...11'nnnnhnhafhnafhafafhaf

证明:21lim0nh

分析: ① 由于中值haaha, ,所以的取值与 h 有关,即 h. ② 要证明结论,需写出h的表达式. 证明:由已知 10,!1!...11'nnnnhnhafhnafhafafhaf

因为 f 在 a 点带皮亚诺型余项的泰勒公式为

22211'!2!1!...nnnnnn

n

hohnafhnhafhnafhafafhaf

将上两式相减并化简得 hohnafafhafnnn

22

11

( * )

运用拉格朗日中值定理,有10,211hhafafhafnnn.代人( * )并同时消去 h 得 1222onafhafnn



( ** )

由已知xfn2在a点连续,afhafnnh220lim,注意到02afn,对式( ** )关令0h取极限得 21lim0nh

二、导数的应用 1 .利用导数判定函数的单调性及证明不等式

定理:若函数 f 在区间 I 上可导,则 f 在 I 单调增(减)00'xf.

例 6 . 5 试比较 e与e的大小. 证明:令2'ln1,0ln1xxxfxxxxf 则 ( l )当ex0时,0'xf , f 在e,0上严格增; ( 2 )当ex时,0'xf , f 在,e上严格减 所以 f 在ex取极大值,也是最大值:eef1

2 .利用一阶导数求极值 ( 1 )极值的必要条件(费马定理):若函数 f 在0x点可导,且在0x点取得极值,则00'xf注: ① 称使00'xf的点为函数 f 的稳定点(也叫驻点) . ② 驻点与极值点的关系: a .互不蕴含:例如 0,xxxf点是极小值点,但不是驻点;而 0,3xxxf点是驻点而非极值点. b .有关系:可导的极值点必是驻点(费马定理);凸(凹)函数的驻点必是极值点. ( 2 )极值的充分条件

极值的第一充分条件:若 f 在点0x连续,当00,xxx时,00'xf,当00,xxx时,00'xf,则 f 在0x

取极小(大)值.

极值的第二充分条件:若 f 在0x点二阶可导,0,00''0'xfxf,则0x必为极值点. 00''xf时,为极小值点;00''xf时,为极大值点.

极值的第三充分条件:若 f 在点0x有直到 n 阶导数,且 f0,1,...,2,1000xfnkxfnk

则 ① 当 n 为偶数时,0x必为极值点,00xfn时,为极小值点;00xfn时,为极大值占 ② 当 n 为奇数时,0x必不是极值点. 下面仅证明第三充分条件. 证明:将 f 在0x点展成带皮亚诺余项的泰勒公式,即

nnnnnxxoxxnxfxxnxfxxxfxfxf000100100'0!!1...

由已知,1,...,2,100nkxfk,所以有 nn

n

xxoxxnxfxfxf0000!

因为等式右边第二项为高阶无穷小量,符号由第一项而定,所以当 n 为偶数时,

00,0!xx

n

xxn。从而,当00xfn时,00xfxf,0xx.即

0xf为极小值;当 00xfn时,00xfxf,0xx,即0xf为极大值.当

n 为奇数时,nxx0(0xx)符号不定,因而0xfxf,0xx的符号不

相关文档
最新文档