高二上学期数学理科期中测试题
高二上学期期中考试数学(理)试卷Word版含答案

数学试卷(理科)一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知命题p :∀x ∈R ,x >sin x ,则p 的否定形式为( )A .∃x 0∈R ,x 0<sin x 0B .∀x ∈R ,x ≤sin xC .∀x ∈R ,x <sin xD .∃x 0∈R ,x 0≤sin x 0 2.不等式2654x x +<的解集为( ) A .41,,32⎛⎫⎛⎫-∞-+∞ ⎪ ⎪⎝⎭⎝⎭ B .41,32⎛⎫- ⎪⎝⎭C .14,,23⎛⎫⎛⎫-∞-+∞ ⎪ ⎪⎝⎭⎝⎭ D .14,23⎛⎫- ⎪⎝⎭3.离心率为32,长轴长为6的椭圆的标准方程是( ) A .22195x y += B .22195x y +=或22159x y += C .2213620x y += D .2213620x y +=或2212036x y += 4.已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧y +x -1≤0,y -3x -1≤0,y -x +1≥0,则z =2x +y 的最大值为( )A .4B .2C .1D .-45.在等比数列{}n a 中,若34567243a a a a a =,则279a a 的值为( )A.9B.6C.3D.26.已知两点1(1,0)F -、2(1,0)F ,且12F F 是1PF 与2PF 的等差中项,则动点P 的轨迹方程是( )A .221169x y +=B .2211612x y +=C .22143x y += D .22134x y += 7.已知数列}{n a 中,5,321==a a 且对于大于2的正整数,总有21---=n n n a a a ,则2009a 等于( ).A .-5B .-2C .2D .3. 8.下表给出一个“直角三角形数阵”: 14 12, 14 34, 38,316 ……满足每一列成等差数列,从第三行起,每一行的数成等比数列,且每一行的公比相等,记第i 行第j 列的数为a ij (i ≥j ,i ,j ∈N *),则83a 等于( ) A.18 B.14 C.12D .19.设0,0.a b >>1133a b a b+与的等比中项,则的最小值为( ) A . 8 B .14C . 1D . 4 {}(),1.1089等于值时,取得最小正有最大值,那么当项和且它的前是等差数列,若数列n S S n a aa n n n -< A .14B .15C .16D .1711.已知命题p :实数m 满足01≤-m ,命题q :函数xm y )49(-=是增函数。
高二年级(理科)数学上册期中试卷及答案

高二年级(理科)数学上册期中试卷及答案一、选择题(每小题5分,共60分。
下列每小题所给选项只有一项符合题意,请将正确答案的序号填涂在答题卡上)1.已知()A.B.C.D.2.若,则和是的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分有必要条件3.()A.B.C.D.4.在极坐标方程中,曲线C的方程是ρ=4sinθ,过点(4,π6)作曲线C的切线,则切线长为()A.4B.7C.22D.235.则大小关系是()ABCD6.如图,过点P作圆O的割线PBA与切线PE,E为切点,连接AE,BE,∠APE的平分线分别与AE、BE相交于C、D,若∠AEB=,则∠PCE等于()ABCD7.关于的不等式的解集为()A.(-1,1)B.C.D.(0,1)8..直线(t为参数)和圆交于A、B两点,则AB的中点坐标为()A.(3,-3)B.(-3,3)C.(3,-3)D.(3,-3)9.如图所示,AB是圆O的直径,直线MN切圆O于C,CD⊥AB,AM⊥MN,BN⊥MN,则下列结论中正确的个数是()①∠1=∠2=∠3②AM•CN=CM•BN③CM=CD=CN④△ACM∽△ABC∽△CBN.A.4B.3C.2D.110.已知非零向量满足:,若函数在上有极值,设向量的夹角为,则的取值范围为()A.[B.C.D.11.设△ABC的三边长分别为a、b、c,△ABC的面积为S,内切圆半径为r,则r=2Sa +b+c;类比这个结论可知:四面体S-ABC的四个面的面积分别为S1、S2、S3、S4,内切球的半径为R,四面体P-ABC的体积为V,则R=()A.VS1+S2+S3+S4B.2VS1+S2+S3+S4C.3VS1+S2+S3+S4D.4VS1+S2+S3+S412.若实数满足则的取值范围是()A.[-1,1]B.[C.[-1,D.二、填空题(每题5分,共20分。
把答案填在题中横线上)13.以的直角边为直径作圆,圆与斜边交于,过作圆的切线与交于,若,,则=_________14.已知曲线、的极坐标方程分别为,,则曲线上的点与曲线上的点的最远距离为15.设,若对任意的正实数,都存在以为三边长的三角形,则实数的取值范围是.16.在求某些函数的导数时,可以先在解析式两边取对数,再求导数,这比用一般方法求导数更为简单,如求的导数,可先在两边取对数,得,再在两边分别对x求导数,得即为,即导数为。
高二上学期期中考试理科数学试卷Word版含答案

上学期期中考试高二理科数学试卷第I卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的•* 21.设集合U^ { x | x ::: 5 , N }, M = { x| x —5x 6 = 0},则?U M=().A. {1,4}B. {1,5}C. {2,3}D. {3,4}2•某样开设A类选修课4门,B类选修课2门,一位同学从中选3门,若要求两类课程中各至少选一门,则不同的选法种数为().A. 12B. 16 C . 18 D . 203. 已知三条不重合的直线m,n,l和两个不重合的平面〉,:,有下列命题:① m//n, n :一侧m//:;②若I Irml且I _ m则I \:-③若I _ n, m _ n,则I //m④若x . W := m, n - , n _ m,贝V n I .工其中正确命题的个数为().A. 4 B . 3 C . 2 D . 14. 一个几何体的三视图如图所示,那么此几何体的侧面积(单位:cm)为().A . 48B . 64俯视图C. 80D . 1205. 如果函数f (x)=cos(wx •—)(w 0)的相邻两个零点之4间的距离为.,则,的值为()6A . 3B . 6C . 12 D. 246 .阅读如图所示的程序框图,输出的S值为().A . 0B . 1+ 2C . 1 + 了D. 2—14x - y T0 乞0,7.设实数x,y满足条件x-2y,8_0,,若目标函数ax by (a 0,b 0)的最大值x - 0, y - 0数的正整数的个数是f (x )在 R 是单调函数;②函数 f (x )的最小值是-2 ;③方程f (x ) = b 恒有两个不等实根;④对任意x <:0,x 2 :0且为=x 2,恒有f (' 立)f (x 2)成立.其中正确结论 2 2的个数为( ).A . 1B . 2C. 3D . 4[来源:]、填空题:(本大题共4小题,每小题5分。
2024-2025学年河北省邢台市高二上学期11月期中考试数学检测试题(含解析)

A.B.33m6.已知椭圆22 :94x yC+=A .()B .()2213y x -=12x ≥2213y x -=12x ≤-C .()D .()2244115y x -=12x ≤-2244115y x -=12x ≥8.已知,,若直线上存在点P ,使得,则t 的取()20A ,()100B ,420tx y -+=0PA PB ⋅=值范围为( )A .B .2135⎡⎤-⎢⎥⎣⎦,21,35⎡⎤-⎢⎥⎣⎦C .D .[)2135⎛⎤-∞-+∞ ⎥⎝⎦ ,,(]975⎡⎫-∞-+∞⎪⎢⎣⎭,,二、多选题(本大题共3小题)9.已知抛物线的焦点为,直线与在第一象限的交点为,2:4C y x =F ():31l y x =-CP 过点作的准线的垂线,垂足为,下列结论正确的是( )P C M A .直线过点B .直线的倾斜角为l F l π3C .D .是等边三角形π2FPM ∠=FPM 10.圆和圆的交点为,,点在圆221:40O x y y +-=222:6440O x y x y +--+=A B M 上,点在圆上,则( )1O N 2O A .直线的方程为AB 23x =B .线段的中垂线方程为AB 2y =C .253AB =D .点与点之间的距离的最大值为8M N 11.若平面,平面,平面,则称点F 为点E 在平面内的正投影,E ∉γF ∈γ⊥EF γγ记为如图,在直四棱柱中,,, 分().F t E γ=1111ABCD A B C D -2BC AD =AD AB ⊥,P N 别为,的中点,,记平面为,平面ABCD 1AA 1CC 13DQ QD =1 6.AB BC AA ===1A BC α为,,( )β1(01)AH AA λλ=<<()()12..a a K t t H K t t H ββ⎡⎤⎡⎤==⎣⎦⎣⎦A .若112A N A Q =- B .存在点H ,使得C .线段长度的最小值是1HK D .存在点H ,使得14.已知椭圆22122:x y C a b +=与在第一象限的交点为121,,F F C 2C .221211e e +=(1)证明.AB PC⊥(2)点在线段上,求直线D PC 19.已知为坐标原点,双曲线O 过点,与双曲线221x y +=2A (1)求的方程;C(2)过点且斜率不为0的直线与双曲线的左、右两支的交点分别为,()(),0M t t a ->l C Q ,连接并延长,交双曲线于点,记直线与直线的交点为,证明:P QO C R 1A R 2A P B 点在曲线上.B ()22221x y b t a a t a +=-+答案1.【正确答案】C令双曲线方程的右边为0,两侧开方,整理后就得到双曲线的渐近线方程.【详解】解:双曲线标准方程为,2219y x -=其渐近线方程是,229y x -=整理得.3y x =±故选:.C 2.【正确答案】D【详解】根据空间向量数量积的运算律可知:,,a b b a ⋅=⋅()a b c a c b c +⋅=⋅+⋅ 均成立,即A 、B 、C 正确;()()a b a b λλ⋅=⋅为与共线的向量,()a b c ⋅ c为与共线的向量,所以与不一定相等,故D 错误.()a b c ⋅ a()a b c ⋅ ()a b c ⋅ 故选:D3.【正确答案】A【详解】由题意可得解得,2222,22,,c a b a b c ⎧=⎪⎪⎪=⎨⎪=+⎪⎪⎩2a =所以椭圆的方程为.C 22142x y +=故选:A4.【正确答案】D【详解】因为共面,所以,,,a b c c xa yb =+ 即,(1,0,)(0,1,2)(1,1,1)(,m x y y x -=+-=-+,2)y x y +则解得.1,0,2,y x y x y m -=-⎧⎪+=⎨⎪+=⎩1,1,1x y m =-==-故选:D.5.【正确答案】C【详解】建立如图所示的平面直角坐标系,则点.设抛物线的方程为,()3,2A -2y ax =6.【正确答案】A【详解】若线段轴,则线段AB x ⊥的斜率存在,AB 设、,由题意可得()11,A x y ()22,B x y则,,()1006A ,,9302Q ⎛⎫ ⎪⎝⎭,,故,3302PQ ⎛⎫= ⎪⎝⎭ ,,(6BN =,,所以,即Q ,B 2BN PQ = 若111122A N A Q A P A B μ=-+.()112AF AC AD AC AC ⋅=+⋅故选:614.【正确答案】2【详解】由题意可知,PF,PF a m PF a=+=-15.【正确答案】(1)22(4)(2)5x y -+-=(2)250x y +-=【详解】(1)(方法一)直线的方程为,、的中点为,AB 2x =A B ()2,2所以线段的中垂线方程为,AB 2y =直线的方程为,、的中点为,AC 1y =A C ()4,1线段的中垂线方程为.AC 4x =直线与直线的交点为,即圆的圆心为.2y =4x =()4,2M ()4,2点与点的距离为,()4,2()2,1A ()()2242215-+-=即圆的半径为,所以圆的标准方程为.M 5M 22(4)(2)5x y -+-=(方法二)设圆的标准方程为,M ()()222x a y b r -+-=则,222222222(2)(1)(2)(3)(6)(1)a b r a b r a b r ⎧-+-=⎪-+-=⎨⎪-+-=⎩222222222425461312237a a b b r a a b b r a a b b r ⎧-+-+=⎪-+-+=⎨⎪-+-+=⎩解得2425a b r =⎧⎪=⎨⎪=⎩故圆的标准方程为M 22(4)(2)5x y -+-=(2)圆的圆心为,,直线的斜率为,M ()4,2M ()2,1A AM 1211422k -==-所以切线斜率为,所求切线方程为,2112k k =-=-()122y x -=--整理得.250x y +-=16.【正确答案】(1)证明见解析(2)42121【详解】(1)不妨设点在第一象限,则A 设直线.():63l x m y =-+联立得()263,12,x m y y x ⎧=-+⎨=⎩2y -由()2Δ(12)47236m m =-⨯-则(0,1,0),(1,0,0),(0,0,A C P -设,则()01CD CP λλ=≤≤.()1,1,3λλ=-设平面的法向量为PBC 则即0,0,CB n CP n ⎧⋅=⎪⎨⋅=⎪⎩ 3x y x -+=⎧⎪⎨-+⎪⎩(2)证明点在曲线B (222x b a t +设直线()(11:,,,l x my t P x y Q =-221x my ty x =-⎧⎪⎨-=(),()()222222222121316(1)4313131t t mt t y m m m ⎡⎤⎡⎤--⎛⎫⎢⎥⎢⎥+-= ⎪---⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦,()()()22222222(1)3612131361t y m t t m t ⎡⎤+---=-⎣⎦化简得.()2222313(1)y t m t +-=-将代入可得,()1x t m y -=-()221311y x t t +=-+即点在曲线上.B ()22221x y b t a a t a +=-+。
河南省信阳2024-2025学年高二上学期期中考试 数学含答案

河南省信阳2024-2025学年高二上期期中测试数学试题(答案在最后)命题人:一.选择题(共8小题,满分40分,每小题5分)1.已知直线l 经过点(1,0)P ,且方向向量(1,2)v =,则l 的方程为()A.220x y +-=B.220x y --=C.210x y +-= D.210x y --=2.已知()()2,2,11,1,a b k ==-- ,,且2a b ⊥ ,则k 的值为()A.5B.5- C.3D.43.“3m =-”是“直线()1:1210l m x y +++=与直线2:310l x my ++=平行”的()A.充要条件B.必要不充分条件C.充分不必要条件D.既不充分也不必要条件4.以点()1,5C --为圆心,并与x 轴相切的圆的方程是()A.22(1)(5)9x y +++=B.22(1)(5)16x y +++=C.22(1)(5)9x y -+-= D.22(1)(5)25x y +++=5.空间四边形OABC 中,,,OA a OB b OC c ===,点M 在OA 上,2,3OM OA = 点N 为BC 的中点,则MN = ()A.121232a b c -+B.211322a b c-++C.111222a b c +- D.221332a b c +-6.已知抛物线2:8C x y =的焦点为,F P 是抛物线C 上的一点,O 为坐标原点,OP =PF =()A.4B.6C.8D.107.已知椭圆222210x y a b a b+=>>的两个焦点分别为()()12,,,0330F F -,上的顶点为P ,且1260F PF ∠=︒,则此椭圆长轴为()A.B. C.6 D.128.已知双曲线C :()222210,0x y a b a b-=>>的左、右焦点分别为1F ,2F ,点Q 在C 的右支上,2QF 与C的一条渐近线平行,交C 的另一条渐近线于点P ,若1OQ PF ∥,则C 的离心率为()A.B.C.2D.二.多选题(共4小题,满分20分,每小题5分)9.已知向量()2,0,2a =r ,13,1,22b ⎛⎫=-- ⎪⎝⎭ ,()1,2,3c =-,则下列结论正确的是()A.a 与b垂直B.b 与c共线C.a 与c所成角为锐角D.a ,b ,c,可作为空间向量的一组基底10.下列说法正确的是()A.330y +-=的倾斜角为150︒B.若直线0ax by c ++=经过第三象限,则0ab >,0bc <C.点()1,2--在直线()()()212430x y λλλλ++-+-=∈R 上D.存在a 使得直线32x ay +=与直线20ax y +=垂直11.如图,已知正方体1111ABCD A B C D -的棱长为a ,则下列选项中正确的有()A.异面直线1B D 与1AA 的夹角的正弦值为63B.二面角1A BD A --C.四棱锥111A BB D D -的外接球体积为3π2a D.三棱锥1A BC D -与三棱锥111A B D D -体积相等12.在平面直角坐标系xOy 中,已知圆221:(1)2C x y -+=的动弦AB ,圆2228C :(x a )(y -+-=,则下列选项正确的是()A.当圆1C 和圆2C 存在公共点时,则实数a 的取值范围为[3,5]-B.1ABC 的面积最大值为1C.若原点O 始终在动弦AB 上,则OA OB ⋅不是定值D.若动点P 满足四边形OAPB 为矩形,则点P 的轨迹长度为三.填空题(共4小题,满分20分,每小题5分)13.两条平行直线1:3450l x y +-=与2:6850l x y +-=之间的距离是_______.14.已知双曲线()222:109x y C b b-=>的左、右焦点分别是1F 、2F ,离心率为43,P 为双曲线上一点,4OP =(O 为坐标原点),则12PF F 的面积为______.15.已知12,F F 是椭圆2222:1(0)x y C a b a b+=>>的两个焦点,P 为椭圆C 上的一点,且12PF PF ⊥ ,若12PF F 的面积为9,则b 的值为______.16.已知棱长为1的正四面体ABCD ,M 为BC 中点,N 为AD 中点,则BN DM ⋅=_______四.解答题(共6小题,满分70分)17.已知等腰ABC V 的一个顶点C 在直线l :240x y -+=上,底边AB 的两端点坐标分别为()1,3A -,()2,0B .(1)求边AB 上的高CH 所在直线方程;(2)求点C 到直线AB 的距离.18.已知圆C 的方程为:()()22314x y -++=.(1)若直线:0l x y a -+=与圆C 相交于A 、B 两点,且AB =,求实数a 的值;(2)过点()1,2M 作圆C 的切线,求切线方程.19.已知椭圆M :22221(3x y a a a +=>-倍.(1)求M 的方程;(2)若倾斜角为π4的直线l 与M 交于A ,B 两点,线段AB 的中点坐标为1,2m ⎛⎫⎪⎝⎭,求m .20.如图,已知PA ⊥平面ABCD ,底面ABCD 为正方形,2PA AD AB ===,M ,N 分别为AB ,PC 的中点.(1)求证:MN ⊥平面PCD ;(2)求PD 与平面PMC 所成角的正弦值.21.设抛物线C :22y px =(0p >)的焦点为F ,点()2,P n 是抛物线C 上位于第一象限的一点,且4=PF .(1)求抛物线C 的方程;(2)如图,过点P 作两条直线,分别与抛物线C 交于异于P 的M ,N 两点,若直线PM ,PN 的斜率存在,且斜率之和为0,求证:直线MN 的斜率为定值.22.已知四棱柱1111ABCD A B C D -中,底面ABCD 为梯形,1//,AB CD A A ⊥平面,ABCD AD AB ⊥,其中12,1AB AA AD DC ====.N 是11B C 的中点,M 是1DD 的中点.(1)求证1//D N 平面1CB M ;(2)求平面1CB M 与平面11BB CC 的夹角余弦值;(3)求点B 到平面1CB M 的距离.河南省信阳2024-2025学年高二上期期中测试数学试题命题人:一.选择题(共8小题,满分40分,每小题5分)1.已知直线l 经过点(1,0)P ,且方向向量(1,2)v =,则l 的方程为()A.220x y +-=B.220x y --=C.210x y +-= D.210x y --=【答案】B 【解析】【分析】由直线的方向向量求出斜率,再由点斜式得到直线方程即可;【详解】因为直线的方向向量(1,2)v =,所以直线的斜率为2,又直线l 经过点(1,0)P ,所以直线方程为()021y x -=-,即220x y --=,故选:B.2.已知()()2,2,11,1,a b k ==-- ,,且2a b ⊥ ,则k 的值为()A.5B.5- C.3D.4【答案】D 【解析】【分析】由题意可得20⋅=a b ,代入坐标计算可得答案.【详解】由题意可得()22,2,2b k =-- ,则24420a b k ⋅=--+= ,解之可得4k =.故选:D .3.“3m =-”是“直线()1:1210l m x y +++=与直线2:310l x my ++=平行”的()A.充要条件B.必要不充分条件C.充分不必要条件D.既不充分也不必要条件【答案】A 【解析】【分析】根据直线平行的条件,判断“3m =-”和“直线()1:1210l m x y +++=与直线2:310l x my ++=平行”之间的逻辑关系,即可得答案.【详解】当3m =-时,直线11:02l x y --=与21:03l x y -+=平行;当直线()1:1210l m x y +++=与直线2:310l x my ++=平行时,有()1230m m +-⨯=且1210m ⨯-⋅≠,解得3m =-,故“3m =-”是“直线()1:1210l m x y +++=与直线2:310l x my ++=平行”的充要条件.故选:A.4.以点()1,5C --为圆心,并与x 轴相切的圆的方程是()A.22(1)(5)9x y +++=B.22(1)(5)16x y +++=C.22(1)(5)9x y -+-=D.22(1)(5)25x y +++=【答案】D 【解析】【分析】由题意确定圆的半径,即可求解.【详解】解:由题意,圆心坐标为点()1,5C --,半径为5,则圆的方程为22(1)(5)25x y +++=.故选:D .5.空间四边形OABC 中,,,OA a OB b OC c ===,点M 在OA 上,2,3OM OA = 点N 为BC 的中点,则MN = ()A.121232a b c -+B.211322a b c-++C.111222a b c +- D.221332a b c +- 【答案】B 【解析】【分析】由向量的三角形法则和平行四边形法则,利用基底表示向量.【详解】点N 为BC 的中点,则有()12ON OB OC =+,所以()1221123322MN ON OM OB OC OA a b c =-=+-=-++ .故选:B.6.已知抛物线2:8C x y =的焦点为,F P 是抛物线C 上的一点,O 为坐标原点,43OP =PF =()A.4B.6C.8D.10【答案】B 【解析】【分析】求出抛物线焦点和准线方程,设()(),0P m n m ≥,结合3OP =4n =,由焦半径公式得到答案.【详解】抛物线2:8C x y =的焦点为()0,2F ,准线方程为2y =-,设()(),0P m n m ≥,则2228,3,m n m n ⎧=⎪+=,解得4n =或12n =-(舍去),则26PF n =+=.故选:B .7.已知椭圆222210x y a b a b+=>>的两个焦点分别为()()12,,,0330F F -,上的顶点为P ,且1260F PF ∠=︒,则此椭圆长轴为()A.3B.23C.6D.12【答案】D 【解析】【分析】根据焦点坐标得到c ,再由1260F PF ∠=得到a ,c 的关系求解.【详解】因为椭圆222210x y a b a b+=>>的两个焦点分别为()()123,0,3,0F F -,则3c =,又上顶点为P ,且1260F PF ∠=,所以1sin 302c a =︒=,所以6a =,故长轴长为12.故选:D8.已知双曲线C :()222210,0x y a b a b-=>>的左、右焦点分别为1F ,2F ,点Q 在C 的右支上,2QF 与C的一条渐近线平行,交C 的另一条渐近线于点P ,若1OQ PF ∥,则C 的离心率为()A.B.C.2D.【答案】A 【解析】【分析】设出直线2PF 的方程,与渐近线的方程联立,求出P 的坐标,由O 为12F F 的中点,1OQ PF ∥,得Q 为2PF 的中点,求出Q 的坐标,代入双曲线的方程求解即可.【详解】令()2,0F c ,由对称性,不妨设直线2PF 的方程为()by x c a=-,由()b y x c a b y x a ⎧=-⎪⎪⎨⎪=-⎪⎩,解得2x c =,2bc y a =-,即点P 的坐标为,22c bc a ⎛⎫- ⎪⎝⎭,由O 为12F F 的中点,1OQ PF ∥,得Q 为2PF 的中点,则点Q 的坐标为3,44c bc a ⎛⎫-⎪⎝⎭,代入双曲线的方程,有222222911616c b c a a b -=,即222c a =,222c a=,解得e =,所以双曲线C.故选:A二.多选题(共4小题,满分20分,每小题5分)9.已知向量()2,0,2a =r ,13,1,22b ⎛⎫=-- ⎪⎝⎭,()1,2,3c =- ,则下列结论正确的是()A.a 与b垂直B.b 与c共线C.a 与c所成角为锐角D.a ,b ,c,可作为空间向量的一组基底【答案】BC 【解析】【分析】对A :计算出a b ⋅ 即可得;对B :由向量共线定理计算即可得;对C :计算a c ⋅ 并判断a 与c是否共线即可得;对D :借助空间向量基本定理即可得.【详解】对A :132********a b ⎛⎫⎛⎫⋅=⨯-+⨯+⨯-=--=- ⎪ ⎝⎭⎝⎭r r ,故a 与b 不垂直,故A 错误;对B :由13,1,22b ⎛⎫=-- ⎪⎝⎭ 、()1,2,3c =-,有12b c = ,故b 与c 共线,故B 正确;对C :()21022380a c ⋅=⨯+⨯-+⨯=> ,且a 与c不共线,故a 与c所成角为锐角,故C 正确;对D :由b 与c 共线,故a ,b ,c不可作为空间向量的一组基底,故D 错误.故选:BC .10.下列说法正确的是()A.330y +-=的倾斜角为150︒B.若直线0ax by c ++=经过第三象限,则0ab >,0bc <C.点()1,2--在直线()()()212430x y λλλλ++-+-=∈R 上D.存在a 使得直线32x ay +=与直线20ax y +=垂直【答案】ACD 【解析】【分析】求出直线的斜率,从而得到倾斜角,即可判断A ;利用特殊值判断B ;将点的坐标代入方程即可判断C ;根据两直线垂直求出参数的值,即可判断D.【详解】对于A:直线330y +-=的斜率33k =-,所以该直线的倾斜角为150︒,故A 正确;对于B :当0a =,0bc >时,直线cy b=-经过第三象限,故B 错误;对于C :将()1,2--代入方程,则()2212430y λλ----+-=,即点()1,2--在直线上,故C 正确;对于D :若两直线垂直,则320a a +=,解得0a =,故D 正确.故选:ACD.11.如图,已知正方体1111ABCD A B C D -的棱长为a ,则下列选项中正确的有()A.异面直线1B D 与1AA 的夹角的正弦值为63B.二面角1A BD A --C.四棱锥111A BB D D -的外接球体积为3π2a D.三棱锥1A BC D -与三棱锥111A B D D -体积相等【答案】ACD【解析】【分析】对于选项A :根据异面直线的夹角分析求解;对于B :分析可知1AOA ∠为二面角1A BD A --的平面角,运算求解即可;对于C :四棱锥111A BB D D -的外接球即为正方体的外接球,求正方体的外接球即可;对于D :根据锥体的体积公式分析判断即可.【详解】对于A :因为11//AA BB ,在1Rt B BD 中,1BB D ∠就是异面直线所成的角,且1,BD B D ==,则1sin3BB D ∠==,故A 正确;对于B :连接AC 交BD 于点O ,连接1A O ,因为1AA ⊥平面ABCD ,BD ⊂平面ABCD ,则1AA ⊥BD ,又因为BD ⊥AO ,1AA AO A ⋂=,1,AA AO ⊂平面1AOA ,可得BD ⊥平面1AOA ,且1AO ⊂平面1AOA ,则BD ⊥1A O ,可知1AOA ∠为二面角1A BD A --的平面角,在1Rt A AO △中,1tan 222A OA a∠==B 错误;对于C ,显然四棱锥111A BB D D -的外接球即为正方体的外接球,因为正方体外接球的半径32R a =,所以正方体的外接球体积为3343ππ32V R a ==,故C 正确;对于D ,因为111111A B D D D A B D V V --=,三棱锥1A ABD -的高1AA 与三棱锥111D A B D -的高1DD 相等,底面积111ABD A B D S S =△△,故三棱锥1A ABD -与三棱锥111A B D D -体积相等,故D 正确.故选:ACD .12.在平面直角坐标系xOy 中,已知圆221:(1)2C x y -+=的动弦AB ,圆22228C :(x a )(y -+-=,则下列选项正确的是()A.当圆1C 和圆2C 存在公共点时,则实数a 的取值范围为[3,5]-B.1ABC 的面积最大值为1C.若原点O 始终在动弦AB 上,则OA OB ⋅不是定值D.若动点P 满足四边形OAPB 为矩形,则点P的轨迹长度为【答案】ABD【解析】【分析】根据两圆位置关系列不等式求解实数a 的范围判断A ,根据三角形面积结合正弦函数可求出面积最大值判断B ,分类讨论,设直线方程,利用韦达定理结合数量积数量积坐标运算求解判断C ,先根据矩形性质结合垂径定理得到点P 的轨迹,然后利用圆的周长公式求解判断D .【详解】对于A ,圆221:(1)2C x y -+=的圆心为1,0圆2228C :(x a )(y -+-=的圆心为(a,半径为当圆1C 和圆2C存在公共点时,12C C ≤≤2(1)a ≤-+≤,解得35a -≤≤,所以实数a 的取值范围为[3,5]-,正确;对于B ,1ABC的面积为1111sin sin 12ABC S AC B AC B =∠=∠≤ ,当1π2AC B ∠=时,1ABC 的面积有最大值为1,正确;对于C ,当弦AB 垂直x 轴时,()()0,1,0,1A B -,所以()0111OA OB ⋅=+⨯-=- ,当弦AB 不垂直x 轴时,设弦AB 所在直线为y kx =,与圆221:(1)2C x y -+=联立得,()221210k x x +--=,设1122()A x y B x y ,,(,),则12211x x k -=+,()()2221212121212211111OA OB x x y y x x k x x k x x k k -⋅=+=+=+=+⨯=-+ ,综上1OA OB ⋅=- ,恒为定值,错误;对于D ,设0,OP 中点00,22x y ⎛⎫ ⎪⎝⎭,该点也是AB 中点,且ABOP ==,又AB =,所以=,化简得()220013x y -+=,所以点P 的轨迹为以1,0的圆,其周长为长度为,正确.故选:ABD三.填空题(共4小题,满分20分,每小题5分)13.两条平行直线1:3450l x y +-=与2:6850l x y +-=之间的距离是_______.【答案】12##0.5【解析】【分析】将直线1l 的方程可化为68100x y +-=,利用平行线间的距离公式可求得结果.【详解】直线1l 的方程可化为68100x y +-=,且直线2l 的方程为6850x y +-=,所以,平行直线1l 与2l之间的距离为12d ==.故答案为:12.14.已知双曲线()222:109x y C b b-=>的左、右焦点分别是1F 、2F ,离心率为43,P 为双曲线上一点,4OP =(O 为坐标原点),则12PF F 的面积为______.【答案】7【解析】【分析】由双曲线的离心率可求得c 的值,可求得12F F 的值,推导出12F PF ∠为直角,利用勾股定理结合双曲线的定义可求出12PF PF ⋅的值,再利用三角形的面积公式可求得12PF F 的面积.【详解】如图所示:因为双曲线C 的离心率433c c e a ===,所以4c =,128F F =,设点P 在双曲线的右支上,由1212142OP F F OF OF ====,可得22OPF OF P ∠=∠,11OPF OF P ∠=∠,所以,()121212121π22F PF OPF OPF OPF OPF OF P OF P ∠=∠+∠=∠+∠+∠+∠=,由双曲线定义可得126PF PF -=,由勾股定理可得222121264PF PF F F +==,所以()222121212236PF PF PF PF PF PF -=+-⋅=,可得1214PF PF ⋅=,因此12PF F 的面积为12172S PF PF =⋅=.故答案为:7.15.已知12,F F 是椭圆2222:1(0)x y C a b a b+=>>的两个焦点,P 为椭圆C 上的一点,且12PF PF ⊥ ,若12PF F 的面积为9,则b 的值为______.【答案】3【解析】【分析】由椭圆的性质结合三角形面积公式计算即可.【详解】122PF PF a += ,222121224PF PF PF PF a ∴++⋅=,①又12,PF PF ⊥222212124PF PF F F c ∴+==②∴①-②得:()22212244PF PF a c b ⋅=-=,2121,2PF PF b ∴⋅=12PF F △的面积为9,1221219,02PF F S PF PF b b ∴=⋅==> ,3.b ∴=故答案为:3.16.已知棱长为1的正四面体ABCD ,M 为BC 中点,N 为AD 中点,则BN DM ⋅=_______【答案】12-##0.5-【解析】【分析】由题意可得:111,222BN BA BD DM BC BD =+=- ,根据空间向量的数量积运算求解.【详解】由题意可知:1BA BC BD === ,且12BA BC BA BD BC BD ⋅=⋅=⋅= ,因为M 为BC 中点,N 为AD中点,则111,222BN BA BD DM BM BD BC BD =+=-=- ,所以111222BN DM BA BD BC BD ⎛⎫⎛⎫⋅=+⋅- ⎪ ⎪⎝⎭⎝⎭211114422BA BC BD BC BA BD BD =⋅+⋅-⋅-uu r uu u r uu u r uu u r uu r uu u r uu u r 1111111142422222=⨯+⨯-⨯-=-.故答案为:12-四.解答题(共6小题,满分70分)17.已知等腰ABC V 的一个顶点C 在直线l :240x y -+=上,底边AB 的两端点坐标分别为()1,3A -,()2,0B .(1)求边AB 上的高CH 所在直线方程;(2)求点C 到直线AB 的距离.【答案】(1)10x y -+=(2)722【解析】【分析】(1)求出AB 的中点H 的坐标,利用垂直关系得到高CH 所在直线的斜率,得到高CH 所在直线方程;(2)联立两直线得到点C 的坐标,利用点到直线距离公式求出答案.【小问1详解】由题意可知,H 为AB 的中点,()1,3A - ,()2,0B ,13,22H ⎛⎫∴ ⎪⎝⎭.又30112AB k -==---,11CH ABk k ∴=-=.CH ∴所在直线方程为3122y x -=-,即10x y -+=.【小问2详解】由24010x y x y -+=⎧⎨-+=⎩,解得32x y =-⎧⎨=-⎩,所以()3,2C --.又直线AB 方程为()2y x =--,即20x y +-=.∴点C 到直线AB 的距离722d ==.18.已知圆C 的方程为:()()22314x y -++=.(1)若直线:0l x y a -+=与圆C 相交于A 、B 两点,且AB =,求实数a 的值;(2)过点()1,2M 作圆C 的切线,求切线方程.【答案】(1)2a =-或6-;(2)1x =或512290x y +-=.【解析】【分析】(1)根据已知条件,结合点到直线的距离公式,以及垂径定理,即可求解;(2)结合切线的定义和点到直线的距离公式,即可分类讨论思想,即可求解.【小问1详解】圆C 的方程为:22(3)(1)4x y -++=,则圆C 的圆心为(3,1)-,半径为2,直线:0l x y a -+=与圆C 相交于A 、B 两点,且||AB ==,解得2a=-或6-;【小问2详解】当切线的斜率不存在时,直线1x=,与圆C相切,切线的斜率存在时,可设切线为2(1)y k x-=-,即20kx y k--+=,2=,解得512k=-,故切线方程为512290x y+-=,综上所述,切线方程为1x=或512290x y+-=.19.已知椭圆M:22221(3x y aa a+=>-倍.(1)求M的方程;(2)若倾斜角为π4的直线l与M交于A,B两点,线段AB的中点坐标为1,2m⎛⎫⎪⎝⎭,求m.【答案】(1)22163x y+=(2)1m=-【解析】【分析】(1)根据条件确定a的值,即得椭圆的标准方程;(2)涉及中点弦问题,可以考虑“点差法”解决问题.【小问1详解】由题意可得2a=26a=,所以M的方程为22163x y+=.【小问2详解】由题意得πtan14ABk==.设()11,A x y,()22,B x y,依题意可得12x x≠,且12122,1212x x my y+=⎧⎪⎨+=⨯=⎪⎩,由22112222163163x yx y⎧+=⎪⎪⎨⎪+=⎪⎩得()()()()12121212063x x x x y y y y-+-++=,则12122121106363y y m m x x -+⨯=+⨯=-,解得1m =-.经检验,点11,2⎛⎫- ⎪⎝⎭在椭圆M 内.所以1m =-为所求.20.如图,已知PA ⊥平面ABCD ,底面ABCD 为正方形,2PA AD AB ===,M ,N 分别为AB ,PC 的中点.(1)求证:MN ⊥平面PCD ;(2)求PD 与平面PMC 所成角的正弦值.【答案】(1)证明见解析(2)3【解析】【分析】(1)建立空间直角坐标系,空间向量法证明直线与法向量平行,即可证明结论成立;(2)建立空间直角坐标系,求出直线的方法向量,以及平面的一个法向量,计算向量夹角余弦值,即可得出结果;【小问1详解】以A 为原点,AB 为x 轴,AD 为y 轴,AP 为z轴,建立空间直角坐标系,则()()()()()0,0,2,2,2,0,0,2,0,1,0,0,1,1,1P C D M N ,()()0,2,2,2,0,0PD CD =-=- ,()0,1,1MN = ,设平面PCD 的一个法向量为(),,n x y z =,则22020n PD y z n CD x ⎧⋅=-=⎪⎨⋅=-=⎪⎩ ,取1y =,得()0,1,1n = ,因为//MN n ,所以MN ⊥平面PCD ;【小问2详解】()()()0,0,2,2,2,0,1,0,0,P C M ()1,0,2PM =- ,()1,2,0MC = ,设平面PMC 的一个法向量为(),,m a b c =,则2020m PM a c m MC a b ⎧⋅=-=⎪⎨⋅=+=⎪⎩ ,取2a =,得()2,1,1m =- ,()0,2,2,PD =- 设直线PD 与平面PMC 所成角为θ,则直线PD 与平面PMC所成角的正弦值为:3sin 3PD m PD m θ⋅===⋅ .21.设抛物线C :22y px =(0p >)的焦点为F ,点()2,P n 是抛物线C 上位于第一象限的一点,且4=PF.(1)求抛物线C 的方程;(2)如图,过点P 作两条直线,分别与抛物线C 交于异于P 的M ,N 两点,若直线PM ,PN 的斜率存在,且斜率之和为0,求证:直线MN 的斜率为定值.【答案】(1)28y x=(2)证明见解析【解析】【分析】(1)代入抛物线的焦半径公式求p ,即可求抛物线的标准方程;(2)首先根据(1)的结果求点P 的坐标,设直线PM 和PN 的直线方程与抛物线方程联立,求得点,M N 的坐标,并表示直线MN 的坐标,即可证明.【小问1详解】由抛物线的定义知422p PF ==+,解得4p =,所以抛物线C 的方程为28y x =.【小问2详解】因为点P 的横坐标为2,即282y =⨯,解得4y =±,故P 点的坐标为()2,4,由题意可知,直线PM ,PN 不与x 轴平行,设()11,M x y ,()22,N x y ,设直线PM :()42m y x -=-,即42x my m =-+,代入抛物线的方程得()2842y my m =-+,即2832160y my m -+-=,则148y m +=,故184y m =-,所以()211428442882x my m m m m m m =-+=--+=-+,即()2882,84M m m m -+-,设直线PN :()42m y x --=-,即42x my m =-++,同理可得284y m =--,则()222428442882x my m m m m m m =-++=---++=++,即()2882,84N m m m ++--直线MN 的斜率121216116MN y y m k x x m-===---,所以直线MN 的斜率为定值.【点睛】关键点点睛:本题的关键是利用直线PM 与PN 的斜率互为相反数,与抛物线方程联立,利用两根之和公式求点,M N 的坐标.22.已知四棱柱1111ABCD A B C D -中,底面ABCD 为梯形,1//,AB CD A A ⊥平面,ABCD AD AB ⊥,其中12,1AB AA AD DC ====.N 是11B C 的中点,M 是1DD 的中点.(1)求证1//D N 平面1CB M ;(2)求平面1CB M 与平面11BB CC 的夹角余弦值;(3)求点B 到平面1CB M 的距离.【答案】(1)证明见解析(2)22211(3)11【解析】【分析】(1)取1CB 中点P ,连接NP ,MP ,借助中位线的性质可得四边形1D MPN 是平行四边形,再利用平行四边形的性质结合线面平行的判定定理计算即可得;(2)建立适当空间直角坐标系,求出平面1CB M 与平面11BB CC 的法向量后结合空间向量夹角公式计算即可得;(3)借助空间中点到平面的距离公式计算即可得.【小问1详解】取1CB 中点P ,连接NP ,MP ,由N 是11B C 的中点,故1NP CC ∥,且112NP CC =,由M 是1DD 的中点,故1111122D M DD CC ==,且11D M CC ∥,则有1D M NP ∥、1D M NP =,故四边形1D MPN 是平行四边形,故1D N MP ∥,又MP ⊂平面1CB M ,1D N ⊄平面1CB M ,故1//D N 平面1CB M ;【小问2详解】以A为原点建立如图所示空间直角坐标系,有0,0,0、()2,0,0B 、()12,0,2B 、()0,1,1M 、1,1,0、()11,1,2C ,则有()11,1,2CB =- 、()1,0,1CM =- 、()10,0,2BB = ,设平面1CB M 与平面11BB CC 的法向量分别为 =1,1,1、 =2,2,2,则有111111200m CB x y z m CM x z ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩ ,1222122020n CB x y z n BB z ⎧⋅=-+=⎪⎨⋅==⎪⎩ ,分别取121x x ==,则有13y =、11z =、21y =、20z =,即()1,3,1m = ,()1,1,0n =,则cos ,11m n m n m n ⋅===⋅ ,故平面1CB M 与平面11BB CC 的夹角余弦值为11;【小问3详解】由()10,0,2BB = ,平面1CB M 的法向量为()1,3,1m = ,则有111BB m m ⋅== ,即点B 到平面1CB M 的距离为11.。
安徽省池州市贵池区2024-2025学年高二上学期期中检测数学试题含答案

2024~2025学年第一学期高二期中检测数学(答案在最后)全卷满分150分,考试时间120分钟.注意事项:1.答题前,先将自己的姓名、准考证号填写在试卷和答题卡上,并将条形码粘贴在答题卡上的指定位置.2.请按题号顺序在答题卡上各题目的答题区域内作答,写在试卷、草稿纸和答题卡上的非答题区域均无效.3.选择题用2B 铅笔在答题卡上把所选答案的标号涂黑;非选择题用黑色签字笔在答题卡上作答;字体工整,笔迹清楚.4.考试结束后,请将试卷和答题卡一并上交.5.本卷主要考查内容:选择性必修第一册第一章~第二章.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知向量()1,2,4a =,()1,0,2b =-r,则a b ⋅的值为()A.()1,0,8- B.9C.-7D.7【答案】D 【解析】【分析】根据空间向量数量积坐标运算法则进行计算.【详解】()()1,1,2,00874,21a b ⋅⋅=-=-++=.故选:D2.直线+1=0x 的倾斜角为()A.34π B.4π C.2π D.不存在【答案】C 【解析】【分析】根据倾斜角的定义可得结果【详解】因为直线+1=0x 即直线1x =-垂直于轴,根据倾斜角的定义可知该直线的倾斜角为2π,故选:C.3.与直线20x y +=垂直,且在x 轴上的截距为-2的直线方程为().A.220x y -+=B.220x y --= C.220x y -+= D.220x y --=【答案】A 【解析】【分析】先求出直线的斜率,再利用直线的点斜式方程求解.【详解】由题得所求直线的斜率为12,∴所求直线方程为10(2)2y x -=+,整理为220x y -+=.故选:A【点睛】方法点睛:求直线的方程,常用的方法:待定系数法,先定式(从直线的五种形式中选择一种作为直线的方程),后定量(求出直线方程中的待定系数).4.如图所示,在平行六面体1111ABCD A B C D -中,点E 为上底面对角线11A C 的中点,若1BE AA x AB y AD =++,则()A.11,22x y =-=B.11,22x y ==-C.11,22x y =-=-D.11,22x y ==【答案】A 【解析】【分析】根据空间向量的线性运算即可求解.【详解】根据题意,得;11()2BE BB BA BC =++11122AA BA BC=++111,22AA AB AD =-+ 1BE AA xAB y AD =++ 又11,,22x y =-=∴故选:A5.已知向量()0,0,2a = ,()1,1,1b =- ,向量a b + 在向量a上的投影向量为().A.()0,0,3 B.()0,0,6C.()3,3,9- D.()3,3,9--【答案】A 【解析】【分析】根据空间向量的坐标运算及投影向量的公式计算即可.【详解】由题意可知()1,13a b +=-,,()6,2a b a a +⋅== ,所以向量a b + 在向量a上的投影向量为()()()60,0,20,0,322a b a a a a +⋅⋅=⨯=⋅ .故选:A6.若圆()()2213425O x y -+-=:和圆()()()222228510O x y r r +++=<<:相切,则r 等于A.6B.7C.8D.9【答案】C 【解析】【分析】根据的圆标准方程求得两圆的圆心与半径,再根据两圆内切、外切的条件,分别求得r 的值并验证510r <<即可得结果.【详解】圆()()2213425O x y -+-=:的圆心()13,4O ,半径为5;圆()()2222:28O x y r +++=的圆心()22,8O --,半径为r.=|r-5|,求得r=18或-8,不满足5<r<10.=|r+5|,求得r=8或-18(舍去),故选C.【点睛】本题主要考查圆的方程以及圆与圆的位置关系,属于基础题.两圆半径为,R r ,两圆心间的距离为d ,比较d 与R r -及d 与R r +的大小,即可得到两圆的位置关系.7.在空间直角坐标系Oxyz 中,已知点()2,1,0D ,向量()4,1,2,m m =⊥平面DEF ,则点O 到平面DEF 的距离为()A.21B.7C.21D.21【答案】B 【解析】【分析】根据空间向量的坐标运算直接计算点O 到平面DEF 的距离.【详解】因为()2,1,0D ,所以()2,1,0OD = ,又向量()4,1,2,m m =⊥平面DEF ,所以()4,1,2m =是平面DEF 的一个法向量所以点O 到平面DEF的距离为7OD m d m ⋅===.故答案为:7.8.已知直线l :x -my +4m -3=0(m ∈R ),点P 在圆221x y +=上,则点P 到直线l 的距离的最大值为()A.3B.4C.5D.6【答案】D 【解析】【分析】先求得直线过的定点的坐标,再由圆心到定点的距离加半径求解.【详解】解:直线l :x -my +4m -3=0(m ∈R )即为()()340x y m -+-=,所以直线过定点()3,4Q ,所以点P 到直线l的距离的最大值为16OQ r +=+=,故选:D二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知直线2y x =与0x y a ++=交于点()1,P b ,则()A.3a =-B.2b =C.点P 到直线30ax by ++=的距离为13D.点P 到直线30ax by ++=的距离为13【答案】ABD 【解析】【分析】联立直线方程结合其交点坐标求参数a 、b ,进而应用点线距离公式求P 到直线30ax by ++=的距离即可.【详解】由题意,得:210b b a =⎧⎨++=⎩,解得3a =-,2b =,故A 、B 正确,∴()1,2到直线3230x y -++=的距离13d ==,故C 错误,D 正确.故选:ABD.10.已知空间向量()()3,1,2,3,3,1a b =--= ,则下列说法正确的是()A.()32//a b a+B.()57a a b⊥+C.a =D.b =【答案】BCD 【解析】【分析】根据题意,结合向量的坐标运算,以及向量的共线和垂直的坐标表示,准确计算,即可求解.【详解】因为向量()()3,1,2,3,3,1a b =--= ,可得214,10a a b =⋅=-,对于A 中,由()323,3,8a b +=-,设32a b a λ+= ,即()3,3,8(3,1,2)λ-=--,可得33382λλλ-=-⎧⎪=-⎨⎪=⎩,此时方程组无解,所以32a b + 与a 不平行,所以A 错误;对于B 中,由()257575147(10)0a a b a a b ⋅+=+⋅=⨯+⨯-=,所以()57a a b ⊥+,所以B 正确;对于C中,由a ==,所以C 正确;对于D中,由b == D 正确.故选:BCD.11.直线2y x m =+与曲线y =恰有两个交点,则实数m 的值可能是()A.4B.5C.3D.4110【答案】AD 【解析】【分析】做出函数图象,数形结合,求出m 的取值范围,再进行选择.【详解】做出函数2y x m =+与y =的草图.设2y x m =+与圆224x y +=2=⇒m =m =-(舍去).因为函数2y x m =+与y =有两个交点,所以4m ≤<.故选:AD三、填空题:本题共3小题,每小题5分,共15分.12.已知在空间直角坐标系xOy 中,点A 的坐标为(1,2,)3-,点B 的坐标为(0,1,4)--,点A 与点C 关于x 轴对称,则||BC =___________.【答案】【解析】【分析】首先根据对称求出点C 的坐标,然后根据两点间的距离公式求||BC 的值即可.【详解】因为点A 与点C 关于x 轴对称,所以点C 的坐标为()1,2,3-,又因为点B 的坐标为(0,1,4)--,所以BC ==.13.过点()2,4作圆224x y +=的切线,则切线方程为___________.【答案】2x =或34100x y -+=【解析】【分析】考虑直线斜率不存在和直线斜率存在两种情况,利用圆心到直线距离等于半径列出方程,求出切线方程.【详解】①直线的斜率不存在时2x =满足,②直线斜率存在时,设切线方程为()42y k x -=-,则324d k ==⇒=,所以切线方程为4y -=()324x -,即34100x y -+=.故答案为:2x =或34100x y -+=.14.在平面直角坐标系xOy 中,设直线y =-x +2与圆x 2+y 2=r 2(r >0)交于A ,B 两点.若圆上存在一点C ,满足5344OC OA OB =+,则r 的值为________.【答案】【解析】【详解】22225325539OC OA OB OA 2OA OB OB44164416⎛⎫=+=+⋅⋅+ ⎪⎝⎭即222225159r r r cos AOB r 16816=+∠+,整理化简得cos∠AOB=-35,过点O 作AB 的垂线交AB 于D,则cos∠AOB=2cos 2∠AOD-1=-35,得cos 2∠AOD=15.又圆心到直线的距离为OD==,所以cos 2∠AOD=15=22OD r=22r ,所以r 2.四、解答题:本题共5小题,共77分.解答应写出必要的文字说明、证明过程及演算步骤.15.已知直线l 过点()2,1P -.(1)若直线l 与直线230x y ++=垂直,求直线l 的方程(2)若直线l 在两坐标轴的截距互为相反数,求直线l 的方程.【答案】(1)240x y --=;(2)20x y +=或30x y --=.【解析】【分析】(1)根据直线方程垂直设出方程求解未知数即可;(2)根据截距的概念分类讨论求方程即可.【小问1详解】因为直线l 与直线230x y ++=垂直,所以可设直线l 的方程为20x y m -+=,因为直线l 过点()2,1P -,所以()2210m -⨯-+=,解得4m =-,所以直线l 的方程为240x y --=【小问2详解】当直线l 过原点时,直线l 的方程是2xy =-,即20x y +=.当直线l 不过原点时,设直线l 的方程为x y a -=,把点()2,1P -代入方程得3a =,所以直线l 的方程是30x y --=.综上,所求直线l 的方程为20x y +=或30x y --=16.已知向量()()1,1,,2,,a t t t b t t =--=.(1)若a b ⊥ ,求t 的值;(2)求b a -的最小值.【答案】(1)2(2)5【解析】【分析】(1)由空间向量垂直得到方程,求出答案;(2)计算出()1,21,0b a t t -=+-,利用模长公式得到b a -= ,求出最小值.【小问1详解】因为a b ⊥ ,所以0a b ⋅=,即()()22110t t t t -+-+=,解得2t=;【小问2详解】()1,21,0 b a t t-=+-所以b a-=.所以当15t=时,b a-取得最小值为5.17.如图,在四棱锥P ABCD-中,底面ABCD为直角梯形,//AD BC,AB BC⊥,AP⊥平面ABCD,Q为线段PD上的点,2DQ PQ=,1AB BC PA===,2AD=.(1)证明://BP平面ACQ;(2)求直线PC与平面ACQ所成角的正弦值.【答案】(1)证明见解析(2)13【解析】【分析】(1)利用三角形相似得2MD MB=,结合2DQ PQ=,则有//MQ BP,利用线面平行的判定即可证明;(2)以A为坐标原点,建立合适的空间直角坐标系,求出平面ACQ的法向量,利用线面角的空间向量法即可得到答案.【小问1详解】如图,连接BD与AC相交于点M,连接MQ,∵//BC AD,2AD BC=,则AMD CMB,∴2MD ADMB CB==,2MD MB=,∵2DQ PQ=,∴//MQ BP,BP ⊄ 平面ACQ ,MQ Ì平面ACQ ,∴//BP 平面ACQ ;【小问2详解】AP ⊥ 平面ABCD ,,AB AD ⊂平面ABCD ,,AP AB AP AD ∴⊥⊥,因为底面AB BC ⊥,则AB ,AD ,AP 两两垂直,以A 为坐标原点,建立如图所示空间直角坐标系,各点坐标如下:()0,0,0A ,()1,1,0C ,()0,0,1P ,220,,33Q ⎛⎫⎪⎝⎭.设平面ACQ 的法向量为(),,m x y z =,由()1,1,0AC = ,220,,33AQ ⎛⎫= ⎪⎝⎭ ,有02233AC m x y AQ m y z ⎧⋅=+=⎪⎨⋅=+=⎪⎩,令1x =,1y =-,1z =,可得()1,1,1m =- ,由()1,1,1CP =-- ,有1CP m ⋅=,CP m ==,则1cos ,3CP m == .故直线PC 与平面ACQ 所成角的正弦值为13.18.如图,在正方体1111ABCD A B C D -中,,F G 分别是棱1,CC AD 的中点,E 为棱AB 上一点,且异面直线1B E 与BG 所成角的余弦值为25.(1)证明:E 为AB 的中点;(2)求平面1B EF 与平面11ABC D 所成锐二面角的余弦值.【答案】(1)见解析(2)4242【解析】【分析】(1)以D 为坐标原点,建立如图所示的空间直角坐标系D xyz -,不妨令正方体的棱长为2,设()2,,0E a ,利用111cos ,B E BG B E BG B E BG⋅= ,解得1a =,即可证得;(2)分别求得平面1B EF 与平面11ABC D 的法向量m n ,,利用cos ,m n m n m n⋅=⋅ 求解即可.【小问1详解】证明:以D 为坐标原点,建立如图所示的空间直角坐标系D xyz -.不妨令正方体的棱长为2,则()0,0,0D ,()1,0,0G ,()2,2,0B ,()12,2,2B ,()0,2,1F ,设()2,,0E a ,则()10,2,2B E a =-- ,()1,2,0BG =-- ,所以()1121422cos ,5524B E BG a B E BG B E BG a ⋅-===-+ ,所以2430a a -+=,解得1a =(3a =舍去),即E 为AB 的中点.【小问2详解】由(1)可得()10,1,2B E =-- ,()2,1,1EF =- ,设(),,m x y z = 是平面1B EF 的法向量,则12020m B E y z m EF x y z ⎧⋅=--=⎪⎨⋅=-++=⎪⎩ .令2z =,得()1,4,2m =-- .易得平面11ABC D 的一个法向量为()12,0,2n DA == ,所以cos ,42m n m n m n ⋅===⋅ .所以所求锐二面角的余弦值为42.19.已知圆C 过点(1,0)M -且与直线20x +-=相切于点1,22⎛⎫ ⎪ ⎪⎝⎭,直线:30l kx y k --+=与圆C 交于不同的两点A ,B .(1)求圆C 的方程;(2)若圆C 与x 轴的正半轴交于点P ,直线PA ,PB 的斜率分别为1k ,2k ,求证:12k k +是定值.【答案】(1)221x y +=(2)证明见解析.【解析】【分析】(1)确定圆心和半径,可得圆C 的方程.(2)把直线方程与圆C 方程联立,得到12x x +,21x x ,再表示出12k k +,运算整理即可.【小问1详解】过点1,22⎛⎫ ⎪ ⎪⎝⎭且与直线20x +-=垂直的直线为:1022x y ⎛⎫⎫---= ⎪⎪ ⎪⎭⎝⎭0y -=.又线段MN,其中1,22N ⎛⎫ ⎪ ⎪⎝⎭的垂直平分线为:()222213122x y x y ⎛⎫⎛⎫++=-+- ⎪ ⎪ ⎪⎝⎭⎝⎭0y +=.由00y y -=+=,得圆心()0,0C ,又221r CM ==.故圆C 的方程为:221x y +=.【小问2详解】将()3y kx k =+-代入221x y +=得:()2231x kx k ⎡⎤++-=⎣⎦,整理得:()()()222123310k x k k x k ++-+--=.由0∆>⇒()()()22224341310k k k k ⎡⎤--+-->⎣⎦⇒43k >.设1,1,2,2,则()122231k k x x k -+=+,()2122311k x x k --=+.又()1,0P ,所以()111111133111k x y k k x x x -+===+---,同理:2231k k x =+-.所以121233211k k k x x +=++--()()()121236211x x k x x +-=+--()()1212123621x x k x x x x +-=+-++()()()22222336123123111k k k k k k k k k -⨯-+=+----+++()()()22222336123123111k k k k k k k k k -⨯-+=+----+++18629k k --=+23=-.所以1223k k +=-为定值.。
高二上学期数学(理)期中试题及答案
高二年级上学期期中试题数 学(理)(共100分, 考试时间120分钟)第Ⅰ卷一、 选择题(每小题3分,共36分. 每小题只有一项是符合题目要求)1.抛物线y 2=4x ,经过点P (3,m ),则点P 到抛物线焦点的距离等于 ( )A.94 B .4 C.134 D .32.双曲线mx 2+y 2=1的虚轴长是实轴长的2倍,则m 等于 ( )A .-14B .-4C .4 D.143.命题:“若a 2+b 2=0(a ,b ∈R ),则a =b =0”的逆否命题是 ( )A .若a ≠b ≠0(a ,b ∈R ),则a 2+b 2≠0B .若a =b ≠0(a ,b ∈R ),则a 2+b 2≠0C .若a ≠0且b ≠0(a ,b ∈R ),则a 2+b 2≠0D .若a ≠0或b ≠0(a ,b ∈R ),则a 2+b 2≠04.“m >n >0”是“方程mx 2+ny 2=1表示焦点在y 轴上的椭圆”的 ( )A .充分而不必要条件B . 充要条件C .必要而不充分条件D .既不充分也不必要条件5.已知点P 是抛物线y 2=4x 上一点,设点P 到此抛物线准线的距离为d 1,到直线 x +2y +10=0的距离为d 2,则d 1+d 2的最小值是 ( )A .5B .4 C.1155 D.1156.设a ∈R ,则a >1是1a<1的 ( )A .充分但不必要条件B .必要但不充分条件C .充要条件D .既不充分也不必要条件7. 已知椭圆x 25+y 2m =1的离心率e =105,则m 的值为 ( )A3 B .3或253 C.15 D.15或51538.已知向量a =(1,1,0),b =(-1,0,2),且k a +b 与2a -b 互相垂直,则k 的值是( )A .1 B.15 C. 75 D. 359. 若双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一个焦点到一条渐近线的距离等于焦距的14,求该双曲线的离心率是 ( )A. 5B.62 C .233D. 210.从抛物线y 2=4x 上一点P 引其准线的垂线,垂足为M ,设抛物线的焦点为F ,且|PF |=5,则△MPF 的面积为 ( )A .5 6 B.2534C .20D .1011.在平面直角坐标系中,若不等式组⎩⎪⎨⎪⎧x +y -1≥0,x -1≤0,ax -y +1≥0,(a 为常数)所表示的平面区域的面积等于2,则a 的值为( )A .-5B .1C .2D .312.已知椭圆221:12x y C m n +=+与双曲线222:1x y C m n-=共焦点,则椭圆1C 的离心率e 的取值范围为( )A .(2B .2C .(0,1)D .1(0,)2昆明三中2012-2013学年度高二年级上学期期中试题数 学(理)二、填空题:(本大题共4小题,每小题3分,共12分.)13.命题“对任意的x ∈R ,x 3-x 2+1≤0”的否定是 ;14.设实数,x y 满足20240230x y x y y --≤⎧⎪+-≥⎨⎪-≤⎩,则y x 的最大值是 ;15.经过椭圆x 22+y 2=1的右焦点作倾斜角为45°的直线l ,交椭圆于A 、B 两点.设O 为坐标原点,则OA →·OB →= ;16.已知抛物线y 2=2px (p >0),过焦点F 的动直线l 交抛物线于A 、B 两点,则我们知道1|AF |+1|BF |为定值,请写出关于椭圆的类似的结论:_____________________________________ ___________;当椭圆方程为x 24+y 23=1时,1|AF |+1|BF |=___________.三、解答题:(本大题共5小题,共52分)17.(本小题满分10分)设命题p :|4x -3|≤1;命题q :x2-(2a +1)x +a(a +1)≤0.若┐p 是┐q 的必要而不充分条件,求实数a 的取值范围.18. (本小题满分10分)(1)求与椭圆2212516x y +=共焦点的抛物线的标准方程.(2)已知两圆()221:42C x y ++=,()222:42C x y -+=,动圆M 与两圆一个内切,一个外切,求动圆圆心M 的轨迹方程. 19.(本小题满分10分)如图,已知点P 在正方体1111ABCD A BC D -的对角线1BD 上,60PDA ∠=︒. (1)求DP 与CC 1所成角的大小;(2)求DP 与平面AA 1D 1D 所成角的大小. 20.(本小题满分10分)如图,四棱锥P —ABCD 的底面ABCD 是矩形,AB=2,BC =且侧面PAB 是正三角形,平面PAB ⊥平面ABCD.(1)求证:PD AC ⊥;(2)在棱PA 上是否存在一点E ,使得二面角E —BD —A 的大小为45︒,若存在,试求AE AP的值,若不存在,请说明理由.1A21.(本小题满分12分)已知圆C 的方程为224x y +=,过点M (2,4)作圆C 的两条切线,切点分别为A ,B ,直线AB 恰好经过椭圆2222:1(0)x y T a b a b+=>>的右顶点和上顶点.(1)求椭圆T 的方程;(2)已知直线l 与椭圆T 相交于P ,Q 两不同点,直线l 方程为0)y kx k =>,O 为坐标原点,求OPQ ∆面积的最大值.昆明三中2012-2013学年度高二年级上学期期中试题数 学(理)答案一、选择题:BADBC ABCCD DA 二、填空题:13. 存在x ∈R ,x 3-x 2+1>0 14.3215. -1316. 过椭圆的焦点F 的动直线交椭圆于A 、B 两点,则1|AF |+1|BF |为定值 43三、解答题:17.解析:解|4x -3|≤1得12≤x ≤1.解q 得a ≤x ≤a +1.由题设条件得q 是p 的必要不充分条件,即p ⇒q ,q p .∴[12,1][a ,a +1]. ∴a ≤12且a +1≥1,得0≤a ≤12.18.(1)212y x =或212y x =-(2)221214x y -=19. 解:如图,以D 为原点,DA 为单位长建立空间直角坐标系D xyz -.则(100)DA =,,,(001)CC '=,,.连结BD ,B D ''.在平面BB D D ''中,延长DP 交B D ''于H .设(1)(0)DH m m m =>,,,由已知60DH DA <>=,,由cos DA DH DA DH DA DH =<>, 可得2m =2⎛ (Ⅰ)因为cos DH CC '<>=,所以45DH CC '<>=,(Ⅱ)平面AA D D ''w w因为01101cos 2DH DC ++⨯<>==,, 所以60DH DC <>=,.可得DP 与平面AA D D ''所成的角为30.20.解析: 取AB 中点H ,则由PA =PB ,得PH ⊥AB ,又平面PAB ⊥平面ABCD,且平面PAB ∩平面ABCD=AB ,所以PH ⊥平面ABC D .以H 为原点,建立空间直角坐标系H-xyz (如图).则(1,0,0),(1,0,0),(1(1A B D CP -- (I )证明:∵(1,2,3),(2,PD AC =-=-,∴(1(0PD AC ⋅=⋅-=, ∴PD AC⊥,即PD⊥AC . ………..6分(II ) 假设在棱PA 上存在一点E ,不妨设AE =λAP (01)λ<<,则点E 的坐标为(1)λ-, ………..8分 ∴(2,0,3),(2,2,0)BE BD λλ=-= 设(,,)n x y z =是平面EBD 的法向量,则n BE n BD ⎧⊥⎪⎨⊥⎪⎩00n BE n BD ⎧⋅=⎪⇒⎨⋅=⎪⎩(2)00200x yz x y z λ⎧-+⋅+=⎪⇒⎨++⋅=⎪⎩z x y ⎧=⎪⇒⎨⎪=⎩, 不妨取x =EBD 的一个法向量2(3,)n λλ-=--.又面ABD 的法向量可以是HP =(0,0, , 要使二面角E-BD-A 的大小等于45°,则0(cos 45|cos ,|(3,HP nHP n HP n ⋅=<>==⋅可解得12λ=,即AE =12AP 故在棱PA 上存在点E ,当12AE AP =时,使得二面角E-BD-A 的大小等于45°.21.解析:(Ⅰ)由题意:一条切线方程为:2x =,设另一条切线方程为:4(2)y k x -=-2=,解得:34k =,此时切线方程为:3542y x =+ 切线方程与圆方程联立得:68,55x y =-=,则直线AB 的方程为22=+y x 令0=x ,解得1=y ,∴1=b ;令0y =,得2x =,∴2=a故所求椭圆方程为1422=+y x (Ⅱ)联立221.4y kx x y ⎧=+⎪⎨+=⎪⎩整理得()08384122=+++kx x k ,令),(11y x P ,),(22y x Q ,则2214138k kx x +-=+,221418k x x +=, 0)41(32)38(22>+-=∆k k ,即:0122>-k原点到直线l的距离为=d12|||PQ x x =-,∴121||2OPQS PQ d x x ∆=⋅=-==1=≤当且仅当k=时取等号,则OPQ∆面积的最大值为1.。
第一学期高二年级理科数学期中考试试题
第一学期高二年级数学学科(理)期中考试试题一、选择题(共12小题,每小题3分,共36分) 1.给出两个命题:p :函数y =x 2-x -1有两个不同的零点;q :若<1,则x >1,那么在下列四个命题中,真命题是( )A . ()q p ∨⌝B .q p ∧C .()()q p ⌝∧⌝D . ()()q p ⌝∨⌝2.已知命题p :存在()+∞∈,00x ,<;命题q :ABC ∆中,若sin A >sin B ,则A >B ,则下列命题为真命题的是( )A .q p ∧B .()q p ⌝∨C . ()q p ∧⌝D .()q p ⌝∧3.已知命题p :关于x 的方程x 2-ax +4=0有实根;命题q :关于x 的函数y =2x 2+ax +4在[3,+∞)上是增函数.若q p ∧为真,则实数a 的取值范围是( )A . ]([)∞+⋃--,44,12 B. [][)∞+⋃--,44,12C .()()4,412,-⋃-∞- D .)[∞+-,12 4.若log a 2<log b 2<0,则下列结论正确的是( )A . 0<a <b <1B . 0<b <a <1C .a >b >1D .b >a >15.已知函数f (x )=log a (4-ax )在(-2,2)上是减函数,则a 的取值范围是( )A . (0,2)B . (1,2)C . (1,2]D . [2,+∞)6.设a ,b ,c 均为正数,且2a =log 12a ,(12)b =log 12b ,(12)c =log 2c ,则( ) A .a <b <c B .c <b <a C .c <a <b D .b <a <c7.已知log a 12<1,那么a 的取值范围是( ) A . 0<a <12 B .a >12 C .12<a <1 D . 0<a <12或a >18.已知A ={x |log 2x <2},B ={x |13<3x <√3},则A ∩B 等于( )A .(0,12)B . (0,√2)C .(−1,12) D . (-1,√2) 9.长方体ABCD -A 1B 1C 1D 1中,AB =BC =a ,AA 1=2a ,则D 1到直线AC 的距离为( ). A .a B . C . D . 10.已知a =(1-t,1-t ,t ),b =(2,t ,t ),则|b -a |的最小值是( )A .B .C .D .11.已知空间四边形OABC ,M ,N 分别是OA ,BC 的中点,且=a ,=b ,=c ,用a ,b ,c 表示向量为( ).A .a +b +cB .a -b +cC . -a +b +cD . -a +b-c 12.二面角α-l -β为60°,A ,B 是棱l 上的两点,AC ,BD 分别在半平面α,β内,AC ⊥l ,BD ⊥l ,且AB =AC =a ,BD =2a ,则CD 的长为( )A . 2aB .aC .aD .a二、填空题(共5小题,每小题4.0分,共20分) 13.设p :x >2或x <1;q :x >2或x <-1,则¬p 是¬q 的________条件.14.已知()y a -=,2,1 ,()2,1,x b = ,且()()b a b a -+22∥,则x=______,y=______. 15.已知正方体ABCD -A 1B 1C 1D 1的棱长为a ,=,点N 为B 1B 的中点,则|MN |=________. 16.已知-1≤x +y ≤4且2≤x -y ≤3,则z =2x -3y 的取值范围是________17.若对任意x >0,a x x x ≤++132恒成立,则a 的取值范围为________. 三、解答题(共44分) 18.(1).若不等式ax 2+bx +c ≥0的解集为⎭⎬⎫⎩⎨⎧≤≤-231|x x ,求关于x 的不等式cx 2-bx +a <0的解集.(2).已知,且,求的最小值. 19.已知命题P :函数y =log a (1-2x )在定义域上单调递增;命题Q :不等式(a -2)x 2+2(a -2)x -4<0对任意实数x 恒成立.若Q P ∨是真命题,求实数a 的取值范围.20.已知某几何体的直观图和三视图如下图所示,其正视图为矩形,侧视图为等腰直角三角形,俯视图为直角梯形,(1)求证:; (2); (3)设为中点,在边上找一点,使//平面并求. 21.如下图,在正四棱柱ABCD A 1B 1C 1D 1中,AB =2,AA 1=4,E 为BC 的中点,F 为CC 1的中点.(1)求EF 与平面ABCD 所成的角的余弦值;(2)求二面角F DE C 的余弦值.BN 11C B N ⊥平面11sin C N CNB θθ设为直线与平面所成的角,求的值M AB BC P MP 1CNB BP PC 的值4484正视图侧视图 俯视图A B 1 B 1 N M。
2024-2025学年黑龙江省哈尔滨市高二上学期11月期中考试数学检测试题(含解析)
2024-2025学年黑龙江省哈尔滨市高二上学期11月期中考试数学检测试题一、单选题(本大题共10小题)1.直三棱柱中,若,则( )111ABC A B C -1,,CA a CB b CC c === 1A B =A .B .a b c+-r r ra b c-+r r r C .D .a b c -++ a b c-+- 2.已知点,,若直线的斜率为,则( )()1,0A (),B n m AB 21n m -=A .B .C .D .22-1212-3.已知,则( )()()1,5,1,3,2,5a b =-=-a b -= A .B .C .D .()4,3,6--()4,3,6--()4,3,6-()4,3,64.已知焦点在轴上的椭圆的焦距为6,则实数等于( )x 2213x y m +=mA .B .C .12D .3421412-5.已知正方体的棱长为1,则( )1111ABCD A B C D -A .B .C .D .11ACB D ⊥1AC BC⊥1B D BC⊥1B D AC^6.已知圆,圆,则这两圆的位置关系为( 22:(2)(4)25E x y -+-=22:(2)(2)1F x y -+-=)A .内含B .相切C .相交D .外离7.设直线的方向向量为,平面的法向量为,若,则( )l a αb0a b ⋅= A .B .C .D .或//l αl α⊂l α⊥l α⊂//l α8.与平行,则( )1:10l ax y -+=2:2410l x y +-==aA .B .C .D .21212-2-9.经过点,斜率为的直线方程为( )(3,1)12A .B .210x y --=250x y +-=C .D .250x y --=270x y +-=10.已知,则该圆的圆心坐标和半径分别为( )221:202C x y x y ++-+=A .,B .,1,12⎛⎫- ⎪⎝⎭()1,2-C .,D .,1,12⎛⎫ ⎪⎝⎭()1,2-二、多选题(本大题共2小题)11.下列结论错误的是( )A .过点,的直线的倾斜角为()1,3A ()3,1B -30︒B .若直线与直线平行,则2360x y -+=20ax y ++=23a =-C .直线与直线之间的距离是240x y +-=2410x y ++=D .已知,,点在轴上,则的最小值是5()2,3A ()1,1B -P x PA PB+12.以A (1,1),B (3,-5)两点的线段为直径的圆,则下列结论正确的是()A .圆心的坐标为(2,2)B .圆心的坐标为(2,-2)C .圆心的坐标为(-2,2)D .圆的方程是()222)210x y ++-=(E .圆的方程是22(2)(2)10x y -++=三、填空题(本大题共4小题)13.已知平面的法向量是,平面的法向量是,若,则的α()2,3,1-β()4,,2λ-//αβλ值是.14.直线与圆的位置关系是.34120x y ++=()()22119-++=x y 15.三条直线与相交于一点,则的值为.280,4310ax y x y +-=+=210x y -=a16.在空间直角坐标系中,直线的一个方向向量为,平面的一个法向l ()1,0,3m =-α量为,则直线与平面所成的角为.()2n =l α四、解答题(本大题共3小题)17.求满足下列条件的直线方程(要求把直线的方程化为一般式):(1)已知,,,求的边上的中线所在的直线方程.(1,2)A (1,4)B -(5,2)C ABC V AB (2)直线经过点,倾斜角为直线的倾斜角的2倍,求的方程.l (2,1)B --12y x=l 18.如图,在棱长为2的正方体中,分别是的中点,G 在棱CD 上,且,E F 1,DD DB ,H 是的中点.建立适当的空间直角坐标系,解决下列问题:13CG CD=1C G(1)求证:;1EF B C ⊥(2)求异面直线EF 与所成角的余弦值.1C G 19.已知圆C 经过坐标原点O 和点(4,0),且圆心在x 轴上(1)求圆C 的方程;(2)已知直线l :34110x y +-=与圆C 相交于A 、B 两点,求所得弦长的值.AB答案1.【正确答案】D【详解】.()11111A A B B a b B A B cCC C CB =+=-+=-+--+ 故选:D .2.【正确答案】C【详解】若直线的斜率为,则,AB 221mn =-所以,211n m -=故选:C.3.【正确答案】C【详解】向量,则.()()1,5,1,3,2,5a b =-=- (4,3,6)a b -=- 故选:C4.【正确答案】C【详解】由题意知,,3,3m a b c >==又,所以,222a b c =+3912m =+=即实数的值为12.m 故选:C5.【正确答案】D 【详解】以为原点,为单位正交基底建立空间直角坐标系,D {}1,,DA DC DD 则,,,,,,()0,0,0D A (1,0,0)1(1,0,1)A ()1,1,0B ()11,1,1B ()0,1,0C 所以,,,.()11,1,1A C =-- ()11,1,1B D =--- ()1,0,0BC =- ()1,1,0AC =-因为,所以.111111,1,1,0AC B D AC BC BC B D AC B D ⋅=⋅==⋅=⋅ 1B D AC ^故选:D.6.【正确答案】A【详解】圆的圆心为,半径;22:(2)(4)25E x y -+-=E (2,4)15r =圆的圆心为,半径,22:(2)(2)1F x y -+-=F (2,2)11r =,故,所以两圆内含;2=12EF r r <-故选:A7.【正确答案】D【详解】∵直线的方向向量为,平面的法向量为且,即,l a αb0a b ⋅= a b ⊥ ∴或.l α⊂//l α故选:D8.【正确答案】B【详解】由与平行,得,所以.1:10l ax y -+=2:2410l x y +-=11241a -=≠-12a =-故选:B9.【正确答案】A【详解】经过点,斜率为的直线方程为,即.(3,1)1211(3)2y x -=-210x y --=故选:A.10.【正确答案】A【详解】的标准方程为,故所求分别为221:202C x y x y ++-+= ()2213124x y ⎛⎫++-= ⎪⎝⎭,1,12⎛⎫- ⎪⎝⎭故选:A.11.【正确答案】AC 【详解】对于A ,,即,故A 错误;131tan 312AB k α-===--30α≠︒对于B ,直线与直线平行,所以,解得,故B 2360x y -+=20ax y ++=123a =-23a =-正确;对于C ,直线与直线(即)之间的距离为240x y +-=2410x y ++=1202x y ++=C 错误;d 对于D ,已知,,点在轴上,如图()2,3A ()1,1B -P x取关于轴的对称点,连接交轴于点,此时()1,1B -x ()1,1B '--AB 'x P,5=所以的最小值是5,故D 正确;PA PB+故选:AC.12.【正确答案】BE 【详解】AB 的中点坐标为,则圆心的坐标为()2,2-()2,2-=r =所以圆的方程是22(2)(2)10x y -++=故选:BE13.【正确答案】6【详解】∵,∴的法向量与的法向量也互相平行.//αβαβ∴,∴.23142λ-==-6λ=故6.14.【正确答案】相交【详解】圆的圆心为,半径为,()()22119x y -++=()1,1-3因为圆心到直线,()1,1-34120x y ++=1135<所以直线与圆相交.34120x y ++=()()22119x y -++=故相交15.【正确答案】3【详解】由,即三条直线交于,431042102x y x x y y +==⎧⎧⇒⎨⎨-==-⎩⎩(4,2)-代入,有.280ax y +-=44803a a --=⇒=故316.【正确答案】π6【分析】应用向量夹角的坐标表示求线面角的正弦值,即可得其大小.【详解】设直线与平面所成的角为,l απ20θθ⎛⎫≤≤ ⎪⎝⎭则,所以.1sin cos ,2m n m n m n θ⋅====π6θ=故π617.【正确答案】(1)x +5y ﹣15=0(2)4x ﹣3y +5=0【详解】(1)因为,则的中点,(1,2),(1,4)A B -AB (0,3)D 因为的边上的中线过点,ABC V AB (5,2),(0,3)C D 所以的方程为,即,CD 233050y x --=--()5150x y +-=故的边上的中线所在的直线方程为;ABC V AB 5150x y +-=(2)设直线的倾斜角为, 则,则所求直线的倾斜角为,12y x=απ0,4α⎛⎫∈ ⎪⎝⎭2α因为,所以,1tan 2α=22tan 4tan 21tan 3ααα==-又直线经过点,故所求直线方程为,即4x ﹣3y+5=0;(2,1)B --4123y x +=+()18.【正确答案】(1)证明见解析【详解】(1)证明:如图,以D 为原点,以射线DA 、DC 、分别为x 轴、y 轴、1DD z 轴的正半轴,建立空间直角坐标系,D xyz -则,,,,,()0,0,0D E (0,0,1)()1,1,0F ()0,2,0C ()10,2,2C ,,()12,2,2B 40,,03G ⎛⎫ ⎪⎝⎭所以,,()1,1,1EF =- ()12,0,2B C =--所以,()()()()()11,1,12,0,21210120EF B C ⋅=-⋅--=⨯-+⨯+-⨯-=所以,故.1EF B C ⊥1EF B C ⊥(2)因为,所以120,,23C G ⎛⎫=-- ⎪⎝⎭1C G =因为,EF =()12241,1,10,,22333EF C G ⎛⎫⋅=-⋅--=-+=⎪⎝⎭所以.1114cos ,3EF C G EF C G EF C G ⋅=====19.【正确答案】(1)()2224x y -+=(2)【分析】(1)求出圆心和半径,写出圆的方程;(2)求出圆心到直线距离,进而利用垂径定理求出弦长.(1)由题意可得,圆心为(2,0),半径为2.则圆的方程为()2224x y -+=;(2)由(1)可知:圆C 半径为2r =,设圆心(2,0)到l 的距离为d ,则61115d -==,由垂径定理得:AB ==。
高二上册数学(理) 期中考试试题
高二数学(理科)试卷第一学期期中质量检测 满分150分,考试时间120分钟一、选择题(本大题共12小题,每小题5分,共60分) 1.下列命题中正确的是( )A .如果直线a ,b 和平面α,满足a⊥b,a⊥α,那么b ∥αB .如果直线a ,b 和平面α满足a ∥α,b ∥α,那么a ∥bC .如果a 、b 是两条直线且a ∥b,那么a 平行于经过b 的任何平面D .垂直于同一条直线的两个平面互相平行2.我国南北朝时期数学家祖暅,提出了著名的祖暅原理:“缘幂势既同,则积不容异也”.“幂”是截面积,“势”是几何体的高,意思是两等高几何体,若在每一等高处的截面积都相等,则两几何体体积相等.已知某不规则几何体与右侧三视图所对应的几何体满足“幂势既同”,其中俯视图中的圆弧为14圆周,则该不规则几何体的体积为( )A .136π+ B .12π+C .12π+D .1233π+ 3.已知⊙221:2310C x y x y ++++=,⊙222:4320C x y x y ++++=,则⊙1C 与⊙2C 的公切线有( )条。
A .1 B .2C .3D .44.(1,)a m = ,(2,4)b =-,(,1)c n =,a ∥b ,()a c b +⊥,则m n +=( ) A .12-B .-5C .3D .55.直线l :221+-=x y 绕点M (2,1)逆时针旋转4π至直线l ′, 则直线l ′的斜率为( ) A .13B .3C .13- D .-36.一艘海监船上配有雷达,其监测范围是半径为26 km 的圆形区域,一艘外籍轮船从位于海监船正东40 km 的A 处 出发径直驶向位于海监船正北30km 的B 处岛屿,船速为10 km/h 这艘外籍轮船能被海监船监测到且持续时间长约为( ) 小时A .1B .2C .3D .47.数学家默拉在1765年提出定理,三角形的外心、垂心、重心,依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半,这条直线被后人称之为三角形的欧拉线,已知△ABC 的顶点B (-1,0),C (0,2),AB =AC ,则△ABC 的欧拉线方程为( )A .2430x y --=B .2430x y ++=C .4230x y --=D .2430x y +-=8.边长为2正方形ABCD ,把△ACD 沿AC 折起至△ACD ′,且平面ACD ′⊥平面ABC ,则三棱锥D ′—ABC 外接球表面积为( )A .πB .2πC .4πD .8π9.P 为⊙C :02222=--+y x y x 上一点,Q 为直线l :04=--y x 上一点,则线段PQ 长度的最小值( )A .233 B 2 C .263D .22 10.已知棱长为1的正方体ABCD-A 1B 1C 1D 1中,下列结论不正确...的是( ) A .平面ACB 1∥平面A 1C 1D ,且两平面的距离为33B .与所有12条棱都相切的球的体积为23 C .点P 在线段AB 上运动,则四面体111C B PA 的体积不变 D .二面角111B C A D --的余弦值为63-11.已知,x y R ∈2222(1)4(2)1y x x y -+-++的最小值为( )A 5B .5C .3D .612.如图,边长为4正方形ABCD 中,E 、F 分别为AB 、BC 中点,将△AED ,△DCF 沿DE 、DF 折起,使A 、C 两点重合于点P ,点M 在平面EFD 内,且PM =2,则直线PM 与BF 夹角余弦值的最大值为( )A .13B .33C .23D 5E二、填空题(本大题共4小题,每小题5分,共20分)13.过点)2,1(P 且与⊙C :034622=--++y x y x 相切的直线方程为14.已知实数x ,y 满足103020x y x y --≤⎧⎪+≥⎨⎪-≤⎩,则24y x --的最大值为 .15.过点P (3,1)作⊙22:(1)1C x y -+=的两条切线,切点分别为A 、B ,则弦AB 的长为 . 16. 长方、堑堵、阳马、鱉臑、这些名词出自中国古代数学明著《九章算术•商功》,其中阳马和鱉臑是我国古代对一些特殊锥体的称呼。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高二数学理科A 层期中测试题
(共150分)
一.选择题(共12题,每题 5分,共60分) 1.设M=3a 2-a+1,N=2a 2+a,则有( ).
(A )M>N (B)M ≥N (C )M <N (D)M ≤N 2.已知集合A={ x|x 2—2x >0 } ,B={x|—3<x <3},则( ). (A )A ∩B= ∅(B )A ∪B=R (C )B ⊆A (D )A ⊆B
3.不等式组 ⎪⎩
⎪
⎨⎧≤+≥+≥63630
y x y x x ,所表示平面区域的面积等于( )
(A )
23 (B )32 (C )3
1
(D )3 4.若a,b ∈R,且ab >0,则下列不等式中恒成立的是( ). (A )a 2+b 2>2ab (B )a+b ≥ab 2 (C )
a 1+
b 1>ab
2(D )a b 3+b a 27≥32 5.为了解某地区高三学生升学考试数学成绩的情况,从中抽出50本密封试卷,每本30份试卷,这个问题中的样本容量是( )。
(A )30 (B )50 (C )1500( D )150
6.某工厂生产A 、B 、C 三种不同型号的产品,产品的数量之比为2:3:5现用分层抽样的方法抽出样本容量为80的样本,则样本中A 产品的件数为( )
(A) 18 (B)16 (C) 20 (D)21
7.10名工人某天生产同一零件,生产件数是15、17、14、10、15、17、17、16、14、12,设平均数为a ,中位数为b ,众数为c ,则有( ).
(A)a >b >c (B)b >c >a (C)c >a >b (D)c >b >a
8.在25 件同类产品中,有两件次品,从中任取3件产品,其中不可能事件为( )
(A )3件都是正品 (B )至少有一件次品 (C )3件都是次品 (D )至少有一件正品
9某校高二年级的学生从音乐、美术、体育三门课程中任选两门学习,则所有可能结果共有( )。
(A )2个 (B )3 (C )4个 (D )5个
10.点P 在边长为1的正方形ABCD 内运动,则动点P 到定点A 的距离|PA|<1的概率为( )。
(A )
41 (B )21 (C )4
π
(D )π 11.从4名选手甲、乙、丙、丁中,随机选取2人组队参加数学奥林匹克竞赛,其中甲被选中的概率是( )
(A )31 (B )21 (C )32 (D )5
3
12已知(a+b )n 展开式中只有第5项的二项式系数最大,n 则等于( ).
(A)11 (B)10 (C)9 (D)8
一、选择题(答题卡) 填空题:(每小题5分,共计20分)
13.有三张参观券,要在5人中确定3人去参观不同选法的种数为 。
14.(a+b)6的展开式的第4项为 。
15.把一枚质地均匀的硬币投掷两次,事件A={第一次出现正面},B={第二次出现正面},则P (B|A )等于 。
16.随机变量的取值为0、1、2,若p (ε=0)=5
1, E(ε)=1,则D (ε)
= 。
三、解答题(共70分,写出必要的文字说明、证明过程或演算步骤)
17、(10分)一张储蓄卡的密码有6位数字,每位数字都可以从0到9中任意取一个。
某人在银行自动提款机上取钱时忘记了密码的最后一位数字,求他任意按最后一位数字,不超过2次就按对的的概率。
18、(12分)甲、乙、丙三位大学毕业生同时应聘一个用人单位,其中能被选中的概率分别为52 、43、3
1
,且各自能否被选中相互之间没有影响。
(1)求三人都被选中的概率; (2)求只有两人被选中的概率。
19、(12分)平面内有10个点,以其中每两个点为端点的线段共有多少条?
20、(12)已知离散型随机变量ε的分布列为
求D(ε)。
21、(12分)某篮球运动员的投篮命中率为P=0.6 (1)求投篮一次时命中次数X的期望。
(2)求重复投篮5次时,命中次数η的期望。
22、(12分)已知随机变量X的分布列为
(1)试求E(X);
(2)若Y=2X-3,求E(Y).。