2013年普通高等学校招生全国统一考试(湖北·文)

合集下载

2013年高考湖北文科数学试题及答案(word解析版)6948.docx

2013年高考湖北文科数学试题及答案(word解析版)6948.docx

2013年普通高等学校招生全国统一考试(湖北卷)数学(文科)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项符合题目要求. (1)【2013年湖北,文1,5分】已知全集{1,2,3,4,5}U =,集合{1,2}A =,{2,3,4}B =,则U B A =ð( )(A ){2} (B ){3,4} (C ){1,4,5} (D ){2,3,4,5} 【答案】B 【解析】U B A =ð{2,3,4}{3,4,5}{3,4}=,故选B .(2)【2013年湖北,文2,5分】已知π04θ<<,则双曲线1C :22221sin cos x y θθ-=与2C :22221cos sin y x θθ-=的( ) (A )实轴长相等 (B )虚轴长相等 (C )离心率相等 (D )焦距相等 【答案】D【解析】在双曲线1C :22221sin cos x y θθ-=与2C :22221cos sin y x θθ-=中,都有222sin cos 1c θθ=+=,即焦距相等,故选D .(3)【2013年湖北,文3,5分】在一次跳伞训练中,甲、乙两位学员各跳一次.设命题p 是“甲降落在指定范围”,q 是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为( ) (A )()p ⌝∨()q ⌝ (B )p ∨()q ⌝ (C )()p ⌝∧()q ⌝ (D )p ∨q【答案】A【解析】因为p 是“甲降落在指定范围”,q 是“乙降落在指定范围”,则p -是“没有降落在指定范围”,q -是“乙没有降落在指定范围”,所以命题“至少有一位学员没有降落在指定范围”可表示为()p ⌝∨()q ⌝,故选A .(4)【2013年湖北,文4,5分】四名同学根据各自的样本数据研究变量,x y 之间的相关关系,并求得回归直线方程,分别得到以下四个结论:① y 与x 负相关且 2.347 6.423y x =-;② y 与x 负相关且 3.476 5.648y x =-+; ③ y 与x 正相关且 5.4378.493y x =+;④ y 与x 正相关且 4.326 4.578y x =--.其中一定不正确...的结论的序 号是( )(A )①② (B )②③ (C )③④ (D )①④ 【答案】D【解析】在①中,y 与x 不是负相关;①一定不正确;同理④也一定不正确,故选D . (5)【2013年湖北,文5,5分】小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间,后为了赶时间加快速度行驶,与以上事件吻合得最好的图像是( )(A ) (B ) (C ) (D )【答案】C【解析】可以将小明骑车上学的行程分为三段,第一段是匀速行驶,运动方程是一次函数,即小明距学校的距离是他骑行时间的一次函数,所对应的函数图象是一条直线段,由此可以判断A 是错误的;第二段因交通拥堵停留了一段时间,这段时间内小明距学校的距离没有改变,即小明距学校的距离是行驶时间的常值函数,所对应的函数图象是平行于x 轴的一条线段,由此可以排除D ;第三段小明为了赶时间加快速度行驶,即小明在第三段的行驶速度大于第一段的行驶速度,所以第三段所对应的函数图象不与第一段的平行,从而排除B ,故选C .(6)【2013年湖北,文6,5分】将函数sin ()y x x x =+∈R 的图象向左平移(0)m m >个单位长度后,所得到的图象关于y 轴对称,则m 的最小值是( )(A )π12 (B )π6 (C )π3 (D )5π6【答案】B【解析】因为sin ()y x x x +∈R 可化为2cos()6y x π=-(x ∈R ),将它向左平移π6个单位得x x y cos 26)6(cos 2=⎥⎦⎤⎢⎣⎡-+=ππ,其图像关于y 轴对称,故选B .(7)【2013年湖北,文7,5分】已知点(1,1)A -、(1,2)B 、(2,1)C --、(3,4)D ,则向量AB 在CD 方向上的投影为( )(A(B(C) (D)【答案】A【解析】2,1AB =(),5,5CD =(),则向量AB 在向量CD方向上的射影为cos AB CD ABCD θ⋅==2==,故选A . (8)【2013年湖北,文8,5分】x 为实数,[]x 表示不超过x 的最大整数,则函数()[]f x x x =-在R 上为( )(A )奇函数 (B )偶函数 (C )增函数 (D )周期函数 【答案】D【解析】函数()[]f x x x =-表示实数x 的小数部分,有(1)1[1][]()f x x x x x f x +=+-+=-=,所以函数()[]f x x x =-是以1为周期的周期函数,故选D .(9)【2013年湖北,文9,5分】某旅行社租用A 、B 两种型号的客车安排900名客人旅行,A 、B 两种车辆的载客量分别为36人和60人,租金分别为1600元/辆和2400元/辆,旅行社要求租车总数不超过21辆,且B 型车不多于A 型车7辆.则租金最少为( )(A )31200元 (B )36000元 (C )36800元 (D )38400元 【答案】C【解析】根据已知,设需要A 型车x 辆,B 型车y 辆,则根据题设,有2170,03660900x y y x x y x y +≤⎧⎪-≤⎪⎨>>⎪⎪+=⎩, 画出可行域,求出三个顶点的坐标分别为4(7)1A ,,2(5)1B ,,6(15C ,),目标函数 (租金)为16002400k x y =+,如图所示.将点B 的坐标代入其中,即得租金的最小值为:1600524001236k =⨯+⨯=(元),故选C . (10)【2013年湖北,文10,5分】已知函数()(ln )f x x x ax =-有两个极值点,则实数a 的取值范围是( )(A )(,0)-∞ (B )1(0,)2(C )(0,1) (D )(0,)+∞【答案】B【解析】'()ln 12f x x ax =+-,由()(ln )f x x x ax =-由两个极值点,得'()0f x =有两个不等的实数解,即ln 21x ax =-有两个实数解,从而直线21y ax =-与曲线ln y x =有两个交点. 过点01(,-)作ln y x =的切线,设切点为00x y (,),则切线的斜率01k x =,切线方程为011y x x =-. 切点在切线上,则00010x y x =-=,又切点在曲线ln y x =上,则00ln 01x x =⇒=,即切点为10(,).切线方程为1y x =-. 再由直线21y ax =-与曲线ln y x =有两个交点,知直线21y ax =-位于两直线0y =和1y x =-之间,如图所示,其斜率2a 满足:021a <<,解得102a<<,故选B .二、填空题:共7小题,每小题5分,共35分.请将答案填在答题卡对应题号的位置上...........答错位置,书写不清,模棱两可均不得分.(11)【2013年湖北,文11,5分】i 为虚数单位,设复数1z ,2z 在复平面内对应的点关于原点对称,若123i z =-,则2z = . 【答案】23i -+【解析】复数123i z =-在复平面内的对应点123Z -(,),它关于原点的对称点2Z 为2,3-(),所对应的复数为223i z =-+.(12)【2013年湖北,文12,5分】某学员在一次射击测试中射靶10次,命中环数如下:7,8,7,9,5,4,9,10,7,4则(1)平均命中环数为 ;(2)命中环数的标准差为 .【答案】(1)7;(2)2【解析】(1)()178795491074710+++++++++=;(2)2s ==. (13)【2013年湖北,文13,5分】阅读如图所示的程序框图,运行相应的程序.若输入m 的值为2,则输出的结果i = . 【答案】4【解析】初始值2110m A B i ====,,,,第一次执行程序,得121i A B ===,,,因为A B <不成立,则第二次执行程序,得2224122i A B ==⨯==⨯=,,,还是A B <不成立,第三次执行程序, 得3428236i A B ==⨯==⨯=,,,仍是A B <不成立,第四次执行程序,得48216i A ==⨯=,,424B =⨯=,有A B <成立,输出4i =.(14)【2013年湖北,文14,5分】已知圆O :225x y +=,直线l :cos sin 1x y θθ+=(π02θ<<).设 圆O 上 到直线l 的距离等于1的点的个数为k ,则k =_________. 【答案】4【解析】这圆的圆心在原点,半径为5,圆心到直线l 1=,所以圆O 上到直线l 的距离等于1的点有4个,如图A 、B 、C 、D 所示.(15)【2013年湖北,文15,5分】在区间[2,4]-上随机地取一个数x ,若x 满足||x m ≤的概率为56,则m = .【答案】3 【解析】因为区间[2,4]-的长度为6,不等式||x m ≤的解区间为[-m ,m ] ,其区间长度为2m . 那么在区间[2,4]-上随机地取一个数x ,要使x 满足||x m ≤的概率为56,m 将区间[2,4]-分为[]2m -,和[m ,4],且两区间的长度比为5:1,所以3m =.(16)【2013年湖北,文16,5分】我国古代数学名著《数书九章》中有“天池盆测雨”题:在下雨时,用一个圆台形的天池盆接雨水. 天池盆盆口直径为二尺八寸,盆底直径为一尺二寸,盆深一尺八寸. 若盆中积水深九寸,则平地降雨量是 寸.(注:①平地降雨量等于盆中积水体积除以盆口面积;②一尺等于十寸) 【答案】3【解析】如图示天池盆的半轴截面,那么盆中积水的体积为()22961061031963V ππ=⨯++⨯=⨯(立方寸),盆口面积S =196π(平方寸),所以,平地降雨量为323196()3196⨯=寸(寸)(寸). (17)【2013年湖北,文17,5分】在平面直角坐标系中,若点(,)P x y 的坐标x ,y 均为整数,则称点P 为格点. 若一个多边形的顶点全是格点,则称该多边形为格点多边形. 格点多边形的面积记为S ,其内部的格点数记为N ,边界上的格点数记为L . 例如图中△ABC 是格点三角形,对应的1S =,0N =,4L =.(1)图中格点四边形DEFG 对应的,,S N L 分别是 ;(2)已知格点多边形的面积可表示为S aN bL c=++,其中a ,b ,c 为常数. 若某格点多边形对应的71N =,18L =, 则S = (用数值作答). 【答案】(1)3, 1, 6;(2)79【解析】(1)S=S △DFG +S △DEF =1+2=3 ,N=1,L =6.(2)根据题设△ABC 是格点三角形,对应的1S =,0N =,4L =,有 41b c += ①由(1)有63a b c ++= ② 再由格点DEF ∆中,S=2,N=0,L=6,得62b c += ③联立①②③,解得1,1, 1.2b c a ==-=所以当71N =,18L =时,171181792S =+⨯-=.三、解答题:共5题,共65分.解答应写出文字说明,演算步骤或证明过程.(18)【2013年湖北,文18,12分】在△ABC 中,角A ,B ,C 对应的边分别是a ,b ,c . 已知cos23cos()1A B C -+=. (1)求角A 的大小;(2)若△ABC 的面积S =5b =,求sin sin B C 的值. 解:(1)由cos23cos()1A B C -+=,得22cos 3cos 20A A +-=,即(2cos 1)(cos 2)0A A -+=,解得1cos 2A =或cos 2A =-(舍去).因为0πA <<,所以π3A =.(2)由11sin 22S bc A bc ====得20bc =. 又5b =,知4c =.由余弦定理得2222cos 25162021,a b c bc A =+-=+-=故a又由正弦定理得222035sin sin sin sin sin 2147b c bc B C A A A a a a =⋅==⨯=.(19)【2013年湖北,文19,13分】已知n S 是等比数列{}n a 的前n 项和,4S ,2S ,3S 成等差数列,且23418a a a ++=-.(1)求数列{}n a 的通项公式;(2)是否存在正整数n ,使得2013n S ≥?若存在,求出符合条件的所有n 的集合;若不存在,说明理由. 解:(1)设数列{}n a 的公比为q ,则10a ≠,0q ≠.由题意得243223418S S S S a a a -=-⎧⎨++=-⎩,即23211121(1)18a q a q a q a q q q ⎧--=⎪⎨++=-⎪⎩, 解得132a q =⎧⎨=-⎩,故数列{}n a 的通项公式为13(2)n n a -=-.(2)由(1)有3[1(2)]1(2)1(2)nn n S ⋅--==----.若存在n ,使得2013n S ≥,则1(2)2013n --≥,即(2)2012.n -≤-当n 为偶数时,(2)0n ->, 上式不成立;当n 为奇数时,(2)22012n n -=-≤-,即22012n ≥,则11n ≥.综上,存在符合条件的正整数n ,且所有这样的n 的集合为{21,,5}n n k k k =+∈≥N .(20)【2013年湖北,文20,13分】如图,某地质队自水平地面A ,B ,C 三处垂直向地下钻探,自A 点向下钻到A 1处发现矿藏,再继续下钻到A 2处后下面已无矿,从而得到在A 处正下方的矿层厚度为121A A d =.同样可得在B ,C 处正下方的矿层厚度分别为122B B d =,123C C d =,且123d d d <<. 过AB ,AC 的中点M ,N 且与直线2AA 平行的平面截多面体111222A B C A B C -所得的截面DEFG 为该多面体的一个中截面,其面积记为S 中. (1)证明:中截面DEFG 是梯形;(2)在△ABC 中,记BC a =,BC 边上的高为h ,面积为S . 在估测三角形ABC 区域内正下方的矿藏储量(即多面体111222A B C A B C -的体积V )时,可用近似公式V S h =⋅估中来估算.已知1231()3V d d d S =++,试判断V 估与V 的大小关系,并加以证明.解:(1)依题意12A A ⊥平面ABC ,12B B ⊥平面ABC ,12C C ⊥平面ABC ,所以A 1A 2∥B 1B 2∥C 1C 2.又121A A d =, 122B B d =,123C C d =,且123d d d <<.因此四边形1221A A B B 、1221A A C C 均是梯形.由2AA ∥平面MEFN ,2AA ⊂平面22AA B B ,且平面22AA B B平面MEFN ME =,可得AA 2∥ME ,即A 1A 2∥DE .同理可证A 1A 2∥FG ,所以DE ∥FG .又M 、N 分别为AB 、AC 的中点,则D 、E 、F 、G 分别为11A B 、22A B 、22A C 、11A C 的中点,即DE 、FG 分别为梯形1221A A B B 、1221A A C C 的中位线.因此 12121211()()22DE A A B B d d =+=+,12121311()()22FG A A C C d d =+=+,而123d d d <<,故DE FG <,所以中截面DEFG 是梯形. (2)V V <估. 证明如下:由12A A ⊥平面ABC ,MN ⊂平面ABC ,可得12A A MN ⊥.而EM ∥A 1A 2,所以EM MN ⊥,同理可得FN MN ⊥.由MN 是△ABC 的中位线,可得1122MN BC a ==即为梯形DEFG 的高,因此13121231()(2)22228DEFG d d d d a a S S d d d ++==+⋅=++中梯形,即123(2)8ahV S h d d d =⋅=++估中.又12S ah =,所以1231231()()36ahV d d d S d d d =++=++.于是1231232131()(2)[()()]6824ah ah ahV V d d d d d d d d d d -=++-++=-+-估.由123d d d <<,得210d d ->,310d d ->,故V V <估.(21)【2013年湖北,文21,13分】设0a >,0b >,已知函数()1ax bf x x +=+. (1)当a b ≠时,讨论函数()f x 的单调性;(2)当0x >时,称()f x 为a 、b 关于x 的加权平均数.(i )判断(1)f , f ,()bf a是否成等比数列,并证明()b f f a ≤; (ii )a 、b 的几何平均数记为G . 称2aba b+为a 、b 的调和平均数,记为H . 若()H f x G ≤≤,求x的取值范围.解:(1)()f x 的定义域为(,1)(1,)-∞--+∞,22(1)()()(1)(1)a x ax b a bf x x x +-+-'==++. 当a b >时,()0f x '>,函数()f x 在(,1)-∞-,(1,)-+∞上单调递增; 当a b <时,()0f x '<,函数()f x 在(,1)-∞-,(1,)-+∞上单调递减.(2)(i )(1)02a b f +=>,2()0b abf a a b=>+,0f =>.故22(1)()[)]2b a b ab f f ab f a a b +=⋅==+,即2(1)()[b f f f a =.① 所以(1),()bf f f a 成等比数列.因2a b +≥(1)f f ≥. 由①得()b f f a ≤.(ii )由(i )知()bf H a =,f G =.故由()H f x G ≤≤,得()()(b f f xf a ≤≤.② 当a b =时,()()b f f x f a a ===.这时,x 的取值范围为(0,)+∞;当a b >时,01ba<<,从而b a <,由()f x 在(0,)+∞上单调递增与②式,得b x a ≤≤即x 的取值范围为,b a ⎡⎢⎣;当a b <时,1ba>,从而b a >由()f x 在(0,)+∞上单调递减与②式,bx a ≤,即x 的取值范围为b a ⎤⎥⎦. (22)【2013年湖北,文22,14分】如图,已知椭圆1C 与2C 的中心在坐标原点O ,长轴均为MN且在x 轴上,短轴长分别为2m ,2()n m n >,过原点且不与x 轴重合的直线l 与1C ,2C 的四个交点按纵坐标从大到小依次为A ,B ,C ,D .记mnλ=,△BDM 和△ABN 的面积分别为1S 和2S .(1)当直线l 与y 轴重合时,若12S S λ=,求λ的值;(2)当λ变化时,是否存在与坐标轴不重合的直线l ,使得12S S λ=?并说明理由.解:依题意可设椭圆1C 和2C 的方程分别为1C :22221x y a m +=,2C :22221x y a n +=. 其中0a m n >>>, 1.mnλ=>(1)解法一:如图1,若直线l 与y 轴重合,即直线l 的方程为0x =,则111||||||22S BD OM a BD =⋅=,211||||||22S AB ON a AB =⋅=,所以12||||S BD S AB =. 在C 1和C 2的方程中分别令0x =,可得A y m =,B y n =,D y m =-,于是||||1||||1B D A B y y BD m n AB y y m n λλ-++===---.若12S S λ=,则11λλλ+=-,化简得2210λλ--=. 由1λ>,可解得1λ=.故当直线l 与y 轴重合时,若12S S λ=,则1λ=.解法二:如图1,若直线l 与y 轴重合,则||||||BD OB OD m n =+=+,||||||AB OA OB m n =-=-;111||||||22S BD OM a BD =⋅=,211||||||22S AB ON a AB =⋅=.所以12||1||1S BD m n S AB m n λλ++===--. 若12S S λ=,则11λλλ+=-,化简得2210λλ--=. 由1λ>,可解得1λ=. 故当直线l 与y 轴重合时,若12S S λ=,则1λ=+.(2)解法一:如图2,若存在与坐标轴不重合的直线l ,使得12S S λ=. 根据对称性,不妨设直线l :(0)y kx k =>,点(,0)M a -,(,0)N a 到直线l 的距离分别为1d ,2d ,则因为1d ==2d =12d d =. 又111||2S BD d =,221||2S AB d =,所以12||||S BD S AB λ==,即||||BD AB λ=.由对称性可知||||AB CD =,所以||||||(1)||BC BD AB AB λ=-=-,||||||(1)||AD BD AB AB λ=+=+,于是||1||1AD BC λλ+=-.① 将l 的方程分别与C 1,C 2的方程联立,可求得A x =B x = 根据对称性可知C B x x =-,D A x x =-,于是2||||2A B x AD BC x == ②1(1)λλλ+=-.③令1(1)t λλλ+=-,则由m n >,可得1t ≠,于是由③可解 得222222(1)(1)n t k a t λ-=-.因为0k ≠,所以20k >. 于是③式关于k 有解,当且仅当22222(1)0(1)n t a t λ->-, 等价于2221(1)()0t t λ--<. 由1λ>,可解得11t λ<<,即111(1)λλλλ+<<-,由1λ>,解得1λ>所以当11λ<≤+l ,使得12S S λ=;当1λ> 轴不重合的直线l 使得12S S λ=.解法二:如图2,若存在与坐标轴不重合的直线l ,使得12S S λ=. 根据对称性,不妨设直线l :(0)y kx k =>,点(,0)M a -,(,0)N a 到直线l 的距离分别为1d ,2d ,则因为1d ==,2d =12d d =. 又111||2S BD d =,221||2S AB d =,所以12||||S BD S AB λ==.因为||||A B A Bx x BD AB x x λ+===-,所以11A B x x λλ+=-.由点(,)A A A x kx ,(,)B B B x kx 分别在C 1, C 2上,可得222221A A x k x a m +=,222221B B x k x a n +=,两式相减可得22222222()0A B A B x x k x x a m λ--+=,依题意0A B x x >>,所以22AB x x >. 所以由上式解得22222222()()A B B A m x x k a x x λ-=-.因为20k >,所以由2222222()0()A B B A m x x a x x λ->-,可解得1A B x x λ<<.从而111λλλ+<<-,解得1λ>所以当11λ<≤+l ,使得12S S λ=;当1λ>l 使得12S S λ=.。

2013年高考文科数学湖北卷考试试题与答案word解析版

2013年高考文科数学湖北卷考试试题与答案word解析版

2013年普通高等学校夏季招生全国统一考试数学文史类(湖北卷)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2013湖北,文1)已知全集U={1,2,3,4,5},集合A={1,2},B={2,3,4},则B ∩=( ).A.{2} B.{3,4} C.{1,4,5} D.{2,3,4,5}2.(2013湖北,文2)已知0<θ<π4,则双曲线C1:2222=1sin cosx yθθ-与C2:22221cos siny xθθ-=的( ).A.实轴长相等 B.虚轴长相等 C.离心率相等 D.焦距相等3.(2013湖北,文3)在一次跳伞训练中,甲、乙两位学员各跳一次.设命题p是“甲降落在指定范围”,q是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为( ).A.(⌝p)∨(⌝q) B.p∨(⌝q) C.(⌝p)∧(⌝q) D.p∨q4.(2013湖北,文4)四名同学根据各自的样本数据研究变量x,y之间的相关关系,并求得回归直线方程,分别得到以下四个结论:①y与x负相关且y=2.347x-6.423;②y与x负相关且y=-3.476x+5.648;③y与x正相关且y=5.437x+8.493;④y与x正相关且y=-4.326x-4.578.其中一定不正确...的结论的序号是( ).A.①② B.②③ C.③④ D.①④5.(2013湖北,文5)小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间,后为了赶时间加快速度行驶,与以上事件吻合得最好的图象是( ).6.(2013湖北,文6)将函数yx+sin x(x∈R)的图象向左平移m(m>0)个单位长度后,所得到的图象关于y轴对称,则m的最小值是( ).A.π12 B.π6 C.π3 D.5π67.(2013湖北,文7)已知点A(-1,1),B(1,2),C(-2,-1),D(3,4),则向量AB在CD方向上的投影为( ).A.2 B.2 C.2-D.2-8.(2013湖北,文8)x为实数,[x]表示不超过x的最大整数,则函数f(x)=x-[x]在R上为( ).A.奇函数 B.偶函数 C.增函数 D.周期函数9.(2013湖北,文9)某旅行社租用A,B两种型号的客车安排900名客人旅行,A,B两种车辆的载客量分别为36人和60人,租金分别为1 600元/辆和2 400元/辆,旅行社要求租车总数不超过21辆,且B型车不多于A型车7辆,则租金最少为( ).A.31 200元 B.36 000元 C.36 800元 D.38 400元10.(2013湖北,文10)已知函数f(x)=x(ln x-ax)有两个极值点,则实数a的取值范围是( ).A .(-∞,0)B .10,2⎛⎫ ⎪⎝⎭ C .(0,1) D .(0,+∞)二、填空题:本大题共7小题,每小题5分,共35分.请将答案填在答题卡对应题号.......的位置上.答错位置,书写不清,模棱两可均不得分.11.(2013湖北,文11)i 为虚数单位,设复数z 1,z 2在复平面内对应的点关于原点对称,若z 1=2-3i ,则z 2=__________.12.(2013湖北,文12)某学员在一次射击测试中射靶10次,命中环数如下: 7,8,7,9,5,4,9,10,7,4则(1)平均命中环数为__________; (2)命中环数的标准差为__________.13.(2013湖北,文13)阅读如图所示的程序框图,运行相应的程序.若输入m 的值为2,则输出的结果i =__________.14.(2013湖北,文14)已知圆O :x 2+y 2=5,直线l :x cos θ+y sin θ=1π02θ⎛⎫<<⎪⎝⎭.设圆O 上到直线l 的距离等于1的点的个数为k ,则k =__________. 15.(2013湖北,文15)在区间[-2,4]上随机地取一个数x ,若x 满足|x |≤m 的概率为56,则m =__________. 16.(2013湖北,文16)我国古代数学名著《数书九章》中有“天池盆测雨”题:在下雨时,用一个圆台形的天池盆接雨水.天池盆盆口直径为二尺八寸,盆底直径为一尺二寸,盆深一尺八寸.若盆中积水深九寸,则平地降雨量是__________寸.(注:①平地降雨量等于盆中积水体积除以盆口面积;②一尺等于十寸)17.(2013湖北,文17)在平面直角坐标系中,若点P (x ,y )的坐标x ,y 均为整数,则称点P 为格点.若一个多边形的顶点全是格点,则称该多边形为格点多边形.格点多边形的面积记为S ,其内部的格点数记为N ,边界上的格点数记为L .例如图中△ABC 是格点三角形,对应的S =1,N =0,L =4.(1)图中格点四边形DEFG 对应的S ,N ,L 分别是__________;(2)已知格点多边形的面积可表示为S =aN +bL +c ,其中a ,b ,c 为常数.若某格点多边形对应的N =71,L =18,则S =__________(用数值作答).三、解答题:本大题共5小题,共65分.解答应写出文字说明、证明过程或演算步骤.18.(2013湖北,文18)(本小题满分12分)在△ABC 中,角A ,B ,C 对应的边分别是a ,b ,c .已知cos 2A -3cos(B +C )=1. (1)求角A 的大小;(2)若△ABC 的面积S=,b =5,求sin B sin C 的值.19.(2013湖北,文19)(本小题满分13分)已知S n是等比数列{a n}的前n项和,S4,S2,S3成等差数列,且a2+a3+a4=-18.(1)求数列{a n}的通项公式;(2)是否存在正整数n,使得S n≥2 013?若存在,求出符合条件的所有n的集合;若不存在,说明理由.20.(2013湖北,文20)(本小题满分13分)如图,某地质队自水平地面A,B,C三处垂直向地下钻探,自A点向下钻到A1处发现矿藏,再继续下钻到A2处后下面已无矿,从而得到在A处正下方的矿层厚度为A1A2=d1.同样可得在B,C处正下方的矿层厚度分别为B1B2=d2,C1C2=d3,且d1<d2<d3.过AB,AC的中点M,N 且与直线AA2平行的平面截多面体A1B1C1­A2B2C2所得的截面DEFG为该多面体的一个中截面,其面积记为S中.(1)证明:中截面DEFG是梯形;(2)在△ABC中,记BC=a,BC边上的高为h,面积为S.在估测三角形ABC区域内正下方的矿藏储量(即多面体A1B1C1­A2B2C2的体积V)时,可用近似公式V估=S中·h来估算.已知V=13(d1+d2+d3)S,试判断V估与V的大小关系,并加以证明.21.(2013湖北,文21)(本小题满分13分)设a >0,b >0,已知函数f (x )=1ax bx ++. (1)当a ≠b 时,讨论函数f (x )的单调性;(2)当x >0时,称f (x )为a ,b 关于x 的加权平均数.①判断f (1),f ,b f a ⎛⎫⎪⎝⎭是否成等比数列,并证明b f f a ⎛⎫≤ ⎪⎝⎭; ②a ,b 的几何平均数记为G .称2aba b+为a ,b 的调和平均数,记为H .若H ≤f (x )≤G ,求x 的取值范围.22.(2013湖北,文22)(本小题满分14分)如图,已知椭圆C1与C2的中心在坐标原点O,长轴均为MN且在x轴上,短轴长分别为2m,2n(m>n),过原点且不与x轴重合的直线l与C1,C2的四个交点按纵坐标从大到小依次为A,B,C,D,记mnλ=,△BDM和△ABN的面积分别为S1和S2.(1)当直线l与y轴重合时,若S1=λS2,求λ的值;(2)当λ变化时,是否存在与坐标轴不重合的直线l,使得S1=λS2?并说明理由.2013年普通高等学校夏季招生全国统一考试数学文史类(湖北卷)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 答案:B 解析:∵={3,4,5},B ={2,3,4},故B ∩={3,4}.故选B.2. 答案:D解析:对于θ∈π0,4⎛⎫ ⎪⎝⎭,sin 2θ+cos 2θ=1,因而两条双曲线的焦距相等,故选D. 3. 答案:A解析:至少有一位学员没有降落在指定范围,即p ∧q 的对立面,即⌝(p ∧q )=(⌝p )∨(⌝q ),故选A. 4. 答案:D解析:正相关指的是y 随x 的增大而增大,负相关指的是y 随x 的增大而减小,故不正确的为①④,故选D.5.答案:C解析:根据题意,刚开始距离随时间匀速减小,中间有一段时间距离不再变化,最后随时间变化距离变化增大,故选C. 6. 答案:B解析:y cos x +sin x =2πsin 3x ⎛⎫+⎪⎝⎭的图象向左平移m 个单位长度后得y =2πsin 3x m ⎛⎫++ ⎪⎝⎭的图象.又平移后的图象关于y 轴对称,即y =2πsin 3x m ⎛⎫++ ⎪⎝⎭为偶函数,根据诱导公式m 的最小正值为π6,故选B. 7. 答案:A解析:因为AB =(2,1),CD =(5,5),所以向量AB 在CD 方向上的投影为|AB |cos 〈AB ,CD 〉=AB CD AB CD AB AB CDCD⋅⋅⋅===故选A. 8.答案:D 解析:由题意f (1.1)=1.1-[1.1]=0.1,f (-1.1)=-1.1-[-1.1]=-1.1-(-2)=0.9,故该函数不是奇函数,也不是偶函数,更不是增函数.又对任意整数a ,有f (a +x )=a +x -[a +x ]=x -[x ]=f (x ),故f (x )在R 上为周期函数.故选D. 9. 答案:C解析:设需A ,B 型车分别为x ,y 辆(x ,y ∈N ),则x ,y 需满足3660900,7,,,x y y x x y +≥⎧⎪-≤⎨⎪∈∈⎩N N 设租金为z ,则z =1 600x +2 400y ,画出可行域如图,根据线性规划中截距问题,可求得最优解为x =5,y =12,此时z 最小等于36 800,故选C.10. 答案:B解析:f ′(x )=ln x -ax +1x a x ⎛⎫-⎪⎝⎭=ln x -2ax +1,函数f (x )有两个极值点,即ln x -2ax +1=0有两个不同的根(在正实数集上),即函数g (x )=ln 1x x +与函数y =2a在(0,+∞)上有两个不同交点.因为g ′(x )=2ln xx -,所以g (x )在(0,1)上递增,在(1,+∞)上递减,所以g (x )max =g (1)=1,如图.若g (x )与y =2a 有两个不同交点,须0<2a <1.即0<a <12,故选B.二、填空题:本大题共7小题,每小题5分,共35分.请将答案填在答题卡对应题号.......的位置上.答错位置,书写不清,模棱两可均不得分. 11.答案:-2+3i解析:z 1在复平面上的对应点为(2,-3),关于原点的对称点为(-2,3),故z 2=-2+3i. 12.答案:(1)7 (2)2 解析:平均数为78795491074710+++++++++=,标准差为=2.13.(2013湖北,文13)阅读如图所示的程序框图,运行相应的程序.若输入m 的值为2,则输出的结果i =__________. 答案:4解析:由程序框图,i =1后:A =1×2,B =1×1,A <B ?否;i =2后:A =2×2,B =1×2,A <B ?否;i =3后:A =4×2,B =2×3,A <B ?否;i =4后:A =8×2,B =6×4,A <B ?是,输出i =4. 14.解析:由题意圆心到该直线的距离为12,故圆上有4个点到该直线的距离为1. 15.答案:3解析:由题意[-2,4]的区间长度为6,而满足条件的x 取值范围的区间长度为5,故m 取3,x ∈[-2,3]. 16.答案:3解析:由题意盆内所盛水的上底面直径为28122+=20(寸),下底面半径为6寸,高为9寸,故体积为V =13·9·(π·102+π·62+π·10·6)=588π,而盆上口面积为π·142=196π,故平地降雨量为588π196π=3(寸). 17.答案:(1)3,1,6 (2)79 解析:由图形可得四边形DEFG 对应的S ,N ,L 分别是3,1,6.再取两相邻正方形可计算S ,N ,L 的值为2,0,6.加上已知S =1时N =0,L =4,代入S =aN +bL +c 可计算求出a =1,b =12,c =-1,故当N =71,L =18时,S =71+12×18-1=79. 三、解答题:本大题共5小题,共65分.解答应写出文字说明、证明过程或演算步骤. 18.解:(1)由cos 2A -3cos(B +C )=1,得2cos 2A +3cos A -2=0, 即(2cos A -1)(cos A +2)=0, 解得cos A =12或cos A =-2(舍去). 因为0<A <π,所以π3A =. (2)由S =12bc sin A =12bc,24bc ==bc =20. 又b =5,知c =4.由余弦定理得a 2=b 2+c 2-2bc cos A =25+16-20=21,故a =. 又由正弦定理得sin B sin C =b a sin A ·c a sin A =2bc asin 2A =20352147⨯=.19.解:(1)设数列{a n }的公比为q ,则a 1≠0,q ≠0. 由题意得2432234,18,S S S S a a a -=-⎧⎨++=-⎩即23211121,118,a q a q a q a q q q ⎧--=⎨(++)=-⎩ 解得13,2.a q =⎧⎨=-⎩故数列{a n }的通项公式为a n =3(-2)n -1.(2)由(1)有S n =3[12]12n ⋅-(-)-(-)=1-(-2)n.若存在n ,使得S n ≥2 013,则1-(-2)n≥2 013,即(-2)n≤-2 012.当n 为偶数时,(-2)n>0,上式不成立;当n 为奇数时,(-2)n =-2n ≤-2 012,即2n≥2 012,则n ≥11.综上,存在符合条件的正整数n ,且所有这样的n 的集合为{n |n =2k +1,k ∈N ,k ≥5}. 20.(1)证明:依题意,A 1A 2⊥平面ABC ,B 1B 2⊥平面ABC ,C 1C 2⊥平面ABC , 所以A 1A 2∥B 1B 2∥C 1C 2.又A 1A 2=d 1,B 1B 2=d 2,C 1C 2=d 3,且d 1<d 2<d 3. 因此四边形A 1A 2B 2B 1,A 1A 2C 2C 1均是梯形.由AA 2∥平面MEFN ,AA 2⊂平面AA 2B 2B ,且平面AA 2B 2B ∩平面MEFN =ME , 可得AA 2∥ME ,即A 1A 2∥DE .同理可证A 1A 2∥FG ,所以DE ∥FG . 又M ,N 分别为AB ,AC 的中点,则D ,E ,F ,G 分别为A 1B 1,A 2B 2,A 2C 2,A 1C 1的中点,即DE ,FG 分别为梯形A 1A 2B 2B 1,A 1A 2C 2C 1的中位线. 因此DE =12(A 1A 2+B 1B 2)=12(d 1+d 2),FG =12(A 1A 2+C 1C 2)=12(d 1+d 3), 而d 1<d 2<d 3,故DE <FG ,所以中截面DEFG 是梯形.(2)解:V 估<V .证明如下:由A 1A 2⊥平面ABC ,MN ⊂平面ABC ,可得A 1A 2⊥MN . 而EM ∥A 1A 2,所以EM ⊥MN , 同理可得FN ⊥MN .由MN 是△ABC 的中位线,可得MN =1122BC a =即为梯形DEFG 的高, 因此S 中=S 梯形DEFG =13121231(2)22228d d d d a ad d d ++⎛⎫+⋅=++ ⎪⎝⎭,即V 估=S 中·h =8ah(2d 1+d 2+d 3).又12S ah =,所以V =13(d 1+d 2+d 3)S =6ah (d 1+d 2+d 3).于是V -V 估=6ah (d 1+d 2+d 3)-8ah (2d 1+d 2+d 3)=24ah[(d 2-d 1)+(d 3-d 1)].由d 1<d 2<d 3,得d 2-d 1>0,d 3-d 1>0,故V 估<V .21.解:(1)f (x )的定义域为(-∞,-1)∪(-1,+∞),f ′(x )=22111a x ax b a bx x (+)-(+)-=(+)(+).当a >b 时,f ′(x )>0,函数f (x )在(-∞,-1),(-1,+∞)上单调递增;当a <b 时,f ′(x )<0,函数f (x )在(-∞,-1),(-1,+∞)上单调递减.(2)①计算得f (1)=2a b+>0,20b ab f a a b ⎛⎫=> ⎪+⎝⎭,0f =>,故22(1)2b a b abf f ab fa ab ⎡⎤+⎛⎫=⋅==⎢⎥ ⎪+⎝⎭⎢⎥⎣⎦,即2(1)b f f f a ⎡⎤⎛⎫=⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,(*)所以f (1),f ,b f a ⎛⎫⎪⎝⎭成等比数列.因2a b+≥(1)f f ≥,由(*)得b f f a ⎛⎫≤ ⎪⎝⎭.②由①知b f H a ⎛⎫= ⎪⎝⎭,f G =.故由H ≤f (x )≤G ,得()b f f x f a ⎛⎫≤≤ ⎪⎝⎭.(**)当a =b时,()b f f x f a a ⎛⎫===⎪⎝⎭. 这时,x 的取值范围为(0,+∞); 当a >b 时,0<<1ba,从而b a <由f (x )在(0,+∞)上单调递增与(**)式,得bx a ≤≤ 即x的取值范围为b a ⎡⎢⎣;当a <b 时,>1ba,从而b a >由f (x )在(0,+∞)上单调递减与(**)式,bx a ≤≤,即x的取值范围为b a ⎤⎥⎦. 22.解:依题意可设椭圆C 1和C 2的方程分别为C 1:2222=1x y a m +,C 2:2222=1x y a n+.其中a >m >n >0,mnλ=>1.(1)解法1:如图1,若直线l 与y 轴重合,即直线l 的方程为x =0,则S 1=12|BD |·|OM |=12a |BD |,S 2=12|AB |·|ON |=12a |AB |,所以12||||S BD S AB =.在C 1和C 2的方程中分别令x =0,可得y A =m ,y B =n ,y D =-m ,于是||||1||||1B D A B y y BD m n AB y y m n λλ-++===---. 若12=S S λ,则11λλλ+=-, 化简得λ2-2λ-1=0. 由λ>1,可解得λ.故当直线l 与y 轴重合时,若S 1=λS 2,则λ.图1解法2:如图1,若直线l 与y 轴重合,则|BD |=|OB |+|OD |=m +n ,|AB |=|OA |-|OB |=m -n ;S 1=12|BD |·|OM |=12a |BD |, S 2=12|AB |·|ON |=12a |AB |.所以12||1||1S BD m n S AB m n λλ++===--.若12=S S λ,则11λλλ+=-,化简得λ2-2λ-1=0. 由λ>1,可解得λ.故当直线l 与y 轴重合时,若S 1=λS 2,则λ.(2)解法1:如图2,若存在与坐标轴不重合的直线l ,使得S 1=λS 2.图2根据对称性,不妨设直线l :y =kx (k >0),点M (-a,0),N (a,0)到直线l 的距离分别为d 1,d 2,则因为1d ==,2d ==d 1=d 2.又S 1=12|BD |d 1,S 2=12|AB |d 2, 所以12||||S BD S AB ==λ,即|BD |=λ|AB |. 由对称性可知|AB |=|CD |,所以|BC |=|BD |-|AB |=(λ-1)|AB |,|AD |=|BD |+|AB |=(λ+1)|AB |, 于是||1||1AD BC λλ+=-.① 将l 的方程分别与C 1,C 2的方程联立,可求得A x =B x =.根据对称性可知x C =-x B ,x D =-x A ,于是2||||2A Bx AD BC x ==从而由①和②式可得11λλλ+=(-).③ 令1=1t λλλ+(-),则由m >n ,可得t ≠1,于是由③可解得22222211n t k a t λ(-)=(-). 因为k ≠0,所以k 2>0. 于是③式关于k 有解,当且仅当222221>01n t a t λ(-)(-), 等价于2221(1)<0t t λ⎛⎫-- ⎪⎝⎭. 由λ>1,可解得1λ<t <1, 即11<11λλλλ+<(-), 由λ>1,解得λ>,所以当1<λ≤时,不存在与坐标轴不重合的直线l ,使得S 1=λS 2; 当λ>l 使得S 1=λS 2.解法2:如图2,若存在与坐标轴不重合的直线l ,使得S 1=λS 2.根据对称性,不妨设直线l :y =kx (k >0),点M (-a,0),N (a,0)到直线l 的距离分别为d 1,d 2,则因为1d ==,2d ==d 1=d 2.又S 1=12|BD |d 1,S 2=12|AB |d 2, 所以12||=||S BD S AB λ=.因为||||A B A Bx x BD AB x x λ+===-, 所以11A B x x λλ+=-. 由点A (x A ,kx A ),B (x B ,kx B )分别在C 1,C 2上,可得 22222=1A A x k x a m +,22222=1B B x k x a n+, 两式相减可得22222222=0A B A B x x k x x a mλ-(-)+, 依题意x A >x B >0,所以22A B x x >. 所以由上式解得22222222A B B A m x x k a x x λ(-)=(-). 因为k 2>0,所以由2222222>0A B B A m x x a x x λ(-)(-),可解得<1A B x x λ<. 从而11<<1λλλ+-,解得λ> 当1<λ≤时,不存在与坐标轴不重合的直线l ,使得S 1=λS 2; 当λ>l 使得S 1=λS 2.。

2013高考真题文数湖北卷

2013高考真题文数湖北卷

绝密★启用前2013年普通高等学校招生全国统一考试(湖北卷)数 学(文史类)本试题卷共5页,22题。

全卷满分150分。

考试用时120分钟。

★祝考试顺利★注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

用统一提供的2B 铅笔将答题卡上试卷类型A 后的方框涂黑。

2.选择题的作答:每小题选出答案后,用统一提供的2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

答在试题卷、草稿纸上无效。

3.填空题和解答题的作答:用统一提供的签字笔直接答在答题卡上对应的答题区域内。

答在试题卷、草稿纸上无效。

4.考生必须保持答题卡的整洁。

考试结束后,请将本试题卷和答题卡一并上交。

一、选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集{1,2,3,4,5}U =,集合{1,2}A =,{2,3,4}B =,则U B A =A .{2}B .{3,4}C .{1,4,5}D .{2,3,4,5}2.已知π04θ<<,则双曲线1C :22221sin cos x y θθ-=与2C :22221cos sin y x θθ-=的A .实轴长相等B .虚轴长相等C .离心率相等D .焦距相等3.在一次跳伞训练中,甲、乙两位学员各跳一次.设命题p 是“甲降落在指定范围”,q 是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为 A .()p ⌝∨()q ⌝ B .p ∨()q ⌝C .()p ⌝∧()q ⌝D .p ∨q4.四名同学根据各自的样本数据研究变量,x y 之间的相关关系,并求得回归直线方程,分 别得到以下四个结论:① y 与x 负相关且 2.347 6.423y x =-; ② y 与x 负相关且 3.476 5.648y x =-+; ③ y 与x 正相关且 5.4378.493y x =+; ④ y 与x 正相关且 4.326 4.578y x =--. 其中一定不.正确..的结论的序号是 A .①② B .②③ C .③④ D . ①④5.小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间,后为了赶时间加快速度行驶. 与以上事件吻合得最好的图象是6.将函数sin ()y x x x =+∈R 的图象向左平移(0)m m >个单位长度后,所得到的图象关于y 轴对称,则m 的最小值是 A .π12B .π6C .π3D .5π67.已知点(1,1)A -、(1,2)B 、(2,1)C --、(3,4)D ,则向量AB 在CD 方向上的投影为A B C . D . 8.x 为实数,[]x 表示不超过x 的最大整数,则函数()[]f x x x =-在R 上为 A .奇函数B .偶函数C .增函数D . 周期函数9.某旅行社租用A 、B 两种型号的客车安排900名客人旅行,A 、B 两种车辆的载客量分别为36人和60人,租金分别为1600元/辆和2400元/辆,旅行社要求租车总数不超过21辆,且B 型车不多于A 型车7辆.则租金最少为A .31200元B .36000元C .36800元D .38400元 10.已知函数()(ln )f x x x ax =-有两个极值点,则实数a 的取值范围是A .(,0)-∞B .1(0,)2C .(0,1)D .(0,)+∞二、填空题:本大题共7小题,每小题5分,共35分.请将答案填在答题卡对应题号.......的位置上. 答错位置,书写不清,模棱两可均不得分.11.i 为虚数单位,设复数1z ,2z 在复平面内对应的点关于原点对称,若123i z =-,则2z = .12.某学员在一次射击测试中射靶10次,命中环数如下:7,8,7,9,5,4,9,10,7,4则(Ⅰ)平均命中环数为 ; (Ⅱ)命中环数的标准差为 .13.阅读如图所示的程序框图,运行相应的程序. 若输入m 的值为2,则输出的结果i = .14.已知圆O :225x y +=,直线l :cos sin 1x y θθ+=(π02θ<<).设圆O 上到直线l 的距离等于1的点的个数为k ,则k = .15.在区间[2,4]-上随机地取一个数x ,若x 满足||x m ≤的概率为56, 则m = .16.我国古代数学名著《数书九章》中有“天池盆测雨”题:在下雨时,用一个圆台形的天池盆接雨水. 天池盆盆口直径为二尺八寸,盆底直径为一尺二寸,盆深一尺八寸. 若盆中积水深九寸,则平地降雨量是 寸.(注:①平地降雨量等于盆中积水体积除以盆口面积;②一尺等于十寸)17.在平面直角坐标系中,若点(,)P x y 的坐标x ,y 均为整数,则称点P 为格点. 若一个多边形的顶点全是格点,则称该多边形为格点多边形. 格点多边形的面积记为S ,其内部的格点数记为N ,边界上的格点数记为L . 例如图中△ABC 是格点三角形,对应的1S =,0N =,4L =.(Ⅰ)图中格点四边形DEFG 对应的,,S N L 分别是 ;(Ⅱ)已知格点多边形的面积可表示为S aN bL c =++,其中a ,b ,c 为常数.若某格点多边形对应的71N =,18L =, 则S = (用数值作答).否A A m =⨯1i i =+ 输入m1, 1, 0A B i ===开始 结束是 ?A B <输出i第13题图B B i =⨯ 第17题图三、解答题:本大题共5小题,共65分.解答应写出文字说明、证明过程或演算步骤. 18.(本小题满分12分)在△ABC 中,角A ,B ,C 对应的边分别是a ,b ,c . 已知cos23cos()1A B C -+=. (Ⅰ)求角A 的大小;(Ⅱ)若△ABC 的面积53S =,5b =,求sin sin B C 的值. 19.(本小题满分13分)已知n S 是等比数列{}n a 的前n 项和,4S ,2S ,3S 成等差数列,且23418a a a ++=-. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)是否存在正整数n ,使得2013n S ≥?若存在,求出符合条件的所有n 的集合;若不存在,说明理由.20.(本小题满分13分)如图,某地质队自水平地面A ,B ,C 三处垂直向地下钻探,自A 点向下钻到A 1处发现矿藏,再继续下钻到A 2处后下面已无矿,从而得到在A 处正下方的矿层厚度为121A A d =.同样可得在B ,C 处正下方的矿层厚度分别为122B B d =,123C C d =,且123d d d <<. 过AB ,AC 的中点M ,N 且与直线2AA 平行的平面截多面体111222A B C A B C -所得的截面DEFG 为该多面体的一个中截面,其面积记为S 中. (Ⅰ)证明:中截面DEFG 是梯形;(Ⅱ)在△ABC 中,记BC a =,BC 边上的高为h ,面积为S . 在估测三角形ABC 区域内正下方的矿藏储量(即多面体111222A B C A B C -的体积V )时,可用近似公式V S h =⋅估中来估算. 已知1231()3V d d d S =++,试判断V 估与V 的大小关系,并加以证明.第20题图21.(本小题满分13分)设0a >,0b >,已知函数()1ax bf x x +=+. (Ⅰ)当a b ≠时,讨论函数()f x 的单调性;(Ⅱ)当0x >时,称()f x 为a 、b 关于x 的加权平均数.(i )判断(1)f, f ,()bf a是否成等比数列,并证明()b f f a ≤; (ii )a 、b 的几何平均数记为G . 称2aba b+为a 、b 的调和平均数,记为H . 若()H f x G ≤≤,求x 的取值范围.22.(本小题满分14分)如图,已知椭圆1C 与2C 的中心在坐标原点O ,长轴均为MN 且在x 轴上,短轴长分别 为2m ,2()n m n >,过原点且不与x 轴重合的直线l 与1C ,2C 的四个交点按纵坐标从 大到小依次为A ,B ,C ,D .记mnλ=,△BDM 和△ABN 的面积分别为1S 和2S . (Ⅰ)当直线l 与y 轴重合时,若12S S λ=,求λ的值;(Ⅱ)当λ变化时,是否存在与坐标轴不重合的直线l ,使得12S S λ=?并说明理由.第22题图2013年普通高等学校招生全国统一考试(湖北卷)数学(文史类)试题参考答案一、选择题:1.B 2.D 3.A 4.D 5.C 6.B 7.A 8.D 9.C 10.B 二、填空题:11.23i -+ 12.(Ⅰ)7 (Ⅱ)2 13.414.4 15.3 16.3 17.(Ⅰ)3, 1, 6 (Ⅱ)79 三、解答题: 18.(Ⅰ)由cos23cos()1A B C -+=,得22cos 3cos 20A A +-=, 即(2cos 1)(cos 2)0A A -+=,解得1cos 2A = 或cos 2A =-(舍去). 因为0πA <<,所以π3A =.(Ⅱ)由11sin 22S bc A bc ====得20bc =. 又5b =,知4c =.由余弦定理得2222cos 25162021,a b c bc A =+-=+-=故a =又由正弦定理得222035sin sin sin sin sin 2147b c bc B C A A A a a a =⋅==⨯=.19.(Ⅰ)设数列{}n a 的公比为q ,则10a ≠,0q ≠. 由题意得 2432234,18,S S S S a a a -=-⎧⎨++=-⎩ 即23211121,(1)18,a q a q a q a q q q ⎧--=⎪⎨++=-⎪⎩ 解得13,2.a q =⎧⎨=-⎩故数列{}n a 的通项公式为13(2)n n a -=-.(Ⅱ)由(Ⅰ)有 3[1(2)]1(2)1(2)n n n S ⋅--==----.若存在n ,使得2013n S ≥,则1(2)2013n --≥,即(2)2012.n -≤- 当n 为偶数时,(2)0n ->, 上式不成立;当n 为奇数时,(2)22012n n -=-≤-,即22012n ≥,则11n ≥.综上,存在符合条件的正整数n ,且所有这样的n 的集合为{21,,5}n n k k k =+∈≥N . 20.(Ⅰ)依题意12A A ⊥平面ABC ,12B B ⊥平面ABC ,12C C ⊥平面ABC ,所以A 1A 2∥B 1B 2∥C 1C 2. 又121A A d =,122B B d =,123C C d =,且123d d d << . 因此四边形1221A A B B 、1221A A C C 均是梯形.由2AA ∥平面MEFN ,2AA ⊂平面22AA B B ,且平面22AA B B 平面MEFN ME =,可得AA 2∥ME ,即A 1A 2∥DE . 同理可证A 1A 2∥FG ,所以DE ∥FG .又M 、N 分别为AB 、AC 的中点,则D 、E 、F 、G 分别为11A B 、22A B 、22A C 、11A C 的中点, 即DE 、FG 分别为梯形1221A A B B 、1221A A C C 的中位线.因此 12121211()()22DE A A B B d d =+=+,12121311()()22FG A A C C d d =+=+,而123d d d <<,故DE FG <,所以中截面DEFG 是梯形. (Ⅱ)V V <估. 证明如下:由12A A ⊥平面ABC ,MN ⊂平面ABC ,可得12A A MN ⊥. 而EM ∥A 1A 2,所以EM MN ⊥,同理可得FN MN ⊥. 由MN 是△ABC 的中位线,可得1122MN BC a ==即为梯形DEFG 的高, 因此13121231()(2)22228DEFG d d d d a a S S d d d ++==+⋅=++中梯形, 即123(2)8ahV S h d d d =⋅=++估中. 又12S ah =,所以1231231()()36ahV d d d S d d d =++=++.于是1231232131()(2)[()()]6824ah ah ahV V d d d d d d d d d d -=++-++=-+-估.由123d d d <<,得210d d ->,310d d ->,故V V <估.(Ⅰ)()f x 的定义域为(,1)(1,)-∞--+∞,22(1)()()(1)(1)a x ax b a bf x x x +-+-'==++. 当a b >时,()0f x '>,函数()f x 在(,1)-∞-,(1,)-+∞上单调递增; 当a b <时,()0f x '<,函数()f x 在(,1)-∞-,(1,)-+∞上单调递减.(Ⅱ)(i )计算得(1)02a b f +=>,2()0b abf a a b=>+,0f =>.故22(1)()[2b a b ab f f ab f a a b +=⋅==+, 即2(1)()[b f f f a =. ①所以(1),()bf f f a成等比数列.因2a b +≥,即(1)f f ≥. 由①得()b f f a ≤.(ii )由(i )知()bf H a =,f G =.故由()H f x G ≤≤,得()()b f f x f a ≤≤. ②当a b =时,()()b f f x f a a ===.这时,x 的取值范围为(0,)+∞;当a b >时,01ba<<,从而b a <()f x 在(0,)+∞上单调递增与②式,得b x a ≤≤x 的取值范围为,b a⎡⎢⎣;当a b <时,1ba>,从而b a >()f x 在(0,)+∞上单调递减与②式,bx a ≤≤,即x 的取值范围为b a ⎤⎥⎦.依题意可设椭圆1C 和2C 的方程分别为1C :22221x y a m +=,2C :22221x y a n +=. 其中0a m n >>>, 1.mnλ=>(Ⅰ)解法1:如图1,若直线l 与y 轴重合,即直线l 的方程为0x =,则111||||||22S BD OM a BD =⋅=,211||||||22S AB ON a AB =⋅=,所以12||||S BD S AB =. 在C 1和C 2的方程中分别令0x =,可得A y m =,B y n =,D y m =-, 于是||||1||||1B D A B y y BD m n AB y y m n λλ-++===---. 若12S S λ=,则11λλλ+=-,化简得2210λλ--=. 由1λ>,可解得1λ. 故当直线l 与y 轴重合时,若12S S λ=,则1λ=. 解法2:如图1,若直线l 与y 轴重合,则||||||BD OB OD m n =+=+,||||||AB OA OB m n =-=-;111||||||22S BD OM a BD =⋅=,211||||||22S AB ON a AB =⋅=. 所以12||1||1S BD m n S AB m n λλ++===--. 若12S S λ=,则11λλλ+=-,化简得2210λλ--=. 由1λ>,可解得1λ. 故当直线l 与y 轴重合时,若12S S λ=,则1λ=.(Ⅱ)解法1:如图2,若存在与坐标轴不重合的直线l ,使得12S S λ=. 根据对称性, 不妨设直线l :(0)y kx k =>,点(,0)M a -,(,0)N a 到直线l 的距离分别为1d ,2d ,则因为1d =2d =,所以12d d =.又111||2S BD d =,221||2S AB d =,所以12||||S BD S AB λ==,即||||BD AB λ=. 由对称性可知||||AB CD =,所以||||||(1)||BC BD AB AB λ=-=-, ||||||(1)||AD BD AB AB λ=+=+,于是第22题解答图1第22题解答图2||1||1AD BC λλ+=-. ① 将l 的方程分别与C 1,C 2的方程联立,可求得A x =B x =.根据对称性可知C B x x =-,D A x x =-,于是2||||2A Bx AD BC x === ② 从而由①和②式可得1(1)λλλ+=-. ③令1(1)t λλλ+=-,则由m n >,可得1t ≠,于是由③可解得222222(1)(1)n t k a t λ-=-.因为0k ≠,所以20k >. 于是③式关于k 有解,当且仅当22222(1)0(1)n t a t λ->-,等价于2221(1)()0t t λ--<. 由1λ>,可解得11t λ<<,即111(1)λλλλ+<<-,由1λ>,解得1λ>当11λ<≤l ,使得12S S λ=;当1λ>l 使得12S S λ=. 解法2:如图2,若存在与坐标轴不重合的直线l ,使得12S S λ=. 根据对称性, 不妨设直线l :(0)y kx k =>,点(,0)M a -,(,0)N a 到直线l 的距离分别为1d ,2d ,则因为1d =2d =,所以12d d =.又111||2S BD d =,221||2S AB d =,所以12||||S BD S AB λ==.因为||||A B A Bx x BD AB x x λ+===-,所以11A B x x λλ+=-. 由点(,)A A A x kx ,(,)B B B x kx 分别在C 1,C 2上,可得222221A A x k x a m +=,222221B B x k x a n+=,两式相减可得22222222()0A B A B x x k x x a m λ--+=, 依题意0A B x x >>,所以22AB x x >. 所以由上式解得22222222()()A B B A m x x k a x x λ-=-.因为20k >,所以由2222222()0()A B B A m x x a x x λ->-,可解得1ABx x λ<<.梦想不会辜负一个努力的人all`试题 11 从而111λλλ+<<-,解得1λ>当11λ<≤l ,使得12S S λ=;当1λ>l 使得12S S λ=.。

数学(文)_2013湖北卷_11页

数学(文)_2013湖北卷_11页

绝密★启用前2013年普通高等学校招生全国统一考试(湖北卷)数学(文史类)本试题卷共5页,22题。

全卷满分150分。

考试用时120分钟。

★祝考试顺利★注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

用统一提供的2B铅笔将答题卡上试卷类型A后的方框涂黑。

2.选择题的作答:每小题选出答案后,用统一提供的2B铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

答在试题卷、草稿纸上无效。

3.填空题和解答题的作答:用统一提供的签字笔直接答在答题卡上对应的答题区域内。

答在试题卷、草稿纸上无效。

4.考生必须保持答题卡的整洁。

考试结束后,请将本试题卷和答题卡一并上交。

一、选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集,集合,,则A. B. C. D.2.已知,则双曲线:与:的A.实轴长相等 B.虚轴长相等 C.离心率相等D.焦距相等3.在一次跳伞训练中,甲、乙两位学员各跳一次.设命题p是“甲降落在指定范围”,q是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为A.∨ B.∨ C.∧ D.∨4.四名同学根据各自的样本数据研究变量之间的相关关系,并求得回归直线方程,分别得到以下四个结论:①y与x负相关且;② y与x负相关且;③ y与x正相关且;④ y与x正相关且.其中一定不正确的结论的序号是A.①② B.②③ C.③④ D.①④5.小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间,后为了赶时间加快速度行驶. 与以上事件吻合得最好的图象是距学校的距离距学校的距离距学校的距离ABCD时间时间时间时间OOOO距学校的距离6.将函数的图象向左平移个单位长度后,所得到的图象关于y轴对称,则m的最小值是A. B. C. D.7.已知点、、、,则向量在方向上的投影为A. B. C. D.8.x为实数,表示不超过的最大整数,则函数在上为A.奇函数 B.偶函数 C.增函数 D.周期函数9.某旅行社租用、两种型号的客车安排900名客人旅行,、两种车辆的载客量分别为36人和60人,租金分别为1600元/辆和2400元/辆,旅行社要求租车总数不超过21辆,且型车不多于型车7辆.则租金最少为A.31200元 B.36000元 C.36800元 D.38400元10.已知函数有两个极值点,则实数的取值范围是A. B. C. D.二、填空题:本大题共7小题,每小题5分,共35分.请将答案填在答题卡对应题号的位置上. 答错位置,书写不清,模棱两可均不得分.11.为虚数单位,设复数,在复平面内对应的点关于原点对称,若,则.否输入开始结束是输出第13题图12.某学员在一次射击测试中射靶10次,命中环数如下:7,8,7,9,5,4,9,10,7,4则(Ⅰ)平均命中环数为;(Ⅱ)命中环数的标准差为 .13.阅读如图所示的程序框图,运行相应的程序. 若输入的值为2,则输出的结果 .已知圆:,直线:().设圆上到直线的距离等于1的点的个数为,则.15.在区间上随机地取一个数x,若x满足的概率为,则 .16.我国古代数学名著《数书九章》中有“天池盆测雨”题:在下雨时,用一个圆台形的天池盆接雨水. 天池盆盆口直径为二尺八寸,盆底直径为一尺二寸,盆深一尺八寸. 若盆中积水深九寸,则平地降雨量是寸.(注:①平地降雨量等于盆中积水体积除以盆口面积;②一尺等于十寸)17.在平面直角坐标系中,若点的坐标,均为整数,则称点为格点. 若一个多边形的顶点全是格点,则称该多边形为格点多边形. 格点多边形的面积记为,其内部的格点数记为,边界上的格点数记为. 例如图中△是格点三角形,对应的,,.(Ⅰ)图中格点四边形DEFG对应的分别是;(Ⅱ)已知格点多边形的面积可表示为,其中a,b,c为常数.若某格点多边形对应的,,则(用数值作答).第17题图三、解答题:本大题共5小题,共65分.解答应写出文字说明、证明过程或演算步骤.18.(本小题满分12分)在△中,角,,对应的边分别是,,. 已知.(Ⅰ)求角A的大小;(Ⅱ)若△的面积,,求的值.19.(本小题满分13分)已知是等比数列的前项和,,,成等差数列,且.(Ⅰ)求数列的通项公式;(Ⅱ)是否存在正整数,使得?若存在,求出符合条件的所有的集合;若不存在,说明理由.20.(本小题满分13分)如图,某地质队自水平地面A,B,C三处垂直向地下钻探,自A点向下钻到A1处发现矿藏,再继续下钻到A2处后下面已无矿,从而得到在A处正下方的矿层厚度为.同样可得在B,C处正下方的矿层厚度分别为,,且. 过,的中点,且与直线平行的平面截多面体所得的截面为该多面体的一个中截面,其面积记为.(Ⅰ)证明:中截面是梯形;(Ⅱ)在△ABC中,记,BC边上的高为,面积为. 在估测三角形区域内正下方的矿藏储量(即多面体的体积)时,可用近似公式来估算. 已知,试判断与V的大小关系,并加以证明.第20题图21.(本小题满分13分)设,,已知函数.(Ⅰ)当时,讨论函数的单调性;(Ⅱ)当时,称为、关于的加权平均数.(i)判断, ,是否成等比数列,并证明;(ii)、的几何平均数记为G. 称为、的调和平均数,记为H.若,求的取值范围.22.(本小题满分14分)如图,已知椭圆与的中心在坐标原点,长轴均为且在轴上,短轴长分别为,,过原点且不与轴重合的直线与,的四个交点按纵坐标从大到小依次为A,B,C,D.记,△和△的面积分别为和.(Ⅰ)当直线与轴重合时,若,求的值;(Ⅱ)当变化时,是否存在与坐标轴不重合的直线l,使得?并说明理由.第22题图2013年普通高等学校招生全国统一考试(湖北卷)数学(文史类)试题参考答案一、选择题:1.B 2.D 3.A 4.D 5.C 6.B 7.A 8.D 9.C 10.B二、填空题:11. 12.(Ⅰ)7 (Ⅱ)2 13.414.4 15.3 16.3 17.(Ⅰ)3, 1, 6 (Ⅱ)79三、解答题:18.(Ⅰ)由,得,即,解得或(舍去).因为,所以. (Ⅱ)由得. 又,知.由余弦定理得故.又由正弦定理得.19.(Ⅰ)设数列的公比为,则,. 由题意得即 解得故数列的通项公式为. (Ⅱ)由(Ⅰ)有 .若存在,使得,则,即当为偶数时,,上式不成立;当为奇数时,,即,则.综上,存在符合条件的正整数,且所有这样的n的集合为.20.(Ⅰ)依题意平面,平面,平面,所以A1A2∥B1B2∥C1C2. 又,,,且 .因此四边形、均是梯形.由∥平面,平面,且平面平面,可得AA2∥ME,即A1A2∥DE. 同理可证A1A2∥FG,所以DE∥FG.又、分别为、的中点,则、、、分别为、、、 的中点,即、分别为梯形、的中位线.因此 ,,而,故,所以中截面是梯形.(Ⅱ). 证明如下:由平面,平面,可得.而EM∥A1A2,所以,同理可得.由是△的中位线,可得即为梯形的高,因此,即.又,所以.于是.由,得,,故.(Ⅰ)的定义域为,.当时,,函数在,上单调递增;当时,,函数在,上单调递减.(Ⅱ)(i)计算得,,.故, 即. ①所以成等比数列.因,即. 由①得.(ii)由(i)知,.故由,得. ②当时,.这时,的取值范围为;当时,,从而,由在上单调递增与②式, 得,即的取值范围为;当时,,从而,由在上单调递减与②式, 得,即的取值范围为.依题意可设椭圆和的方程分别为:,:. 其中,(Ⅰ)解法1:如图1,若直线与轴重合,即直线的方程为,则,,所以.在C1和C2的方程中分别令,可得,,,于是.若,则,化简得. 由,可解得.故当直线与轴重合时,若,则.解法2:如图1,若直线与轴重合,则,;,.所以.若,则,化简得. 由,可解得.故当直线与轴重合时,若,则.第22题解答图1第22题解答图2(Ⅱ)解法1:如图2,若存在与坐标轴不重合的直线l,使得. 根据对称性,不妨设直线:,点,到直线的距离分别为,,则因为,,所以.又,,所以,即.由对称性可知,所以,,于是. ①将的方程分别与C1,C2的方程联立,可求得,.根据对称性可知,,于是. ②从而由①和②式可得. ③令,则由,可得,于是由③可解得.因为,所以. 于是③式关于有解,当且仅当,等价于. 由,可解得,即,由,解得,所以当时,不存在与坐标轴不重合的直线l,使得;当时,存在与坐标轴不重合的直线l使得.解法2:如图2,若存在与坐标轴不重合的直线l,使得. 根据对称性,不妨设直线:,点,到直线的距离分别为,,则因为,,所以.又,,所以.因为,所以.由点,分别在C1,C2上,可得,,两式相减可得,依题意,所以. 所以由上式解得.因为,所以由,可解得.从而,解得,所以当时,不存在与坐标轴不重合的直线l,使得;当时,存在与坐标轴不重合的直线l使得.。

2013年普通高等学校招生全国统一考试湖北卷

2013年普通高等学校招生全国统一考试湖北卷

2013年普通高等学校招生全国统一考试(湖北卷)数 学(文史类)一、选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集{1,2,3,4,5}U =,集合{1,2}A =,{2,3,4}B =,则U B A =ðA .{2}B .{3,4}C .{1,4,5}D .{2,3,4,5}2.已知π04θ<<,则双曲线1C :22221sin cos x y θθ-=与2C :22221cos sin y x θθ-=的 A .实轴长相等 B .虚轴长相等C .离心率相等D .焦距相等3.在一次跳伞训练中,甲、乙两位学员各跳一次.设命题p 是“甲降落在指定范围”,q 是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为 A .()p ⌝∨()q ⌝B .p ∨()q ⌝C .()p ⌝∧()q ⌝D .p ∨q4.四名同学根据各自的样本数据研究变量,x y 之间的相关关系,并求得回归直线方程,分 别得到以下四个结论:① y 与x 负相关且 2.347 6.423y x =-; ② y 与x 负相关且 3.476 5.648y x =-+; ③ y 与x 正相关且 5.4378.493y x =+; ④ y 与x 正相关且 4.326 4.578y x =--. 其中一定不正确...的结论的序号是 A .①② B .②③C .③④D . ①④5.小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间,后为了赶时间加快速度行驶. 与以上事件吻合得最好的图象是6.将函数sin ()y x x x +∈R 的图象向左平移(0)m m >个单位长度后,所得到的图象关于y 轴对称,则m 的最小值是A .π12B .π6C .π3D .5π67.已知点(1,1)A -、(1,2)B 、(2,1)C --、(3,4)D ,则向量AB 在CD 方向上的投影为ABC. D. 8.x 为实数,[]x 表示不超过x 的最大整数,则函数()[]f x x x =-在R 上为 A .奇函数B .偶函数C .增函数D . 周期函数9.某旅行社租用A 、B 两种型号的客车安排900名客人旅行,A 、B 两种车辆的载客量分别为36人和60人,租金分别为1600元/辆和2400元/辆,旅行社要求租车总数不超过21辆,且B 型车不多于A 型车7辆.则租金最少为 A .31200元B .36000元C .36800元D .38400元10.已知函数()(ln )f x x x ax =-有两个极值点,则实数a 的取值范围是A .(,0)-∞B .1(0,)2C .(0,1)D .(0,)+∞二、填空题:本大题共7小题,每小题5分,共35分.请将答案填在答题卡对应题号.......的位置上. 答错位置,书写不清,模棱两可均不得分.11.i 为虚数单位,设复数1z ,2z 在复平面内对应的点关于原点对称,若123i z =-,则2z = . 12.某学员在一次射击测试中射靶10次,命中环数如下:7,8,7,9,5,4,9,10,7,4则(Ⅰ)平均命中环数为 ; (Ⅱ)命中环数的标准差为 .13.阅读如图所示的程序框图,运行相应的程序. 若输入m 的值为2, 则输出的结果i = .14.已知圆O :225x y +=,直线l :cos sin 1x y θθ+=(π02θ<<).设圆O 上到直线l 的距离等于1的点第13题图的个数为k ,则k = .15.在区间[2,4]-上随机地取一个数x ,若x 满足||x m ≤的概率为56,则m = . 16.我国古代数学名著《数书九章》中有“天池盆测雨”题:在下雨时,用一个圆台形的天池盆接雨水. 天池盆盆口直径为二尺八寸,盆底直径为一尺二寸,盆深一尺八寸. 若盆中积水深九寸,则平地降雨量是 寸.(注:①平地降雨量等于盆中积水体积除以盆口面积;②一尺等于十寸)17.在平面直角坐标系中,若点(,)P x y 的坐标x ,y 均为整数,则称点P 为格点. 若一个多边形的顶点全是格点,则称该多边形为格点多边形. 格点多边形的面积记为S ,其内部的格点数记为N ,边界上的格点数记为L . 例如图中△ABC 是格点三角形,对应的1S =,0N =,4L =. (Ⅰ)图中格点四边形DEFG 对应的,,S N L 分别是 ;(Ⅱ)已知格点多边形的面积可表示为S aN bL c =++,其中a ,b ,c 为常数. 若某格点多边形对应的71N =,18L =, 则S = (用数值作答).三、解答题:本大题共5小题,共65分.解答应写出文字说明、证明过程或演算步骤. 18.(本小题满分12分)在△ABC 中,角A ,B ,C 对应的边分别是a ,b ,c . 已知cos23cos()1A B C -+=.(Ⅰ)求角A 的大小; (Ⅱ)若△ABC 的面积S =5b =,求sin sin B C 的值.19.(本小题满分13分)已知n S 是等比数列{}n a 的前n 项和,4S ,2S ,3S 成等差数列,且23418a a a ++=-. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)是否存在正整数n ,使得2013n S ≥?若存在,求出符合条件的所有n 的集合;若不存在,说明理由.20.(本小题满分13分)如图,某地质队自水平地面A ,B ,C 三处垂直向地下钻探,自A 点向下钻到A 1处发现矿藏,再继续下钻到A 2处后下面已无矿,从而得到在A 处正下方的矿层厚度为121A A d =.同样可得在B ,C 处正下方的矿层厚度分别为122B B d =,123C C d =,且123d d d <<. 过AB ,AC 的中点M ,N 且与直线2AA 平行的平面截多面体111222A B C A B C -所得的截面DEFG 为该多面体的一个中截面,其面积记为S 中. (Ⅰ)证明:中截面DEFG 是梯形;(Ⅱ)在△ABC 中,记BC a =,BC 边上的高为h ,面积为S . 在估测三角形ABC 区域内正下方的矿藏储量(即多面体111222A B C A B C -的体积V )时,可用近似公式V S h =⋅估中来估算. 已知1231()3V d d d S =++,试判断V 估与V 的大小关系,并加以证明.21.(本小题满分13分)设0a >,0b >,已知函数()1ax bf x x +=+. (Ⅰ)当a b ≠时,讨论函数()f x 的单调性;(Ⅱ)当0x >时,称()f x 为a 、b 关于x 的加权平均数.(i )判断(1)f, f ,()bf a是否成等比数列,并证明()b f f a ≤; (ii )a 、b 的几何平均数记为G . 称2aba b+为a 、b 的调和平均数,记为H . 若()H f x G ≤≤,求x 的取值范围.第20题图22.(本小题满分14分)如图,已知椭圆1C 与2C 的中心在坐标原点O ,长轴均为MN 且在x 轴上,短轴长分别 为2m ,2()n m n >,过原点且不与x 轴重合的直线l 与1C ,2C 的四个交点按纵坐标从 大到小依次为A ,B ,C ,D .记mnλ=,△BDM 和△ABN 的面积分别为1S 和2S . (Ⅰ)当直线l 与y 轴重合时,若12S S λ=,求λ的值;(Ⅱ)当λ变化时,是否存在与坐标轴不重合的直线l ,使得12S S λ=?并说明理由.第22题图2013年普通高等学校招生全国统一考试(湖北卷)数学(文史类)试题参考答案一、选择题:1.B U BA =ð}.4,3{}5,4,3{}4,3,2{= 2.D 在双曲线1C :22221sin cos x y θθ-=与2C :22221cos sin y x θθ-=中,都有1cos sin 222=+=θθc ,即焦距相等3.A 因为p 是“甲降落在指定范围”,q 是“乙降落在指定范围”,则p -是“没有降落在指定范围”,q -是“乙没有降落在指定范围”,所以命题“至少有一位学员没有降落在指定范围”可表示为()p ⌝∨()q ⌝ . 4.D 在○1中,y 与x 不是负相关;○1一定不正确;同理○4也一定不正确.5.C 可以将小明骑车上学的行程分为三段,第一段是匀速行驶,运动方程是一次函数,即小明距学校的距离是他骑行时间的一次函数,所对应的函数图象是一条直线段,由此可以判断A 是错误的;第二段因交通拥堵停留了一段时间,这段时间内小明距学校的距离没有改变,即小明距学校的距离是行驶时间的常值函数,所对应的函数图象是平行于x 轴的一条线段,由此可以排除D ;第三段小明为了赶时间加快速度行驶,即小明在第三段的行驶速度大于第一段的行驶速度,所以第三段所对应的函数图象不与第一段的平行,从而排除B. 故选C.6.B因为sin ()y x x x =+∈R 可化为)6cos(2π-=x y (x ∈R ),将它向左平移π6个单位得x x y cos 26)6(cos 2=⎥⎦⎤⎢⎣⎡-+=ππ,其图像关于y 轴对称.7.A AB =(2,1),CD =(5,5),则向量AB 在向量CD 方向上的射影为22325515255)5,5()1,2(cos 22=⨯+⨯=+⋅==θ. 8.D 函数()[]f x x x =-表示实数x 的小数部分,有)(][]1[1)1(x f x x x x x f =-=+-+=+ ,所以函数()[]f x x x =-是以1为周期的周期函数.9.C 根据已知,设需要A 型车x 辆,B 型车y 辆,则根据题设,有⎪⎪⎩⎪⎪⎨⎧=+>>≤-≤+,9006036,0,0,7,21y x y x x y y x 画出可行域,求出三个顶点的坐标分别为A(7,14),B(5,12),C(15,6),目标函数(租金)为y x k 24001600+=,如图所示.将点B 的坐标代入其中,即得租金的最小值为:3680012240051600=⨯+⨯=k (元).10.B ax x x f 21ln )('-+=,由()(ln )f x x x ax =-由两个极值点,得0)('=x f 有两个不等的实数解,即12ln -=ax x 有两个实数解,从而直线12-=ax y 与曲线x y ln =有两个交点. 过点(0,-1)作x y ln =的切线,设切点为(x 0,y 0),则切线的斜率01x k =,切线方程为11-=x x y . 切点在切线上,则0100=-=x x y ,又切点在曲线x y ln =上,则10ln 00=⇒=x x ,即切点为(1,0).切线方程为1-=x y . 再由直线12-=ax y 与曲线x y ln =有两个交点.,知直线12-=ax y 位于两直线0=y 和1-=x y 之间,如图所示,其斜率2a 满足:0<2a <1,解得0<a <21.二、填空题:11. 23i -+ 复数123i z =-在复平面内的对应点Z 1(2,-3),它关于原点的对称点Z 2为(-2,3),所对应的复数为322+-=z i. 12. (Ⅰ)7 (Ⅱ)2 (Ⅰ)7()747109459787101=+++++++++; (Ⅱ)2 []222222)74(2)75()77(3)78()79(2)710(101-+-+-+-+-+-=s =21040=. 13. 4 初始值m =2,A =1,B=1,i =0,第一次执行程序,得 i=1,A=2,B=1,因为A <B 不成立,则第二次执行程序,得i=2,A =2×2=4,B =1×2=2,还是A <B 不成立,第三次执行程序,得 i=3,A=4×2=8,B=2×3=6,仍是A<B 不成立,第四次执行程序,得i =4,A =8×2=16,B =×4=24,有A <B 成立,输出i=4. 14. 4 这圆的圆心在原点,半径为5,圆心到直线l 的距离为1sin cos 122=+θθ,所以圆O 上到直线l的距离等于1的点有4个,如图A 、B 、C 、D 所示.15. 3 因为区间[2,4]-的长度为6,不等式||x m ≤的解区间为[-m ,m ] ,其区间长度为2m. 那么在区间[2,4]-上随机地取一个数x ,要使x 满足||x m ≤的概率为56,m 将区间 [2,4]-分为[-2,m]和[m ,4] ,且两区间的长度比为5:1,所以m =3.16. 3 如图示天池盆的半轴截面,那么盆中积水的体积为()ππ19631061069322⨯=⨯++⨯=V (立方寸),盆口面积S =196π(平方寸),所以,平地降雨量为=⨯)(寸寸23196)(19633(寸).17. (Ⅰ)3, 1, 6 (Ⅱ)79(Ⅰ)3, 1, 6 S=S △DFG +S △DEF =1+2=3 ,N=1,L =6;(Ⅱ)79 根据题设△ABC 是格点三角形,对应的1S =,0N =,4L =,有 14=+c b , ○1 由(Ⅰ)有36=++c b a , ○2再由格点△DEF 中,S=2,N=0,L=6,得26=+c b , ○3 联立○1○2○3,解得.1,1,21=-==a cb 所以当71N =,18L =时, S =791182171=-⨯+. 三、解答题:18.(Ⅰ)由cos23cos()1A B C -+=,得22cos 3cos 20A A +-=, 即(2cos 1)(cos 2)0A A -+=,解得1cos 2A = 或cos 2A =-(舍去). 因为0πA <<,所以π3A =.(Ⅱ)由11sin 22S bc A bc ====得20bc =. 又5b =,知4c =.由余弦定理得2222cos 25162021,a b c bc A =+-=+-=故a =又由正弦定理得222035sin sin sin sin sin 2147b c bc B C A A A a a a =⋅==⨯=.19. (Ⅰ)设数列{}n a 的公比为q ,则10a ≠,0q ≠. 由题意得 2432234,18,S S S S a a a -=-⎧⎨++=-⎩ 即23211121,(1)18,a q a q a q a q q q ⎧--=⎪⎨++=-⎪⎩ 解得13,2.a q =⎧⎨=-⎩故数列{}n a 的通项公式为13(2)n n a -=-.(Ⅱ)由(Ⅰ)有 3[1(2)]1(2)1(2)n n n S ⋅--==----. 若存在n ,使得2013n S ≥,则1(2)2013n --≥,即(2)2012.n -≤- 当n 为偶数时,(2)0n ->, 上式不成立;当n 为奇数时,(2)22012n n -=-≤-,即22012n ≥,则11n ≥.综上,存在符合条件的正整数n ,且所有这样的n 的集合为{21,,5}n n k k k =+∈≥N . 20. (Ⅰ)依题意12A A ⊥平面ABC ,12B B ⊥平面ABC ,12C C ⊥平面ABC ,所以A 1A 2∥B 1B 2∥C 1C 2. 又121A A d =,122B B d =,123C C d =,且123d d d << . 因此四边形1221A A B B 、1221A A C C 均是梯形.由2AA ∥平面MEFN ,2AA ⊂平面22AA B B ,且平面22AA B B 平面MEFN ME =,可得AA 2∥ME ,即A 1A 2∥DE . 同理可证A 1A 2∥FG ,所以DE ∥FG .又M 、N 分别为AB 、AC 的中点,则D 、E 、F 、G 分别为11A B 、22A B 、22A C 、11AC 的中点, 即DE 、FG 分别为梯形1221A A B B 、1221A A C C 的中位线.因此 12121211()()22DE A A B B d d =+=+,12121311()()22FG A A C C d d =+=+,而123d d d <<,故DE FG <,所以中截面DEFG 是梯形. (Ⅱ)V V <估. 证明如下:由12A A ⊥平面ABC ,MN ⊂平面ABC ,可得12A A MN ⊥. 而EM ∥A 1A 2,所以EM MN ⊥,同理可得FN MN ⊥. 由MN 是△ABC 的中位线,可得1122MN BC a ==即为梯形DEFG 的高, 因此13121231()(2)22228DEFG d d d d a a S S d d d ++==+⋅=++中梯形, 即123(2)8ahV S h d d d =⋅=++估中. 又12S ah =,所以1231231()()36ahV d d d S d d d =++=++.于是1231232131()(2)[()()]6824ah ah ahV V d d d d d d d d d d -=++-++=-+-估.由123d d d <<,得210d d ->,310d d ->,故V V <估.21. (Ⅰ)()f x 的定义域为(,1)(1,)-∞--+∞,22(1)()()(1)(1)a x ax b a bf x x x +-+-'==++.当a b >时,()0f x '>,函数()f x 在(,1)-∞-,(1,)-+∞上单调递增; 当a b <时,()0f x '<,函数()f x 在(,1)-∞-,(1,)-+∞上单调递减. (Ⅱ)(i )计算得(1)02a b f +=>,2()0b abf a a b=>+,0f =.故22(1)()[2b a b ab f f ab f a a b +=⋅==+, 即2(1)())]b f f f a =. ①所以(1),()bf f f a成等比数列.因2a b+≥(1)f f ≥.由①得()b f f a ≤. (ii )由(i )知()bf H a =,f G =.故由()H f x G ≤≤,得()()b f f x f a ≤≤. ②当a b =时,()()b f f x f a a ===.这时,x 的取值范围为(0,)+∞; 当a b >时,01ba<<,从而b a <()f x 在(0,)+∞上单调递增与②式,得bx a≤≤x的取值范围为,b a ⎡⎢⎣; 当a b <时,1ba>,从而b a >()f x 在(0,)+∞上单调递减与②式,bx a ≤,即x的取值范围为b a ⎤⎥⎦. 22. 依题意可设椭圆1C 和2C 的方程分别为1C :22221x y a m +=,2C :22221x y a n+=. 其中0a m n >>>, 1.m n λ=>(Ⅰ)解法1:如图1,若直线l 与y 轴重合,即直线l 的方程为0x =,则 111||||||22S BD OM a BD =⋅=,211||||||22S AB ON a AB =⋅=,所以12||||S BD S AB =. 在C 1和C 2的方程中分别令0x =,可得A y m =,B y n =,D y m =-, 于是||||1||||1B D A B y y BD m n AB y y m n λλ-++===---. 若12S S λ=,则11λλλ+=-,化简得2210λλ--=. 由1λ>,可解得1λ=. 故当直线l 与y 轴重合时,若12S S λ=,则1λ=.解法2:如图1,若直线l 与y 轴重合,则||||||BD OB OD m n =+=+,||||||AB OA OB m n =-=-;111||||||22S BD OM a BD =⋅=,211||||||22S AB ON a AB =⋅=. 所以12||1||1S BD m n S AB m n λλ++===--.若12S S λ=,则11λλλ+=-,化简得2210λλ--=. 由1λ>,可解得1λ=. 故当直线l 与y 轴重合时,若12S S λ=,则1λ=.(Ⅱ)解法1:如图2,若存在与坐标轴不重合的直线l ,使得12S S λ=. 根据对称性, 不妨设直线l :(0)y kx k =>,点(,0)M a -,(,0)N a 到直线l 的距离分别为1d ,2d ,则因为1d ==,2d ==12d d =.又111||2S BD d =,221||2S AB d =,所以12||||S BD S AB λ==,即||||BD AB λ=. 由对称性可知||||AB CD =,所以||||||(1)||BC BD AB AB λ=-=-, ||||||(1)||AD BD AB AB λ=+=+,于是||1||1AD BC λλ+=-. ① 将l 的方程分别与C 1,C 2的方程联立,可求得A x =B x =.根据对称性可知C B x x =-,D A x x =-,于是2||||2A B x AD BC x == ② 从而由①和②式可得1(1)λλλ+-. ③令1(1)t λλλ+=-,则由m n >,可得1t ≠,于是由③可解得222222(1)(1)n t k a t λ-=-.因为0k ≠,所以20k >. 于是③式关于k 有解,当且仅当22222(1)0(1)n t a t λ->-,第22题解答图1第22题解答图2等价于2221(1)()0t t λ--<. 由1λ>,可解得11t λ<<,即111(1)λλλλ+<<-,由1λ>,解得1λ>当11λ<≤+l ,使得12S S λ=;当1λ>l 使得12S S λ=. 解法2:如图2,若存在与坐标轴不重合的直线l ,使得12S S λ=. 根据对称性, 不妨设直线l :(0)y kx k =>,点(,0)M a -,(,0)N a 到直线l 的距离分别为1d ,2d ,则因为1d ==,2d ==12d d =.又111||2S BD d =,221||2S AB d =,所以12||||S BD S AB λ==.因为||||A B A Bx x BD AB x x λ+==-,所以11A B x x λλ+=-. 由点(,)A A A x kx ,(,)B B B x kx 分别在C 1,C 2上,可得222221A A x k x a m +=,222221B B x k x a n +=,两式相减可得22222222()0A B A B x x k x x a mλ--+=, 依题意0A B x x >>,所以22AB x x >. 所以由上式解得22222222()()A B B A m x x k a x x λ-=-. 因为20k >,所以由2222222()0()A B B A m x x a x x λ->-,可解得1ABx x λ<<.从而111λλλ+<<-,解得1λ>当11λ<≤+l ,使得12S S λ=;当1λ>l 使得12S S λ=.。

2013高考真题试卷湖北卷及答案

2013高考真题试卷湖北卷及答案

2013年普通高等学校招生全国统一考试(湖北卷)英语本试题卷共16页,81题。

全卷满分150分。

考试用时120分钟。

第一部分:听力(共两节,满分30分)做题时,先将答案划在试卷上。

录音内容结束后,你将有两分钟的时间将试卷上的答案转涂到答题卡上。

第一节(共5小题;每小题1.5分,满分7.5分)听下面5段对话。

每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。

听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。

每段对话仅读一遍。

例:How much is the shirt?A. £ 19.15.B. £ 9.15.C. £ 9.18.答案:B1. Why doesn’t John go to school today?A. It’s the weekend.B. He’s too tired for school.C. His school is closed down.2. What will the man do tomorrow morning?A. Give Frank a bath.B. Cook Frank a meal.C. Take Frank to a vet.3. What is the male speaker?A. A student.B. A president.C. A professor.4. What does the man mean?A. The door is unlocked.B. He is not the one to blame.C. Somebody has just left the lab.5. On which floor is the woman’s apartment?A. The second.B. The fourth.C. The sixth.第二节(共15小题;每小题1.5分,满分22.5分)听下面5段对话或独白。

2013年普通高等学校招生全国统一考试 湖北卷(文史类)

(第13题)2013年普通高等学校招生全国统一考试湖北卷(文史类数学)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,共150分,考试时间120分钟.第Ⅰ卷(选择题,共50分)一、选择题(本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项符合题目要求的)1、已知全集{1,2,3,4,5}U =,集合{1,2}A =,{2,3,4}B =,则U B A = ð( ) A 、{2} B 、{3,4} C 、{1,4,5} D 、{2,3,4,5}2、已知04πθ<<,则双曲线1C :22221sin cos x y θθ-=与2C :22221cos sin y xθθ-=的( ) A 、实轴长相等 B 、虚轴长相等 C 、离心率相等 D 、焦距相等 3、在一次跳伞训练中,甲、乙两位学员各跳一次. 设命题p 是“甲降落在指定范围”,q 是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为( )A 、()()p q ⌝∨⌝B 、()p q ∨⌝C 、()()p q ⌝∧⌝D 、p q ∨4、四名同学根据各自的样本数据研究变量,x y 之间的相关关系,并求得回归直线方程,分别得到以下四个结论:①y 与x 负相关且 2.347 6.423y x =-;②y 与x 负相关且 y =-3.476 5.648x +; ③y 与x 正相关且 5.4378.493y x =+;④y 与x 正相关且 4.326 4.578y x =--. 其中一定不正确...的结论的序号是( ) A 、①② B 、②③ C 、③④ D 、①④5、小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间后,为了赶时间加快速度行驶. 与以上事件吻合得最好的图象是( )6、将函数sin ()y x x x R=+∈的图象向左平移(0)m m >个单位长度后,所得到的图象关于y 轴对称,则m 的最小值是( )A 、12πB 、6πC 、3π D 、56π7、已知点(1,1)A -,(1,2)B ,(2,1)C --,(3,4)D ,则向量AB 在CD方向上的投影为( ) A 、2 B 、2 C 、2- D 、2- 8、x 为实数,[]x 表示不超过x 的最大整数,则函数()[]f x x x =-在R 上为( ) A 、奇函数 B 、偶函数 C 、增函数 D 、减函数 9、某旅行社租用,A B 两种型号的客车安排900名客人旅行,,A B 两种车辆的载客量分别为36人和60人,租金分别为1600元∕辆和2400元∕辆,旅行社要求租车总数不超过21辆,且B 型车不多于A 型车7辆,则租金最少为( )A 、31200元B 、36000元C 、36800元D 、38400元 10、已知函数()(ln )f x x x ax =-有两个极值点,则实数a 的取值范围是( )A 、(,0)-∞B 、1(0,)2 C 、(0,1) D 、(0,)+∞第Ⅱ卷(非选择题,共100分)二、填空题(本大题共7小题,每小题5分,共35分. 把答案填在题中横线上) 11、i 为虚数单位,设复数12,z z 在复平面内对应的点关于 原点对称,若123z i =-,则2z =______;12、某学员在一次射击测试中射靶10次,命中环数如下:7,8,7,9,5,4,9,10,7,4.则:(1)平均命中环数为______; (2)命中环数的标准差为______;13、阅读如图所示的程序框图,运行相应的程序,若输入m 的值为2,则输出的结果i =______;14、已知圆O :225x y +=,直线l :cos sin 1(0)2x y πθθθ+=<<.设圆O 上到直线l 的距离等于1的点的个数为k ,则k =______;16、我国古代数学名著《数学九章》中有“天池盆测雨”题: 在下雨时,用一个圆台形的天池盆接雨水. 天池盆盆口直径为 二尺八寸,盆底直径为一尺二寸,盆深一尺八寸. 若盆中积水深九寸,则平地降雨量是_______寸.(注:①平地降雨量等于 盆中积水体积除以盆口面积;②一尺等于十寸)17、在平面直角坐标系中,若点(,)P x y 的坐标,x y 均为整数,则称点P 为格点. 若一个多边形的顶点全是格点,则称该多边形为格点多边形. 格点多边形的面积为S ,其内部的格点数记为N ,边界上的格点数记为L . 例如图中ABC ∆是格点三角形,对应的1S =,AB C DN=,4L=.(1)图中格点四边形DEFG对应的,,S N L分别是(2)已知格点多边形的面积可表示为S aN bL c=++,其中,,a b c为常数. 若某格点多边形对应的71,18N L==,则S=________(用数值作答).三、解答题(本大题共5小题,共65分,解答应写出文字说明、证明过程或演算步骤)18、(本小题满分12分)在ABC∆中,角,,A B C对应的边分别是,,a b c,已知cos23cos()1A B C-+=.(1)求角A的大小;(2)若ABC∆的面积S=5b=,求sin sinB C的值.19、(本小题满分13分)已知nS是等比数列{}na的前n项和,423,,S S S成等差数列,且23418a a a++=-.(1)求数列{}na的通项公式;(2)是否存在正整数n,使得2013?nS≥若存在,求出符合条件的所有n的集合;若不存在,说明理由.20、(本小题满分13分)如图,某地质队自水平地面,,A B C三处垂直向地下钻深,自A点向下钻到1A处发现矿藏,再继续下钻到2A处后下面已无矿,从而得到在A处正下方的矿层厚度为121A A d=,同样可得在,B C处正下方的矿层厚度分别为122B B d=,123C C d=,且123d d d<<,过,A B A C的中点,M N且与直线2AA平行的平面截多面体111222A B C A B C-所得的截面DEFG为该多面体的一个中截面,其面积记为S中.(1)证明:中截面DEFG是梯形.(2)在ABC∆中,记BC a=,BC边上的高为h,面积为S. 在估测三角形ABC区域内正下方的矿藏储量(即多面体111222A B C A B C-的体积V)时,可用近似公式V估=S中h⋅来估算. 已知1231()3V d d d S=++,试判断V估与V的大小关系,并加以证明.21、(本小题满分13分)设0a>,0b>,已知函数()1ax bf xx+=+.(1)当a b≠时,讨论函数()f x的单调性.(2)当0x>时,称()f x为,a b关于x的加权平均数.①判断(1)f,f,()bfa是否成等比数列,并证明()bf fa≤;②,a b的几何平均数记为G,称2aba b+为,a b的调和平均数,记为H,若()H f x G≤≤,求x的取值范围.22、(本小题满分14分)如图,已知椭圆1C与2C的中心在坐标原点O,长轴均为MN且在x轴上,短轴长分别为2,2()m n m n>,过原点且不与x轴重合的直线l与12,C C的四个交点按纵坐标从大到小依次为,,,A B C D.记mnλ=,BDM∆和ABN∆的面积分别为1S和2S.(1)当直线l与y轴重合时,若12S Sλ=,求λ的值;(2)当λ变化时,是否存在与坐标轴不重合的直线l,使得12S Sλ=?并说明理由.(第20题)2B2B1AA。

2013湖北卷 (文数)真题解析

绝密★启用前2013年普通高等学校招生全国统一考试(湖北卷)数 学(文史类)本试题卷共6页,22题,其中第15、16题为选考题。

全卷满分150分。

考试用时120分钟。

★祝考试顺利★注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

用统一提供的2B 铅笔将答题卡上试卷类型A 后的方框涂黑。

2.选择题的作答:每小题选出答案后,用统一提供的2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

答在试题卷、草稿纸上无效。

3.填空题和解答题的作答:用统一提供的签字笔直接答在答题卡上对应的答题区域内。

答在试题卷、草稿纸上无效。

4.选考题的作答:先把所选题目的题号在答题卡上指定的位置用统一提供的2B 铅笔涂黑。

考生应根据自己选做的题目准确填涂题号,不得多选。

答题答在答题卡上对应的答题区域内,答在试题卷、草稿纸上无效。

5.考生必须保持答题卡的整洁。

考试结束后,请将本试题卷和答题卡一并上交。

一、选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集{1,2,3,4,5}U =,集合{1,2}A =,{2,3,4}B =,则U B C A =I ( ) A. {2} B. {3,4} C. {1,4,5} D. {2,3,4,5} 答案:B考点:集合的运算分析:先算出U C A ,再算U B C A I .解答:{3,4,5}U C A =,{2,3,4}{3,4,5}{3,4}U B C A = I ð.故答案为B. 备注:考点:集合的运算.难度A.2.已知04< ,则双曲线22122:1sin cos x y C 与22222:1cos sin y x C的( )A.实轴长相等B.虚轴长相等C.离心率相等D.焦距相等答案:D考点:双曲线的性质.分析:分别表示出双曲线1C 和2C 的实轴,虚轴,离心率和焦距,最后比较即可.解答:双曲线1C 的实轴长为2sin ,虚轴长为2cos ,焦距为2 ,离心率为1sin;双曲线2C 的实轴长为2cos ,虚轴长为2sin ,焦距为2 ,离心率为1cos,故只有焦距相等.故答案为D.备注:考点:双曲线的性质.难度A.3.在一次跳伞训练中,甲、乙两位学员各跳一次.设命题p 是“甲降落在指定范围”,q 是“乙 降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为( ) A.()()p q B. ()p q C. ()()p q D. p q答案:A考点:命题,逻辑联结词.分析:分析“至少有一位学员没有降落在指定范围”包含的情况.便可选出答案. 解答:“至少有一位学员没有降落在指定范围”包括“甲降落在指定范围,乙没有降落在指定范围”,“甲没有降落在指定范围,乙降落在指定范围”, “甲没有降落在指定范 围,乙没有降落在指定范围”三种情况.故答案为A.备注:考点:命题,逻辑联结词.难度A.4.四名同学根据各自的样本数据研究变量,x y 之间的相关关系,并求得回归直线方程,分 别得到以下四个结论:①y 与x 负相关且 2.347 6.423y x = ;②y 与x 负相关且 3.476 5.648y x = ; ③y 与x 正相关且 5.4788.493y x = ;④y 与x 正相关且 4.326 4.578y x = ; 其中一定不正确的结论的序号是( )A.①②B.②③C.③④D.①④ 答案:D考点:回归直线方程.分析:回归直线的一次项系数为正,则正相关,为负,则负相关.解答:回归直线的一次项系数为正,则正相关,为负,则负相关.故错误的有①④.故答案为D.备注:考点:回归直线方程.难度:A.5.小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间,后为了赶时间加快速度行驶.与以上时间吻合得最好的图象是( )答案:C考点:函数的图象的实际应用.分析:分析骑车过程中的速度变化便可选出答案.解答:骑车的速度变化有三个阶段,第一阶段速度较小,第二阶段速度为0,第三阶段速度较大,故答案为C.备注:考点:函数的图象的实际应用.难度A.6. 将函数sin ()y x x x R = +的图象向左平移(0)m m >个单位长度后,所得到的图象关于y 轴对称,则m 的最小值是( ) A.12B.6C.3D.56答案:B考点:三角函数的图象.分析:先将函数sin ()y x x x R = +化简,在进行计算.解答:sin 2sin()3y x x x=+,其向左平移6个单位后得到函数2sin(2sin(2cos 362y x x x=++,其图象关于y 轴对称.故答案为B.备注:考点:三角函数的图象.难度A.7. 已知点)1,1( A 、)2,1(B 、)1,2( C 、)4,3(D ,则向量AB 在方向的投影为( )A.223 B. 2153 C. 223 D. 2153 答案: A考点:向量的投影。

2013年普通高等学校招生全国统一考试(湖北卷)数学试题 (文科) word解析版

绝密★启用前2013年普通高等学校招生全国统一考试(湖北卷)数学(文史类)本试题卷共5页,22题。

全卷满分150分。

考试用时120分钟。

★祝考试顺利★注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

用统一提供的2B铅笔将答题卡上试卷类型A后的方框涂黑。

2.选择题的作答:每小题选出答案后,用统一提供的2B铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

答在试题卷、草稿纸上无效。

3.填空题和解答题的作答:用统一提供的签字笔直接答在答题卡上对应的答题区域内。

答在试题卷、草稿纸上无效。

4.考生必须保持答题卡的整洁。

考试结束后,请将本试题卷和答题卡一并上交。

一、选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集{1,2,3,4,5}U=,集合{1,2}A=,{2,3,4}B=,则B∩∁U A=A.{2} B.{3,4}C.{1,4,5}D.{2,3,4,5}解析∁U A={3,4,5},∴B∩∁U A={2,3,4}∩{3,4,5}={3,4}.故选B2.已知π4θ<<,则双曲线1C:22221sin cosx yθθ-=与2C:22221cos siny xθθ-=的A.实轴长相等B.虚轴长相等C.离心率相等D.焦距相等解析双曲线C1、C2的焦距均为sin2θ+cos2θ=1. 答案 D3.在一次跳伞训练中,甲、乙两位学员各跳一次.设命题p是“甲降落在指定范围”,q是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为A.()p⌝∨()q⌝B.p∨()q⌝C.()p⌝∧()q⌝D.p∨q答案 A解析“至少有一位学生没有落在指定范围”=“甲没有落在指定范围”或“乙没有落在指定范围”=()p⌝∨()q⌝.4.四名同学根据各自的样本数据研究变量,x y之间的相关关系,并求得回归直线方程,分别得到以下四个结论:①y与x负相关且 2.347 6.423y x=-;②y与x负相关且 3.476 5.648y x=-+;③y与x正相关且 5.4378.493y x=+;④y与x正相关且 4.326 4.578y x=--.其中一定不正确...的结论的序号是A.①②B.②③C.③④D.①④答案 D解析①中,回归方程中x的系数为正,不是负相关;④方程中的x的系数为负,不是正相关,∴①④一定不正确.5.小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间,后为了赶时间加快速度行驶. 与以上事件吻合得最好的图象是答案 C解析开始匀速行驶时小明距学校距离应匀速减小,停留时不变,加快速度行驶时距离学校的距离应快速减小.6.将函数sin()y x x x=+∈R的图象向左平移(0)m m>个单位长度后,所得到的图象关于y轴对称,则m的最小值是A.π12B.π6C.π3D.5π6答案 B解析 y =3cos x +sin x =2sin(x +π3)向左平移m 个单位长度后得到y =2sin(x +π3+m )它关于y 轴对称可得sin(π3+m )=±1,∴π3+m =k π+π2,k ∈Z ,∴m =k π+π6,k ∈Z , ∵m >0,∴m 的最小值为π6.7.已知点(1,1)A -、(1,2)B 、(2,1)C --、(3,4)D ,则向量AB 在CD 方向上的投影为A B C . D . 答案 A解析 AB →=(2,1),CD →=(5,5)∴AB →在CD →方向上的投影=AB →·CD →|CD →|=2×5+1×552+52=1552=322.8.x 为实数,[]x 表示不超过x 的最大整数,则函数()[]f x x x =-在R 上为 A .奇函数 B .偶函数 C .增函数 D . 周期函数答案 D解析 f (x )最小正周期T =1.9.某旅行社租用A 、B 两种型号的客车安排900名客人旅行,A 、B 两种车辆的载客量分别为36人和60人,租金分别为1600元/辆和2400元/辆,旅行社要求租车总数不超过21辆,且B 型车不多于A 型车7辆.则租金最少为A .31200元B .36000元C .36800元D .38400元 答案 C解析 设租A 型车x 辆,B 型车y 辆时租金为z 元 则z =1 600x +2 400y画出可行域如图直线y =-23x +z2 400过点A (5,12)时纵截距最小,∴z min =5×1 600+2 400×12=36 800, 故租金最少为36 800元.10.已知函数()(ln )f x x x ax =-有两个极值点,则实数a 的取值范围是A .(,0)-∞B .1(0,)2C .(0,1)D .(0,)+∞答案 B解析 f ′(x )=(ln x -ax )+x (1x-a )=ln x +1-2ax (x >0)令f ′(x )=0得2a =ln x +1x ,设φ(x )=ln x +1x ,则φ′(x )=-ln xx 2易知φ(x )在(0,1)上递增,在(1,+∞)上递减, 大致图象如下若f (x )有两个极值点,则y =2a 和y =φ(x )图象有两个交点, ∴0<2a <1,∴0<a <12.二、填空题:本大题共7小题,每小题5分,共35分.请将答案填在答题卡对应题号.......的位置上. 答错位置,书写不清,模棱两可均不得分.11.i 为虚数单位,设复数1z ,2z 在复平面内对应的点关于原点对称,若123i z =-,则2z =.答案 -2+3i 解析 ∵z 1+z 2=0, ∴z 2=-z 1=-2+3i.12.某学员在一次射击测试中射靶10次,命中环数如下:7,8,7,9,5,4,9,10,7,4则(Ⅰ)平均命中环数为 ; (Ⅱ)命中环数的标准差为 . 答案 (1)7 (2)2解析 (1)X =110(7+8+7+9+5+4+9+10+7+4)=7010=7.(2)D (X )=110[(7-7)2+(8-7)2+(7-7)2+(9-7)2+(5-7)2+(4-7)2+(9-7)2+(10-7)2+(7-7)2+(4-7)2]=4, ∴命中环数标准差为2.13.阅读如图所示的程序框图,运行相应的程序. 若输入m 的值为2,则输出的结果i = . 答案 4解析 第一次循环:i =1,A =2,B =1; 第二次循环:i =2,A =4,B =2; 第三次循环;i =3,A =8,B =6; 第四次循环:i =4,A =16,B =24, 终止循环,输出i =4.14.已知圆O :225x y +=,直线l :cos sin 1x y θθ+=(π02θ<<).设圆O 上到直线l 的距离等于1的点的个数为k ,则k = . 答案 4解析 圆心O 到直线l 的距离d =1cos 2θ+sin 2θ=1,而圆O 半径为5,∴圆O 上到l 的距离等于1的点有4个.15.在区间[2,4]-上随机地取一个数x ,若x 满足||x m ≤的概率为56, 则m = . 答案 3解析 当m ≤2时,当然不适合题意, 当m >2时,由m +24-(-2)=56得m =3.16.我国古代数学名著《数书九章》中有“天池盆测雨”题:在下雨时,用一个圆台形的天池盆接雨水. 天池盆盆口直径为二尺八寸,盆底直径为一尺二寸,盆深一尺八寸. 若盆中积水深九寸,则平地降雨量是 寸.(注:①平地降雨量等于盆中积水体积除以盆口面积;②一尺等于十寸) 答案 3解析 天池盆中水的形状是以上底半径10寸,下底半径6寸,高9寸的圆台, ∴平均降雨量=13×9×π(102+10×6+62)π×142=3.17.在平面直角坐标系中,若点(,)P x y 的坐标x ,y 均为整数,则称点P 为格点. 若一个多边形的顶点全是格点,则称该多边形为格点多边形. 格点多边形的面积记为S ,其内部的格点数记为N ,边界上的格点数记为L . 例如图中△ABC 是格点三角形,对应的1S =,0N =,4L =.(Ⅰ)图中格点四边形DEFG 对应的,,S N L 分别是 ;(Ⅱ)已知格点多边形的面积可表示为S aN bL c =++,其中a ,b ,c 为常数.若某格点多边形对应的71N =,18L =, 则S = (用数值作答).答案 (1)3,1,6 (2)79 解析 (1)由图观察知.(2)再取一组数据S =2,N =0,L =6, 由题意,列方程⎩⎪⎨⎪⎧1=a ×0+4b +c 3=a ×1+6b +c 2=6b +c可得a =1,b =12,c =-1, ∴所求=71a +18b +c =71+9-1=79.第17题图三、解答题:本大题共5小题,共65分.解答应写出文字说明、证明过程或演算步骤. 18.(本小题满分12分)在△ABC 中,角A ,B ,C 对应的边分别是a ,b ,c . 已知cos 23cos()1A B C -+=. (Ⅰ)求角A 的大小;(Ⅱ)若△ABC 的面积S =,5b =,求sin sin B C 的值.解 (1)由cos 2A -3cos(B +C )=1, 得2cos 2A +3cos A -2=0, 即(2cos A -1)(cos A +2)=0, 解得cos A =12或cos A =-2(舍去).因为0<A <π,所以A =π3,(2)由S =12bc sin A =12bc ·32=34bc =53,得bc =20.又b =5,知c =4.由余弦定理得a 2=b 2+c 2-2bc cos A =25+16-20=21,故a =21. 又由正弦定理得sin B sin C =b a sin A ·c a sin A =bc a 2sin 2A =2021×34=57.19.(本小题满分13分)已知n S 是等比数列{}n a 的前n 项和,4S ,2S ,3S 成等差数列,且23418a a a ++=-. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)是否存在正整数n ,使得2013n S ≥?若存在,求出符合条件的所有n 的集合;若不存在,说明理由.解 (1)设数列{a n }的公比为q ,则a 1≠0,q ≠0.由题意得故数列{a n }的通项公式为a n =3(-2)n -1.(2)由(1)有S n =3·[1-(-2)n ]1-(-2)=1-(-2)n .若存在n ,使得S n ≥2 013,则1-(-2)n ≥2 013,即(-2)n ≤-2 012. 当n 为偶数时,(-2)n >0.上式不成立;当n 为奇数时,(-2)n =-2n ≤-2 012,即2n ≥2 012,则n ≥11.综上,存在符合条件的正整数n ,且所有这样的n 的集合为{n |n =2k +1,k ∈N ,k ≥5}.20.(本小题满分13分)如图,某地质队自水平地面A ,B ,C 三处垂直向地下钻探,自A 点向下钻到A 1处发现矿藏,再继续下钻到A 2处后下面已无矿,从而得到在A 处正下方的矿层厚度为121A A d =.同样可得在B ,C 处正下方的矿层厚度分别为122B B d =,123C C d =,且123d d d <<. 过AB ,AC 的中点M ,N 且与直线2AA 平行的平面截多面体111222A B C A B C -所得的截面DEFG 为该多面体的一个中截面,其面积记为S 中. (Ⅰ)证明:中截面DEFG 是梯形;(Ⅱ)在△ABC 中,记BC a =,BC 边上的高为h ,面积为S . 在估测三角形ABC 区域内正下方的矿藏储量(即多面体111222A B C A B C -的体积V )时,可用近似公式V S h =⋅估中来估算. 已知1231()3V d d d S =++,试判断V 估与V 的大小关系,并加以证明.第20题图(1)证明 依题意A 1A 2⊥平面ABC ,B 1B 2⊥平面ABC ,C 1C 2⊥平面ABC , 所以A 1A 2∥B 1B 2∥C 1C 2,又A 1A 2=d 1,B 1B 2=d 2,C 1C 2=d 3,且d 1<d 2<d 3. 因此四边形A 1A 2B 2B 1,B 1B 2C 2C 1,A 1A 2C 2C 1均是梯形.由AA 2∥平面MEFN ,AA 2⊂平面AA 2B 2B ,且平面AA 2B 2B ∩平面MEFN =ME , 可得AA 2∥ME ,即A 1A 2∥DE ,同理可证A 1A 2∥FG ,所以DE ∥FG . 又M 、N 分别为AB 、AC 的中点,则D 、E 、F 、G 分别为A 1B 1、A 2B 2、A 2C 2、A 1C 1的中点, 即DE 、FG 分别为梯形A 1A 2B 2B 1,A 1A 2C 2C 1的中位线, 因此DE =12(A 1A 2+B 1B 2)=12(d 1+d 2),FG =12(A 1A 2+C 1C 2)=12(d 1+d 3),而d 1<d 2<d 3,故DE <FG ,所以中截面DEFG 是梯形. (2)解 V 估<V ,证明如下:由A 1A 2⊥平面ABC ,MN ⊂平面ABC ,可得A 1A 2⊥MN , 而EM ∥A 1A 2,所以EM ⊥MN ,同理可得FN ⊥MN ,由MN 是△ABC 的中位线,可得MN =12BC =12a 即为梯形DEFG 的高.因此S 中=S 梯形DEFG =12(d 1+d 22+d 1+d 32)·a 2=a8(2d 1+d 2+d 3).即V 估=S 中·h =ah8(2d 1+d 2+d 3).又S =12ah ,所以V =13(d 1+d 2+d 3)S =ah6(d 1+d 2+d 3).于是V -V 估=ah 6(d 1+d 2+d 3)-ah8(2d 1+d 2+d 3)=ah24[(d 2-d 1)+(d 3-d 1)]. 由d 1<d 2<d 3,得d 2-d 1>0,d 3-d 1>0,故V 估<V .21.(本小题满分13分)设0a >,0b >,已知函数()1ax bf x x +=+. (Ⅰ)当a b ≠时,讨论函数()f x 的单调性;(Ⅱ)当0x >时,称()f x 为a 、b 关于x 的加权平均数.(i )判断(1)f , f ,()bf a是否成等比数列,并证明()b f f a ≤;(ii )a 、b 的几何平均数记为G . 称2aba b+为a 、b 的调和平均数,记为H . 若()H f x G ≤≤,求x 的取值范围.解 (1)f (x )的定义域为(-∞,-1)∪(-1,+∞), f ′(x )=a (x +1)-(ax +b )(x +1)2=a -b(x +1)2.当a >b 时,f ′(x )>0,函数f (x )在(-∞,-1),(-1,+∞)上单调递增; 当a <b 时,f ′(x )<0,函数f (x )在(-∞,-1),(-1,+∞)上单调递减. (2)①计算得f (1)=a +b 2>0,f (b a )=2aba +b >0,f (ba)=ab >0. 故f (1)f (b a )=a +b 2·2aba +b =ab =[f (b a)]2, 即f (1)f (ba )=[f (b a)]2.* 所以f (1),f (b a ),f (ba)成等比数列. 因a +b2≥ab ,即f (1)≥f (ba), 由*得f (ba)≤f (b a). ②由*知f (ba )=H ,f (ba)=G .故由H ≤f (x )≤G ,得 f (ba)≤f (x )≤f (ba).** 当a =b 时,f (ba)=f (x )=f (ba)=a . 这时,x 的取值范围为(0,+∞); 当a >b 时,0<b a <1,从而ba <ba,由f (x )在[0,+∞)上单调递增与**式, 得ba≤x ≤b a ,即x 的取值范围为⎣⎡⎦⎤b a,b a ; 当a <b 时,b a >1,从而ba >ba,由f (x )在[0,+∞)上单调递减与**式, 得b a ≤x ≤ba ,即x 的取值范围为⎣⎡⎦⎤b a ,b a .22.(本小题满分14分)如图,已知椭圆1C 与2C 的中心在坐标原点O ,长轴均为MN 且在x 轴上,短轴长分别 为2m ,2()n m n >,过原点且不与x 轴重合的直线l 与1C ,2C 的四个交点按纵坐标从大到小依次为A ,B ,C ,D .记mnλ=,△BDM 和△ABN 的面积分别为1S 和2S . (Ⅰ)当直线l 与y 轴重合时,若12S S λ=,求λ的值;(Ⅱ)当λ变化时,是否存在与坐标轴不重合的直线l ,使得12S S λ=?并说明理由.22.依题意可设椭圆1C 和2C 的方程分别为1C :22221x y a m +=,2C :22221x y a n +=. 其中0a m n >>>, 1.mnλ=>(Ⅰ)解法1:如图1,若直线l 与y 轴重合,即直线l 的方程为0x =,则111||||||22S BD OM a BD =⋅=,211||||||22S AB ON a AB =⋅=,所以12||||S BD S AB =. 在C 1和C 2的方程中分别令0x =,可得A y m =,B y n =,D y m =-, 于是||||1||||1B D A B y y BD m n AB y y m n λλ-++===---. 若12S S λ=,则11λλλ+=-,化简得2210λλ--=. 由1λ>,可解得1λ=. 故当直线l 与y 轴重合时,若12S S λ=,则1λ=. 解法2:如图1,若直线l 与y 轴重合,则||||||BD OB OD m n =+=+,||||||AB OA OB m n =-=-;111||||||22S BD OM a BD =⋅=,211||||||22S AB ON a AB =⋅=. 所以12||1||1S BD m n S AB m n λλ++===--. 若12S S λ=,则11λλλ+=-,化简得2210λλ--=. 由1λ>,可解得1λ=. 故当直线l 与y 轴重合时,若12S S λ=,则1λ=.第22题图第22题解答图1第22题解答图2(Ⅱ)解法1:如图2,若存在与坐标轴不重合的直线l ,使得12S S λ=. 根据对称性, 不妨设直线l :(0)y kx k =>,点(,0)M a -,(,0)N a 到直线l 的距离分别为1d ,2d ,则因为1d ==2d ==,所以12d d =.又111||2S BD d =,221||2S AB d =,所以12||||S BD S AB λ==,即||||BD AB λ=. 由对称性可知||||AB CD =,所以||||||(1)||BC BD AB AB λ=-=-, ||||||(1)||AD BD AB AB λ=+=+,于是||1||1AD BC λλ+=-. ① 将l 的方程分别与C 1,C 2的方程联立,可求得A x =B x =.根据对称性可知C B x x =-,D A x x =-,于是2||||2A Bx AD BC x === ② 从而由①和②式可得1(1)λλλ+-. ③令1(1)t λλλ+=-,则由m n >,可得1t ≠,于是由③可解得222222(1)(1)n t k a t λ-=-.因为0k ≠,所以20k >. 于是③式关于k 有解,当且仅当22222(1)0(1)n t a t λ->-, 等价于2221(1)()0t t λ--<. 由1λ>,可解得11t λ<<,即111(1)λλλλ+<<-,由1λ>,解得1λ>当11λ<≤l ,使得12S S λ=;当1λ>l 使得12S S λ=. 解法2:如图2,若存在与坐标轴不重合的直线l ,使得12S S λ=. 根据对称性, 不妨设直线l :(0)y kx k =>,点(,0)M a -,(,0)N a 到直线l 的距离分别为1d ,2d ,则因为1d ==2d ==,所以12d d =.又111||2S BD d =,221||2S AB d =,所以12||||S BD S AB λ==.因为||||A B A Bx x BD AB x x λ+===-,所以11A B x x λλ+=-. 由点(,)A A A x kx ,(,)B B B x kx 分别在C 1,C 2上,可得222221A A x k x a m +=,222221B B x k x a n +=,两式相减可得22222222()0A B A B x x k x x a m λ--+=, 依题意0A B x x >>,所以22AB x x >. 所以由上式解得22222222()()A B B A m x x k a x x λ-=-. 因为20k >,所以由2222222()0()A B B A m x x a x x λ->-,可解得1ABx x λ<<.从而111λλλ+<<-,解得1λ>当11λ<≤l ,使得12S S λ=;当1λ>l 使得12S S λ=.。

2013年全国高考语文试题真题(湖北卷)WORD格式

绝密★启用前2013年普通高等学校招生全国统一考试(湖北卷)语文本试题卷共8页,六大题23小题。

全卷满分150分。

考试用时150分钟。

★祝考试顺利★注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

用统一提供的2B铅笔将答题卡上试卷类型A后的方框涂黑。

2.选择题的作答:每小题选出答案后,用统一提供的2B铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

答在试题卷、草稿纸上无效。

3.非选择题的作答:用统一提供的签字笔直接答在答题卡上对应的答题区域内。

答在试题卷、草稿纸上无效。

4.考生必须保持答题卡的整洁。

考试结束后,请将本试题卷和答题卡一并上交。

一、语文基础知识(共15分,共5小题,每小题3分)1.下列各组词语中,加点字的注音全都正确的一组是A.踹(chuài)水竞(jìnɡ)赛蘸(zhàn)酒擂(léi)鼓助威B.跋涉(shè)陡(dǒu)峭攀登(dēnɡ)餐霜饮雪(xiě)C.善(shàn)良谦逊(sùn)璞(pú)玉不事雕琢(zhuó)D.荆棘(jí)飘泊(bó)青苔(tāi)红漆(qī)雕花2.下列各组词语中,没有错别字的一组是A.彷徨愁怨寂寥静默凄婉惆伥B.顾盼精捍步履稳健风神潇洒C.睿智禀赋崇高品质趋善避恶D.辩难商榷典藉满架旁稽博采3.依次填入下列横线处的词语,最恰当的一组是①宋人画雪常不用铅粉,把背景用墨衬黑,一层层,留出山头的白,树梢的白,甚至花蕾上的白,虚实映衬,意境悠远。

②因为睡不着,打开窗帘,遥望夜空,满天,斜月晶莹,薄雾似轻纱漫卷,。

我思念那个小山村,那个让我魂牵梦绕的地方!A.而是点染星汉如梦如幻B.总是浸染星云如诗如画C.却是绘染星光诗意盎然D.只是渲染星斗诗意朦胧4.下列各项中,没有语病的一项是A.《美丽中国》以歌舞为主,融入京剧演唱、茶艺表演、少林武术等元素,加上奇幻的灯光,震撼的音响,一幅美丽中国的大写意,声光舞影流溢着浓郁的中国情。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013年普通高等学校招生全国统一考试(湖北卷)数 学(文史类)一、选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集{1,2,3,4,5}U =,集合{1,2}A =,{2,3,4}B =,则U B A = ðA .{2}B .{3,4}C .{1,4,5}D .{2,3,4,5}2.已知π04θ<<,则双曲线1C :22221sin cos x y θθ-=与2C :22221cos sin y x θθ-=的A .实轴长相等B .虚轴长相等C .离心率相等D .焦距相等3.在一次跳伞训练中,甲、乙两位学员各跳一次.设命题p 是“甲降落在指定范围”,q 是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为 A .()p ⌝∨()q ⌝B .p ∨()q ⌝C .()p ⌝∧()q ⌝D .p ∨q4.四名同学根据各自的样本数据研究变量,x y 之间的相关关系,并求得回归直线方程,分 别得到以下四个结论:① y 与x 负相关且 2.347 6.423y x =-; ② y 与x 负相关且 3.476 5.648y x =-+;③ y 与x 正相关且 5.4378.493y x =+; ④ y 与x 正相关且 4.326 4.578y x =--. 其中一定不.正确..的结论的序号是 A .①② B .②③C .③④D . ①④5.小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间,后为了赶时间加快速度行驶. 与以上事件吻合得最好的图象是6.将函数sin ()y x x x +∈R 的图象向左平移(0)m m >个单位长度后,所得到的图象关于y 轴对称,则m 的最小值是A .π12B .π6C .π3 D .5π67.已知点(1,1)A -、(1,2)B 、(2,1)C --、(3,4)D ,则向量AB 在CD方向上的投影为ABC. D. 8.x 为实数,[]x 表示不超过x 的最大整数,则函数()[]f x x x =-在R 上为 A .奇函数B .偶函数C .增函数D . 周期函数9.某旅行社租用A 、B 两种型号的客车安排900名客人旅行,A 、B 两种车辆的载客量分别为36人和60人,租金分别为1600元/辆和2400元/辆,旅行社要求租车总数不超过21辆,且B 型车不多于A 型车7辆.则租金最少为 A .31200元B .36000元C .36800元D .38400元10.已知函数()(ln )f x x x ax =-有两个极值点,则实数a 的取值范围是A .(,0)-∞B .1(0,)2C .(0,1)D .(0,)+∞二、填空题:本大题共7小题,每小题5分,共35分.请将答案填在答题卡对应题号.......的位置上. 答错位置,书写不清,模棱两可均不得分.11.i 为虚数单位,设复数1z ,2z 在复平面内对应的点关于原点对称,若123i z =-,则2z = . 12.某学员在一次射击测试中射靶10次,命中环数如下:7,8,7,9,5,4,9,10,7,4则(Ⅰ)平均命中环数为 ; (Ⅱ)命中环数的标准差为 .13.阅读如图所示的程序框图,运行相应的程序. 若输入m 的值为2, 则输出的结果i = .14.已知圆O :225x y +=,直线l :cos sin 1x y θθ+=(π02θ<<).设圆O 上到直线l 的距离等于1的点的个数为k ,则k = .第13题图15.在区间[2,4]-上随机地取一个数x ,若x 满足||x m ≤的概率为56,则m = . 16.我国古代数学名著《数书九章》中有“天池盆测雨”题:在下雨时,用一个圆台形的天池盆接雨水. 天池盆盆口直径为二尺八寸,盆底直径为一尺二寸,盆深一尺八寸. 若盆中积水深九寸,则平地降雨量是 寸.(注:①平地降雨量等于盆中积水体积除以盆口面积;②一尺等于十寸)17.在平面直角坐标系中,若点(,)P x y 的坐标x ,y 均为整数,则称点P 为格点. 若一个多边形的顶点全是格点,则称该多边形为格点多边形. 格点多边形的面积记为S ,其内部的格点数记为N ,边界上的格点数记为L . 例如图中△ABC 是格点三角形,对应的1S =,0N =,4L =. (Ⅰ)图中格点四边形DEFG 对应的,,S N L 分别是 ;(Ⅱ)已知格点多边形的面积可表示为S aN bL c =++,其中a ,b ,c 为常数. 若某格点多边形对应的71N =,18L =, 则S = (用数值作答).三、解答题:本大题共5小题,共65分.解答应写出文字说明、证明过程或演算步骤. 18.(本小题满分12分)在△ABC 中,角A ,B ,C 对应的边分别是a ,b ,c . 已知cos23cos()1A B C -+=.(Ⅰ)求角A 的大小; (Ⅱ)若△ABC 的面积S =5b =,求sin sin B C 的值. 19.(本小题满分13分)已知n S 是等比数列{}n a 的前n 项和,4S ,2S ,3S 成等差数列,且23418a a a ++=-. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)是否存在正整数n ,使得2013n S ≥?若存在,求出符合条件的所有n 的集合;若不存在,说明理由. 20.(本小题满分13分)如图,某地质队自水平地面A ,B ,C 三处垂直向地下钻探,自A 点向下钻到A 1处发现矿藏,再继续下钻到A 2处后下面已无矿,从而得到在A 处正下方的矿层厚度为121A A d =.同样可得在B ,C 处正下方的矿层厚度分别为122B B d =,123C C d =,且123d d d <<. 过AB ,AC 的中点M ,N 且与直线2AA 平行的平面截多面体111222A BC A B C -所得的截面DEFG 为该多面体的一个中截面,其面积记为S 中. (Ⅰ)证明:中截面DEFG 是梯形;(Ⅱ)在△ABC 中,记BC a =,BC 边上的高为h ,面积为S . 在估测三角形ABC 区域内正下方的矿藏储量(即多面体111222A B C A B C -的体积V )时,可用近似公式V S h =⋅估中来估算. 已知1231()3V d d d S =++,试判断V 估与V 的大小关系,并加以证明.21.(本小题满分13分)设0a >,0b >,已知函数()1ax bf x x +=+. (Ⅰ)当a b ≠时,讨论函数()f x 的单调性;(Ⅱ)当0x >时,称()f x 为a 、b 关于x 的加权平均数.(i )判断(1)f, f ,()bf a是否成等比数列,并证明()b f f a ≤; (ii )a 、b 的几何平均数记为G . 称2aba b+为a 、b 的调和平均数,记为H . 若()H f x G ≤≤,求x 的取值范围. 22.(本小题满分14分)如图,已知椭圆1C 与2C 的中心在坐标原点O ,长轴均为MN 且在x 轴上,短轴长分别 为2m ,2()n m n >,过原点且不与x 轴重合的直线l 与1C ,2C 的四个交点按纵坐标从 大到小依次为A ,B ,C ,D .记mnλ=,△BDM 和△ABN 的面积分别为1S 和2S . (Ⅰ)当直线l 与y 轴重合时,若12S S λ=,求λ的值;(Ⅱ)当λ变化时,是否存在与坐标轴不重合的直线l ,使得12S S λ=?并说明理由.第20题图第22题图2013年普通高等学校招生全国统一考试(湖北卷)数学(文史类)试题参考答案一、选择题:1.B 2.D 3.A 4.D 5.C 6.B 7.A 8.D 9.C 10.B 二、填空题:11.23i -+ 12.(Ⅰ)7 (Ⅱ)2 13.414.4 15.3 16.3 17.(Ⅰ)3, 1, 6 (Ⅱ)79 三、解答题:18.(Ⅰ)由cos23cos()1A B C -+=,得22cos 3cos 20A A +-=, 即(2cos 1)(cos 2)0A A -+=,解得1cos 2A = 或cos 2A =-(舍去). 因为0πA <<,所以π3A =.(Ⅱ)由11sin 22S bc A bc ===得20bc =. 又5b =,知4c =.由余弦定理得2222cos 25162021,a b c bc A =+-=+-=故a = 又由正弦定理得222035sin sin sin sin sin 2147b c bc B C A A A a a a =⋅==⨯=.19. (Ⅰ)设数列{}n a 的公比为q ,则10a ≠,0q ≠. 由题意得 2432234,18,S S S S a a a -=-⎧⎨++=-⎩ 即23211121,(1)18,a q a q a q a q q q ⎧--=⎪⎨++=-⎪⎩ 解得13,2.a q =⎧⎨=-⎩故数列{}n a 的通项公式为13(2)n n a -=-.(Ⅱ)由(Ⅰ)有 3[1(2)]1(2)1(2)n n n S ⋅--==----.若存在n ,使得2013n S ≥,则1(2)2013n --≥,即(2)2012.n -≤- 当n 为偶数时,(2)0n ->, 上式不成立;当n 为奇数时,(2)22012n n -=-≤-,即22012n ≥,则11n ≥.综上,存在符合条件的正整数n ,且所有这样的n 的集合为{21,,5}n n k k k =+∈≥N . 20. (Ⅰ)依题意12A A ⊥平面ABC ,12B B ⊥平面ABC ,12C C ⊥平面ABC ,所以A 1A 2∥B 1B 2∥C 1C 2. 又121A A d =,122B B d =,123C C d =,且123d d d << . 因此四边形1221A A B B 、1221A A C C 均是梯形.由2AA ∥平面MEFN ,2AA ⊂平面22AA B B ,且平面22AA B B 平面MEFN ME =, 可得AA 2∥ME ,即A 1A 2∥DE . 同理可证A 1A 2∥FG ,所以DE ∥FG .又M 、N 分别为AB 、AC 的中点,则D 、E 、F 、G 分别为11A B 、22A B 、22A C 、11A C 的中点, 即DE 、FG 分别为梯形1221A A B B 、1221A A C C 的中位线.因此 12121211()()22DE A A B B d d =+=+,12121311()()22FG A A C C d d =+=+,而123d d d <<,故DE FG <,所以中截面DEFG 是梯形. (Ⅱ)V V <估. 证明如下:由12A A ⊥平面ABC ,MN ⊂平面ABC ,可得12A A MN ⊥. 而EM ∥A 1A 2,所以EM MN ⊥,同理可得FN MN ⊥. 由MN 是△ABC 的中位线,可得1122MN BC a ==即为梯形DEFG 的高, 因此13121231()(2)22228DEFG d d d d a a S S d d d ++==+⋅=++中梯形, 即123(2)8ahV S h d d d =⋅=++估中. 又12S ah =,所以1231231()()36ahV d d d S d d d =++=++. 于是1231232131()(2)[()()]6824ah ah ahV V d d d d d d d d d d -=++-++=-+-估.由123d d d <<,得210d d ->,310d d ->,故V V <估. 21. (Ⅰ)()f x 的定义域为(,1)(1,)-∞--+∞ ,22(1)()()(1)(1)a x ax b a bf x x x +-+-'==++. 当a b >时,()0f x '>,函数()f x 在(,1)-∞-,(1,)-+∞上单调递增; 当a b <时,()0f x '<,函数()f x 在(,1)-∞-,(1,)-+∞上单调递减.(Ⅱ)(i )计算得(1)02a b f +=>,2()0b abf a a b=>+,0f =>.故22(1)()[2b a b ab f f ab f a a b +=⋅==+, 即2(1)()[b f f f a =. ①所以(1),()bf f f a成等比数列.因2a b+≥(1)f f ≥. 由①得()b f f a ≤.(ii )由(i )知()bf H a =,f G =.故由()H f x G ≤≤,得()()b f f x f a ≤≤. ②当a b =时,()()b f f x f a a ===.这时,x 的取值范围为(0,)+∞;当a b >时,01ba<<,从而b a <()f x 在(0,)+∞上单调递增与②式,得b x a ≤≤x的取值范围为,b a⎡⎢⎣; 当a b <时,1ba >,从而b a >()f x 在(0,)+∞上单调递减与②式,bx a ≤,即x的取值范围为b a ⎤⎥⎦. 22. 依题意可设椭圆1C 和2C 的方程分别为1C :22221x y a m +=,2C :22221x y a n +=. 其中0a m n >>>, 1.mnλ=>(Ⅰ)解法1:如图1,若直线l 与y 轴重合,即直线l 的方程为0x =,则111||||||22S BD OM a BD =⋅=,211||||||22S AB ON a AB =⋅=,所以12||||S BD S AB =. 在C 1和C 2的方程中分别令0x =,可得A y m =,B y n =,D y m =-, 于是||||1||||1B D A B y y BD m n AB y y m n λλ-++===---. 若12S S λ=,则11λλλ+=-,化简得2210λλ--=. 由1λ>,可解得1λ=. 故当直线l 与y 轴重合时,若12S S λ=,则1λ. 解法2:如图1,若直线l 与y 轴重合,则||||||BD OB OD m n =+=+,||||||AB OA OB m n =-=-;111||||||22S BD OM a BD =⋅=,211||||||22S AB ON a AB =⋅=. 所以12||1||1S BD m n S AB m n λλ++===--. 若12S S λ=,则11λλλ+=-,化简得2210λλ--=. 由1λ>,可解得1λ=. 故当直线l 与y 轴重合时,若12S S λ=,则1λ.(Ⅱ)解法1:如图2,若存在与坐标轴不重合的直线l ,使得12S S λ=. 根据对称性, 不妨设直线l :(0)y kx k =>,点(,0)M a -,(,0)N a 到直线l 的距离分别为1d ,2d ,则第22题解答图1第22题解答图2因为1d ==,2d =12d d =.又111||2S BD d =,221||2S AB d =,所以12||||S BD S AB λ==,即||||BD AB λ=. 由对称性可知||||AB CD =,所以||||||(1)||BC BD AB AB λ=-=-, ||||||(1)||AD BD AB AB λ=+=+,于是||1||1AD BC λλ+=-. ① 将l 的方程分别与C 1,C 2的方程联立,可求得A x,B x .根据对称性可知C B x x =-,D A x x =-,于是2||||2A Bx AD BC x === ② 从而由①和②式可得1(1)λλλ+=-. ③令1(1)t λλλ+=-,则由m n >,可得1t ≠,于是由③可解得222222(1)(1)n t k a t λ-=-.因为0k ≠,所以20k >. 于是③式关于k 有解,当且仅当22222(1)0(1)n t a t λ->-,等价于2221(1)()0t t λ--<. 由1λ>,可解得11t λ<<,即111(1)λλλλ+<<-,由1λ>,解得1λ>当11λ<≤l ,使得12S S λ=;当1λ>l 使得12S S λ=. 解法2:如图2,若存在与坐标轴不重合的直线l ,使得12S S λ=. 根据对称性, 不妨设直线l :(0)y kx k =>,点(,0)M a -,(,0)N a 到直线l 的距离分别为1d ,2d ,则因为1d ==,2d =12d d =.又111||2S BD d =,221||2S AB d =,所以12||||S BD S AB λ==.因为||||A B A B x x BD AB x x λ+===-,所以11A Bx x λλ+=-.由点(,)A A A x kx ,(,)B B B x kx 分别在C 1,C 2上,可得222221A A x k x a m +=,222221B B x k x a n +=,两式相减可得22222222()0A B A B x x k x x a mλ--+=,依题意0A B x x >>,所以22AB x x >. 所以由上式解得22222222()()A B B A m x x k a x x λ-=-. 因为20k >,所以由2222222()0()A B B A m x x a x x λ->-,可解得1A Bx x λ<<. 从而111λλλ+<<-,解得1λ>当11λ<≤l ,使得12S S λ=;当1λ>l 使得12S S λ=.。

相关文档
最新文档