2017年高考天津文科数学试题及答案(word解析版)

合集下载

2017年高考数学天津文试题与解析

2017年高考数学天津文试题与解析

(1)求 cos A 的值;
(2)求 sin(2 B- A) 的值 .
【解析】 ( 1)由 asin A= 4bsin B 及正弦定理 , 得 a= 2b.
由 ac=
5
5( a2- b2- c2) 及余弦定理
, 得 cos
b2+ c2-a2 -
A=

5 ac =-
5 .
2bc
ac
5
25
asin A 5
故“ 2- x≥0”是“|x-1| ≤1”的必要而不充分条件.
3. (2017 年文 ) 有 5 支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、绿、紫.从这
5
支彩笔中任取 2 支不同颜色的彩笔,则取出的 2 支彩笔中含有红色彩笔的概率为(

4 A. 5
3 B. 5
2 C. 5
1 D. 5
3. C 【解析】选取两支彩笔的方法有:红黄、红蓝、红绿、红紫、黄蓝、黄绿、黄紫、蓝
(2)由( 1)可得 sin A= 5 , 代入 asin A= 4bsin B, 得 sin B = 4b = 5 .
25 由( 1)知 A 为钝角 , 所以 cos B= 1-sin 2B = 5 .
4
3
于是 sin 2 B= 2sin Bcos B=5,cos 2 B= 1- 2sin 2B= 5,
11. (2017 年文 ) 已知一个正方形的所有顶点在一个球面上,若这个正方体的表面积为
18 ,
则这个球的体积为 ___________. 9π
11. 2 【解析】设正方体的边长为 a,则 6a2=18 4 4 27 9π
这个球的体积 V=3πR3=3π× 8 = 2 .
a= 3,其外接球直径为 2R= 3a=3,故

2017年天津高考文科数学真题及答案

2017年天津高考文科数学真题及答案

2017年天津高考文科数学真题及答案本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟。

第Ⅰ卷1至2页,第Ⅱ卷3至5页。

答卷前,考生务必将自己的姓名、准考号填写在答题考上,并在规定位置粘贴考试用条形码。

答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。

考试结束后,将本试卷和答题卡一并交回。

祝各位考生考试顺利!第Ⅰ卷注意事项:1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

2.本卷共8小题,每小题5分,共40分。

参考公式:·如果事件A ,B 互斥,那么P (A ∪B )=P (A )+P (B ).·棱柱的体积公式V =Sh . 其中S 表示棱柱的底面面积,h 表示棱柱的高. ·球的体积公式34π3V R =.其中R 表示球的半径. 一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. (1)设集合{1,2,6},{2,4},{1,2,3,4}A B C ===,则()A B C =U I (A ){2}(B ){1,2,4}(C ){1,2,4,6}(D ){1,2,3,4,6} (2)设x ∈R ,则“20x -≥”是“|1|1x -≤”的(A )充分而不必要条件(B )必要而不充分条件 (C )充要条件(D )既不充分也不必要条件 (3)有5支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、绿、紫.从这5支彩笔中任取2支不同颜色的彩笔,则取出的2支彩笔中含有红色彩笔的概率为 (A )45(B )35(C )25(D )15(4)阅读右面的程序框图,运行相应的程序,若输入N 的值为19,则输出N 的值为(A )0 (B )1(C )2(D )3(5)已知双曲线22221(0,0)x y a b a b-=>>的左焦点为F ,点A 在双曲线的渐近线上,OAF △是边长为2的等边三角形(O 为原点),则双曲线的方程为 (A )221412x y -=(B )221124x y -=(C )2213x y -=(D )2213y x -= (6)已知奇函数()f x 在R 上是增函数.若0.8221(log ),(log 4.1),(2)5a fb fc f =-==,则,,a b c 的大小关系为(A )a b c <<(B )b a c <<(C )c b a <<(D )c a b << (7)设函数()2sin(),f x x x ωϕ=+∈R ,其中0,||πωϕ><.若5π11π()2,()0,88f f ==且()f x 的最小正周期大于2π,则 (A )2π,312ωϕ==(B )211π,312ωϕ==-(C )111π,324ωϕ==-(D )17π,324ωϕ== (8)已知函数||2,1,()2, 1.x x f x x x x +<⎧⎪=⎨+≥⎪⎩设a ∈R ,若关于x 的不等式()||2x f x a ≥+在R 上恒成立,则a 的取值范围是(A )[2,2]-(B )[23,2]-(C )[2,3]-(D )[3,3]-第Ⅱ卷注意事项:1.用黑色墨水的钢笔或签字笔将答案写在答题卡上。

2017年天津高考文科数学真题及答案

2017年天津高考文科数学真题及答案

(A)4B,2017年天津高考文科数学真题及答案本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟。

第Ⅰ卷1至2页,第Ⅱ卷3至5页。

答卷前,考生务必将自己的姓名、准考号填写在答题考上,并在规定位置粘贴考试用条形码。

答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。

考试结束后,将本试卷和答题卡一并交回。

祝各位考生考试顺利!第Ⅰ卷注意事项:1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

2.本卷共8小题,每小题5分,共40分。

参考公式:·如果事件A,B互斥,那么P(A∪B)=P(A)+P(B).·棱柱的体积公式V=Sh.其中S表示棱柱的底面面积,h表示棱柱的高.·球的体积公式V 43πR3.其中R表示球的半径.一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合A{1,2,6},{2,4},C{1,2,3,4}则(A U B)I C(A){2}(B){1,2,4}(C){1,2,4,6}(D){1,2,3,4,6}(2)设x R,则“2x0”是“|x1|1”的(A)充分而不必要条件(B)必要而不充分条件(C)充要条件(D)既不充分也不必要条件(3)有5支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、绿、紫.从这5支彩笔中任取2支不同颜色的彩笔,则取出的2支彩笔中含有红色彩笔的概率为321(B)(C)(D)5555(4)阅读右面的程序框图,运行相应的程序,若输入N的值为19,则输出N的值为2 (8)已知函数 f ( x ) = ⎨ 设 a ∈ R ,若关于 x 的不等式 f ( x ) ≥| + a | 在 R 上恒 ⎩(A )0 (B )1(C )2(D )3(5)已知双曲线 x 2 y 2 - a b 2= 1(a > 0, b > 0) 的左焦点为 F ,点 A 在双曲线的渐近线上,△OAF 是边长为 2 的等边三角形( O 为原点),则双曲线的方程为(A ) x 2 y 2 x 2 y 2 x 2 y 2- = 1 (B ) - = 1 (C ) - y 2 = 1 (D ) x 2 - = 14 12 12 4 3 3(6)已知奇函数 f ( x ) 在 R 上是增函数.若 a = - f (log 1 2 5), b = f (log 4.1),c = f (20.8 ) ,2则 a, b , c 的大小关系为(A ) a < b < c (B ) b < a < c (C ) c < b < a (D ) c < a < b(7)设函数 f ( x ) = 2sin(ωx + ϕ), x ∈ R ,其中 ω > 0,| ϕ |< π .若 f (且 f ( x ) 的最小正周期大于 2 π ,则5π 11π) = 2, f ( ) = 0, 8 8(A ) ω = 2 π 2 11π 1 11π 1 7π,ϕ = (B ) ω = ,ϕ = - (C ) ω = ,ϕ = - (D ) ω = ,ϕ =3 12 3 12 3 24 3 24⎧| x | +2, x < 1,⎪2⎪ x + x , x ≥ 1.x 2成立,则 a 的取值范围是(A ) [-2,2] (B ) [-2 3, 2] (C ) [-2, 2 3] (D ) [-2 3, 2 3]第Ⅱ卷注意事项:1.用黑色墨水的钢笔或签字笔将答案写在答题卡上。

2017年高考真题——数学(文)(天津卷)+Word版含解析

2017年高考真题——数学(文)(天津卷)+Word版含解析
知一个 方形的所有
1 ,则 线的斜率为 f ′(1) = a − 1 , 线 x
方程为 令令
x = 0 得出 y = 1 ,在 y 轴的截距为.
点在一个球面 ,若这个 方体的表面积为 令8,则这个球
的体积为 . 答案
9π 2
解析 设 方体边长为,则 6a 2 = 18 ⇒ a 2 = 3 , 外接球直径为 2 R = 3a = 3, V =
A
ω = ,ϕ =
A
2 3
π 12
B
ω = ,ϕ = −
2 3
11π 12
C
ω = ,ϕ = −
1 3
11π 24
D
ω = ,ϕ =
1 3
7π 24
答案
8
| x | +2, x < 1, x 知函数 f ( x ) = 设 a ∈ R ,若关于的 等式 f ( x ) ≥| + a | 在 R 2 2 x + , x ≥ 1. x
a<b<c
B
b<a<c
C
c<b<a

D
c<a<b
答案 解析 且 据
C
题意
1 a = f − log 2 = f ( log 2 5 ) , 5
log 2 5 > log 2 4.1 > 2,1 < 20.8 < 2 , log 2 5 > log 2 4.1 > 20.8 ,
f ( log 2 5 ) > f ( log 2 4.1) > f ( 20.8 ) ,
4 5
答案
3 5
C
2 5

2017年普通高等学校招生全国统一考试(天津卷)数学文

2017年普通高等学校招生全国统一考试(天津卷)数学文

绝密 ★ 启用前2017年普通高等学校招生全国统一考试(天津卷)数学(文史类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟。

第Ⅰ卷1至2页,第Ⅱ卷3至5页。

答卷前,考生务必将自己的姓名、准考号填写在答题卡上,并在规定位置粘贴考试用条形码。

答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。

考试结束后,将本试卷和答题卡一并交回。

祝各位考生考试顺利!第Ⅰ卷注意事项:1. 每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

2. 本卷共8小题,每小题5分,共40分。

参考公式:•如果事件A ,B 互斥,那么 ()()()P AB P A P B =+•棱柱的体积公式V Sh =. 其中S 表示棱柱的底面面积,h 表示棱柱的高. •球的体积公式343V R π=. 其中R 表示球的半径. 一. 选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. (1)设集合{}1,2,6A =,{}2,4B =,{}1,2,3,4C =,则()AB C = ( )(A ){}2 (B ){}1,2,4 (C ){}1,2,4,6 (D ){}1,2,3,4,6 (2)设x R ∈,则“20x -≥”是“11x -≤”的 ( ) (A )充分而不必要条件 (B )必要而不充分条件 (C )充要条件 (D )既不充分也不必要条件 (3)有5支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、绿、紫. 从这5支彩笔中任取2支不同颜色的彩笔,则取出的2支彩笔中含有红色彩笔的概率为 ( )(A )45 (B )35 (C )25 (D )15(4)阅读右边的程序框图,运行相应的程序,若输入N 的值为19,则输出N 的值为 ( )(A )0 (B )1 (C )2 (D )3 (5)已知双曲线()222210,0x y a b a b-=>>的右焦点为F ,点A 在双曲线的渐近线上,OAF △是边长为2的等边三角形(O 为原点),则双曲线的方程为 ( )(A )221412x y -= (B )221124x y -= (C )2213x y -= (D )2213y x -= (6)已知奇函数()f x 在R 上是增函数. 若21log 5a f ⎛⎫=- ⎪⎝⎭,()2log 4.1b f =,()0.82c f =,则,,a b c 的大小关系为 ( ) (A )a b c << (B )b a c <<(C )c b a << (D )c a b << (7)设函数()()2sin f x x ωϕ=+,x R ∈,其中0ω>,ϕπ<. 若528f π⎛⎫= ⎪⎝⎭,1108f π⎛⎫= ⎪⎝⎭,且()f x 的最小正周期大于2π,则 ( )(A )23ω=,12πϕ= (B )23ω=,1112πϕ=-(C )13ω=,1124πϕ=- (D )13ω=,724πϕ=(8)已知函数()2,,11.2,x x f x x x x ⎧+⎪=⎨+<≥⎪⎩设a R ∈,若关于x 的不等式()2f x xa ≥+在R 上恒成立,则a 的取值范围是 ( ) (A )[]2,2- (B)2⎡⎤-⎣⎦ (C)2,⎡-⎣ (D)⎡-⎣绝密 ★ 启用前2017年普通高等学校招生全国统一考试(天津卷)数学(文史类)第(4)题图第Ⅱ卷注意事项:1.用黑色墨水的钢笔或签字笔将答案写在答题卡上。

2017年高考天津文科数学试题与答案(word解析版)

2017年高考天津文科数学试题与答案(word解析版)

2017年普通高等学校招生全国统一考试(天津卷)数学(文科)一、选择题:本大题共8小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)【2017年天津,文1,5分】设集合{}1,2,6A =,{}2,4B =,{}1,2,3,4C =,则()A B C =( )(A ){}2 (B ){}1,2,4 (C ){}1,2,3,4 (D ){}1,2,3,4,6 【答案】B【解析】{}1,2,4,6A B =,(){1,2,4,6}{1,2,3,4}{1,2,4}A B C ==,故选B . (2)【2017年天津,文2,5分】设x R ∈,则“20x -≥”是“11x -≤”的( )(A )充分不必要条件 (B )必要不充分条件 (C )充分必要条件 (D )既不充分也不必要条件 【答案】B【解析】20x -≥解得:2x ≤;11x -≤解得:02x ≤≤,2x ≤⇐02x ≤≤,故选B .(3)【2017年天津,文3,5分】有5支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、绿、紫,从这5支彩笔中任取2支不同颜色的彩笔,则取出的2支彩笔中含有红色彩笔的概率为( )(A )45 (B )35 (C )25 (D )15【答案】C【解析】“从这5支彩笔中任取2支不同颜色的彩笔”基本事件总个数:25C ,而事件“取出的2支彩笔中含有红色彩笔”包含基本事件个数:14C ;42105P ==,故选C .(4)【2017年天津,文4,5分】阅读右边的程序框图,运行相应的程序,若输入的N 的值为19,则输出的N 的值为( )(A )0 (B )1 (C )2 (D )3 【答案】C【解析】阅读流程图可得,程序执行过程如下:首先初始化数值为19N =,第一次循环:118N N =-=,不满足3N ≤;第二次循环:63NN ==,不满足3N ≤;第三次循环:23NN ==,满足3N ≤;此时跳出循环体,输出3N =,故选C .(5)【2017年天津,文5,5分】已知双曲线22221(0,0)x y a b a b-=>>的左焦点为F ,点A 在双曲线的渐近线上,OAF ∆是边长为2的等边三角形(O 为原点),则双曲线的方程为( )(A )221412x y -= (B )221124x y -= (C )2213x y -= (D )2213y x -=【答案】D【解析】因为OAF ∆是边长为2的等边三角形(O 为原点)所以2OF =,60AOF ∠=︒,所以直线OA 方程为3y x =,所以渐近线方程by x a=±其中一条为3y x =,所以,23c ba=⎧⎪⎨=⎪⎩,解之得:1,3,2a b c ===,故选D . (6)【2017年天津,文6,5分】已知奇函数()f x 在R 上是增函数,若21(log )5a f =-,2(log 4.1)b f =,0.8(2)c f =, 则,,a b c 的大小关系为( ) (A )a b c << (B )b a c << (C )c b a << (D )c a b <<【答案】C【解析】因为()f x 在R 上是奇函数,所以有()()f x f x -=-,即21(log )5a f =-2(log 5)f =;又因为()f x 在R 上是增函数,且0.8122222log 4log 4.1log 5<=<<,所以c b a <<,故选C .(7)【2017年天津,文7,5分】设函数()2sin(),f x x x R ωϕ=+∈,其中0,ωϕπ><,若511()2,()088f f ππ==,且()f x 的最小正周期大于2π,则( )(A )2,312πωϕ== (B )211,312πωϕ==- (C )111,324πωϕ==- (D )17,324πωϕ==【答案】A【解析】函数()2sin(),f x x x R ωϕ=+∈,511()2,()088f f ππ==,振幅为2,所以如图所示: 若函数图象如图表1所示,3115488T ππ=-,解得T π=,不满足最小正周期大于2π,所以函数图象如图表2所示,115488T ππ=-,解得3T π=,23ω=,又因为5()28f π=,所以25382ππϕ⨯+=,所以12πϕ=,故选A .(8)【2017年天津,文8,5分】已知函数2,1()2,1x x f x x x x ⎧+<⎪=⎨+≥⎪⎩,设a R ∈,若关于x 的不等式()2xf x a ≥+在R 上恒成立,则a 的取值范围是( )(A )[2,2]- (B )[23,2]- (C )[2,23]- (D )[23,23]- 【答案】A【解析】函数()f x 的图象如下图(左),若关于x 的不等式()2xf x a ≥+在R 上恒成 立,则不妨设()2x g x a =+,“()2xf x a ≥+在R 上恒成立”表示()y f x =图 象与()yg x =图象应如下图(右)所示找到两个临界位置: ①()f x 与()g x 相切时,1x >,221'()12f x x =-=,解得02x =,03y =,代入(2)3g =,解得 232a +=,2,4a a ==-(舍);②()g x 过点(0,2),代入(0)2g =,2a =,解得2,2a a =-=(舍),故a的取值范围在2-与2之间,故选A .二、填空题:本大题共6小题,每小题5分,共30分.(9)【2017年天津,文9,5分】已知a R ∈,i 为虚数单位,若i2ia -+为实数,则a 的值为 . 【答案】2-【解析】解法一:i (i)(2i)21(2)i2i (2i)(2i)5a a a a -----+==++-为实数,所以20a +=,2a =-. 解法二:i2ia -+为实数⇔i a -与2i +成比例,比例为1-,所以2a =-.(10)【2017年天津,文10,5分】已知a R ∈,设函数()ln f x ax x =-的图象在点(1,(1))f 处的切线为l ,则l 在y 轴上的截距为 .【答案】1【解析】函数()f x 的导函数1'()f x a x=-,所以(1),'(1)1f a f a ==-,切点(1,)a ,斜率为1a -,所以代入切线点斜式:(1)(1)y a a x -=--,l 在y 轴上的截距为:0,1x y ==,所以答案为1.(11)【2017年天津,文11,5分】已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为 . 【答案】92π【解析】球的表面积公式2618S a ==,所以棱长3a =,计算得:233R a ==,32R =,34932V R ππ==.(12)【2017年天津,文12】设抛物线24y x =的焦点为F ,准线为l ,已知点C 在l 上,以C 为圆心的圆与y 轴的正半轴相切于点A ,若120FAC ∠=︒,则圆的方程为 . 【答案】22(1)(3)1x y ++-=【解析】抛物线24y x =的焦点为(1,0)F ,准线为:1l x =-,所以可设(1,)C b -,OA b =,120FAC ∠=︒,所以60AFH ∠=︒,在直角三角形OAF 中,1OF =,所以3OA =,所以圆的圆心(1,3)-,半径等于1,所以圆22:(1)(3)1C x y ++-=.(13)【2017年天津,文13,5分】若,a b R ∈,0ab >,则4441a b ab++的最小值为 .【答案】4【解析】4422414144a b a b abab ab ab+++≥≥=(0ab >),当且仅当“444a b =”、“2241a b =”同时成立时,等号成立,解之得:13442,2a b --==.(14)【2017年天津,文14,5分】在ABC ∆中,60A ∠=︒,3AB =,2AC =,若2BD DC =,AE AC AB λ=-()R λ∈,且4AD AE ⋅=-,则λ的值为 .【答案】311【解析】01232cos603,33AB AC AD AB AC ⋅=⨯⨯==+,则122123()()3493433333311AD AE AB AC AC AB λλλλ⋅=+-=⨯+⨯-⨯-⨯=-⇒=.三、解答题:本大题共6题,共80分.解答应写出文字说明,证明过程或演算步骤.(15)【2017年天津,文15,13分】在ABC ∆中,内角,,A B C 所对的边分别为,,a b c .已知sin 4sin a A B =,2225()ac a b c =--.(1)求cos A 的值; (2)求sin(2)B A -的值.解:(1)sin 4sin a A b B =可化为224a b =,解得:2a b =,余弦定理:222cos 2b c a A bc +-=25ac bc -=55=-. (2)根据5cos 5A =-,解得25sin 5A =,所以5sin 5B =,25cos 5B =,4sin 22sin cos 5B B B ==,23cos22cos 15B B =-=,sin(2)B A -45325sin 2cos cos2sin ()5555B A B A =-=⨯--⨯10525255--==. (16)【2017年天津,文16,13分】电视台播放甲、乙两套连续剧,每次播放连续剧时,需要播放广告,已知每次播放甲、乙两套连续剧时,连续剧播放时长、广告播放时长、收视人次如下表所示:连续剧播放时长(分钟) 广告播放时长(分钟) 收视人次(万)甲 70 5 60 乙60525已知电视台每周安排的甲、乙连续剧的总播放时间不多于600分钟,广告的总播放时间不少于30分钟, 且甲连续剧播放的次数不多于乙连续剧播放次数的2倍,分别用,x y 表示每周计划播出的甲、乙两套电视 剧的次数.(1)用,x y 列出满足题目条件的数学关系式,并画出相应的平面区域; (2)问电视台每周播出甲、乙两套连续剧各多少次,才能使总收视人次最多? 解:(1)分别用,x y 表示每周计划播出的甲、乙两套电视剧的次数766062,x y x y x y x y N+≤⎧⎪+≥⎪⎨≤⎪⎪∈⎩.(2)设总收视人次为z 万,则目标函数为6025z x y =+.考虑6025z x y =+,将它变形为12525z y x =-+,这是斜率为125-,随z 变化的一族平行直线.25z为直线在y 轴上的截距,当25z取得最大值时,z 的值最大.又因为,x y 满足约束条件,所以由图2可知,当直线6025z x y =+经过可行域上的点M 时,截距25z最大,即z 最大.解方程组766020x y x y +=⎧⎨-=⎩,得点M 的坐标为()6,3.所以,电视台每周播出甲连续剧6次、乙连续剧3次时才能使总收视人次最多.(17)【2017年天津,文17,13分】如图,在四棱锥P ABCD -中,AD ⊥平面PDC ,AD ∥BC ,PD PB ⊥,1AD =,3BC =,4CD =,2PD =.(1)求异面直线AP 与BC 所成的角的余弦值; (2)求证:PD ⊥平面PBC ;(3)求直线AB 与平面PBC 所成角的正弦值.解:(1)因为AD ∥BC ,所以PAD ∠等于异面直线AP 与BC 所成的角,AD ⊥平面PDC ,所以90PDA ∠=︒,PAcos AD PAD AP ∠==. (2)因为AD ⊥平面PDC ,所以AD PD ⊥,又因为AD ∥BC ,所以PD BC ⊥,PD PB ⊥,且PBBC B =,所以PD ⊥平面PBC .(3)取BC 上三分点,3BE BC =,//BE AD ,1AD BE ==,PD ⊥平面PBC ,所以DEP ∠等于直线AB 与平面PBC 所成角90DPE ∠=︒,AB =DE =4PE =,sin PD DEP DE ∠==. (18)【2017年天津,文18,13分】已知{}n a 为等差数列,前n 项和为n S *()n N ∈,{}n b 是首项为2的等比数列,且公比大于0,2312b b +=,3412b a a =-,11411S b =.(1)求{}n a 和{}n b 的通项公式;(2)求数列{}2n n a b 的前n 项和*()n ∈N .解:(1)已知{}n a 为等差数列,{}n b 是首项为2的等比数列,且公比大于0,所以1(1)n a a n d =+-,1112n n n b b q q --==,22212q q +=,解之得:2,3q q ==-(舍),118311(5)1116a da d =-+⎧⎨+=⨯⎩,解之得:11,3a d ==所以31n a n =-,2n n b =.(2)2(62)2n n n a b n =-⨯,不妨设数列{}2n n a b 的前n 项和为n T ,2142632212n n n n n T a b a b a b a b a b --=+++++,123142102162(68)2(62)2n nn T n n -=⨯+⨯+⨯++-⨯+-⨯①2n T =231142102(614)2(68)2(62)2n n n n n n -+⨯+⨯+-⨯+-⨯+-⨯ ②①-②得:123142626262(62)2n n n T n +-=⨯+⨯+⨯++⨯--⨯,整理得:216(34)2n n T n +=+-⨯.(19)【2017年天津,文19,14分】设,a b R ∈,1a ≤,已知函数32()63(4)f x x x a a x b =---+,()()x g x e f x =.(1)求()f x 的单调区间;(2)已知函数()y g x =和函数xy e =的图象在公共点00(,)x y 处有相同的切线.(i )求证:()f x 在0x x =处的导数等于0;(ii )若关于x 的不等式()xg x e ≤在区间00[1,1]x x -+上恒成立,求b 的取值范围.解:(1)32'()()'6()'3(4)'f x x x a a x =---,2'()3123(4)f x x x a a =---,2'()3123(4)3()(4)f x x x a a x a x a =---=-+-,因为1a ≤,所以4a a <-,所以,()f x 的单调增区间(,),(4,)a a -∞-+∞,()f x 的单调减区间[,4]a a -.(2)(i )()()x g x e f x =与xy e =在公共点00(,)x y 处有相同的切线,首先,00()x g x e =;其次,00'()x g x e =,0()1f x =,00()'()1f x f x +=,所以0'()0f x =.(ii )()xg x e ≤等价于()1f x ≤,0'()0f x =,0()1f x =,所以0x a =极大值点,若关于x 的不等式()x g x e ≤ 在区间00[1,1]x x -+上恒成立,等价于()1f x ≤在区间00[1,1]x x -+上恒成立,等价于max ()1f x ≤,00[1,1]x x x ∈-+,当0x a =,()f x 在[1,]a a -递增,在[,1]a a +递减,()f a 为最大值, ()1f a =,32261a a b -++≤,32261b a a ≤-+,令32()261h x x x =-+,ABCDPE2'()6126(2)h x x x x x =-=-,()h x 在[1,0]-递增,在[0,1]递减,所以7()1h x -≤≤,71b -≤≤.(20)【2017年天津,文20,14分】已知椭圆22221(0)x y a b a b+=>>的左焦点为(,0)F c -,右顶点为A ,点E 的坐标为(0,)c ,EFA ∆的面积为22b.(1)求椭圆的离心率;(2)设点Q 在线段AE 上,3||2FQ c =,延长线段PQ 与椭圆交于点P ,点M ,N 在轴上,PM QN ∥,且直线PM 与直线QN 间的距离为,四边形PQNM 的面积为3c ; (i )求直线FP 的斜率; (ii )求椭圆的方程.解:(1)12AEFS AF OE ∆=⨯⨯21()22b a c c =+⨯=,因为222b a c =-,所以c a c =-,故2a c =,12c e a ==.(2)(i )45EFO ∠=︒,设1EQ EA λλ=+(01)λ<<,所以(1)FQ FE FA λλ=-+,2FE c =,3FA c =,因为32c FQ =,两边平方,解之得:910λ=,32λ=(舍) 代入(1)FQ FE FA λλ=-+,得69(,)510c c FQ =,直线FP 的斜率等于34y x =(ii )直线FP 的方程:30()4y x c -=-;为求点P 的坐标,联立方程解方程组:2224333412y x c x y c=-⎧⎨+=⎩,解之得:13,7c x c x ==-(舍),所以3(,)2c P c ,因为69(,)510c cFQ =,所以9(,)510c cQ , 即PQ c =,而PM ∥QN ,且直线PM 与直线QN 间的距离为c ,所以直线PM 与直线QN 垂直于PF ,由(i )直线FP 的斜率等于34,可得335154428c c PM PF ==⨯=,33394428c c QN FQ =⨯=⨯=, MNPQ FPM FQN S S S ∆∆=- 1()2PM PF QN QF =⨯⨯-⨯232c =,所以2332c c =,解之得2c =,所以4,23a b ==,所以2211612x y+=.。

2017年高考文科数学天津卷及答案解析

数学试卷 第1页(共18页) 数学试卷 第2页(共18页)绝密★启用前天津市2017年普通高等学校招生考试数学(文史类)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试时间120分钟.第Ⅰ卷参考公式:如果事件A ,B 互斥,那么()()()P A B P A P B =+.棱柱的体积公式V Sh =.其中S 表示棱柱的底面积,h 表示棱柱的高.球的体积公式343V R π=.其中R 表示球的半径.一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设集合{}1,2,6A =,{}2,4B =,{}=1,2,4C ,则()C A B = ( ) A .{}2B .{}1,2,34,C .{}1,246,,D .{}1,2,346,, 2.设x R ∈,则“20x -≥”是“11x -≤”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件3.有5支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、绿、紫.从这5支彩笔中任取2支不同颜色的彩笔,则取出的2支彩笔中含有红色彩笔的概率为( )A .45B .35C .25D .154.阅读右面的程序框图,运行相应的程序,若输入的值为19,则输出的值为 ( )A .0B .1C .2D .35.已知双曲线2222=1(0,)x y a b a b->>0的右焦点为F ,点A 在双曲线的渐近线上,OAF △是边长为2的等边三角形(O 为原点),则双曲线的方程为 ( ) A .22=1412x y -B .22=1124x y - C .22=13x y -D .22=13y x -6.已知奇函数()f x 在R上是增函数.若0.8221=(log ),=(log 4.1),=(2)5a fb fc f -,则a ,b ,c 的大小关系为( ) A .a b c << B .b a c << C .c b a << D .c a b <<7.设函数()=2s i n ()R f x x x ωϕ+∈,,其中0ωϕπ>,<.若5π()=28f ,11π()=08f ,且()f x 的最小正周期大于2π,则毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共18页) 数学试卷 第4页(共18页)( )A .2π=,=312ωϕ B .211π=,=312ωϕ-C .111π=,=324ωϕ-D .17π=,=324ωϕ8.已知函数2,1,2, 1.()=x x x x x f x ++≥⎧⎨⎩<设a R ∈,若关于x 的不等式在x()a 2f x ≥+上恒成立,则a 的取值范围是( )A .[]2,2-B.⎡⎤-⎣⎦ C.2,⎡-⎣D.⎡-⎣第Ⅱ卷二、填空题:本大题共6小题,每小题5分,共30分. 9.已知R α∈,i 为虚数单位,若i2iα-+为实数,则a 的值为 .10.已知R α∈,设函数()=ln f x x x α-的图象在点(1,(1))f 处的切线为l ,则l 在y 轴上的截距为 .11.已知一个正方形的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为 .12.设抛物线2=4y x 的焦点为F ,准线为l .已知点C 在l 上,以C 为圆心的圆与y 轴的正半轴相切于点A .若120FAC ∠=,则圆的方程为 .13.若,a b R ∈,0ab >,则4441a b ab++的最小值为 .14.在ABC △中,60A ∠=,3AB =,2AC =.若=2BD BC uu u r uu u r ,AE AC ABλ=-uu u r uuu r uu u r(R λ∈),且=4AD AE ⋅-uuu r uu u r,则λ的值为 .三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤. 15.(本小题满分13分)在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c .已知s i n =4s i na Ab B,222)ac a b c --. (I )求cos A 的值;(II )求sin(2)B A -的值.16.(本小题满分13分)电视台播放甲、乙两套连续剧,每次播放连续剧时,需要播放广告.已知每次播放甲、乙两套连续剧时,连续剧播放时长、广告600分钟,广告的总播放时间不少于30分钟,且甲连续剧播放的次数不多于乙连续剧播放次数的2倍.分别用x ,y 表示每周计划播出的甲、乙两套连续剧的次数.(I )用x ,y 列出满足题目条件的数学关系式,并画出相应的平面区域;数学试卷 第5页(共18页) 数学试卷 第6页(共18页)(II )问电视台每周播出甲、乙两套连续剧各多少次,才能使收视人次最多?17.(本小题满分13分)如图,在四棱锥P ABCD -中,AD PDC ⊥平面,AD BC ∥,PD PB ⊥,=1AD ,3BC =,4CD =,2PD =.(I )求异面直线AP 与BC 所成角的余弦值; (II )求证:PD PBC ⊥平面;(III )求直线AB 与平面PBC 所成角的正弦值.18.(本小题满分13分)已知{}n a 为等差数列,前n 项和为*n (N )S n ∈,{}n b 是首项为2的等比数列,且公比大于0,2312b b +=,3412b a a =-,114=11S b . (Ⅰ)求{}n a 和{}n b 的通项公式;(Ⅱ)求数列{}2n n a b 的前n 项和*(N )n ∈.19.(本小题满分14分)设,R a b ∈,a 1≤.已知函数32()=63(4)b f x x x a a x ---+,()=()x g x e f x . (Ⅰ)求()f x 的单调区间;(Ⅱ)已知函数=()y g x 和=x y e 的图象在公共点00(,)x y 处有相同的切线,(i )求证:()f x 在0=x x 处的导数等于0;(ii )若关于x 的不等式()x g x e ≤在区间[]001,1x x -+上恒成立,求b 的取值范围.-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题-----------------无---------------效----------------毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________数学试卷 第7页(共18页) 数学试卷 第8页(共18页)20.(本小题满分14分)已知椭圆()2222=10x y a b a b+>>的左焦点为(,0)F c -,右顶点为A ,点E的坐标为(0,)c ,EFA △的面积为22b .(I )求椭圆的离心率;(II )设点Q 在线段AE 上,3=2FQ c ,延长线段FQ 与椭圆交于点P ,点M ,N 在x 轴上,PM QN ∥,且直线PM 与直线QN 间的距离为c ,四边形PQNM 的面积为3c . (i )求直线FP 的斜率; (ii )求椭圆的方程.2017年普通高等学校招生全国统一考试(天津卷)文科数学答案解析第Ⅰ卷一、选择题1.【答案】B【解析】由题意知{}1,2,4,6A B =,∴(){}1,2,4A B C =.2.【答案】B【解析】由x 11-≤,得0x 2≤≤,∵022x x ≤≤⇒≤,202x x ≤≠≤≤,故“2x 0-≥”是“x 11-≤”的必要而不充分条件,故选B . 3.【答案】C【解析】从5支彩笔中任取2支不同颜色的彩笔,有10种不同取法:(红,黄),(红,蓝),(红,绿),(红,紫),(黄,蓝),(黄,绿),(黄,紫),(蓝,绿),(蓝,紫),(绿,紫)而取出的2支彩笔中含有红色彩笔的取法有(红,黄),(红,蓝),(红,绿),(红,紫),共4种,故所求概率42105P ==. 4.【答案】C【解析】由程序框图可知,N 的取值依次为19,18,6,2.故输出N的值为2. 5.【答案】D数学试卷 第9页(共18页) 数学试卷 第10页(共18页)【解析】由OAF △是边长为2的等边三角形可知,2c =,tan 603ba ==又222c ab =+,联立可得1a=,b ,∴双曲线的方程为2213y x -=.6.【答案】C 【解析】由()f x 是奇函数可得,221(log )(log 5)5a f f =-=,∵0.8222l o g 5l o g 4.1l o g 422=>>>,且函数()f x 是增函数,∴c b a <<. 7.【答案】A 【解析】由5π()28f =,11π()08f =,()f x 的最小正周期2πT >,可得11π5π3π8844T -==,∴3πT =,∴2π2==3π3ω.再由5π()28f =及πϕ<得π=12ϕ.8.【答案】A【解析】作出()f x 的图象如图所示,=||2xy a +的图象经过点(0,2)时,可知=2a ±.当2x y a =+的图象与2y x x=+的图象相切时,由22x a x x+=+,得2240x ax -+=,由=0∆,并结合图象可得2a =.要使()||2xf x a ≥+恒成立,当0a ≤时,需满足2a -≤,即20a -≤≤,当a >0时,需满足2a ≤,所以22a -≤≤.第Ⅱ卷二、填空题 9.【答案】2-【解析】因为i (i)(2i)21(2)i=2i (2i)(2i)5a a a a -----+=++-为实数,所以+2=0a ,即=2a -. 10.【答案】1【解析】因为'1()f x a x=-,所以'(1)1f a =-,又'(1)f a =,所以切线l 的方程为(1)(1)y a a x -=--,令=0x ,得=1y . 11.【答案】9π2【解析】设正方体的棱长为a ,则2618a=,得a =,设该正方体外接球的半径为R,则23R ==,得32R =,所以该球的体积为334439ππ()π3322R ==.12.【答案】22(1)(=1x y ++【解析】由题意知该圆的半径为1,设圆心坐标为(1,)C a -(0)a >则(0,)A a ,又(1,0)F ,所以(1,0)AC =-uu u r ,(1,)AF a =-uu u r ,由题意得AC uuu r 与AF uu u r的夹角为120,得1cos1202==-,解得a,所以圆的方程为22(1)(1x y ++=.13.【答案】4【解析】44334141=a b a b ab b a ab++++,由基本不等式得,33411144a b ab b a ab ab ab ++≥=+≥,当且仅当334a b b a=,14ab ab =同时成立时等号成立.14.【答案】311数学试卷 第11页(共18页) 数学试卷 第12页(共18页)【解析】因为2BD DC =uu u r uuu r,所以2212()3333AD AB BD AB BC AB AC AB AB AC =+=+=+-=+uuu r uu u r uu u r uu u r uu u r uu u r uu u r uu u r uu u r uu u r,因为AE AC AB λ=-uu u r uuu r uu u r,所以22121212(+)()()333333AD AE AB AC AC AB AB AC AB AC λλλ⋅=⋅-=-++-⋅uuu r uu u r uu u r uu u r uu u r uu u r uu u r uu u r uuu r uu u r ,因为60A ∠=,3AB =,2AC =,1212189λ4(λ)323λλ24333323AD AE ⋅=-⨯+⨯+-⨯⨯⨯=-++-=-uuu r uu u r ,解得3λ=11.三、解答题 15.【答案】(Ⅰ)5- (Ⅱ)5-【解析】(Ⅰ)由sin =4sin a A b B ,及=sin sin a bA B,得2a b =.由222)ac a b c --,及余弦定理,得2225cos =25b c a A bc ac +-==-.(Ⅱ)由(Ⅰ),可得sin A ,代入sin 4sin a A b B =,得sin sin 4a A B b ==.由(Ⅰ)知,A为钝角,所以cos B .于是4sin 2=2sin cos =5B B B ,23cos 2=12sin =5B B -,故()43sin 2=sin 2cos cos 2sin =(55B A B A B A --⨯--16.【答案】(Ⅰ)见解析(Ⅱ)电视台每周播出甲连续剧6次、乙连续剧3次时才能使总收视人次最多.【解析】(Ⅰ)由已知,x ,y 满足的数学关系式为7060600,5530,2,0,0,x y x y x y x y +≤⎧⎪+≥⎪⎪≤⎨⎪≥⎪≥⎪⎩即7660620,0,0,x y x y x y x y +≤⎧⎪+≥⎪⎪-≤⎨⎪≥⎪≥⎪⎩,, 该二元一次不等式组所表示的平面区域为图1中的阴影部分:(Ⅱ)设总收入人次为z 万,则目标函数为=60+25z x y . 考虑6025z x y =+,将它变形为12525z y x =-+,这是斜率为125-,随z 变化的一族平行直线.25z 为直线在y 轴上的截距,当25z取得最大值时,z 的值最大.又因为x ,y 满足约束条件,所以由图2可知,当直线6025z x y =+经过可行域上的点M 时,即z 最大.解方程组766020x y x y +=⎧⎨-=⎩,,,得点M 的坐标为(6,3).所以,电视台每周播出甲连续剧6次、乙连续剧3次时才能使总收视人次最多.17.【答案】(Ⅰ)数学试卷 第13页(共18页) 数学试卷 第14页(共18页)(Ⅱ) 因为AD PDC ⊥平面,直线PD PDC ⊂平面,所以AD PD ⊥,又因为BC AD ∥,所以PD BC ⊥,又PD PB ⊥,所以PD PBC ⊥平面.(Ⅲ【解析】(Ⅰ)如图,由已知AD BC ∥,故D A P ∠或其补角即为异面直线AP 与BC 所成的角.因为AD PDC ⊥平面,所以AD PD ⊥.在Rt PDA △中,由已知,得AP ==,故c o s AD DAP AP ∠==.所以,异面直线AP 与BC.(Ⅱ)因为AD PDC ⊥平面,直线PD PDC ⊂平面,所以AD PD ⊥,又因为BC AD ∥,所以PD BC ⊥,又PD PB ⊥,所以PD PBC ⊥平面.(Ⅲ)过点D 作AB 的平行线交BC 于点F ,连结PF ,则DF 与平面PBC 所成的角等于AB 与平面PBC 所成的角.因为PD PBC ⊥平面,故PF 为DF 在平面PBC 上的射影,所以DFP∠为直线DF 和平面PBC 所成的角.由于AD BC ∥,DF AB ∥,故1BF AD ==,由已知,得2CF BC BF =-=.又AD DC ⊥,故BC D C⊥,在Rt DCF △中,可得DF ==,在Rt DPF △中,可得sin 5PD DFP DF ∠==.所以,直线AB 与平面PBC18.【答案】(Ⅰ)32n a n =-,2n b n =. (Ⅱ)()234216n n T n +=-+.【解析】(Ⅰ)设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q .由已知2312b b +=,得()2112b q q +=,而12b =,所以260q q +-=.又因为0q >,解得2q =,所以,2n b n =.由3412b a a =-,可得138d a -=①.由11411S b =,可得1516a d +=②,联立①②,解得11a =,3d =,由此可得32n a n =-.所以,{}n a 的通项公式为32n a n =-,{}n b 的通项公式为2nn b =.(Ⅱ)设数列{}2n n a b 的前n 项和为n T ,由262n a n =-,有()2342102162622nn T n =⨯+⨯+⨯++-⨯,()()23412421021626826-22n n n T n n +=⨯+⨯+⨯++-⨯+⨯,上述两式相减,得()231124262626262212(12)4(62)212(34)216n n n n n n T n n n +++-=⨯+⨯+⨯++⨯--⨯⨯-=---⨯-=---得()234216n n T n +=-+.所以,数列{}2n n a b 的前n 项和为()234216n n +-+.19.【答案】(Ⅰ)12(2)(ⅰ)34(ⅱ)(1)递增区间为()a -∞,,()4a -+∞,,递减区间为()a 4a -,.(2)(ⅰ)()x f 在0x=x 处的导数等于0.(ⅱ)b 的取值范围是[]7,1-.22x y =11612+ 【解析】(Ⅰ)由32()63(4)f x x x a a x b =---+,可得[]'2()3123(4)3()(4)f x x x a a x a x a =---=---.令'()=0f x ,解得x a =,或4x a =-,由||1a ≤,得4a a -<.数学试卷 第15页(共18页) 数学试卷 第16页(共18页)x '()f x ()f x 所以,()f x 的单调递增区间为()a -∞,,(4,)a -+∞,单调递减区间为(,4)a a -(Ⅱ)(i )因为'()(()())x g x e f x f x =+,由题意知000'0(),()x x g x e g x e ⎧=⎪⎨=⎪⎩所以00000'00()(()())x xx x f x e e e f x f x e ⎧=⎪⎨+=⎪⎩,解得0'0()1()0f x f x =⎧⎪⎨=⎪⎩ 所以,()f x 在0x x =处的导数等于0.(ii )因为()x g x e ≤,00[11]x x x ∈-+,,由0x e >,可得()1f x ≤.又因为0(x )1f =,'0()0f x =,故0x 为()f x 的极大值点,由(Ⅰ)知0x a =. 另一方面,由于|1|a ≤,故14a a +-<,由(Ⅰ)知()f x 在(1,)a a -内单调递增,在(,1)a a +内单调递减,故当0x a =时,()()1f x f a ≤=在[1,1]a a -+上恒成立,从而()x g x e ≤在00[1,1]x x -+上恒成立.由32()63(4)1f a a a a a a b =---+=,得32261b a a =-+,11a -≤≤.令32()261t x x x =-+,[1,1]x ∈-,所以'2()612t x x x =-,令'()0t x=,解得2x =(舍去),或0x =.因为(1)7t -=-,(1)3t =-,(0)1t =,因此,()t x 的值域为[7,1]-. 所以,b 的取值范围是[7,1]-.20.【答案】(1)12(2)(ⅰ)34(ⅱ)22x y =11612+【解析】(Ⅰ)设椭圆的离心率为e .由已知,可得21()22b c a c +=,又由222b a c =-,可得2220c ac a +-=,即2210e e +-=,又因为01e <<,解得12e =.所以,椭圆的离心率为12.(Ⅱ)(i )依题意,设直线FP 的方程为(0)x my c m =->,则直线FP 的斜率为1m由(Ⅰ)知2a c =,可得直线AE 的方程为12x yc c+=,即220x y c +-=,与直线FP 的方程联立,可解得(22)2m cx m -=+,32c y m =+,即点Q的坐标为(22)3(,)22m c cm m -++. 由已知3||2c FQ =,有222(22)33[]+()()222m c c cc m m -+=++,整理得2340m m -=,所以43m =,即直线FP 的斜率为34.(ii )由2a c =,可得b =,故椭圆方程可以表示为2222143x y c c+=.由(i )得直线FP 的方程为3430x y c -+=,与椭圆方程联立22233430143x y c x y cc -+=⎧⎪⎨+=⎪⎩,消去y ,整理得2276130x cx c +-=,解得137cx =-(舍去),或x c =. 因此可得点3(c,)2cP ,进而可得5||2cFP ==,所以53||||||22c cPQ FP FQ c =-=-=.由已知,线段PQ 的长即为PM 与QN 这两条平行直线间的距离,故直线PM 和QN 都垂直于直线FP . 因为QN FP ⊥,所以339||||tan 248c cQN FQ QFN =⋅∠=⨯=,所以FQN △的面积为2127||||232c FQ QN =,同理FPM △的面积等于27532c ,由四边形PQNM 四边形的面积为3c ,得22752733232c c c -=,整理得22c c =,又由0c >,得2c =.所以,椭圆的方程为2211612x y +=.数学试卷第17页(共18页)数学试卷第18页(共18页)。

2017年高考数学天津文试题及解析

2017年天津文1。

(2017年天津文)设集合A={1,2,6},B={2,4},C={1,2,3,4},则(A∪B)∩C= ( ) A。

{2}B。

{1,2,4} C。

{1,2,4,6} D.{1,2,3,4,6}1。

B 【解析】由题意可得A∪B ={1,2,4,6},所以(A∪B)∩C={1,2,4}.故选B.2。

(2017·天津高考)设x∈R,则“2-x≥0”是“|x-1|≤1"的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件解析:选B由2-x≥0,得x≤2,由|x-1|≤1,得0≤x≤2。

∵0≤x≤2⇒x≤2,x≤2⇒/ 0≤x≤2,故“2-x≥0”是“|x-1|≤1"的必要而不充分条件.3。

(2017年天津文)有5支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、绿、紫.从这5支彩笔中任取2支不同颜色的彩笔,则取出的2支彩笔中含有红色彩笔的概率为()A。

错误!B。

错误!C。

错误!D. 错误!3. C 【解析】选取两支彩笔的方法有:红黄、红蓝、红绿、红紫、黄蓝、黄绿、黄紫、蓝绿、蓝紫、绿紫,共10种,含有红色彩笔的选法有:红黄、红蓝、红绿、红紫,共4种,由古典概型的概率计算公式,可得所求概率P=错误!=错误!.故选C.4. (2017·天津高考)阅读如图所示的程序框图,运行相应的程序,若输入N的值为24,则输出N的值为()A.0 B.1C.2 D.3解析:选C第一次循环,24能被3整除,N=错误!=8>3;第二次循环,8不能被3整除,N=8-1=7>3;第三次循环,7不能被3整除,N=7-1=6>3;第四次循环,6能被3整除,N=错误!=2<3,结束循环,故输出N的值为2。

5。

(2017年天津文)已知双曲线错误!-错误!=1(a>0,b>0)的右焦点为F,点A在双曲线的渐近线上,△OAF是边长为2的等边三角形(O为原点),则双曲线的方程为( )A. 错误!—错误!=1 B。

2017年天津市高考文科数学试题(含答案和解释)

2017年天津市高考文科数学试题(含答案和解释)绝密★启用前 2017年普通高等学校招生全国统一考试(天津卷)数学(文史类)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟。

第Ⅰ卷1至2页,第Ⅱ卷3至5页。

答卷前,考生务必将自己的姓名、准考证号填写在答题考上,并在规定位置粘贴考试用条形码。

答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。

考试结束后,将本试卷和答题卡一并交回。

祝各位考生考试顺利!第Ⅰ卷注意事项: 1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

2.本卷共8小题,每小题5分,共40分。

参考公式:•如果事件A,B互斥,那么•如果事件A,B相互独立,那么P(A∪B)=P(A)+P(B).P(AB)=P(A) P(B).•棱柱的体积公式V=Sh. •圆锥的体积公式 . 其中S表示棱柱的底面面积,其中S表示棱锥的底面面积,h表示棱锥的高. h表示棱柱的高.一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. (1)设集合,则(A)(B)(C)(D)【答案】(A)充分而不必要条件(B)必要而不充分条件(C)充要条件(D)既不充分也不必要条件【答案】【解析】,则,,则,据此可知:“ ”是“ ”的必要二不充分条件. 本题选择B选项. (3)有5支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、绿、紫.从这5支彩笔中任取2支不同颜色的彩笔,则取出的2支彩笔中含有红色彩笔的概率为(A)(B)(C)(D)【答案】(4)阅读右面的程序框图,运行相应的程序,若输入的值为19,则输出的值为(A)0 (B)1(C)2(D)3 【答案】【解析】阅读流程图可得,程序执行过程如下:首先初始化数值为,第一次循环:,不满足;第二次循环:,不满足;第三次循环:,满足;此时跳出循环体,输出 . 本题选择C选项. (5)已知双曲线的左焦点为,点在双曲线的渐近线上,是边长为2的等边三角形(为原点),则双曲线的方程为(A)(B)(C)(D)【答案】(6)已知奇函数在上是增函数.若,则的大小关系为(A)(B)(C)(D)【答案】【解析】由题意:,且:,据此:,结合函数的单调性有:,即 . 本题选择C选项. (7)设函数,其中 .若且的最小正周期大于,则(A)(B)(C)(D)【答案】(8)已知函数设,若关于的不等式在上恒成立,则的取值范围是(A)(B)(C)(D) zx xk 【答案】【解析】满足题意时的图象恒不在函数下方,当时,函数图象如图所示,排除C,D选项;当时,函数图象如图所示,排除B选项,本题选择A选项. 第Ⅱ卷注意事项: 1.用黑色墨水的钢笔或签字笔将答案写在答题卡上。

2017年高考文科数学天津卷含答案

数学试卷 第1页(共14页) 数学试卷 第2页(共14页)绝密★启用前天津市2017年普通高等学校招生考试数学(文史类)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试时间120分钟.第Ⅰ卷参考公式:如果事件A ,B 互斥,那么()()()P AB P A P B =+.棱柱的体积公式V Sh =.其中S 表示棱柱的底面积,h 表示棱柱的高. 球的体积公式343V R π=.其中R 表示球的半径. 一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设集合{}1,2,6A =,{}2,4B =,{}=1,2,4C ,则()C A B =( ) A .{}2B .{}1,2,34,C .{}1,246,,D .{}1,2,346,, 2.设x R ∈,则“20x -≥”是“11x -≤”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件3.有5支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、绿、紫.从这5支彩笔中任取2支不同颜色的彩笔,则取出的2支彩笔中含有红色彩笔的概率为( )A .45 B .35 C .25D .154.阅读右面的程序框图,运行相应的程序,若输入的值为19,则输出的值为( )A .0B .1C .2D .35.已知双曲线2222=1(0,)x y a b a b->>0的右焦点为F ,点A 在双曲线的渐近线上,OAF△是边长为2的等边三角形(O 为原点),则双曲线的方程为( )A .22=1412x y - B .22=1124x y - C .22=13x y - D .22=13y x - 6.已知奇函数()f x 在R 上是增函数.若0.8221=(log ),=(log 4.1),=(2)5a fb fc f -,则a ,b ,c 的大小关系为( )A .a b c <<B .b a c <<C .c b a <<D .c a b <<7.设函数()=2sin()R f x x x ωϕ+∈,,其中0ωϕπ>,<.若5π()=28f ,11π()=08f ,且()f x 的最小正周期大于2π,则( )A .2π=,=312ωϕ B .211π=,=312ωϕ- C .111π=,=324ωϕ- D .17π=,=324ωϕ8.已知函数2,1,2, 1.()=x x x x x f x ++≥⎧⎨⎩<设a R ∈,若关于x 的不等式在x()a 2f x ≥+上恒成立,则a的取值范围是( )A .[]2,2-B.⎡⎤-⎣⎦C.2,⎡-⎣D.⎡-⎣毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共14页) 数学试卷 第4页(共14页)第Ⅱ卷二、填空题:本大题共6小题,每小题5分,共30分. 9.已知R α∈,i 为虚数单位,若i2iα-+为实数,则a 的值为 .10.已知R α∈,设函数()=ln f x x x α-的图象在点(1,(1))f 处的切线为l ,则l 在y 轴上的截距为 .11.已知一个正方形的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为 .12.设抛物线2=4y x 的焦点为F ,准线为l .已知点C 在l 上,以C 为圆心的圆与y 轴的正半轴相切于点A .若120FAC ∠=,则圆的方程为 .13.若,a b R ∈,0ab >,则4441a b ab++的最小值为 .14.在ABC △中,60A ∠=,3AB =,2AC =.若=2BD BC uu u r uu u r ,AE AC AB λ=-uu u r uuu r uu u r(R λ∈),且=4AD AE ⋅-uuu r uu u r,则λ的值为 .三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤. 15.(本小题满分13分)在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c .已知s i n =4s i na Ab B,222)ac a b c --.(I )求cos A 的值;(II )求sin(2)B A -的值.16.(本小题满分13分)电视台播放甲、乙两套连续剧,每次播放连续剧时,需要播放广告.已知每次播放甲、已知电视台每周安排的甲、乙连续剧的总播放时间不多于600分钟,广告的总播放时间不少于30分钟,且甲连续剧播放的次数不多于乙连续剧播放次数的2倍.分别用x ,y 表示每周计划播出的甲、乙两套连续剧的次数.(I )用x ,y 列出满足题目条件的数学关系式,并画出相应的平面区域;(II )问电视台每周播出甲、乙两套连续剧各多少次,才能使收视人次最多?17.(本小题满分13分)如图,在四棱锥P ABCD -中,AD PDC ⊥平面,AD BC ∥,PD PB ⊥,=1AD ,3BC =,4CD =,2PD =.(I )求异面直线AP 与BC 所成角的余弦值; (II )求证:PD PBC ⊥平面;(III )求直线AB 与平面PBC 所成角的正弦值.数学试卷 第5页(共14页) 数学试卷 第6页(共14页)18.(本小题满分13分)已知{}n a 为等差数列,前n 项和为*n (N )S n ∈,{}n b 是首项为2的等比数列,且公比大于0,2312b b +=,3412b a a =-,114=11S b . (Ⅰ)求{}n a 和{}n b 的通项公式; (Ⅱ)求数列{}2n n a b 的前n 项和*(N )n ∈.19.(本小题满分14分)设,R a b ∈,a 1≤.已知函数32()=63(4)b f x x x a a x ---+,()=()xg x e f x .(Ⅰ)求()f x 的单调区间;(Ⅱ)已知函数=()y g x 和=xy e 的图象在公共点00(,)x y 处有相同的切线,(i )求证:()f x 在0=x x 处的导数等于0;(ii )若关于x 的不等式()xg x e ≤在区间[]001,1x x -+上恒成立,求b 的取值范围.20.(本小题满分14分)已知椭圆()2222=10x y a b a b+>>的左焦点为(,0)F c -,右顶点为A ,点E 的坐标为(0,)c ,EFA △的面积为22b .(I )求椭圆的离心率; (II )设点Q 在线段AE 上,3=2FQ c ,延长线段FQ 与椭圆交于点P ,点M ,N 在x 轴上,PM QN ∥,且直线PM 与直线QN 间的距离为c ,四边形PQNM 的面积为3c .(i )求直线FP 的斜率; (ii )求椭圆的方程.2017年普通高等学校招生全国统一考试(天津卷)文科数学答案解析第Ⅰ卷一、选择题 1.【答案】B 【解析】由题意知{}1,2,4,6A B =,∴(){}1,2,4A B C =.2.【答案】B 【解析】由x 11-≤,得0x 2≤≤,∵022x x ≤≤⇒≤,202x x ≤≠≤≤,故“2x 0-≥”是“x 11-≤”的必要而不充分条件,故选B .3.【答案】C【解析】从5支彩笔中任取2支不同颜色的彩笔,有10种不同取法:(红,黄),(红,蓝),(红,绿),(红,紫),(黄,蓝),(黄,绿),(黄,紫),(蓝,绿),(蓝,紫),(绿,紫)而取出的2支彩笔中含有红色彩笔的取法有(红,黄),(红,蓝),(红,绿),(红,紫),共4种,故所求概率42105P ==. -------------在--------------------此--------------------卷--------------------上--------------------答--------------------题-----------------无---------------效----------------毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________数学试卷 第7页(共14页) 数学试卷 第8页(共14页)4.【答案】C【解析】由程序框图可知,N 的取值依次为19,18,6,2.故输出N 的值为2. 5.【答案】D【解析】由OAF △是边长为2的等边三角形可知,2c =,tan 603ba==又222c a b =+,联立可得1a =,b =2213y x -=.6.【答案】C【解析】由()f x 是奇函数可得,221(log )(log 5)5a f f =-=,∵0.222l o g 5l o g4.1l o g 422=>>>,且函数()f x 是增函数,∴c b a <<. 7.【答案】A【解析】由5π()28f =,11π()08f =,()f x 的最小正周期2πT >,可得11π5π3π8844T -==,∴3πT =,∴2π2==3π3ω.再由5π()28f =及πϕ<得π=12ϕ.8.【答案】A【解析】作出()f x 的图象如图所示,=||2xy a +的图象经过点(0,2)时,可知=2a ±.当2x y a =+的图象与2y x x =+的图象相切时,由22x a x x+=+,得2240x ax -+=,由=0∆,并结合图象可得2a =.要使()||2xf x a ≥+恒成立,当0a ≤时,需满足2a -≤,即20a -≤≤,当a >0时,需满足2a ≤,所以22a -≤≤.第Ⅱ卷二、填空题9.【答案】2-【解析】因为i (i)(2i)21(2)i=2i (2i)(2i)5a a a a -----+=++-为实数,所以+2=0a ,即=2a -. 10.【答案】1【解析】因为'1()f x a x=-,所以'(1)1f a =-,又'(1)f a =,所以切线l 的方程为(1)(1)y a a x -=--,令=0x ,得=1y .11.【答案】9π2【解析】设正方体的棱长为a ,则2618a =,得a ,设该正方体外接球的半径为R,则23R ==,得32R =,所以该球的体积为334439ππ()π3322R ==. 12.【答案】22(1)(=1x y ++-【解析】由题意知该圆的半径为1,设圆心坐标为(1,)C a -(0)a >则(0,)A a ,又(1,0)F ,所以(1,0)AC =-uu u r ,(1,)AF a =-uu u r ,由题意得AC uuu r 与AF uu u r的夹角为120,得1cos1202==-,解得a =,所以圆的方程为22(1)(1x y ++=.13.【答案】4【解析】44334141=a b a b ab b a ab++++,由基本不等式得,33411144a b ab b a ab ab ab ++≥=+≥,当且仅当334a b b a=,14ab ab =同时成立时等号成立.14.【答案】311【解析】因为2BD DC =uu u ruuu r,所以2212()3333AD AB BD AB BC AB AC AB AB AC =+=+=+-=+uuu r uu u r uu u r uu u r uu u r uu u r uu u r uu u r uu u r uu u r ,因为AE AC AB λ=-uu u ruuu r uu u r,数学试卷 第9页(共14页) 数学试卷 第10页(共14页)所以22121212(+)()()333333AD AE AB AC AC AB AB AC AB AC λλλ⋅=⋅-=-++-⋅uuu r uu u r uu u r uu u r uu u r uu u r uu u r uu u r uuu r uu u r ,因为60A ∠=,3AB =,2AC =,1212189λ4(λ)323λλ24333323AD AE ⋅=-⨯+⨯+-⨯⨯⨯=-++-=-uuu r uu u r ,解得3λ=11.三、解答题15.【答案】(Ⅰ)5-(Ⅱ)5-【解析】(Ⅰ)由sin =4sin a A b B ,及=s i n s i n ab A B,得2a b =.由222)ac a b c --,及余弦定理,得2225cos =25b c a A bc ac +-==-. (Ⅱ)由(Ⅰ),可得sin A =,代入sin 4sin a A b B =,得sin sin 4a A B b ==.由(Ⅰ)知,A为钝角,所以cos B .于是4sin 2=2sin cos =5B B B ,23cos 2=12sin =5B B -,故()43sin 2=sin 2cos cos 2sin =(55B A B A B A --⨯--16.【答案】(Ⅰ)见解析(Ⅱ)电视台每周播出甲连续剧6次、乙连续剧3次时才能使总收视人次最多.【解析】(Ⅰ)由已知,x ,y 满足的数学关系式为7060600,5530,2,0,0,x y x y x y x y +≤⎧⎪+≥⎪⎪≤⎨⎪≥⎪≥⎪⎩即7660620,0,0,x y x y x y x y +≤⎧⎪+≥⎪⎪-≤⎨⎪≥⎪≥⎪⎩,, 该二元一次不等式组所表示的平面区域为图1中的阴影部分:(Ⅱ)设总收入人次为z 万,则目标函数为=60+25z x y .考虑6025z x y =+,将它变形为12525z y x =-+,这是斜率为125-,随z 变化的一族平行直线.25z 为直线在y 轴上的截距,当25z取得最大值时,z 的值最大.又因为x ,y 满足约束条件,所以由图2可知,当直线6025z x y =+经过可行域上的点M 时,即z 最大.解方程组766020x y x y +=⎧⎨-=⎩,,,得点M 的坐标为(6,3).所以,电视台每周播出甲连续剧6次、乙连续剧3次时才能使总收视人次最多.17.【答案】(Ⅰ)5(Ⅱ) 因为AD PDC ⊥平面,直线PD PDC ⊂平面,所以AD PD ⊥,又因为BC AD ∥,所以PD BC ⊥,又PD PB ⊥,所以PD PBC ⊥平面.(Ⅲ)5【解析】(Ⅰ)如图,由已知AD BC ∥,故D A P ∠或其补角即为异面直线AP 与BC 所成的角.因为AD PDC ⊥平面,所以AD PD ⊥.在Rt PDA △中,由已知,得数学试卷 第11页(共14页) 数学试卷 第12页(共14页)AP ==cos AD DAP AP∠==.所以,异面直线AP 与BC. (Ⅱ)因为AD PDC ⊥平面,直线PD PDC ⊂平面,所以AD PD ⊥,又因为BC AD ∥,所以PD BC ⊥,又PD PB ⊥,所以PD PBC ⊥平面.(Ⅲ)过点D 作AB 的平行线交BC 于点F ,连结PF ,则DF 与平面PBC 所成的角等于AB 与平面PBC 所成的角.因为PD PBC ⊥平面,故PF 为DF 在平面PBC 上的射影,所以DFP ∠为直线DF 和平面PBC 所成的角.由于AD BC ∥,DF AB ∥,故1B F A D ==,由已知,得2CF BC BF =-=.又AD DC ⊥,故BC DC ⊥,在Rt DCF △中,可得DF =,在Rt DPF △中,可得sin PD DFP DF ∠=. 所以,直线AB 与平面PBC18.【答案】(Ⅰ)32n a n =-,2n b n =. (Ⅱ)()234216n n T n +=-+.【解析】(Ⅰ)设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q .由已知2312b b +=,得()2112b q q+=,而12b=,所以260q q +-=.又因为0q >,解得2q =,所以,2n b n =.由3412b a a =-,可得138d a -=①.由11411S b =,可得1516a d +=②,联立①②,解得11a =,3d =,由此可得32n a n =-.所以,{}n a 的通项公式为32n a n =-,{}n b 的通项公式为2n n b =.(Ⅱ)设数列{}2n n a b 的前n项和为n T ,由262n a n =-,有()2342102162622nn T n =⨯+⨯+⨯++-⨯,()()23412421021626826-22n n n T n n +=⨯+⨯+⨯++-⨯+⨯,上述两式相减,得()231124262626262212(12)4(62)212(34)216n n n n n n T n n n +++-=⨯+⨯+⨯++⨯--⨯⨯-=---⨯-=---得()234216n n T n +=-+.所以,数列{}2n n a b 的前n 项和为()234216n n +-+.19.【答案】(Ⅰ)12(2)(ⅰ)34(ⅱ)(1)递增区间为()a -∞,,()4a -+∞,,递减区间为()a 4a -,.(2)(ⅰ)()x f 在0x=x 处的导数等于0.(ⅱ)b 的取值范围是[]7,1-.22x y =11612+ 【解析】(Ⅰ)由32()63(4)f x x x a a x b =---+,可得[]'2()3123(4)3()(4)f x x x a a x a x a =---=---.令'()=0f x ,解得x a =,或4x a =-,由||1a ≤,得4a a -<.当x 变化时,'()f x ,()f x 的变化情况如下表:所以,()f x 的单调递增区间为()a -∞,,(4,)a -+∞,单调递减区间为(,4)a a -(Ⅱ)(i )因为'()(()())xg x e f x f x =+,由题意知00'0(),()xx g x e g x e⎧=⎪⎨=⎪⎩ 所以00000'00()(()())x xx x f x e e e f x f x e⎧=⎪⎨+=⎪⎩,解得0'0()1()0f x f x =⎧⎪⎨=⎪⎩ 所以,()f x 在0x x =处的导数等于0.数学试卷 第13页(共14页) 数学试卷 第14页(共14页)(ii )因为()xg x e ≤,00[11]x x x ∈-+,,由0x e >,可得()1f x ≤.又因为0(x )1f =,'0()0f x =,故0x 为()f x 的极大值点,由(Ⅰ)知0x a =.另一方面,由于|1|a ≤,故14a a +-<,由(Ⅰ)知()f x 在(1,)a a -内单调递增,在(,1)a a +内单调递减,故当0x a =时,()()1f x f a ≤=在[1,1]a a -+上恒成立,从而()xg x e ≤在00[1,1]x x -+上恒成立.由32()63(4)1f a a a a a a b =---+=,得32261b a a =-+,11a -≤≤.令32()261t x x x =-+,[1,1]x ∈-,所以'2()612t x x x =-,令'()0t x =,解得2x =(舍去),或0x =.因为(1)7t -=-,(1)3t =-,(0)1t =,因此,()t x 的值域为[7,1]-. 所以,b 的取值范围是[7,1]-.20.【答案】(1)12(2)(ⅰ)34(ⅱ)22x y =11612+【解析】(Ⅰ)设椭圆的离心率为e .由已知,可得21()22b c a c +=,又由222b a c =-,可得2220c ac a +-=,即2210e e +-=,又因为01e <<,解得12e =. 所以,椭圆的离心率为12. (Ⅱ)(i )依题意,设直线FP 的方程为(0)x my c m =->,则直线FP 的斜率为1m由(Ⅰ)知2a c =,可得直线AE 的方程为12x yc c +=,即220x y c +-=,与直线FP 的方程联立,可解得(22)2m c x m -=+,32c y m =+,即点Q 的坐标为(22)3(,)22m c cm m -++. 由已知3||2c FQ =,有222(22)33[]+()()222m c c c c m m -+=++,整理得2340m m -=,所以43m =,即直线FP 的斜率为34.(ii )由2a c =,可得b =,故椭圆方程可以表示为2222143x y c c+=.由(i )得直线FP 的方程为3430x y c -+=,与椭圆方程联立22233430143x y c x y cc -+=⎧⎪⎨+=⎪⎩,消去y ,整理得2276130x cx c +-=,解得137cx =-(舍去),或x c =.因此可得点3(c,)2c P ,进而可得5||2cFP ,所以53||||||22c cPQ FP FQ c =-=-=.由已知,线段PQ 的长即为PM 与QN 这两条平行直线间的距离,故直线PM 和QN 都垂直于直线FP .因为QN FP ⊥,所以339||||tan 248c c QN FQ QFN =⋅∠=⨯=,所以FQN △的面积为2127||||232c FQ QN =,同理FPM △的面积等于27532c ,由四边形PQNM 四边形的面积为3c ,得22752733232c c c -=,整理得22c c =,又由0c >,得2c =.所以,椭圆的方程为2211612x y +=.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年普通高等学校招生全国统一考试(天津卷)数学(文科)一、选择题:本大题共8小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)【2017年天津,文1,5分】设集合{}1,2,6A =,{}2,4B =,{}1,2,3,4C =,则()A B C = ()(A ){}2(B ){}1,2,4(C ){}1,2,3,4(D ){}1,2,3,4,6【答案】B【解析】{}1,2,4,6A B = ,(){1,2,4,6}{1,2,3,4}{1,2,4}A B C == ,故选B . (2)【2017年天津,文2,5分】设x R ∈,则“20x -≥”是“11x -≤”的()(A )充分不必要条件(B )必要不充分条件(C )充分必要条件(D )既不充分也不必要条件 【答案】B【解析】20x -≥解得:2x ≤;11x -≤解得:02x ≤≤,2x ≤⇐02x ≤≤,故选B .(3)【2017年天津,文3,5分】有5支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、绿、紫,从这5支彩笔中任取2支不同颜色的彩笔,则取出的2支彩笔中含有红色彩笔的概率为()(A )45(B )35(C )25(D )15【答案】C【解析】“从这5支彩笔中任取2支不同颜色的彩笔”基本事件总个数:25C ,而事件“取出的2支彩笔中含有红色彩笔”包含基本事件个数:14C ;42105P ==,故选C .(4)【2017年天津,文4,5分】阅读右边的程序框图,运行相应的程序,若输入的N 的值为19,则输出的N 的值为() (A )0(B )1(C )2(D )3 【答案】C【解析】阅读流程图可得,程序执行过程如下:首先初始化数值为19N =,第一次循环:118N N =-=,不满足3N ≤;第二次循环:63NN ==,不满足3N ≤;第三次循环:23NN ==,满足3N ≤;此时跳出循环体,输出3N =,故选C .(5)【2017年天津,文5,5分】已知双曲线22221(0,0)x y a b a b-=>>的左焦点为F ,点A 在双曲线的渐近线上,OAF ∆是边长为2的等边三角形(O 为原点),则双曲线的方程为()(A )221412x y -=(B )221124x y -=(C )2213x y -=(D )2213y x -=【答案】D【解析】因为OAF ∆是边长为2的等边三角形(O 为原点)所以2OF =,60AOF ∠=︒,所以直线OA方程为y =,所以渐近线方程by x a=±其中一条为y =,所以,2c b a=⎧⎪⎨=⎪⎩,解之得:1,2a b c ==,故选D . (6)【2017年天津,文6,5分】已知奇函数()f x 在R 上是增函数,若21(log )5a f =-,2(log 4.1)b f =,0.8(2)c f =,则,,a b c 的大小关系为()(A )a b c << (B )b a c <<(C )c b a <<(D )c a b << 【答案】C【解析】因为()f x 在R 上是奇函数,所以有()()f x f x -=-,即21(log )5a f =-2(log 5)f =;又因为()f x 在R 上是增函数,且0.8122222log 4log 4.1log 5<=<<,所以c b a <<,故选C .(7)【2017年天津,文7,5分】设函数()2sin(),f x x x R ωϕ=+∈,其中0,ωϕπ><,若511()2,()088f f ππ==,且()f x 的最小正周期大于2π,则()(A )2,312πωϕ==(B )211,312πωϕ==-(C )111,324πωϕ==-(D )17,324πωϕ==【答案】A【解析】函数()2sin(),f x x x R ωϕ=+∈,511()2,()088f f ππ==,振幅为2,所以如图所示:若函数图象如图表1所示,3115488T ππ=-,解得T π=,不满足最小正周期大于2π,所以函数图象如图表2所示,115488T ππ=-,解得3T π=,23ω=,又因为5()28f π=,所以25382ππϕ⨯+=,所以12πϕ=,故选A .(8)【2017年天津,文8,5分】已知函数2,1()2,1x x f x x x x ⎧+<⎪=⎨+≥⎪⎩,设a R ∈,若关于x 的不等式()2xf x a ≥+在R 上恒成立,则a 的取值范围是()(A )[2,2]-(B)[-(C)[-(D)- 【答案】A【解析】函数()f x 的图象如下图(左),若关于x 的不等式()2xf x a ≥+在R 上恒成立,则不妨设()2x g x a =+,“()2xf x a ≥+在R 上恒成立”表示()y f x =图 象与()yg x =图象应如下图(右)所示找到两个临界位置: ①()f x 与()g x 相切时,1x >,221'()12f x x =-=,解得02x =,03y =,代入(2)3g =,解得232a +=,2,4a a ==-(舍);②()g x 过点(0,2),代入(0)2g =,2a =,解得2,2a a =-=(舍),故a 的取值范围在2-与2之间,故选A .二、填空题:本大题共6小题,每小题5分,共30分.(9)【2017年天津,文9,5分】已知a R ∈,i 为虚数单位,若i2ia -+为实数,则a 的值为.【答案】2-【解析】解法一:i (i)(2i)21(2)i2i (2i)(2i)5a a a a -----+==++-为实数,所以20a +=,2a =-. 解法二:i2ia -+为实数⇔i a -与2i +成比例,比例为1-,所以2a =-.(10)【2017年天津,文10,5分】已知a R ∈,设函数()ln f x ax x =-的图象在点(1,(1))f 处的切线为l ,则l 在y 轴上的截距为.【答案】1【解析】函数()f x 的导函数1'()f x a x=-,所以(1),'(1)1f a f a ==-,切点(1,)a ,斜率为1a -,所以代入切线点斜式:(1)(1)y a a x -=--,l 在y 轴上的截距为:0,1x y ==,所以答案为1.(11)【2017年天津,文11,5分】已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为. 【答案】92π【解析】球的表面积公式2618S a ==,所以棱长a 23R =,32R =,34932V R ππ==.(12)【2017年天津,文12】设抛物线24y x =的焦点为F ,准线为l ,已知点C 在l 上,以C 为圆心的圆与y 轴的正半轴相切于点A ,若120FAC ∠=︒,则圆的方程为.【答案】22(1)(1x y ++=【解析】抛物线24y x =的焦点为(1,0)F ,准线为:1l x =-,所以可设(1,)C b -,OA b =,120FAC ∠=︒,所以60AFH ∠=︒,在直角三角形OAF 中,1OF =,所以OA =所以圆的圆心(-,半径等于1,所以圆22:(1)(1C x y ++=.(13)【2017年天津,文13,5分】若,a b R ∈,0ab >,则4441a b ab++的最小值为.【答案】4【解析】4422414144a b a b abab ab ab+++≥≥=(0ab >),当且仅当“444a b =”、“2241a b =”同时成立时,等号成立,解之得:13442,2a b --==.(14)【2017年天津,文14,5分】在ABC ∆中,60A ∠=︒,3AB =,2AC =,若2BD DC = ,AE AC AB λ=-()R λ∈,且4AD AE ⋅=-,则λ的值为.【答案】311【解析】01232cos603,33AB AC AD AB AC ⋅=⨯⨯==+ ,则122123()()3493433333311AD AE AB AC AC AB λλλλ⋅=+-=⨯+⨯-⨯-⨯=-⇒= .三、解答题:本大题共6题,共80分.解答应写出文字说明,证明过程或演算步骤. (15)【2017年天津,文15,13分】在ABC ∆中,内角,,A B C 所对的边分别为,,a b c .已知sin 4sin a A B =,222)ac a b c --.(1)求cos A 的值;(2)求sin(2)B A -的值.解:(1)sin 4sin a A b B =可化为224a b =,解得:2a b =,余弦定理:222cos2b c a A bc+-===.(2)根据cos A =,解得sin A =,所以sin B =cos B =,4sin 22sin cos 5B B B ==,23cos22cos 15B B =-=,sin(2)B A -43sin 2cos cos 2sin (55B A B A =-=⨯-==. (16)【2017年天津,文16,13分】电视台播放甲、乙两套连续剧,每次播放连续剧时,需要播放广告,已知分钟, 且甲连续剧播放的次数不多于乙连续剧播放次数的2倍,分别用,x y 表示每周计划播出的甲、乙两套电视剧的次数.(1)用,x y 列出满足题目条件的数学关系式,并画出相应的平面区域;(2)问电视台每周播出甲、乙两套连续剧各多少次,才能使总收视人次最多?解:(1)分别用,x y 表示每周计划播出的甲、乙两套电视剧的次数766062,x y x y x y x y N+≤⎧⎪+≥⎪⎨≤⎪⎪∈⎩.(2)设总收视人次为z 万,则目标函数为6025z x y =+.考虑6025z x y =+,将它变形为12525z y x =-+,这是斜率为125-,随z 变化的一族平行直线.25z为直线在y 轴上的截距, 当25z 取得最大值时,z 的值最大.又因为,x y 满足约束条件,所以由图2可知,当直线6025z x y =+经 过可行域上的点M 时,截距25z最大,即z 最大.解方程组766020x y x y +=⎧⎨-=⎩,得点M 的坐标为()6,3.所以,电视台每周播出甲连续剧6次、乙连续剧3次时才能使总收视人次最多.(17)【2017年天津,文17,13分】如图,在四棱锥P ABCD -中,AD ⊥平面PDC ,AD ∥BC ,PD PB ⊥,1AD =,3BC =,4CD =,2PD =. (1)求异面直线AP 与BC 所成的角的余弦值; (2)求证:PD ⊥平面PBC ;(3)求直线AB 与平面PBC 所成角的正弦值. 解:(1)因为AD ∥BC ,所以PAD ∠等于异面直线AP 与BC 所成的角,AD ⊥ 平面PDC ,所以90PDA ∠=︒,PAcos AD PAD AP ∠==. (2)因为AD ⊥平面PDC ,所以AD PD ⊥,又因为AD ∥BC ,所以PD BC ⊥,PD PB ⊥,且PB BC B = ,所以PD ⊥平面PBC .(3)取BC 上三分点,3BE BC =,//BE AD ,1AD BE ==,PD ⊥平面PBC ,所以DEP ∠等于直线AB 与平面PBC 所成角90DPE ∠=︒,AB =DE =4PE =,sin PD DEP DE ∠===(18)【2017年天津,文18,13分】已知{}n a 为等差数列,前n 项和为n S *()n N ∈,{}n b 是首项为2的等比数列,且公比大于0,2312b b +=,3412b a a =-,11411S b =. (1)求{}n a 和{}n b 的通项公式; (2)求数列{}2n n a b 的前n 项和*()n ∈N .解:(1)已知{}n a 为等差数列,{}n b 是首项为2的等比数列,且公比大于0,所以1(1)n a a n d =+-,1112n n n b b q q --==,22212q q +=,解之得:2,3q q ==-(舍),118311(5)1116a da d =-+⎧⎨+=⨯⎩,解之得:11,3a d ==所以31n a n =-,2n n b =.(2)2(62)2n n n a b n =-⨯,不妨设数列{}2n n a b 的前n 项和为n T ,2142632212n n n n n T a b a b a b a b a b --=+++++ ,123142102162(68)2(62)2n nn T n n -=⨯+⨯+⨯++-⨯+-⨯ ①2n T =231142102(614)2(68)2(62)2n n n n n n -+⨯+⨯+-⨯+-⨯+-⨯ ②①-②得:123142626262(62)2n n n T n +-=⨯+⨯+⨯++⨯--⨯ ,整理得:216(34)2n n T n +=+-⨯.(19)【2017年天津,文19,14分】设,a b R ∈,1a ≤,已知函数32()63(4)f x x x a a x b =---+,()()x g x e f x =.(1)求()f x 的单调区间;(2)已知函数()y g x =和函数x y e =的图象在公共点00(,)x y 处有相同的切线.(i )求证:()f x 在0x x =处的导数等于0;(ii )若关于x 的不等式()x g x e ≤在区间00[1,1]x x -+上恒成立,求b 的取值范围.解:(1)32'()()'6()'3(4)'f x x x a a x =---,2'()3123(4)f x x x a a =---,2'()3123(4)3()(4)f x x x a a x a x a =---=-+-,因为1a ≤,所以4a a <-,BCDPE所以,()f x 的单调增区间(,),(4,)a a -∞-+∞,()f x 的单调减区间[,4]a a -.(2)(i )()()x g x e f x =与x y e =在公共点00(,)x y 处有相同的切线,首先,00()x g x e =;其次,00'()x g x e =,0()1f x =,00()'()1f x f x +=,所以0'()0f x =.(ii )()x g x e ≤等价于()1f x ≤,0'()0f x =,0()1f x =,所以0x a =极大值点,若关于x 的不等式()xg x e ≤在区间00[1,1]x x -+上恒成立,等价于()1f x ≤在区间00[1,1]x x -+上恒成立,等价于max ()1f x ≤,00[1,1]x x x ∈-+,当0x a =,()f x 在[1,]a a -递增,在[,1]a a +递减,()f a 为最大值,()1f a =,32261a a b -++≤,32261b a a ≤-+,令32()261h x x x =-+,2'()6126(2)h x x x x x =-=-,()h x 在[1,0]-递增,在[0,1]递减,所以7()1h x -≤≤,71b -≤≤.(20)【2017年天津,文20,14分】已知椭圆22221(0)x y a b a b+=>>的左焦点为(,0)F c -,右顶点为A ,点E 的坐标为(0,)c ,EFA ∆的面积为22b.(1)求椭圆的离心率;(2)设点Q 在线段AE 上,3||2FQ c =,延长线段PQ 与椭圆交于点P ,点M ,N 在轴上,PM QN ∥,且直线PM 与直线QN 间的距离为,四边形PQNM 的面积为3c ; (i )求直线FP 的斜率; (ii )求椭圆的方程.解:(1)12AEF S AF OE ∆=⨯⨯21()22b ac c =+⨯=,因为222b a c =-,所以c a c =-,故2a c =,12c e a ==.(2)(i )45EFO ∠=︒,设1E Q E A λλ=+ (01)λ<<,所以(1)FQ FE FA λλ=-+ ,FE =, 3FA c =,因为32c FQ = ,两边平方,解之得:910λ=,32λ=(舍)代入(1)FQ FE FA λλ=-+ ,得69(,)510c c FQ = ,直线FP 的斜率等于34y x =(ii )直线FP 的方程:30()4y x c -=-;为求点P 的坐标,联立方程解方程组:2224333412y x c x y c=-⎧⎨+=⎩,解之得:13,7c x c x ==-(舍),所以3(,)2c P c ,因为69(,)510c c FQ = ,所以9(,)510c cQ , 即PQ c =,而PM ∥QN ,且直线PM 与直线QN 间的距离为c ,所以直线PM 与直线QN 垂直于PF ,由(i )直线FP 的斜率等于34,可得335154428c c PM PF ==⨯=,33394428c cQN FQ =⨯=⨯=, MNPQ FPM FQNS S S ∆∆=-1()2PM PF QN QF =⨯⨯-⨯232c =,所以2332c c =,解之得2c =,所以4,a b ==2211612x y +=.感恩和爱是亲姐妹。

相关文档
最新文档