石墨、石墨烯、金刚石特征拉曼光谱

合集下载

石墨烯表征方法

石墨烯表征方法

石墨烯表征方法石墨烯是一种由碳原子构成的二维材料,具有极高的导电性和热导性,以及出色的机械强度和柔韧性。

由于石墨烯的独特性质,人们对其进行了广泛的研究和应用。

为了更好地理解和表征石墨烯材料,科学家们开发了多种表征方法。

一、原子力显微镜(AFM)原子力显微镜是一种常用的石墨烯表征方法之一。

它通过探测表面的力与距离关系,可以获得石墨烯的拓扑结构和力学性质。

AFM可以实现纳米级的分辨率,可以直接观察到石墨烯的原子级结构。

同时,AFM还可以测量石墨烯的厚度,从而确定其层数。

二、扫描电子显微镜(SEM)扫描电子显微镜是一种常用的表面形貌表征方法。

通过聚焦电子束,扫描样品表面,并测量电子的反射或散射信号,可以获得石墨烯的表面形貌和微观结构。

SEM具有高分辨率和大深度视场的优点,可以对大面积的石墨烯样品进行观察和分析。

三、透射电子显微镜(TEM)透射电子显微镜是一种常用的石墨烯表征方法之一。

它通过透射电子束,并测量透射电子的衍射图样,可以获得石墨烯的晶体结构和晶格参数。

TEM具有极高的分辨率,可以实现原子级的观察和分析。

同时,TEM还可以通过能谱分析等技术,获得石墨烯的化学成分和元素分布信息。

四、拉曼光谱(Raman)拉曼光谱是一种非常重要的石墨烯表征方法。

它通过测量石墨烯材料散射的光子能量差,可以获得石墨烯的振动模式和结构信息。

拉曼光谱可以用来确定石墨烯的层数、缺陷和应变等物理性质。

同时,拉曼光谱还可以用来研究石墨烯与其他材料之间的相互作用。

五、X射线衍射(XRD)X射线衍射是一种常用的晶体结构表征方法。

通过石墨烯材料对X 射线的衍射效应,可以获得石墨烯的晶体结构和晶格参数。

X射线衍射可以用来确定石墨烯的层数、晶胞尺寸以及晶体取向等信息。

同时,X射线衍射还可以用来研究石墨烯的结晶性质和晶格缺陷情况。

六、核磁共振(NMR)核磁共振是一种常用的石墨烯表征方法之一。

通过测量石墨烯材料中核自旋的共振信号,可以获得石墨烯的化学成分和分子结构信息。

关于石墨烯 拉曼光普 扫描电镜 能谱的原理

关于石墨烯 拉曼光普 扫描电镜 能谱的原理

1、石墨烯是什么?如何制备?石墨烯是一种从碳材料中剥离出来的单层碳原子面材料,是碳的二维结构。

这种石墨晶体薄膜的厚度只有0.335纳米,把20万片薄膜叠加到一起,也只有一根头发丝那么厚。

石墨烯的碳原子排列与石墨的单原子层雷同,是碳原子以sp2混成轨域呈蜂巢晶格排列构成的单层二维晶体。

石墨烯被认为是平面多环芳香烃原子晶体。

石墨烯的结构非常稳定,碳碳键仅为1.42Å。

石墨烯內部的碳原子之间的连接很柔韧,当施加外力于石墨烯时,碳原子面会弯曲变形,使得碳原子不必重新排列来适应外力,从而保持结构稳定。

石墨烯的制备方法有以下几种:(1)撕胶带法/轻微摩擦法最普通的是微机械分离法,直接将石墨烯薄片从较大的晶体上剪裁下来。

2004年,海姆等用这种方法制备出了单层石墨烯,并可以在外界环境下稳定存在。

典型制备方法是用另外一种材料膨化或者引入缺陷的热解石墨进行摩擦,体相石墨的表面会产生絮片状的晶体,在这些絮片状的晶体中含有单层的石墨烯。

但缺点是此法利用摩擦石墨表面获得的薄片来筛选出单层的石墨烯薄片,其尺寸不易控制,无法可靠地制造长度足供应用的石墨薄片样本。

(2)碳化硅表面外延生长该法是通过加热单晶碳化矽脱除矽,在单晶(0001) 面上分解出石墨烯片层。

具体过程是:将经氧气或氢气刻蚀处理得到的样品在高真空下通过电子轰击加热,除去氧化物。

用俄歇电子能谱确定表面的氧化物完全被移除后,将样品加热使之温度升高至1250~1450℃后恒温1min~20min,从而形成极薄的石墨层,经过几年的探索,克莱尔•伯格(Claire Berger)等人已经能可控地制备出单层或是多层石墨烯。

在C-terminated表面比较容易得到高达100层的多层石墨烯。

其厚度由加热温度决定,制备大面积具有单一厚度的石墨烯比较困难。

(3)金属表面生长取向附生法是利用生长基质原子结构“种”出石墨烯,首先让碳原子在1150℃下渗入钌,然后冷却,冷却到850℃后,之前吸收的大量碳原子就会浮到钌表面,镜片形状的单层的碳原子“孤岛”布满了整个基质表面,最终它们可长成完整的一层石墨烯。

石墨烯层数表征方法

石墨烯层数表征方法

石墨烯层数表征方法石墨烯是一种由碳原子组成的二维晶体结构,具有独特的物理、化学和电学性质。

石墨烯的层数表征方法是对石墨烯的层数进行定量描述的方法,下面将介绍几种常用的方法。

1. 扫描隧道显微镜(STM)方法扫描隧道显微镜是一种常用的表征石墨烯层数的方法。

通过在石墨烯表面扫描探针,可以观察到石墨烯的原子排列情况。

对于单层石墨烯,可以清晰地看到原子的周期排列;而对于多层石墨烯,由于层与层之间存在一定的相对位移,扫描隧道显微镜图像中会出现不同的原子排列模式。

通过分析和比较这些模式,可以确定石墨烯的层数。

2. 拉曼光谱方法拉曼光谱是一种非常常用的表征材料结构的方法,也可以用于表征石墨烯的层数。

不同层数的石墨烯在拉曼光谱上表现出明显的差异。

例如,单层石墨烯的G峰和2D峰之间的强度比值(IG/ID)约为2.2,而多层石墨烯的这个比值会显著增加。

通过测量石墨烯的拉曼光谱,可以根据这个比值来确定石墨烯的层数。

3. 透射电子显微镜(TEM)方法透射电子显微镜是一种高分辨率的显微镜,可以用于观察石墨烯的原子结构。

通过将石墨烯样品放置在透射电子显微镜中,可以获得高分辨率的石墨烯图像。

对于单层石墨烯,可以清晰地看到原子的排列;而对于多层石墨烯,可以观察到层与层之间的间隙。

通过对比这些图像,可以确定石墨烯的层数。

4. X射线衍射方法X射线衍射是一种常用的材料结构表征方法,也可以用于表征石墨烯的层数。

通过将石墨烯样品放置在X射线衍射仪中,可以获得石墨烯的衍射图样。

对于单层石墨烯,衍射图样中只会出现一个晶面的衍射峰;而对于多层石墨烯,由于不同层之间存在一定的相对位移,衍射图样中会出现多个晶面的衍射峰。

通过分析和比较这些衍射峰,可以确定石墨烯的层数。

扫描隧道显微镜、拉曼光谱、透射电子显微镜和X射线衍射是常用的石墨烯层数表征方法。

这些方法可以通过观察原子排列模式、分析拉曼光谱、观察原子结构和分析衍射图样来确定石墨烯的层数。

这些方法在石墨烯研究中具有重要的应用价值,可以帮助科学家深入了解石墨烯的特性和性质。

单层与多层石墨烯的拉曼光谱_2

单层与多层石墨烯的拉曼光谱_2

凝聚态物理学李龙飞10212027 专业英语翻译单层与多层石墨烯的拉曼光谱石墨烯是二维的材料,是组成其他维度的碳的各种同素异形体的积木。

本文介绍拉曼光谱可以捕捉石墨烯的电子结构,并清楚显示出随着石墨烯层数变化拉曼光谱的变化。

随着层数的增加,D峰在形状、宽度和位置的二阶变化,反映了电子能带通过双共振的拉曼过程而产生的改变。

G峰则轻微下移。

这就提供了一种清楚、高效、无破坏性的方法来确定石墨烯的层数,目前对这方面的研究还十分缺少。

石墨烯的研究热潮可以归因于三点。

第一,它的电子输运通过狄拉克方程来描述,这就允许了通过简单的凝聚态实验来研究量子电动力学。

第二,纳米尺度下的石墨烯器件有望得到应用,原因是其室温下的弹道输运性质,而且具有化学的和机械的稳定性。

这种优越的性质可以扩展到双层或少数层石墨烯。

第三,不同形式的石墨,纳米管,巴克球等等都可看成石墨烯的衍生物。

而且无需惊讶,在过去60年里石墨烯这种基本材料已经在理论上被广泛研究。

最近发现的石墨烯终于让我们可以从实验去研究它,为更好地理解其他同素异形体及解决争论铺平了道路。

石墨烯可以通过参考文献[1]所描述的方法,也就是对石墨的微机械分离而得到。

其他方法,例如脱落和生长,目前只能得到多层的石墨,但在不远的将来,有效的生长方法有望得到发展,就像纳米管所发生的一样。

尽管微机械分离的方法广泛使用,但是确定和计算石墨烯的层数仍然是最主要的障碍。

单层石墨烯只少数地存在于石墨的薄片中,在大多数衬底上都难以用光学显微镜观察。

只有当放置在精确厚度的氧化硅衬底上(典型地,300nmSiO2)才可见,这是因为对比空的衬底,单层的石墨烯加在反射光的光路上会导致干涉颜色的变化。

原子力显微镜(AFM)是目前唯一的确定单层和少层的方法,但其效率很低。

而且,事实上石墨烯和衬底之间的化学对比成像(导致一层明显的0.5-1nm的化学厚度,比石墨层间的间隔要大),使得如果薄膜包含折叠和皱褶,AFM只能区分单层和双层。

29--拉曼光谱在石墨烯结构表征中的应用

29--拉曼光谱在石墨烯结构表征中的应用

* E-mail: jinzhang@ Received September 6, 2013; published November 3, 2013. Project supported by the National Natural Science Foundation of China (Nos. 21233001, 21129001, 51272006 and 51121091) and the Ministry of Science and Technology of the People’s Republic of China (No. 2011YQ0301240201 and 2011CB932601). 项目受国家自然科学基金(Nos. 21233001, 21129001, 51272006 和 51121091)和科技部项目(Nos. 2011YQ0301240201 和 2011CB932601)资助.
量的研究表明扭转的双层石墨烯由于层间耦合较弱其而当扭转角小于15左右时这个线性的色散关系会被破坏能带结构会变为抛物线型5a给出了单层石墨烯及其折叠区域即扭转的双层石墨烯的拉曼谱图在5145nm激光激发下折叠区域的g峰半峰宽较单层石墨烯更小频率向高波数位移当激光波长减小至488nm两者差异几乎消失了这是由于扭转的双层石墨烯层间耦合较弱其电子色散曲线并未发生裂分g峰仍表现为单个的洛伦兹峰型82如图5b所示与扭转的双层石墨烯类似少层石墨烯经折叠之后拉曼光谱仍然保持了未折叠区域的光谱特征41大多数扭转的双层石墨烯的拉曼光谱仍然保持了单层石墨烯的拉曼特征g峰表现为单个的洛伦兹峰型且其强度大于g但对于某些扭转角在某一特定波长的激光激发下峰强度会极大地增强其强度会达到单层石墨烯的数十倍388384图5c为633nm激光激发下单层石墨烯和扭转角为31027的双层石与单层石墨烯相比扭转的双层石墨cm1强度对角度有着较强的依赖性峰强度在扭转角为10左右时达到最大aba和abc堆垛的三层石墨烯的ag峰拉曼光谱5173插图为aramanspectraabcstackedtrilayergraphene5173insetsramanimagesbandrespectively综述actachim

石墨烯拉曼测试解析

石墨烯拉曼测试解析

⽯墨烯拉曼测试解析3.1 ⽯墨烯AFM测试详解单层⽯墨烯的厚度为0.335nm,在垂直⽅向上有约1nm的起伏,且不同⼯艺制备的⽯墨烯在形貌上差异较⼤,层数和结构也有所不同,但⽆论通过哪种⽅法得到的最终产物都或多或少混有多层⽯墨烯⽚,这会对单层⽯墨烯的识别产⽣⼲扰,如何有效地鉴定⽯墨烯的层数和结构是获得⾼质量⽯墨烯的关键步骤之⼀。

⽯墨烯的表征主要分为图像类和图谱类图像类以光学显微镜透射电镜TEM 扫描电⼦显微镜、SEM和原⼦⼒显微分析AFM为主⽽图谱类则以拉曼光谱Raman红外光谱IRX射线光电⼦能谱、XPS和紫外光谱UV为代表其中TEM、SEM、Raman、AFM和光学显微镜⼀般⽤来判断⽯墨烯的层数⽽IRX、XPS和UV则可对⽯墨烯的结构进⾏表征,⽤来监控⽯墨烯的合成过程。

且看“材料+”⼩编为您⼀⼀解答。

3.1.1 AFM表征图1 AFM的⼯作原理图图3.1 AFM⼯作的三种模式关于AFM的原理这⾥就不多说了,⽬前常⽤的AFM⼯作模式主要有三种:接触模式,轻敲模式以及⾮接触模式。

这三种⼯作模式各有特点,分别适⽤于不同的实验需求。

⽯墨烯的原⼦⼒表征⼀般采⽤轻敲模式(TappingMode):敲击模式介于接触模式和⾮接触模式之间,是⼀个杂化的概念。

悬臂在试样表⾯上⽅以其共振频率振荡,针尖仅仅是周期性地短暂地接触/敲击样品表⾯。

这就意味着针尖接触样品时所产⽣的侧向⼒被明显地减⼩了。

因此当检测柔嫩的样品时,AFM的敲击模式是最好的选择之⼀。

【材料+】微信平台,内容不错,欢迎关注。

⼀旦AFM开始对样品进⾏成像扫描,装置随即将有关数据输⼊系统,如表⾯粗糙度、平均⾼度、峰⾕峰顶之间的最⼤距离等,⽤于物体表⾯分析。

优点:很好的消除了横向⼒的影响。

降低了由吸附液层引起的⼒,图像分辨率⾼,适于观测软、易碎、或胶粘性样品,不会损伤其表⾯。

缺点:⽐ContactModeAFM的扫描速度慢。

3.1.2 AFM表征⽯墨烯原理AFM可⽤于了解⽯墨烯细微的形貌和确切的厚度信息,属于扫描探针显微镜,它利⽤针尖和样品之间的相互作⽤⼒传感到微悬臂上,进⽽由激光反射系统检测悬臂弯曲形变,这样就间接测量了针尖样品间的作⽤⼒从⽽反映出样品表⾯形貌。

石墨烯和氧化石墨烯拉曼光谱

石墨烯和氧化石墨烯拉曼光谱

石墨烯和氧化石墨烯拉曼光谱
石墨烯和氧化石墨烯是两种不同形态的碳材料。

拉曼光谱是一种常用的表征材料结构和化学成分的技术手段之一。

石墨烯具有单层碳原子组成,呈现出六角晶格结构。

其拉曼光谱通常呈现出两个主要的峰位,即G峰和2D峰。

G峰对应于石墨烯晶格振动模式,其位置约在1600 cm-1处。

2D峰则对应于石墨烯中的双光子过程,位置在2700 cm-1附近。

通过分析这些峰位的形状、位置和强度,可以确定石墨烯的层数、缺陷情况以及其它结构信息。

而氧化石墨烯是石墨烯在氧化处理后形成的产物,具有部分或完全被氧原子包覆的结构。

相比于石墨烯,氧化石墨烯的拉曼光谱会发生一些变化。

主要的观察特征是在G峰和2D峰附近会出现一个称为D峰的新峰位,对应于碳材料的缺陷和杂质。

此外,氧化石墨烯的G峰位置可能发生变化,并且2D峰有可能出现分裂。

综上所述,通过拉曼光谱可以对石墨烯和氧化石墨烯进行表征和区分,提供了关于它们晶格结构、层数、缺陷情况等方面的信息。

这些信息对于研究和应用这些碳材料具有重要意义。

二维拉曼相关光谱

二维拉曼相关光谱

二维拉曼相关光谱摘要:一、引言二、二维材料的拉曼光谱表征1.石墨烯的拉曼光谱2.其他二维材料的拉曼光谱三、拉曼光谱在二维材料研究中的应用四、结论正文:一、引言拉曼光谱是一种广泛应用于材料表征的光谱技术,它可以提供关于材料的结构、组成和缺陷等信息。

在众多的材料中,二维材料是一类特殊的材料,它们具有独特的物理和化学性质。

因此,拉曼光谱在二维材料的研究中起着重要的作用。

本文将介绍二维材料的拉曼光谱表征及其在材料研究中的应用。

二、二维材料的拉曼光谱表征1.石墨烯的拉曼光谱石墨烯是一种典型的二维材料,其结构由单层的碳原子组成。

石墨烯的拉曼光谱具有一些特征峰,如d 峰、g 峰和2d 峰。

其中,d 峰(~1350cm-1)是石墨烯的无序振动峰,只有当缺陷存在时才能被激活;g 峰(~1580cm-1)是sp2 碳原子面的振动峰;2d 峰则与石墨烯的层数有关。

通过分析石墨烯的拉曼光谱,可以获得关于其结构、缺陷和层数等信息。

2.其他二维材料的拉曼光谱除了石墨烯,其他二维材料如过渡金属硫属化合物(TMDs)和氧化物(如氧化钨、氧化钼等)也具有独特的拉曼光谱特征。

这些特征与材料的晶体结构、化学组成和物理性质密切相关。

因此,拉曼光谱可以作为二维材料的一种有效表征手段。

三、拉曼光谱在二维材料研究中的应用拉曼光谱在二维材料的研究中具有广泛的应用,包括但不限于以下几个方面:1.确定材料的结构和相:通过拉曼光谱,可以判断材料的晶体结构和相组成,从而为材料的设计和制备提供理论指导。

2.分析材料的缺陷和杂质:拉曼光谱可以检测材料中的缺陷、杂质和外来物种,有助于优化材料的性能和提高其纯度。

3.测量材料的厚度和层数:拉曼光谱可以精确测量二维材料的厚度和层数,为材料的可控生长和应用提供参考。

4.研究材料的光学和电学性质:拉曼光谱可以与材料的光学和电学性质相关联,从而为材料的应用提供重要信息。

四、结论总之,拉曼光谱作为一种重要的光谱表征手段,在二维材料的研究中发挥着关键作用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

石墨、石墨烯、金刚石特征拉曼光谱有:
1.石墨:拉曼光谱中在1580cm-1和1350~1600cm-1处有特征峰,
分别对应石墨的sp2相和sp2相的非晶碳成分。

2.石墨烯:拉曼光谱中在1580cm-1和1350~1600cm-1处有特征
峰,分别对应石墨的sp2相和sp2相的非晶碳成分。

此外,完美的单洛伦兹峰型的二阶拉曼峰(G'峰)是判定单层石墨烯简单而有效的方法。

3.金刚石:拉曼光谱中在1332cm-1处有特征峰,对应金刚石的晶
格结构。

在CVD金刚石薄膜生长过程中,如果生长工艺中生长条件出现了问题,容易产生的非金刚石相,即石墨相,其拉曼光谱中在1580cm-1附近有特征峰。

相关文档
最新文档