华师大版八年级下册数学第17章 函数及其图象含答案(综合考察)

合集下载

华师大版八年级下册数学第17章 函数及其图象含答案(综合测试)

华师大版八年级下册数学第17章 函数及其图象含答案(综合测试)

华师大版八年级下册数学第17章函数及其图象含答案一、单选题(共15题,共计45分)1、水果店购买一种葡萄所付款金额(元)与购买量(kg)情况如图,萌萌一次购买6kg这种葡萄比她分三次购买每次购2kg这种葡萄可节省()元.A.18B.12C.9D.62、如图,在△ABC中,AC=BC=25,AB=30,D是AB上的一点(不与A、B重合),DE⊥BC,垂足是点E,设BD=x,四边形ACED的周长为y,则下列图象能大致反映y与x之间的函数关系的是()A. B. C.D.3、如图,△OAB与△OCD是以点O为位似中心的位似图形,相似比为1:2,∠OCD=90°,CO=CD.若B(2,0),则点C的坐标为()A.(2,2)B.(1,2)C.(, 2 )D.(2,1)4、现有甲、以两支解放军小分队将救灾物资送往某灾区小镇,从部队基地到该小镇只有唯一通道,且路程长为24km,甲小队先出发,如图是他们行走的路程与时间的函数图象,四位同学观察此函数图象得出有关信息,其中正确的个数为()A.1B.2C.3D.45、反比例函数图象上有三个点,,,若,则的大小关系是()A. B. C. D.6、已知等腰三角形的周长是10,底边长y是腰长x的函数,则下列图象中,能正确反映y与x之间函数关系的图象是()A. B. C.D.7、函数的自变量的取值范围是()A. x≥ 2B. x< 2C. x> 2D. x≤ 28、如图,在的方格中,建立直角坐标系,,则点坐标为()A. B. C. D.9、如图1,点E为矩形ABCD边AD上一点,点P,点Q同时从点B出发,点P沿BE→ED→DC 运动到点C停止,点Q沿BC运动到点C停止,它们运动的速度都是1cm/s,设P,Q出发t秒时,△BPQ的面积为ycm2,已知y与t的函数关系的图形如图2(曲线OM为抛物线的一部分),则下列结论:①AD=BE=5cm;②当0<t≤5时,;③直线NH的解析式为;④若△ABE与△QBP相似,则t=秒。

2022年华东师大版八年级数学下册第十七章函数及其图像综合测试试卷(含答案详解)

2022年华东师大版八年级数学下册第十七章函数及其图像综合测试试卷(含答案详解)

八年级数学下册第十七章函数及其图像综合测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,直角三角形的直角顶点在坐标原点,∠OAB =30°,若点A 在反比例函数6(0)y x x=>的图象上,则经过点B 的反比例函数k y x=中k 的值是( )A .﹣2B .﹣4C .﹣3D .﹣12、变量x 与y 之间的关系是21y x =+,当5y =时,自变量x 的值是( )A .13B .5C .2D .33、如图,已知直线112y x =-与x 轴交于点A ,与y 轴交于点B ,以点B 为圆心、AB 长为半径画弧,与y 轴正半轴交于点C ,则点C 的坐标为( )A .(B .()1C .()1D .(0,1- 4、已知()231m y m x-=-+是一次函数,则m 的值是( ) A .-3 B .3 C .±3 D .±25、A ,B ,C 三种上宽带网方式的月收费金额yA (元),yB (元),yC (元)与月上网时间x (小时)的对应关系如图所示.以下有四个推断:①月上网时间不足35小时,选择方式A 最省钱;②月上网时间超过55小时且不足80小时,选择方式C 最省钱;③对于上网方式B ,若月上网时间在60小时以内,则月收费金额为60元;④对于上网方式A ,若月上网时间超出25小时,则超出的时间每分钟收费0.05元.所有合理推断的序号是( )A .①②B .①③C .①③④D .②③④6、根据如图所示的程序计算函数y 的值,若输入x 的值为1,则输出y 的值为2;若输入x 的值为2-,则输出y 的值为( ).A .8-B .4-C .4D .87、下列函数不是反比例函数的是( )A .13y x -=B .5xy =C .3xy =- D .12y x= 8、当2m >时,直线2y x m =+与直线4y x =-+的交点在( )A .第一象限B .第二象限C .第三象限D .第四象限9、甲、乙两人骑车分别从A 、B 两地同时出发,沿同一路线匀速骑行,两人先相向而行,甲到达B 地后停留20min 再以原速返回A 地,当两人到达A 地后停止骑行.设甲出发x min 后距离A 地的路程为y km .图中的折线表示甲在整个骑行过程中y 与x 的函数关系.在整个骑行过程中,两人只相遇了1次,乙的骑行速度(单位:km/min )可能是( )A.0.1 B.0.15 C.0.2 D.0.2510、已知正比例函数y=3x的图象上有两点M(x1,y1)、N(x2,y2),如果x1>x2,那么y1与y2的大小关系是()A.y1>y2B.y1=y2C.y1<y2D.不能确定第Ⅱ卷(非选择题 70分)二、填空题(10小题,每小题4分,共计40分)1、在平面内画两条互相垂直、原点重合的数轴,组成_______.水平的数轴称为x轴或______,取向______方向为正方向;竖直的数轴称为y轴或______,取向______方向为正方向.两坐标轴的交点为平面直角坐标系的______,一般用______来表示.2、若反比例函数1kyx-=的图象位于第一、第三象限,则k的取值范围是_______.3、若A(x,4)关于y轴的对称点是B(﹣3,y),则x=____,y=____.点A关于x轴的对称点的坐标是____.4、如图所示,是由北京国际数学家大会的会徽演化而成的图案,其主体部分是由一连串的等腰直角三角形依次连接而成,其中∠MA1A2=∠MA2A3…=∠MAnAn+1=90°,(n为正整数),若M点的坐标是(-1,2),A1的坐标是(0,2),则A22的坐标为___.5、小伟欲用撬棍撬动一块大石头,已知阻力和阻力臂分别为1200 N和0.5 m.(1)动力F与动力臂l有怎样的函数关系?当动力臂为1.5 m时,撬动石头至少需要多大的力?(2)若想使动力F不超过(1)中所用力的一半,则动力臂l至少要加长多少?解:(1)根据“杠杆原理”,得Fl=1 200×0.5,所以F关于l的函数解析式为:__________________当l=1.5m时,6001.5F==______N对于函数600Fl=,当l=1.5m时,F=400N,此时杠杆平衡,因此,撬动石头至少需要400N的力.(2)对于函数600Fl=,F随l的增大而减小.因此,只要求出F=200 N时对应的l的值,就能确定动力臂l至少应加长的量.当14002F=⨯=200时,由600200l=得:600200l==______m,3-1.5=1.5m对于函数600Fl=,当l>0时,l越大,F越______.因此,若想用力不超过400 N的一半,则动力臂至少要加长1.5 m.6、若正比例函数y=kx(k是常数,k≠0)的图象经过第一、三象限,请写出一个满足上述要求的k 的值______.7、在运用一次函数解决实际问题时,首先判断问题中的两个变量之间是不是____关系,当确定是一次函数关系时,可求出函数解析式,并运用一次函数的图象和性质进一步求得我们所需要的结果.8、如图,在平面直角坐标系xOy 中,P 为函数)(0m y x x=>图象上一点,过点P 分别作x 轴、y 轴的垂线,垂足分别为M ,N .若矩形PMON 的面积为3,则m 的值为______.9、在平面直角坐标系中,已知一次函数21y x =-+的图象经过11(,)P y π、22P y )两点,则1y ________2y .(填“>”“<”或“”=)10、下列函数:①y kx =;②23y x =;③2(1)y x x x =--;④21y x =+;⑤22y x =-.其中一定是一次函数的有____________.(只是填写序号)三、解答题(5小题,每小题6分,共计30分)1、学校科技小组进行机器人行走性能试验,在试验场地一条笔直的赛道上有A ,B ,C 三个站点,A ,B 两站点之间的距离是90米(图1).甲、乙两个机器人分别从A ,B 两站点同时出发,向终点C 行走,乙机器人始终以同一速度匀速行走.图2是两机器人距离C 站点的距离y (米)出发时间t (分钟)之间的函数图像,其中EF FM MN --为折线段.请结合图象回答下列问题:(1)乙机器人行走的速度是______米/分钟,甲机器人前3分钟行走的速度是______米/分钟;(2)在46t ≤≤时,甲的速度变为与乙的速度相同,6分钟后,甲机器人又恢复为原来出发时的速度. ①图2中m 的值为______,n 的值为______.②请写出在69t <≤时,甲、乙两机器人之间的距离S (米)与出发时间t (分钟)之间的函数关系式.2、如图,直线l 经过点A (﹣1,﹣2)和B (0,1).(1)求直线l 的函数表达式;(2)线段AB 的长为_____;(3)在y 轴上存在点C ,使得以A 、B 、C 为顶点的三角形是以AB 为腰的等腰三角形,请直接写出点C的坐标.3、在函数学习中,我们经历了列表、描点、连线画函数图象,并结合图象研究函数性质及其应用的过程.以下是我们研究函数()()138,224 4.2x xyx x x⎧+<-⎪=⎨-+-≥-⎪⎩性质及其应用的部分过程,请按要求完成下列各小题.(1)=a______,b=______,并在下面的平面直角坐标系中补全该函数的大致图象;(2)请根据这个函数的图象,写出该函数的一条性质:______;(3)已知直线21 2y x m=+与函数1y的图象有三个交点,则m的取值范围为______.4、已知直线43y x=与双曲线kyx=交于A、B两点,且点A的纵坐标为4,第一象限的双曲线上有一点P,过点P作PQ x∥轴交直线AB于点Q,点A到PQ的距离为2.(1)直接写出k 的值及点B 的坐标;(2)求线段PQ 的长;(3)如果在双曲线k y x=上一点M ,且满足PQM 的面积为9,求点M 的坐标. 5、已知直线l 与直线y =-2x 平行,且与y 轴交于点(0,2),求直线l 的解析式.-参考答案-一、单选题1、A【解析】【分析】过点B 作BC x ⊥轴于点C ,过点A 作AD x ⊥轴于点D ,证明BCO ODA ∆∆∽,利用相似三角形的判定与性质得出13BCO ODA S S∆∆=,根据反比例函数图象上点的坐标特征得出3AOD S ∆=,那么1BCO S ∆=,进而得出答案.【详解】解:过点B 作BC x ⊥轴于点C ,过点A 作AD x ⊥轴于点D ,如图.90BOA ∠=︒,90BOC AOD ∴∠+∠=︒,90AOD OAD ∠+∠=︒,BOC OAD ∴∠=∠,又90BCO ADO ∠=∠=︒, BCO ODA ∴∆∆∽,∴tan 30OB OA =︒= ∴13BCO ODA S S ∆∆=,11322AD DO xy ⨯⨯==, 11123BCO AOD S BC CO S ∆∆∴=⨯⨯==, 经过点B 的反比例函数图象在第二象限, 故反比例函数解析式为:2y x=-, 2k ∴=-, 故选:A .【点睛】本题考查了相似三角形的判定与性质,反比例函数图象上点的坐标特征,解题的关键是求出1BCO S ∆=.2、C【解析】【分析】直接把y =5代入y =2x +1,解方程即可.【详解】解:当y =5时,5=2x +1,解得:x =2,故选:C .【点睛】本题考查了函数值,解题的关键是掌握已知函数解析式,给出函数值时,求相应的自变量的值就是解方程.3、C【解析】【分析】求出点A 、点B 坐标,求出AB 长即可求出点C 的坐标.【详解】解:当x =0时,1y =-,点B 的坐标为(0,-1);当y =0时,1012x =-,解得,2x =,点A 的坐标为(2,0);即2OA =,1OB =,AB =以点B 为圆心、AB 长为半径画弧,与y 轴正半轴交于点C ,故BC1OC=,点C的坐标为()1;故选:C【点睛】本题考查了一次函数与坐标轴交点坐标和勾股定理,解题关键是求出一次函数与坐标轴交点坐标,利用勾股定理求出线段长.4、A【解析】略5、C【解析】【分析】根据A,B,C三种上宽带网方式的月收费金额y A(元),yB(元),yC(元)与月上网时间x(小时)的图象逐一判断即可.【详解】由图象可知:①月上网时间不足35小时,选择方式A最省钱,说法正确;②月上网时间超过55小时且不足80小时,选择方式B最省钱,故原说法错误;③对于上网方式B,若月上网时间在60小时以内,则月收费金额为60元,说法正确;④对于上网方式A,若月上网时间超出25小时,则超出的时间每分钟收费为:(60﹣30)÷[(35﹣25)×60]=0.05(元),原说法正确;所以所有合理推断的序号是①③④.故选:C.【点睛】本题考查了函数的图象,掌握数形结合的方法是解答本题的关键.6、A【解析】【分析】输入10x =≥,则有22y a b =+=;输入20x =-≤,则有()4842y a b a b =--=-⨯+,将代数式2+a b 的值代入求解即可.【详解】解:输入10x =≥,则有22y a b =+=;输入20x =-≤,则有()48428y a b a b =--=-⨯+=-;故选A .【点睛】本题考查了程序流程图与代数式求值.解题的关键在于正确求解代数式的值.7、C【解析】【分析】根据反比例函数的意义分别进行分析即可.形如:y =k x(0k ≠)或1y kx =-或xy k =的函数是反比例函数.【详解】A. 13y x -=,是反比例函数,不符合题意;B. 5xy =,是反比例函数,不符合题意;C. 3xy =-,不是反比例函数,符合题意; D. 12y x=,是反比例函数,不符合题意; 故选C 【点睛】本题考查了反比例函数的定义,掌握反比例函数的几种形式是解题的关键.8、B【解析】【分析】根据一次函数解析式中k b 、的值,判断函数的图象所在象限,即可得出结论.【详解】 解:一次函数4y x =-+中,10k =-<,40b =>∴函数图象经过一二四象限∵在一次函数2y x m =+中,10k =>,24b m =>∴直线2y x m =+经过一二三象限函数图象如图∴直线2y x m =-+与4y x =-+的交点在第二象限故选:B.【点睛】本题考查的一次函数,解题的关键在于熟练掌握一次函数的图象与系数的关系.9、D【解析】【分析】由函数图象可求出甲、乙骑行的时间,根据题意和路程÷时间=速度可求出乙的最小速度即可求解.【详解】解:由函数图象知,A、B两地的距离为25km,甲往返的时间为50+50+20=120(min),∵两人到达A地后停止骑行,且在整个骑行过程中,两人只相遇了1次,∴乙的骑行的速度至少为25÷120= 524(km/min),∵524>0.2,524<0.25,∴乙的骑行速度可能是0.25km/min,故选:D.【点睛】本题考查一次函数的应用,理解题意,准确从图象中获取有效信息是解答的关键.10、A【解析】【分析】先根据一次函数的解析式判断出函数的增减性,再根据x1>x2即可得出结论.【详解】∵正比例函数y=3x中,k=3>0,∴y随x的增大而增大,∵x1>x2,∴y1>y2.故选:A.【点睛】本题考查的是一次函数图象上点的坐标特征,熟练掌握正比例函数的增减性与x的系数的关系是解题的关键.二、填空题1、平面直角坐标系横轴右纵轴上原点O【解析】略2、1k>【解析】【分析】根据反比例函数的性质解答.【详解】解:∵反比例函数1kyx-=的图象位于第一、第三象限,∴k-1>0,∴1k>,故答案为:1k>.【点睛】此题考查了反比例函数的性质:当k>0时,函数图象的两个分支分别在第一、三象限内;当k<0时,函数图象的两个分支分别在第二、四象限内.3、 3 4 (3,﹣4)【解析】【分析】根据点关于x轴对称则横坐标不变纵坐标互为相反数,关于y轴对称则纵坐标不变横坐标互为相反数即可求解.【详解】解:∵A(x,4)关于y轴的对称点是B(-3,y),∴x=3,y=4,∴A点坐标为(3,4),∴点A关于x轴的对称点的坐标是(3,-4).故答案为:3;4;(3,-4).【点睛】本题考查了点关于坐标轴对称的特点:点关于x轴对称则横坐标不变纵坐标互为相反数,关于y轴对称则纵坐标不变横坐标互为相反数,由此即可求解.4、(10--,1022-+)21【解析】【分析】探究规律,利用规律解决问题即可.【详解】解:观察图象可知,点的位置是8个点一个循环,∵22÷8=26,∴A 22与A 6的位置在第三象限,且在经过点A 2、M 的直线上,∵第一个等腰直角三角形的直角边长为1,∴点A 2(0,3),设直线A 2M 的解析式为y =kx +3,把M 点的坐标(-1,2)代入得:-k +3=2,解得:k =1,∴直线A 2M 的解析式为y =x +3,即A 22点在直线y =x +3上,…,第n )n -1,∴第22)21,可得A 22M =21,∴A21 A 1212010112=+=+1,∴A 22 的横坐标为:1021--,A 22 的纵坐标为:101021322y =--+=-+,∴A 22(1021--,1022-+),故答案为:(1021--,1022-+). 【点睛】本题考查了勾股定理,坐标与图形的性质,等腰直角三角形的性质等知识,解题的关键是学会探究规律,利用规律解决问题,属于中考常考题型.5、 600F l= 400 3 小【解析】略6、2(满足k>0即可)【解析】【分析】根据函数图象经过第一、三象限,可判断k>0,任取一个正值即可.【详解】解:∵正比例函数y=kx(k是常数,k≠0)的图象经过第一、三象限,∴k>0.故答案为:2(满足k>0即可).【点睛】本题考查了正比例函数的性质,解题关键是明确正比例函数y=kx(k是常数,k≠0)的图象经过第一、三象限时,k>0.7、一次函数【解析】略8、3【解析】【分析】根据反比例函数的解析式是myx=,设点(,)P a b,根据已知得出3ab=,即3xy=,求出即可.【详解】解:设反比例函数的解析式是myx =,设点(,)P a b 是反比例函数图象上一点,矩形PMON 的面积为3,3ab ∴=,即3m xy ==,故答案为:3.【点睛】本题考查了矩形的面积和反比例函数的有关内容的应用,解题的关键是主要考查学生的理解能力和运用知识点解题的能力.9、<【解析】【分析】根据一次函数的性质,当0k <时,y 随x 的增大而减小,即可得答案.【详解】 解:一次函数21y x =-+中20k =-<,y ∴随x 的增大而减小, 2π>,12y y ∴<.故答案为:<.【点睛】本题考查了一次函数的性质,关键是掌握一次函数0y kx b k =+≠(),当0k >时,y 随x 的增大而增大,当0k <时,y 随x 的增大而减小.10、②③⑤【解析】【分析】根据一次函数的定义条件解答即可.【详解】解:①y =kx 当k =0时原式不是一次函数; ②23y x =是一次函数; ③由于2(1)y x x x =--=x ,则2(1)y x x x =--是一次函数;④y =x 2+1自变量次数不为1,故不是一次函数;⑤y =22−x 是一次函数.故答案为:②③⑤.【点睛】本题主要考查了一次函数的定义,一次函数y =kx +b 的定义条件是:k 、b 为常数,k ≠0,自变量次数为1.三、解答题1、 (1)50,80;(2)①120,7.5;②30150(67.5)50450(7.59)t t S t t -<≤⎧=⎨-+<≤⎩. 【解析】【分析】(1)根据图形知乙机器人9分钟走完了450米,据此可求得乙机器人行走的速度;根据当t =3分钟时,甲追上乙,可以列出相应的方程,从而可以求得甲机器人前3分钟的速度;(2)①先求得甲机器人行走的总路程540米,再分段求得甲机器人行走的路程,根据速度、时间、路程的关系式求解即可;②分情况讨论,一种是甲乙都在运动,第二种状态是甲先到,静止下来,乙在跑,以甲停止运动那一刻为分界点.(1)解:根据图形知乙机器人9分钟走完了450米,∴乙机器人行走的速度为450÷9=50(米/分);设甲机器人前3分钟的速度为x米/分,依题意得:3x=50×3+90,解得x=80,答:甲机器人前3分钟的速度为80米/分;故答案为:50,80;(2)解:①甲机器人行走的总路程为:450+90=540(米),甲机器人前4分钟的速度为80米/分,甲行走路程:80⨯4=320(米),4≤t≤6时,甲的速度变为与乙的速度相同,甲行走路程:50⨯2=100(米),∴m=540-320-100=120,∵6分钟后,甲机器人又恢复为原来出发时的速度80米/分,∴120÷80=1.5(分),∴n=6+1.5=7.5;故答案为:120,7.5;②∵6分钟后甲机器人的速度又恢复为原来出发时的速度,∴6分钟后甲机器人的速度是80米/分,当t=6时,甲乙两机器人的距离为:S=[80×4+50×(6-4)]-(90+50×6)=30(米),∵当甲到达终点C时,t=7.5(分),当乙到达终点C时,t=9(分),∴当6<t≤7.5时,S=30+(80-50)×(t-6)=30t-150,当7.5<t≤9时,S=450-50×7.5-50(t-7.5)=-50t+450,由上可得,当t>6时,甲、乙两机器人之间的距离S=30150(67.5) 50450(7.59)t tt t-<≤⎧⎨-+<≤⎩.【点睛】本题考查了一次函数的应用、一元一次方程中追击问题,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.2、 (1)y=3x+1(3)C的坐标为(0,﹣5)或(0)或(0).【解析】【分析】(1)根据题意设直线l的函数表达式为y=kx+b,将A(﹣1,﹣2)和B(0,1)代入即可得直线l 的函数表达式为y=3x+1;(2)根据题意由A(﹣1,﹣2),B(0,1),可得AB(3)由题意设C(0,m),则AC BC=|m﹣1|,①若AB=AC可解得C(0,﹣5);②若AB=BC|m﹣1|,解得C(0+1)或(0+1).【详解】解:(1)设直线l的函数表达式为y=kx+b,将A(﹣1,﹣2)和B(0,1)代入得:21k bb-=-+⎧⎨=⎩,解得31kb=⎧⎨=⎩,∴直线l的函数表达式为y=3x+1;(2)∵A(﹣1,﹣2),B(0,1),∴AB(3)设C(0,m),则AC BC=|m﹣1|,①若AB=AC,如图:解得m=1(与B重合,舍去)或m=﹣5,∴C(0,﹣5);②若AB=BC,如图:=|m ﹣1|,解得m 或m +1,∴C (0)或(0+1),综上所述,以A 、B 、C 为顶点的三角形是以AB 为腰的等腰三角形,则C 的坐标为(0,﹣5)或(0,+1)或(0+1).【点睛】本题考查一次函数及应用,涉及待定系数法、两点间的距离、等腰三角形等知识,解题的关键是根据题意,列出满足条件的方程.3、 (1)1,-1;补全图象见解析(2)当2x <-时,函数y 1的值随x 的增大而增大(3)33m -<<【解析】【分析】(1)把x =-1,x =1代入相应的函数解析式中即可求得a 、b 的值,再描点,连线,即可补全该函数的大致图象;(2)根据函数的大致图象写出一条性质即可;(3)找到临界点A (-2,2),B (2,-2),分别代入212y x m =+即可求解.(1)解:x =-1时,a =2441x x -+-=,x =1时,b =2441x x -+-=-,描点,连线,补全该函数的大致图象如图:故答案为:1,-1;(2)解:观察图象知,当2x <-时,函数y 1的值随x 的增大而增大;(答案为唯一)(3) 解:观察图象知,当直线212y x m =+经过点临界点A (-2,2),B (2,-2)时,直线212y x m =+与函数1y 的图象只有二个交点,把A (-2,2)代入2112y x m =+得m 1=3; 把B (2,-2)代入2212y x m =+得m 2=-3; 故直线212y x m =+与函数1y 的图象有三个交点,则m 的取值范围为:33m -<<. 故答案为:33m -<<.【点睛】本题考查了函数图象和性质,能够从表格中获取信息,利用描点法画出函数图象,并结合函数图象解题是关键.4、 (1)12k =,(3,4)--(2)当点(6,2)P 时,92PQ =;当点(2,6)P 时,52PQ = (3)(2,6),(6,2)--,1066(,)115,6(10,)5-- 【解析】【分析】(1)先求得A 点坐标,再代入抛物线解析式可求得k 的值,根据对称性可求得B 点坐标;(2)由反比例函数解析式可求得P 点坐标,由直线解析式可求得Q 点坐标,可求得PQ 的长;(3)可设M 坐标为12(,)m m ,分当点(6,2)P 时,92PQ =,分点M 在第一象限或第三象限上两种情况,分别表示出PQM 的面积,可求得m 的值;当点(2,6)P 时,52PQ =,分点M 在第一象限或第三象限上两种情况,分别表示出PQM 的面积,可求得m 的值,共有四种情况. (1)解:A 在直线43y x =上,且A 的纵坐标为4, A ∴坐标为(3,4), 代入直线k y x=,可得43k =,解得12k =, 又A 、B 关于原点对称,∴点B 的坐标为(3,4)--.(2) 解:点A 到PQ 的距离为2,∴点P 的纵坐标为2或6,有两种情况,如下:∴代入12y x=,可得点P 的坐标为(6,2)或(2,6). //PQ x ∵轴,且点Q 在直线AB 上,∴可设点Q 的坐标为(,2)a 或(,6)a .代入43y x =,得点Q 的坐标为3(,2)2或9(,6)2. 39622PQ ∴=-=或95222PQ =-=, 当点(6,2)P 时,92PQ =;当点(2,6)P 时,52PQ =; (3)解:当点(6,2)P 时,92PQ =,分两种情况讨论,设点M 的坐标为12(,)m m. ①当点M 在第一象限中时,19129(2)22PQM S m==⨯⨯-, 解得:2m =.点M 的坐标为(2,6).②当点M 在第三象限中时,19129(2)22PQM S m==⨯⨯-,解得:6m =-.点M 的坐标为(6,2)--.当点(2,6)P 时,52PQ =,分两种情况讨论,设点M 的坐标为12(,)m m . ③当点M 在第一象限中时,15129(6)22PQM S m==⨯⨯-, 解得:1011m =. 点M 的坐标为1066(,)115. ④当点M 在第三象限中时,15129(6)22PQM S m==⨯⨯-, 解得:10m =-.点M 的坐标为6(10,)5--.综上所述:点M 的坐标为(2,6),(6,2)--,1066(,)115,6(10,)5--. 【点睛】 本题主要考查函数的交点问题、一次函数与反比例函数综合题,解题的关键是掌握函数图象的交点坐标满足每个函数的解析式.5、y =-2x +2【解析】【详解】解:设直线l 为y=kx+b,∵l 与直线y=-2x 平行,∴k= -2又直线过点(0,2),∴2=-2×0+b,∴b=2,∴原直线为y=-2x+2。

华师大版八年级下册数学第17章 函数及其图象含答案(历年考试题)

华师大版八年级下册数学第17章 函数及其图象含答案(历年考试题)

华师大版八年级下册数学第17章函数及其图象含答案一、单选题(共15题,共计45分)1、如图,直线l和双曲线交于A、B两点,P是线段AB上的点(不与A,B重合),过点A,B,P分别向x轴作垂线,垂足分别为C,D,E,连接OA,OB,0P,设△AOC的面积为S1、△BOD的面积为S2、△POE的面积为S3,则()A.S1<S2<S3B.S1>S2>S3C.S1=S2>S3D.S1=S2<S32、在一个标准大气压下,能反映水在均匀加热过程中,水的温度(T)随加热时间(t)变化的函数图象大致是( )A. B. C. D.3、在平面直角坐标系中,点(a﹣3,2a+1)在第二象限内,则a的取值范围是()A.﹣3<a<B. <a<3C.﹣3<a<﹣D.- <a<34、在同一直角坐标系内,若直线y=2x-1与直线y=-2x+m的交点在第四象限,则m的取值范围是()A.m>—1B.m<1C.—1<m<1D.—1≤m≤15、下列关于y与x的表达式中,反映y是x的反比例函数的是()A.y=4xB. =﹣2C.xy=4D.y=4x﹣36、函数y= +(x-2)0中,自变量x的取值范围是()A.x≥1且x≠2B.x≥1C.x≠2D.x≥27、一次函数y=3x-1的图象不经过的象限是( )A.第一象限B.第二象限C.第三象限D.第四象限8、点P(m+3,m+1)在直角坐标系的x轴上,则点P的坐标为( )A.(0,﹣2)B.(2,0)C.(4,0)D.(0,﹣4)9、东营市出租车的收费标准是:起步价8元(即行驶距离不超过3千米都需付8元车费),超过3千米以后,每增加1千米,加收1.5元(不足1千米按1千米计).某人从甲地到乙地经过的路程是千米,出租车费为15.5元,那么的最大值是()A.11B.8C.7D.510、下列函数中,是一次函数的是()A.y= +2B.y=﹣2xC.y=x 2+1D.y=ax+a(a是常数)11、如图,在矩形AOBC中,点A的坐标(﹣2,1),点C的纵坐标是4,则B、C两点的坐标分别是()A.(,)、(﹣, 4)B.(, 3)、(﹣,4) C.(, 3)、(﹣, 4) D.(,)、(﹣,4)12、如图,在平面直角坐标系xOy中,函数y=kx+b(k≠0)与y= (m≠0)的图象相交于点A(-2,3),B(6,-1),则不等式kx+b>的解集为()A. B. 或 C. D. 或13、如果点在平面直角坐标系的轴上,则m=()A.-3B.-2C.-1D.014、关于反比例函数y=的图象,下列说法正确的是()A.必经过点(1,1)B.两个分支分布在第二、四象限C.两个分支关于x轴成轴对称D.两个分支关于原点成中心对称15、函数的自变量x的取值范围是()A.x ≠0B. x≠-2C.x>2D.x<2二、填空题(共10题,共计30分)16、已知四边形OABC是菱形,CD⊥x轴,垂足为D,函数的图象经过点C,且与AB交于点E,若OD=2,则△OCE的面积为________.17、点A(2,-3),点B(2,1),点C在x轴的负半轴上,如果△ABC的面积为8,则点C的坐标是________.18、若点(3,1)在一次函数y=kx﹣2(k≠0)的图象上,则k的值是1.________(判断对错)19、已知函数与的图像的一个交点坐标是(1,2),则它们的图像的另一个交点的坐标是________.20、甲、乙两车在同一直线公路上匀速行驶,开始甲车在乙车的前面,当乙车追上甲车后,两车停下来,把乙车的货物转给甲车,然后甲车继续前行,乙车向原地返回.设x秒后两车间的距离为y米,y关于x的函数关系的图象如图所示,则甲车的速度是 ________米/秒21、现有五张质地大小完全相同的卡片,上面分别标有数字1、2、3、4、5,把分别标有数字3、4的两张卡片放入不透明的盒子A中,把分别标有数字1、2、5的三张卡片放入不透明的盆子B中.现随机从A和B两个盒子中各取出一张卡片,把从A盒中取出的卡片上标的数字记作a,从B盒中取出的卡片上标的数字记b,且a-b=k,则y关于x的正比例函数y=kx的图象经过一、三象限的概率是________.22、如图所示,在平面直角坐标系中,有若干个整数点,其顺序按图中箭头方向排列,如(1,0),(2,0)(2,1),(3,2),(3,1)(3,0),……,根据这个规律探索可得,第102个点的坐标为________;23、如图,是甲、乙两家商店销售同一种产品的销售价y(元)与销售量x (件)之间的函数图象.下列说法:①售2件时甲、乙两家售价一样;②买1件时买乙家的合算;③买3件时买甲家的合算;④买甲家的1件售价约为3元,其中正确的说法是(填序号)________.24、如图,点在双曲线上,过点作轴于点,点在线段上且,双曲线经过点,则________.25、在平面直角坐标系xOy中,已知第一象限内的点A在反比例函数y=的图象上,第二象限内的点B在反比例函数y=的图象上,连接OA、OB,若OA⊥OB,OB=OA,则k=________.三、解答题(共5题,共计25分)26、已知,当时,;当时,. 求出k,b 的值;27、博物馆每周都吸引大量中外游客前来参观.如果游客过多,对馆中的珍贵文物会产生不利影响.但同时考虑到文物的修缮和保存费用问题,还要保证一定的门票收入.因此,博物馆采取了涨浮门票价格的方法来控制参观人数,在该方法实施过程中发现:每周参观人数与票价之间存在着如图所示的一次函数关系,在这样的情况下,如果确保每周4万元的门票收入,那么每周应限定参观人数是多少门票价格应是多少元?28、已知x为实数.y、z与x的关系如表格所示:根据上述表格中的数字变化规律,解答下列问题:(1)当x为何值时,y=430?(2)当x为何值时,y=z?x y z………3 30×3+702×1×84 30×4+702×2×95 30×5+702×3×1029、已知一次函数y=(1﹣2m)x+m﹣1,若函数y随x的增大而减小,并且函数的图像经过二、三、四象限,求m的取值范围.30、如果y是z的反比例函数,z是x的正比例函数,且x≠0,那么y与x具有怎样的函数关系?参考答案一、单选题(共15题,共计45分)1、D2、B3、D4、C5、C6、A7、B8、B9、B10、B11、C12、D13、C14、D15、B二、填空题(共10题,共计30分)17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、29、。

华师大版八年级下册数学第17章 函数及其图象含答案(参考答案)

华师大版八年级下册数学第17章 函数及其图象含答案(参考答案)

华师大版八年级下册数学第17章函数及其图象含答案一、单选题(共15题,共计45分)1、如图,正方形ABCD的边长为3cm,动点P从B点出发以3cm/s的速度沿着边BC﹣CD﹣DA运动,到达A点停止运动;另一动点Q同时从B点出发,以1cm/s的速度沿着边BA向A点运动,到达A点停止运动.设P点运动时间为x (s),△BPQ的面积为y(cm2),则y关于x的函数图象是()A. B. C.D.2、把的图象沿轴向下平移5个单位后所得图象的关系式是()A. B. C. D.3、已知正比例函数y=(2m-1)x的图象上两点A(x1, y1)、B(x2,y 2),当x1<x2时,有y1>y2,那么m的取值范围是()A.m<B.m>C.m<2D.m>24、下列函数中,是的一次函数的是()A. B. C. D.5、如图,在平面直角坐标系中,等腰直角三角形 OA1A2的直角边 OA1在 y轴的正半轴上,且 OA1=A1A2=1,以 OA2为直角边作第二个等腰直角三角形OA₂ A3,以 OA3为直角边作第三个等腰直角三角OA3A4,…,依此规律,得到等腰直角三角形 OA2017A2018,则点 A2017的坐标为()A.(0,2 1008)B.(2 1008, 0)C.(0,2 1007)D.(2 1007, 0)6、张老师出门散步时离家的距离y与时间x之间的函数图象如图所示,若用黑点表示张老师家的位置,则张老师散步行走的路线可能是()A. B. C. D.7、下列语句.①横坐标与纵坐标互为相反数的点在直线y=-x上;②直线y=-x+2不经过第三象限;③除了用有序实数对,我们也可以用方向和距离来确定物体的位置;④若点P的坐标为(a,b),且ab=0,则P点是坐标原点;⑤函数中y的值随x的增大而减小.其中叙述正确的有()A.2个B.3个C.4个D.5个8、函数中自变量x的取值范围是()A.x≠﹣1B.x>﹣1C.x=﹣1D.x<﹣19、如图,⊙O是以原点为圆心,为半径的圆,点P是直线y=﹣x+6上的一点,过点P作⊙O的一条切线PQ,Q为切点,则切线长PQ的最小值为()A.3B.4C.6﹣D.3 ﹣110、如图,点D为y轴上任意一点,过点A(﹣6,4)作AB垂直于x轴交x轴于点B,交双曲线于点C,则△ADC的面积为()A.9B.10C.12D.1511、某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P (kPa)是气体体积V(m3)的反比例函数,其图象如图所示.当气球内的气压大于120kPa时,气球将爆炸.为了安全起见,气球的体积应()A.不小于m 3B.小于m 3C.不小于m 3D.小于m 312、如图,下列各曲线中能够表示y是x的函数的是().A. B. C. D.13、已知菱形OABC在平面直角坐标系的位置如图所示,顶点A(5,0),OB=4,点P是对角线OB上的一个动点,D(0,1),当CP+DP最短时,点P的坐标为()A.(0,0)B.(1,)C.(,)D.(,)14、已知点M(1﹣2m,m﹣1)关于x轴的对称点在第一象限,则m的取值范围在数轴上表示正确的是()A. B. C.D.15、如图,直线y=kx+b与y轴交于点(0,3)、与x轴交于点(a,0),当a 满足﹣3≤a<0时,k的取值范围是()A.﹣1≤k<0B.1≤k≤3C.k≥1D.k≥3二、填空题(共10题,共计30分)16、如图,点A、B是双曲线y= 上的点,分别过点A、B作x轴和y轴的垂线段,若图中阴影部分的面积为2,则两个空白矩形面积的和为________17、在平面直角坐标系中,正方形ABCD的顶点A、B、C的坐标分别为(﹣1,1)、(﹣1,﹣1)、(1,﹣1),则顶点D的坐标为________.18、写出一个图象在第二、四象限的反比例函数解析式:________.19、如图,在平面直角坐标中,D是正方形ABCO的边AB上一点,以OD为边的等边△ODE,点E在x轴正半轴上,若点B的坐标为(3,3),则点E的坐标为________.20、在平面直角坐标系中,点P(1,2)关于y轴的对称点Q的坐标是________;21、若函数y=(m-2)x+5是一次函数,则m满足的条件是________.22、如图,点P是反比例函数y=图象上的一点,则矩形PEOF的面积是________.23、若点在轴上.则点的坐标为________.24、使函数有意义的自变量x的取值范围是________.25、一次函数y1=kx+b与y2=x+a的图象如图,则下列结论①k<0;②a>0;③当x<3时,y1>y2中,正确的序号是________三、解答题(共5题,共计25分)26、设一次函数y=kx+b(k≠0)的图象经过A(1,3),B(0,-2)两点,试求k,b的值.27、已知实数a , b满足a-b=1,a2-ab+2>0,当1≤x≤2时,函数y=(a≠0)的最大值与最小值之差是1,求a的值28、一次函数y=2x-a与x轴的交点是点(-2,0)关于y轴的对称点,求一元一次不等式2x-a≤0的解集.29、已知函数y=中,当x=a时的函数值为1,试求a的值.30、已知y=y1+y2,其中y1与x成反比例,y2与(x﹣2)成正比例.当x=1时,y=﹣1;x=3时,y=3.求:(1)y与x的函数关系式;(2)当x=﹣1时,y的值.参考答案一、单选题(共15题,共计45分)1、C2、C3、A4、B5、A6、D7、B8、A9、B10、A11、C12、A14、A15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、29、30、。

华师大版八年级下册数学第17章 函数及其图象含答案

华师大版八年级下册数学第17章 函数及其图象含答案

华师大版八年级下册数学第17章函数及其图象含答案一、单选题(共15题,共计45分)1、如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x>ax+4的解集为()A.x<B.x<3C.x>D.x>32、根据右图所示程序计算函数值,若输入的的值为,则输出的函数值为( )A. B. C. D.3、如图,在直角坐标系中,点A是x轴正半轴上的一个定点,点B是双曲线y= (x>0)上的一个动点,当点B的横坐标系逐渐增大时,△OAB的面积将会( )A.逐渐变小B.逐渐增大C.不变D.先增大后减小4、下列函数中,当 x<0 时,函数值 y 随 x 的增大而增大的有()①y=x;②y=﹣2x+1;③y=﹣6x2;④y=3x2;A.1 个B.2 个C.3 个D.4 个5、正比例函数是()A.y=﹣8xB.y=﹣8x+1C.y=8 +1D.y=-6、根据表中一次函数的自变量与函数值的对应情况,可得的值为()1 63A. B. C. D.7、根据图1所示的程序,得到了y与x的函数图象,如图2.若点M是y轴正半轴上任意一点,过点M作PQ∥x轴交图象于点P,Q,连接OP,OQ.则以下结论:①x<0 时,②△OPQ的面积为定值.③x>0时,y随x的增大而增大.④ MQ=2PM.⑤∠POQ可以等于90°.其中正确结论是()A.①②④B.②④⑤C.③④⑤D.②③⑤8、一次函数的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限9、如图,一次函数y=﹣x+2的图象与两坐标轴分别交于A、B两点,点C是线段AB上一动点,过点C分别作CD、CE垂直于x轴、y轴于点D、E,当点C从点A出发向点B运动时(不与点B重合),矩形CDOE的周长()A.逐渐变大B.不变C.逐渐变小D.先变小后变大10、一个正方形的边长为,它的各边边长减少后,得到的新正方形的周长为,y与x的函数关系式为()A. B. C. D.以上都不对11、三角形的面积S为定值,一条底边为y,这底边上的高为x,则y关于x的函数图象大致上是()A. B. C. D.12、某航空公司规定,旅客乘机所携带行李的运费y(元)与其质量x(kg)由(如图所示)一次函数确定,那么旅客可携带的免费行李的最大质量为()A.15kgB.20kgC.23kgD.25kg13、当m,n是实数且满足m﹣n=mn时,就称点Q(m,)为“奇异点”,已知点A、点B是“奇异点”且都在反比例函数y= 的图象上,点O是平面直角坐标系原点,则△OAB的面积为()A.1B.C.2D.14、若y=kx-4的函数值y随x的增大而增大,则k的值可能是下列的()A.-2B.-C.0D.215、若点P(1-m, m)在第二象限,则下列关系正确的是( )A.0<m<1B.m<0C.m>0D. m>1二、填空题(共10题,共计30分)16、如图,直线l⊥x轴于点P,且与反比例函数y1= (x>0)及y2= (x>0)的图象分别交于点A,B,连结OA,OB,则△OAB的面积为=________.17、直线y=2x+b与x轴的交点坐标是(2,0),则关于x的方程2x+b=0的解是x=________.18、如果一盒圆珠笔有12支,售价18元,用y(元)表示圆珠笔的售价,x表示圆珠笔的支数,那么y与x之间的关系应为________.19、已知点P是直线上一动点,点Q在点P的下方,且轴,,y轴上有一点,当值最小时,点Q的坐标为________.20、已知点在轴上,则________.21、如图,一次函数y=kx+b的图象分别交x轴、y轴于A、B两点,点A(2,0),则关于x的不等式kx+b<0的解集是________.22、已知反比例函数的图象经过点(2,﹣3),则此函数的关系式是________.23、如图,在平面直角坐标系中,点、,若直线与线段有公共点,则整数的值可以为________.(写出一个即可)24、如图,l1:y=x+1和l2:y=mx+n相交于P(a,2),则x+1≥mx+n解集为________.25、当________时,函数是一次函数.三、解答题(共5题,共计25分)26、在直角坐标系中,用线段顺次连结点(-2,0),(0,3),(3,3),(0,4),(-2,0)。

【完整版】华师大版八年级下册数学第17章 函数及其图象含答案

【完整版】华师大版八年级下册数学第17章 函数及其图象含答案

华师大版八年级下册数学第17章函数及其图象含答案一、单选题(共15题,共计45分)1、在平面直角坐标系中,以点(2,3)为圆心,2为半径的圆必定()A.与x轴相离,与y轴相切B.与x轴,y轴相离C.与x轴相切,与y轴相离D.与x轴,y轴相切2、若函数y=(k+1)x+k2﹣1是正比例函数,则k的值为()A.0B.1C.±1D.﹣13、已知一次函数y=x+b的图象经过第一、二、三象限,则b的值可以是( ).A.-2B.-1C.0D.24、已知直角坐标系内有一点M(a,b),且ab=0,则点M的位置一定在()A.原点上B. x轴上C. y轴上D.坐标轴上5、如图,是做课间操时,小明,小刚和小红三人的相对位置,如果用(4,5)表示小明的位置,(2,4)表示小刚的位置,则小红的位置可表示为()A.(0,0)B.(0,1)C.(1,0)D.(1,2)6、如图,在平面直角坐标系中,平行四边形OABC的边OA在x轴的正半轴上,A,C两点的坐标分别为(2,0),(1,2),点B在第一象限,将直线沿y轴向上平移m个单位.若平移后的直线与边BC有交点,则m的取值范围是( )A. B. C. D.7、点A(m﹣4,1﹣2m)在第三象限,则m的取值范围是()A.m>B.m<4C. <m<4D.m>48、在压力一定的情况下,压强P(pa)与接触面积S(m2)成反比例,某木块竖直放置与地面的接触面积S=0.3m2时,P=20000pn,若把木块横放,其与地面的接触面积为2m2,则它能承受的压强为()A.1000paB.2000paC.3000paD.4000pa9、对于反比例函数,下列说法正确的是A.图象经过点(1,﹣3)B.图象在第二、四象限C.x>0时,y随x的增大而增大D.x<0时,y随x增大而减小10、若直线y=kx+3与y=3x﹣2b的交点在x轴上,当k=2时,b等于()A.9B.-3C.D.11、如图,点是反比例函数的图象上任意一点,轴交反比例函数的图象于点,以为边作,其中、在轴上,则为()A.2B.3C.4D.512、如图,已知点A(1,1)B(2,-3),点P为x轴上一点,当PA-PB最大值时,点P的坐标为( )A.(-1.0)B.(1,0)C.( ,0)D.( ,0)13、在同一直角坐标系中,二次函数y=x2与反比例函数y (x>0)的图象如图所示,若两个函数图象上有三个不同的点A(x1, m),B(x2,m),C(x3, m),其中m为常数,令ω=x1+x2+x3,则ω的值为()A.1B.mC.m 2D.14、在下列四组点中,可以在同一个正比例函数图象上的一组点是()A.(2,﹣3),(﹣4,6)B.(﹣2,3),(4,6)C.(﹣2,﹣3),(4,﹣6)D.(2,3),(﹣4,6)15、下列函数中,正比例函数是()A.y=﹣8xB.y=C.y=8x 2D.y=8x﹣4二、填空题(共10题,共计30分)16、在温度不变的条件下,一定质量的气体的压强P与它的体积V成反比例,当V=200时,P=50,则当P=25时,V=________.17、二次函数y=x2-2x-3的图象如图所示.当y<0时,自变量x的取值范围是________.18、如图,在平面直角坐标系中,已知,,是轴上的一条动线段,且,当取最小值时,点坐标为________.19、如图,点A在双曲线上,连接,作,交双曲线于点B,若,则k的值为________.20、函数y=的自变量x的取值范围是________21、已知下列函数:①y=﹣2x;②y=x2+1;③y=﹣0.5x﹣1.其中是一次函数的有________(填序号).22、若反比例函数的图象过点(3,﹣2),则其函数表达式为________.23、已知一次函数y1=k1x+b(k1, b为常数)与反比例函数y2=(k2为常数),函数y1、y2与自变量x的部分对应值分别如表1、表2所示:则关于x的不等式k1x+b<的解集是________.24、已知点在y轴上,则点P坐标为________.25、如图,小明在平面直角坐标系中先作边长为1的正方形OABC,再用圆规以A为圆心,AC为半径画弧交x轴正半轴于点P,则点P的坐标为________.三、解答题(共5题,共计25分)26、已知y是x的一次函数,当x=3时,y=1;当x=﹣2时,y=﹣4,求这个一次函数的解析式.27、已知:一次函数y=kx+b的图象经过M(0,2),(1,3)两点.求该函数关系式.28、如图,在平面直角坐标系中,直线+2与x轴、y轴分别交于A、B 两点,以AB为边在第二象限内作正方形ABCD.(1)求点A、B的坐标,并求边AB的长;(2)求点D和点C的坐标;(3)你能否在x轴上找一点M,使△MDB的周长最小?如果能,请求出M点的坐标;如果不能,说明理由.29、游泳池常需进行换水清洗,图中的折线表示的是游泳池换水清洗过程“排水——清洗——灌水”中水量y(m3)与时间t(min)之间的函数关系式.(1)根据图中提供的信息,求整个换水清洗过程水量y(m3)与时间t(min)的函数解析式;(2)问:排水、清洗、灌水各花多少时间?30、如图,在平面直角坐标系中,点A、B的坐标分别为(-1,3)、(-4,1),先将线段AB沿一确定方向平移得到线段A1B1,点A的对应点为A1,点B1的坐标为(0,2),再将线段A1B1绕原点O顺时针旋转90°得到线段A2B2,点A1的对应点为点A2.(1)画出线段A1B1、A2B2;(2)直接写出点A1到达点A2所经过的路径长.参考答案一、单选题(共15题,共计45分)1、A2、B3、D4、D5、D6、D7、C8、C9、D10、D11、D12、D13、D14、A15、A二、填空题(共10题,共计30分)16、17、18、19、21、22、23、25、三、解答题(共5题,共计25分)27、28、29、30、。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

华师大版八年级下册数学第17章函数
及其图象含答案
一、单选题(共15题,共计45分)
1、若点(1,2)同时在函数y=ax+b和y=的图象上,则点(a,b)为
()
A.(-3,-1)
B.(-3,1)
C.(1,3)
D.(-1,3)
2、如图,在平面直角坐标系中,已知正比例函数的图象与反比例函数的图象交于,两点,当时,自变量的取值范围是()
A. B. C. 或 D.

3、反比例函数y= 的图象经过的象限是()
A.第一二象限
B.第一三象限
C.第二三象限
D.第二四象限
4、两个一次函数的图象如图所示,下列方程组的解满足交点P的坐标的是()
A. B. C. D.
5、如图,点M是反比例函数(x>0)图象上任意一点,MN⊥y轴于N,点P是x轴上的动点,则△MNP的面积为()
A.1
B.2
C.4
D.不能确定
6、若点A(m,n)在第二象限,那么点B(﹣m,|n|)在()
A.第一象限
B.第二象限;
C.第三象限
D.第四象限
7、过和两点的直线一定 ( )
A.垂直于轴
B.与轴相交但不平行于轴
C.平行于
轴 D.与轴、轴都不平行
8、小亮家与姥姥家相距24km,小亮8:00从家出发,骑自行车去姥姥家.妈妈8:30从家出发,乘车沿相同路线去姥姥家.在同一直角坐标系中,小亮和妈妈的行进路程S(km)与北京时间t(时)的函数图象如图所示.根据图象得到小亮结论,其中错误的是()
A.小亮骑自行车的平均速度是12km/h
B.妈妈比小亮提前0.5小时到达姥姥家
C.妈妈在距家12km处追上小亮
D.9:30妈妈追上小亮
9、甲、乙两名运动员同时从地出发前往地,在笔直的公路上进行骑自行车训练如图所示,反映了甲、乙两名运动员在公路上进行训练时的行驶路程(千米)与行驶时间(小时)之间的关系,下列四种说法:①甲的速度
为40千米/小时;②乙的速度始终为50千米/小时;③行驶1小时时,乙在甲前10千米处;④甲、乙两名运动员相距5千米时,或.其中正确的个数有( )
A.1个
B.2个
C.3个
D.4个
10、如图,已知两点的坐标分别为,点分别是直线
和x轴上的动点,,点D是线段的中点,连接交y轴于点E;当⊿ 面积取得最小值时,的值是()
A. B. C. D.
11、一次函数y
1=kx+b和反比例函数y
2
= 的图象如图,则使y
1
>y
2
的x范围
是()
A.x<﹣2或x>3
B.﹣2<x<0或x>3
C.x<﹣2或0<x<
3 D.﹣2<x<3
12、一次函数y=x+5的图象经过点P(a,b)和Q(c,d),则a(c-d)-b(c-d)的值为()
A.9
B.16
C.25
D.36
13、如图,已知在边长为2的等边三角形EFG中,以边EF所在直线为x轴建立适当的平面直角坐标系,得到点G的坐标为(1,),则该坐标系的原点在()
A.G点处
B.F点处
C.E点处
D.EF的中点处
14、一盘蚊香长100cm,点燃时每小时缩短10cm,小明在蚊香点燃5h后将它熄灭,过了2h,他再次点燃了蚊香.下列四个图象中,大致能表示蚊香剩余长度y(cm)与所经过时间x(h)之间的函数关系的是()
A. B. C. D.
15、甲、乙两车从A地驶向B地,并以各自的速度匀速行驶,甲车比乙车早行驶2h,并且甲车途中休息了0.5h(甲车休息前后的速度相同),甲、乙两车行驶的路程y(km)与行驶的时间x(h)的函数图象如图所示.根据图象的信息有如下四个说法:
①甲车行驶40千米开始休息
②乙车行驶3.5小时与甲车相遇
③甲车比乙车晚2.5小时到到B地
④两车相距50km时乙车行驶了小时
其中正确的说法有()
A.1个
B.2个
C.3个
D.4个
二、填空题(共10题,共计30分)
16、如图,一次函数与正比例函数的图象交于点P(-2,-1),则关于的方程的解是________.
17、写出一个一次函数,使该函数图像经过第一,二,四象限和点(0, 5),则这个一次函数可以是________.
18、剧院里5棑2号可用(5,2)表示,则(7,4)表示________ .
19、如图,矩形ABCD中,AB=2,BC=4,点A,B分别在y轴、x轴的正半轴上,点C在第一象限,如果∠OAB=30°,那么点C的坐标是________.
20、某市出租车白天的收费起步价为7元,即路程不超过3千米时收费7元,超过部分每千米收费元,如果乘客白天乘坐出租车的路程为千米,乘车费为元,那么与之间的关系为________.
21、如图,在直角坐标系中,正方形的中心在原点,且正方形的一组对边与
轴平行,点是反比例函数的图象上与正方形的一个交
点.若图中阴影部分的面积等于,则这个反比例函数的解析式为
________.
22、如图,在平面直角坐标系中,将绕点顺时针旋转到的位置,使点的对应点落在直线上……,依次进行下去,若点的坐标是(0,1),点的坐标是,则点的横坐标是________.
23、三角形的面积公式中S=ah其中底边a保持不变,则常量是________ ,变量是________ .
24、函数有意义,则自变量x的取值范围是________.
25、已知点P(2﹣a,2a﹣7)(其中a为整数)位于第三象限,则点P坐标
为________.
三、解答题(共5题,共计25分)
26、如图所示的折线ABC•表示从甲地向乙地打长途电话所需的电话费y(元)与通话时间t(分钟)之间的函数关系的图象.
(1)写出y与t•之间的函数关系式.
(2)通话2分钟应付通话费多少元?
(3)通话7分钟呢?
27、已知矩形中,米,米,为中点,动点
以2米/秒的速度从出发,沿着的边,按照A E D A顺序环行一周,设从出发经过秒后,的面积为(平方米),求
与间的函数关系式.
28、在同一坐标系中画出函数y=2x+1和y=﹣2x+1的图象,并利用图象写出二元一次方程组的解.
29、请你用学习“一次函数”时积累的经验和方法解决下列问题:
(1)在平面直角坐标系中,画出函数y=|x|的图象:
①列表填空:
x …﹣3 ﹣2 ﹣1 0 1 2 3 …
y ……
②描点、连线,画出y=|x|的图象;
(2)结合所画函数图象,写出y=|x|两条不同类型的性质;
(3)写出函数y=|x|与y=|x+2|图象的平移关系.
30、一次函数y=kx+b中(k、b为常数,k≠0),若-3≤x≤2,则-1≤y≤9,求一次函数的解析式.
参考答案
一、单选题(共15题,共计45分)
1、D
2、D
3、B
4、D
5、A
6、A
8、D
9、B
10、B
11、B
12、C
13、C
14、C
15、A
二、填空题(共10题,共计30分)
16、
17、
18、
19、
20、
21、
22、
23、
24、
25、
三、解答题(共5题,共计25分)
27、。

相关文档
最新文档