蓄电池结构与充放电基本原理

蓄电池结构与充放电基本原理
蓄电池结构与充放电基本原理

蓄电池定义及原理( storage battery )

定义:放电到一定程度后,经过充电又能复原续用的电池。

蓄电池是电池中的一种,它的作用是能把有限的电能储存起来,在合适的地方使用。它的工作原理就是把化学能转化为电能。

它用填满海绵状铅的铅板作负极,填满二氧化铅的铅板作正极,并用1.28%的稀硫酸作电解质。在充电时,电能转化为化学能,放电时化学能又转化为电能。电池在放电时,金属铅是负极,发生氧化反应,被氧化为硫酸铅;二氧化铅是正极,发生还原反应,被还原为硫酸铅。电池在用直流电充电时,两极分别生成铅和二氧化铅。移去电源后,它又恢复到放电前的状态,组成化学电池。铅蓄电池是能反复充电、放电的电池,叫做二次电池。它的电压是2V,通常把三个铅蓄电池串联起来使用,电压是6V。汽车上用的是6个[2]铅蓄电池串联成12V的电池组。蓄电池在充电过程中,或在充电终了时,电极上会伴随着水的分解反应。其原因是因为铅酸电

池正极充电接受能力较差,一旦正极充电状态达到70%时,氧气开始在正极上析出。负极充电状态超过90%时,氢气在负极上析出。一般地讲,正电极充电到额定电量的120%时。才能达到完全充电状态,所以,铅酸电池每次充电均会产生水的分解反应消耗水,因此定

期补水维护不可避免。铅蓄电池在使用一段时间后要补充蒸馏水,使电解质保持含有22~28%的稀硫酸。

放电时,电极反应为:PbO2 + 4H+ + SO42- + 2e- = PbSO4 + 2H2O

负极反应: Pb + SO42- - 2e- = PbSO4

总反应: PbO2 + Pb + 2H2SO4 === 2PbSO4 + 2H2O (向右反应是放电,向左反应是充电)

升失氧(化合价升高,失去电子,被氧化,氧化反应,还原剂)

降得还(化合价降低,得到电子,被还原,还原反应,氧化剂)

蓄电池分类

铅酸蓄电池产品主要有下列几种,其用途分布如下:

起动型蓄电池:主要用于汽车、摩托车、拖拉机、柴油机等起动和照明;

固定型蓄电池:主要用于通讯、发电厂、计算机系统作为保护、自动控制的备用电源;

牵引型蓄电池:主要用于各种蓄电池车、叉车、铲车等动力电源;

铁路用蓄电池:主要用于铁路内燃机车、电力机车、客车起动、照明之动力;

储能用蓄电池:主要用于风力、太阳能等发电用电能储存;

蓄电池结构:

构成铅蓄电池之主要成份如下:

阳极板(过氧化铅.PbO2)---> 活性物质

阴极板(海绵状铅.Pb) ---> 活性物质

电解液(稀硫酸) ---> 硫酸(H2SO4) +水(H2O)

电池外壳

隔离板

其它(液口栓.盖子等)

蓄电池专用语:

额定电压,容量,放电率,工作电流

W是功,P是功率,W= Pt=UIt

20HR 12V 24Ah 与30HR 12V 24Ah两种参数的电池有什么区别

AH:代表容量,24Ah是标准的容量,只是电流与时间的乘积,20/30HR :代表放电率,测试容量时的放电电流的大小,数值越小越

好。或者说:放电时间(HR)含义是:该电池从额定电压以某电流开始放电,当放电20HR时,电池电压刚好降为电池的终止电压,由此测得总的安培小时数。所以20/30HR是表示放电速率,即表示电瓶里的电量建议以什么速度放完,比如20HR就是说,适合用20小时

放完24Ah的电量,30HR应该适合用30小时放完。所以相当于20HR的建议放电速率大于30HR的,因为同样的容量,放电时间越短,电流就越大。

如果你的工作电流小于24Ah/30HR=0.8A,那么就用30HR的,没必要用20HR的,但如果你要求电流超过0.8A而又不超过1.2A的话,就得用20HR的了。当然如果是短时间的大电流使用,偶尔超过一会并不会有问题,这只是连续放电时最有效的推荐放电率。

总之,20HR和30HR的实际容量都是24Ah的,所以容量就是相同的,如果说得出了小时率和容量有关的结论,那肯定是选错了小时率,因为在不按照推荐的放电率使用时,超过小时率会降低电瓶中电能的利用率,容量会变小。

例如不同放电率实际容量

20小时率:12.0Ah

10小时率:11.4Ah

5小时率:9.6Ah

1小时率:7.8Ah

附属:溶质、溶剂、密度、溶液、质量分数也叫质量百分浓度(溶液的浓度用溶质的质量占全部溶液质量的百分率表示的叫质量百分浓度,用符号%表示。例如,25%的葡萄糖注射液就是指100克注射液中含葡萄糖25克。质量百分浓度(%)=溶质质量/溶液质量100%,%),摩尔浓度(C,mol/L摩尔浓度(mol/L)=溶质摩尔数/溶液体积(升))、摩尔数(也叫物质的量n,mol)、体积、总质量(m,g)、摩尔质量(M,g/mol)之间的关系

溶液的密度*总体积=总质量(1)

物质摩尔浓度*物质的摩尔质量*总体积=溶质质量(2)

溶质质量/总质量=质量分数(3)

由(1),(2)可得

摩尔浓度*摩尔质量*总质量=密度*溶质质量(4)

由(3),(4)可得

摩尔浓度*摩尔质量=密度*质量分数

溶液百分比浓度的计算公式为:

溶质质量

C%(w)=———————————×100%

溶质质量+溶剂质量

*其中溶质质量+溶剂质量=溶液质量

溶质质量=溶液的密度×溶液体积×百分比浓度

蓄电池容量:

电动车用蓄电池的容量以下列条件表示之:蓄电池

◎电解液比值 1.280/20℃(电解液是稀释的硫酸,1.28是指硫酸和水混合后的密度单位g/ml。

◎30℃时候盐酸的密度

浓度% 10 20 30 40 50 60 70 80 90 100

密度g / mL 1.07 1.14 1.22 1.30 1.40 1.50 1.61 1.73 1.81 1.83 ◎放电电流5小时的电流

◎放电终止电压 1.70V/Cell

◎放电中的电解液温度30±2℃

1.放电中电压下降放电中端子电压比放电前之无负载电压(开路电压)低,理由如下:

(1)V=E-I.R

V:端子电压(V)I:放电电流(A)

E:开路电压(V)R:内部阻抗(Ω)

(2)放电时,电解液比重下降,电压也降低。

(3)放电时,电池内部阻抗即随之增强,完全充电时若为1倍,则当完全放电时,即会增强2~3倍。

用于起重时之电瓶电压之所以比用于行走时的电压低,乃是由于起重用之油压马达比行走用之驱动马达功率大,因此放电流大,则上式的I.R亦变大。

2.蓄电池之容量表示

在容量试验中,放电率与容量的关系如下:

5HR....1.7V/cell

3HR....1.65V/cell

1HR....1.55V/cell

严禁到达上述电压时还继续继续放电,放电愈深,电瓶内温会升高,则活性物质劣化愈严重,进而缩短蓄蓄电池电池寿命。

因此,堆高机无负重扬升时的电池电压若已达1.75v/cell(24cell的42v,12cell的21v),则应停止使用,马上充电。

3.蓄电池温度与容量

当蓄电池温度降低,则其容量亦会因以下理由而显著减少。

(A)电解液不易扩散,两极活性物质的化学反应速率变慢。

(B)电解液之阻抗增加,电瓶电压下降,蓄电池的5HR容量会随蓄电池温度下降而减少。

因此:

(1)冬季比夏季的使用时间短。

(2)特别是使用于冷冻库的蓄电池由于放电量大,而使一天的实际使用时间显著减短。

若欲延长使用时间,则在冬季或是进入冷冻库前,应先提高其温度。

4.放电量与寿命

每日反复充放电以供使用时,则电池寿命将会因放电量的深浅,而受到影响。

5.放电量与比重

蓄电池之电解液比重几乎与放电量成比例。因此,根据蓄电池完全放电时的比重及10%放电时的比重,即可推算出蓄电池的放电量。

测定铅蓄电池之电解液比重为得知放电量的最佳方式。因此,定期性的测定使用后的比重,以避免过度放电,测比重的同时,亦测电解液的温度,以20℃所换算出的比重,切勿使其降到80%放电量的数值以下。

6.放电状态与内部阻抗

内部阻抗会因放电量增加而加大,尤其放电终点时,阻抗最大,主因为放电的进行使得极板内产生电流的不良导体─硫酸铅及电解液比重的下降,都导致内部阻抗增强,故放电后,务必马上充电,若任其持续放电状态,则硫酸铅形成安定的白色结晶后(此即文献上所说的硫化现象),即使充电,极板的活性物资亦无法恢复原状,而将缩短电瓶的使用年限。

★白色硫酸铅化

蓄电池放电,则阴、阳极板同时产生硫酸铅(PbS04),若任其持续放电,不予充电,则最后会形成安定的白色硫酸铅结晶(即使再充电,亦难再恢复原来的活性物质)此状态称为白色硫化现象。

7.放电中的温度

当电池过度放电,内部阻抗即显著增加,因此蓄电池温度也会上升。放电时的温度高,会提高充电完成时温度,因此,将放电终了时的温度控制在40℃以下为最理想。

胶体电池和AGM电池对比

: VRLA :valve-regulated lead-acid battery 阀控式密封铅蓄电池,就是所说的免维护电池,分成Absorbed glass mat battery (AGM)电池和Gel battery(胶体电池)二种。现在常见的都是AGM,胶体电池少,所以AGM电池=免维护

电池,这两种电池分别采用玻璃纤维隔板和硅凝胶二种不同方式来“固定”硫酸电解液。它们都是利用阴极吸收原理使电池得以密封的,但给阳极析出的氧到达阴极提供的通道是不同的,因而二种电池的性能各有千秋。

1 历史的简单回顾

铅酸蓄电池从问世到如今,一直是军用民用领域中使用最广泛的化学电源。由于它使用硫酸电解液,运输过程中会有酸液流出,充电时会有酸雾析出来,对环境和设备造成损害,人们就试图将电解硅酸钠

初期的胶体铅蓄电池使用的胶体电解液是由水玻璃(硅酸钠)制成的,然后直接加到干态铅蓄电池中。这样虽然达到了“固定”电解液或减少酸雾析出的目的,但却使电池的容量较原来使用自由电解液时的电池容量要低20%左右,因而没有被人们所接受。

2 电池的工作原理

不论是采用玻璃纤维隔膜的阀控式密封铅蓄电池(以下简称AGM(多为贫液)密封铅蓄电池)还是采用胶体电解液的阀控式密封铅蓄电池(以下简称胶体密封铅蓄电池),它们都是利用阴极吸收原理使电池得以密封的。

电池充电时,正极会析出氧气,负极会析出氢气。正极析氧是在正极充电量达到70%时就开始了。

析出的氧到达负极,跟负极起下述反应,达到阴极吸收的目的。

2Pb十O2=2PbO

2PbO十2H2SO4:2PbS04+2H20

负极析氢则要在充电到90%时开始,再加上氧在负极上的还原作用及负极本身氢过电位的提高,从而避免了大量析氢反应。

对AGM密封铅蓄电池而言,AGM隔膜中虽然保持了电池的大部分电解液,但必须使10%的隔膜孔隙中不进入电解液。正极生成的氧就是通过这部分孔隙到达负极而被负极吸收的。

对胶体密封铅蓄电池而言,电池内的硅凝胶是以SiQ质点作为骨架构成的三维多孔网状结构,它将电解液包藏在里边。电池灌注的硅溶胶变成凝胶后,骨架要进一步收缩,使凝胶出现裂缝贯穿于正负极板之间,给正极析出的氧提供了到达负极的通道。

由此看出,两种电池的密封工作原理是相同的,其区别就在于电解液的“固定”方式和提供氧气到达负极通道的方式有所不同。

3 电池结构和工艺上的主要差异

AGM密封铅蓄电池使用纯的硫酸水溶液作电解液,其密度为1.29—1.3lg/cm3。除了极板内部吸有一部分电解液外,其大部分存在于玻璃纤维膜之中。为了给正极析出的氧提供向负极的通道,必须使隔膜保持有10%的孔隙不被电解液占有,即贫液式设计。为了使极板充分接触电解液,极群采用紧装配的方式。

另外,为了保证电池有足够的寿命,极板应设计得较厚,正板栅合金采用

Pb’-q2w-Srr--A1四元合金。

胶体密封铅蓄电池的电解液是由硅溶胶和硫酸配成的,硫酸溶液的浓度比AGM

式电池要低,通常为1.26~1.28g/cm3。电解液的量比AGM式电池要多20%,跟富液式电池相当。这种电解质以胶体状态存在,充满在隔膜中及正负极之间,硫酸电解液由凝胶包围着,不会流出电池。

由于这种电池采用的是富液式非紧装配结构,正极板栅材料可以采用低锑合金,也可以采用管状电池正极板。同时,为了提高电池容量而又不减少电池寿命,极板可以做得薄一些。电池槽内部空间也可以扩大一些。

4 电池放电容量

初期的胶体蓄电池的放电容量只有富液式电池的80%左右,这是由于使用性能较差的胶体电解液直接灌人未加改动的富液式电池之中,电池的内阻较大,电解质中离子迁移困难引起的。

近来的研究工作表明,改进胶体电解液配方,控制胶粒大小,掺人亲水性高分子添加剂,降低胶液浓度提高渗透性和对极板的亲合力,采用真空灌装工艺,用复合隔板或AGM隔板取代橡胶隔板,提高电池吸液性;取消电池的沉淀槽,适度增大极板面积活性物质的含量,结果可使胶体密封电池的放电容量达到或接近开口式铅蓄电池的水平。

AGM式密封铅蓄电池电解液量少,极板的厚度较厚,活性物质利用率低于开口式电池,因而电池的放电容量比开口式电池要低10%左右。与当今的胶体密封电池相比,其放电容量要小一些。

5 电池内阻及大电流放电能力

铅蓄电池的内阻是由欧姆内阻、浓差极化内阻、电化学极化内阻组成的。前者包括极板、铅零件、电解液、隔极电阻。AGM密封铅蓄电池所用的玻璃纤维隔板具

有90%的孔率,硫酸吸附其内,且电池采用紧装配形式,离子在隔板内扩散和电迁移受到的阻碍很小,所以AGM密封铅蓄电池具有低内阻特性,大电流快速放电能力很强。

胶体密封铅蓄电池的电解液是硅凝胶,虽然离子在凝胶中的扩散速度接近在水溶液中的扩散速度,但离子的迁移和扩散要受到凝胶结构的影响,离子在凝胶中扩散的途径越弯曲,结构中孔隙越狭窄,所受到的阻碍也越大。因而胶体密封铅蓄电池内阻要比AGM密封铅蓄电池要大。

然而试验结果表明胶体密封铅蓄电池的大电流放电性能仍然很好,完全满足有关标准中对密封电池大电流放电性能的要求。这可能是由于多孔电极内部及极板附近液层中的酸和其他有关离子的浓度在大电流放电时起到关键性的作用。

6 热失控

热失控指的是:电池在充电后期(或浮充状态)由于没有及时调整充电电压,使电池的充电电流和温度发生一种累积性的相互增强作用,此时电池的温度急剧上升,从而导致电池槽膨胀变形,失水速度加大,甚至电池损坏。

上述现象是AGM密封铅蓄电池在使用不当时而出现的一种具有很大破坏性的现象。这是由于AGM密封铅蓄电池采用了贫液式紧装配设计,隔板中必须保持10%的孔隙不准电解液进入,因而电池内部的导热性差,热容量小。充电时正极产生的氧到达负极和负极铅反应时会产生热量,如不及时导走,则会使电池温度升高;如若没有及时降低充电电压,则充电电流就会加大,析氧速度增大,又反过来使电池温度升高。如此恶性循环下去,就会引起热失控现象。

对于开口式铅蓄电池而言,由于不存在阴极吸收氧气现象,再加上其电解液量比较大,电池散热容易,热容量也大,当然不会出现热失控现象。胶体密封铅蓄电池的电解液量用得和开口式铅蓄电池相当,极群周围及与槽体之间充满凝胶电解质,有较大的热容量和散热性,不会产生热量积累现象。

德国阳光公司的胶体密封铅蓄电池进入中国市场已有十余年,几家代理商均说没有听到用户反映电池有热失控现象。

7 使用寿命

影响阀控式密封铅蓄电池使用寿命的因素很多,既有电池设计和制造方面的因素,又有用户使用和维护条件方面的因素。就前者而言,正极板栅耐腐蚀性能和电池的水损耗速度乃是两个最主要的因素。由于正板栅的厚度加大,采用Pb—Ca—Sn--A1四元耐蚀合金,则根据板栅腐蚀速度推算,电池的使用寿命可达10~15年。然而从电池使用结果来看,水损耗速度却成为影响密封电池使用寿命的最关键性因素。

对于AGM密封铅蓄电池而言,由于采用贫液式设计,电池容量对电解液量极为敏感。电池失水10%,容量将降低20%;损失25%水份,电池寿命结束。然而胶体密封铅蓄电池采用了富液式设计,电解液密度比AGM密封铅蓄电池低,降低了板栅合金腐蚀速度;电解液量也比后者多15%~20%,对失水的敏感性较低。这些措施均有利于延长电池使用寿命。根据德国阳光公司提供的资料,胶体电解液所含的水量足以使电池运行12~14年。电池投入运行的第一年,水损耗4%—5%,随后逐年减少,4年之后总的水耗损只有2%。OP2V型密封电池在2.27V/单体条件下浮充运行10年后,其容量还有90%。从国内一些邮电通信部门的反映来看,虽然阳光公司的胶体密封铅蓄电池售价较高,但其使用寿命却长于国产的AGM

密封铅蓄电池。

8 复合效率

复合效率是指充电时正极产生的氧气被负极吸收复合的比率。充电电流、电池温度、负极特性和氧气到达负极的速度等因素,均会影响密封电池的气体复合效率。

根据德国阳光公司提供的胶体密封铅蓄电池产品说明书介绍,胶体密封铅蓄电池产品使用初期,氧复合效率较低,但运行数月之后,复合效率可达95%以上。这种现象也可以从电池的失水速度得到验证,胶体密封铅蓄电池运行第一年失水速度较大,达到4%~5%,以后逐渐减少。造成上述特性的主要原因,看来胶体电解质在形成初期,内部没有或极少有裂缝,没有给正极析出的氧提供足够的通道。随着胶体的逐渐收缩,则会形成越来越多的通道,那么氧气的复合效率必然逐渐提高,水损耗也必然减少。

AGM式密封铅蓄电池隔膜中有不饱和空隙,提供了大量的氧气通道,因而其氧气复合效率很高,新电池可以达到98%以上。

9 选用货真价实的胶体密封铅蓄电池

以上谈及的胶体密封铅蓄电池的一些特性,乃是当今国内外新一代胶体密封铅蓄电池才具有的性质。这种电池使用的胶体电解质在性能上有别于早期胶体电池使用的胶体电解质,后者是用普通水玻璃制成的,或由一般市售的硅溶胶配成的。此外,新一代胶体密封铅蓄电池的结构和选材上也不同于一般的铅蓄电池。

从目前的国内外技术发展水平来看,做一个胶体铅蓄电池是不难的,然而要做一个好的胶体密封铅蓄电池却是不容易的,其中的技术诀窍是任何厂家都不愿透露的。用户在选用胶体密封铅蓄电池时,务必小心从事。

相关热力学基本理论:

一、熵焓概述

1.熵是热力系内微观粒子无序度的一个量度,熵的变化可以判断热力过程是否为可逆过程。热力学能与动能、势能一样,是物体的一个状态量。熵与温度、压力、焓等一样,也是反映物质内部状态的一个物理量。它不能直接用仪表测量,只能推算出来,所以比较抽象。在作理论分析时,有时用熵的概念比较方便。在自然界发生的许多过程中,有的过程朝一个方向可以自发地进行,而反之则不行。例如,一个容器的两边装有温度、压力相同的两种气体,在将中间的隔板抽开后,两种气体会自发地均匀混合,但是,要将它们分离则必须消耗功。混合前后虽然温度、压力不变,但是两种状态是不同的,单用温度与压力不能说明它的状态。再如两个温度不同的物体相互接触时,高温物体会自发地将热传给低温物体,最后两个物体温度达到相等。但是,相反的过程不会自发地发生。上述现象说明,自然界发生的一些过程是有一定的方向性的,这种过程叫不可逆过程。过程前后的两个状态是不等价的。用什么物理量来度量这种不等价性呢?通过研究,找到了“熵”这个物理量。

有些过程在理想情况下有可能是可逆的,例如气缸中气体膨胀时举起一个重物做了功,当重物下落时有可能将气体又压缩到原先的状态。根据熵的定义,熵在一个可逆绝热过程的前后是不变的。而对于不可逆的绝热过程,则过程朝熵增大的方向进行。或者说,熵这个物理量可以表示过程的方向性,自然界自发进行的过程总是朝着总熵增加的方向进行,理想的可逆过程总熵保持不变。对上述的两个不可逆过程,它们的终态的熵值必大于初态的熵值。

2.焓是一个状态函数,也就是说,系统的状态一定,焓的值就定了。焓的定义式是这样的:H=U+pV ,其中U表示热力学能,也称为内能,即系统内部的所有能量;p是系统的压力,V是系统的体积

作为一个描述系统状态的状态函数,焓没有明确的物理意义

ΔH(焓变)表示的是系统发生一个过程的焓的增量

ΔH=ΔU+Δ(pV)

在恒压条件下,ΔH(焓变)可以表示过程的热力学能变

常用单位为J/mol或kJ/kmol

熵变化量=热量变化量/温度。则当熵变大,物质内能变大,则焓变大;反之,物质内能变小,则焓变小。

3.化学平衡常数,是指在一定温度下,可逆反应无论从正反应开始,还是从逆反应开始,也不管反应物起始浓度大小,最后都达到平衡,这时各生成物浓度的化学计

量数次幂的乘积除以各反应物浓度的化学计量数次幂的乘积所得的比值是个常数,用K表示,这个常数叫化学平衡常数

不同的化学平衡体系,其平衡常数不一样。平衡常数大,说明生成物的平衡浓度较大,反应物的平衡浓度相对较小,即表明反应进行得较完全。因此,平衡常数的大小可以表示反应进行的程度。

二、热力学定律

1、热力学第一定律-能量守恒和转换定律

:热热能可以从一个物体传递给另一个物体,也可以与机械能或其他能量相互转换,在传递和转换过程中,能量的总值不变。表征热力学系统能量的是内能。通过作功和传热,系统与外界交换能量,使内能有所变化。根据普遍的能量守恒定律,系统由初态Ⅰ经过任意过程到达终态Ⅱ后,内能的增量ΔU应等于在此过程中外界对系统传递的热量Q 和系统对外界作功A之差ΔU=Q-W 或者ΔU= UⅡ-UⅠ=Q-W; Q-系统吸收了多少热量,W-系统对外做功。

2、热力学第二定律

①不可能把热量从低温物体传向高温物体而不引起其它变化。,指出了在自然条件下热量只能从高温物体向低温物体转移,而不能由低温物体自动向高温物体转移,也就是说在自然条件下,这个转变过程是不可逆的。要使热传递方向倒转过来,只有靠消耗功来实现。

②不可能从单一热源取热,使之完全变为功而不引起其它变化。(这是从能量消耗的角度说的,它说明第二类永动机是不可能实现的,要想制造出热效率为百分之百的热机是绝对不可能的。)

3、热力学第三定律

不可能用有限个手段和程序使一个物体冷却到绝对温度零度。

热力学第三定律是对熵的论述,一般当封闭系统达到稳定平衡时,熵应该为最大值,在任何过程中,熵总是增加,但理想气体如果是绝热可逆过程熵的变化为零,可是理想气体实际并不存在,所以现实物质中,即使是绝热可逆过程,系统的熵也在增加,不过增加的少。在绝对零度,任何完美晶体的熵为零;称为热力学第三定律

4、热力学第零定律

如果两个热力系的每一个都与第三个热力系处于热平衡(温度相同),则它们彼此也处于热平衡,热力学第零定律的重要性在于它给出了温度的定义和温度的测量方法

热力学小结:根据热力学第零定律,确定了态函数——温度

根据热力学第一定律,确定了态函数——内能和焓;

根据热力学第二定律,也可以确定一个新的态函数——熵。

5、焓enthalpy热力学中表示物质系统能量的一个状态函数,常用符号H表示。数值上等于系统的内能U加上压强p和体积V的乘积,即H=U+pV。焓的变化是系统在等压可逆过程中所吸收的热量的度量

p=F/S,V=Sh,∴Fh=pV;W=Fh=PV

Q=ΔU-W=U2-U1+(p2V2-p1V1)=(U2+p2V2)-(U1+p1V1)

数值上等于系统的内能U加上压强p和体积V的乘积,即H=U+pV;Q=H2-H1=ΔH

6、熵entropy (记为S),它表示该状态可能出现的程度。在热力学中,是用以说明热学过程不可逆性的一个比较抽象的物理量。

熵在热力学中是表征物质状态的参量之一,通常用符号S表示。在经典热力学中,可熵用增量定义为dS=(dQ/T),式中T为物质的热力学温度;dQ为熵增过程中加入物质的热量。下标“可逆”表示加热过程所引起的变化过程是可逆的。若过程是不可逆的,则dS>(dQ/T)不可逆。从微观上说,熵是组成系统的大量微观粒子无序度的量度,系统越无序、越混乱,熵就越大。

单位质量物质的熵称为比熵,记为s

蓄电池充放电试验方案

蓄电池检查试验方案 一、目的 为延长蓄电池使用寿命,确保电源类设备处于最佳运行状态,需对蓄电池组进行充放电试验,为保证检查试验过程中的人员分工明确、安全风险可控、试验方法规范,特制定本方案。 二、组织与职责 (一)组织管理组 组长: 1.协调蓄电池检查试验的整体统筹与实施。 2.监管各小组的履职情况。 副组长: 1.配合组长监管蓄电池检查试验工作的开展与实施。 2.配合组长监管各小组的履职情况。 安全负责人: 1.全面监管蓄电池检查试验工作当中的票证、倒闸操作以及安全交底工作,一经发现违规行为,立即叫停改造工作。 技术负责人: 1.负责监管蓄电池检查试验期间运行方式调整。 2.负责蓄电池检查试验期间提供相关的技术支持。 (二)现场实施组 组长: 成员: 三、编写依据 1.GB 50172-1992电气安装工程蓄电池施工及验收规范 2.DL/T 5044-1995火力发电厂.变电所直流系统设计技术规程 3.DL/T 724-2000电力系统用蓄电池直流电源装置运行与维护技术规程 四、工作范围 UPS、EPS、直流屏装置蓄电池组。 五、工作前的准备

1.方案学习 1.1组长负责对所有改造人员进行方案的学习培训,并进行签字确认。 1.2各小组组长负责对自己的成员进行方案的分解落实。 1.3安全负责人对所有人进行安全交底及措施的落实情况。 2.材料及工器具准备 六、工作项目及内容 1.按下表检查蓄电池型号及参数。 蓄电池型号及参数记录表

2.外观及接线检查 逐个目测检查蓄电池外观,不应有变形、污迹,蓄电池间连接可靠、无锈蚀。检查项目和结果满足下表要求。 蓄电池外观及接线检查项目确认表 3.蓄电池运行环境检查 蓄电池运行环境检查记录表

蓄电池充放电试验

蓄电池放电试验方案 批准: 审核: 编写: 重庆大唐国际彭水水电开发有限公司设备部 二〇一二年七月二日

蓄电池放电试验方案 本次试验按DL/T724-2000-6.3.3阀控蓄电池核对性放电要求进行全核对性放电试验。 一、计划时间: 开关站直流Ⅰ组蓄电池充放电试验:2012年07月11日08:00至2012年07月14日23:00 开关站直流Ⅱ组蓄电池充放电试验:2012年07月15日08:00至2012年07月19日23:00 地下厂房直流Ⅰ组蓄电池充放电试验:2012年07月29日08:00至2012年08月01日23:00 地下厂房直流Ⅱ段充电装置试验:2012年08月02日08:00至2012年08月05日23:00 大坝直流充电装置试验:2012年08月11日08:00至2012年08月14日23:00 二、组织措施 现场指挥:李正家 成员:谭小华(工作负责人)、刘宏生、肖琳、肖力、陈灏、刘应西、韦黎敏、运行当班值 三、试验前准备工作 1、设备部 1)外观检查:蓄电池槽、盖、安全阀、极柱封口剂等的材料应具有 阻燃性,用目测检查蓄电池外观,蓄电池的外观不应有裂纹、变 形及污迹;

2)极性检测:用万用表检查蓄电池极性; 3)开路电压检查:蓄电池在环境温度5℃~35℃的条件下完全充 电后静置至少24h,测量蓄电池的开路电压应符开路电压最大最小电压差值不大于; 4)蓄电池连接压降:蓄电池间的连接条电压降应不大于8mV; 5)内阻测试:制造厂提供的蓄电池内阻值应与实际测试的蓄电池内 阻值一致,允许偏差范围为±10%。 2、发电部 退出需放电试验的运行蓄电池组。 三、试验步骤 1、蓄电池核容试验: 1)以×10小时放电率电流对电池组充电,连续充电至少72小时, 直至3小时内充电电流基本稳定不变(电池组充满状态),静置1到2小时,电池组温度与周围温度基本一致后对电池组进行放电,放电电流为10小时放电率电流(120A),连续放电10小时(放电过程中调整负载,始终保持放电电流不变)或端电压达到终止电压或单个电池电压低于时,停止放电,记录连续放电时间,由此算出容量。 2)根据直流电源系统运行规范规定,若达不到额定容量的80%,此 组蓄电池为不合格。 3)根据附表格每小时进行一次数据测量和记录。在整组蓄电池合格 的情况下,如有单个蓄电池不合格,对不合格蓄电池进行更换后

蓄电池充放电技术方案

批准:___________ 审核:___________ 初审:___________ 编制:___________ 跌水电站 2017年制

概况:跌水电站中控室蓄电池组为德国阳光电气集团有限公司生产阀控铅酸蓄电池组,于2007年安装投运,已连续运行9年,虽至今未出现任何异常,但迄今为止未对电池组进行过任何相关安全检测试验。为掌握设备真实状况,排查损坏、失效的单瓶电池的可能,计划于跌水电站对机组例行检修时进行一次蓄电池设备的排查、摸底、修复充放电检修,拟以核对性充放电实验进行电池组维护,制定以下技术措施,在充放电维护工作中执行。 1充放电前的准备工作: 1.1清扫集控蓄电池本体、蓄电池配电室墙面、地面内积灰,清理室内杂物,保持蓄电池室内通风。 1.2 外观及接线检查 逐个目测检查蓄电池外观,不应有变形、污迹,蓄电池间连接可靠、无锈蚀。检查项目和结果满足表1要求。 1.3 测量蓄电池单瓶电压,电池组端电压。

1.4 检查主充放装置及其它工具材料,如下:智能充放电试验仪一台,万用表一台,绝缘手套一双。相色胶带各一卷,智能测温枪一把。 1.5 人员配置:操作员一名,监护人一人,值班员4人。 2 蓄电池组放电 断开蓄电池组后静置2小时即可进入初放电过程,其目的一是检查整组电池是否存在“落后”电池,二是检查蓄电池的容量。放电试验采用10小时放电率,大部分电池低于 1.80V或者整体电压降至185.4V (1.80V*103节)时停止放电,若通过容量测定合格,蓄电池转入均充状态。 2.1 用插拔器将电池出口处熔断器(现场位置附图一)按先小后大的顺序拔出; 2.2将放电设备接入熔断器下端头,以及其他辅助接线。注意正负极性; 2.3开启蓄电池放电装置,设置10小时放电率对蓄电池进行放电,单组标准容量为200Ah的蓄电池,以20A恒定电流进行放电;若温度低于20°应根据具体温度补偿公式计算实际容量: C t=C20*[1+k(t-20)] (其中:Ct:t温度下实际容量 C20:20℃是标准容量 t:当前温度值 k:温度补偿系数,通常取0.006) 2.4 放电过程严密监视电池电压、温度的变化,放电期每小时记录测量数据一次,若温度超过45度应立即停止放电,当蓄电池组某单节电池电压接近1.80V时,要对该电池每隔30分钟测量数据一次。当某单节电池电压低于1.80V时,暂停放电,把该电池退出,直至大部分电池电压接近1.80V截止,并按照如下公式计算放电容量: Cn=In×Tn

铅酸蓄电池充放电工艺

铅酸蓄电池充放电工艺 一、电池主要技术参数 1、铅酸蓄电池单格标称电压为2V(每槽),12V电池=2V×6槽,6V电池=2V×3槽。 2、电池安时容量(Ah)=放电电流(A)×放电时间(h) 。放电时间根据标准的要求选择,一般有5小时率、10小时率、20小时率。 3、充放电流(A)=电池安时容量(Ah)÷小时率(h) 。小时率(h)=电池安时容量(Ah)÷充放电流(A) 。 二、电池安时容量测试与判定(以12V10Ah 为例) 一般应根据要求的小时率容量进行恒流放电计算连续放电时间来判定是否合格。 例1、10小时率容量:10Ah=1A×10h 12V10Ah电池用1A电流放电应≥10小时为合格,若<10小时为不合格。 例2、20小时率容量:10Ah =0.5A×20h 12V10Ah电池用0.5A电流放电应≥20小时为合格,若<20小时为不合格。 例3、5小时率容量:10Ah=2A×5h 12V10Ah电池用2A电流放电应≥5小时为合格,若<5小时为不合格。 三、电池放电生产工艺(以12V10Ah为例) 1 、一般用5 小时率的电流放电至单格电压为1.6V时终止放电,若电池完全充足电后放电时间设置≥6小时。 2、例:12V10Ah电池放电电流设置为2A,终止电压设置为1.6V×6格=9.6V,放电时间设置6小时。

3、若采用10小时率放电单格终止电压设置为1.7V,则1.7V×6格(12V)=10.2V,放电电流设置为1A,放电时间设置≥12小时。 4、若采用20小时率放电单格终止电压设置为1.8V,则1.8V×6格(12V)=10.8V,放电电流设置为0.5A,放电时间设置≥24小时。 5、新装未充电电池根据极板带电量放电容量一般小于额定容量,根据实际测试而定。 四、电池充电生产工艺(以12V10Ah为例,指完全放电后。) 1、以10小时率的电流(1A)充电1小时,充电电压设置=2.5V×6格(12V)=15.0V。 2、以5小时率的电流(2A)充电5小时,充电电压设置=2.4V×6格(12V)=14.4V。 3、以10小时率的电流(1A)充电2小时,充电电压设置=2.5V×6格(12V)=15.0V。 4、以20小时率的电流(0.5A)充电2小时,充电电压设置=2.6V×6格(12V)=15.6V。 5、以50小时率的电流(0.2A)充电4小时,充电电压设置=2.75V×6格(12V)=16.5V。 五、例:12V10Ah铅酸蓄电池30台串联电池组充放电生产工艺(仅供参考) (电池组总标称电压12V×30台=360V,选用PCF-5A500V型充放电机。)

蓄电池充放电方案

蓄电池充放电方案 为了保障发供电安全,编写了蓄电池充放电方案; 一、测试前准备 1 测试必要的工具准备 测试所需工具包括:绝缘手套、绝缘靴、万用表、扳手、测试记录表、警示标示、手电筒。 2 环境检查 环境检查:房内应该凉爽、干燥,通风需运行正常。 3 电池检查 电池外观检查:检查外观是否清洁,有无液体或污渍,并做好设备间的清洁工作帮助对故障点的判断。 电池连接检查:对电池间的连接铜排是否紧固做检查,检查组间接线应无扭力及腐蚀。 二、蓄电池充、放电注意事项 1)蓄电池放电后应立即充电,如搁置时间长,即使再充电也不能恢复其原有容量。 2)在施工期间,值班人员应加强对设备的巡视,密切监视各断路器的运行状况 三、技术措施 1开工前有关人员应到现场进行勘察,制定施工方案,报经主管部门批准。根据施工方案和现场具体情况制定三措计划、施工计划(步骤)报主管部门批准后实施。 2开工前应准备好工具、仪表、仪器和辅助材料。

3开工前全体施工人员应认真阅读相关说明书,做到施工人员人人心中有数 4对蓄电池进行外观检查。 5壳体应无变形、裂纹、损伤,密封良好、外观清洁。 6蓄电池的正、负极柱必须极性正确,并应无变形。 7连接条、螺栓及螺母应齐全,无锈蚀。 8检查蓄电池是否有漏液现象。 四、测试方案 1 放电前,对所有操作人员进行交底,包括技术交底和安全交底。 2 在电池浮充状态下测量并记录电池的电压。(单只电池电压及总的端电压) 3 放电前,应测量并记录电池的单只电池电压。 4 放电开始前应测量蓄电池的端电压,放电时应测量电流,其电流波动不得超过规定值的1% 5对放电过程中的单个电瓶电压及时测量并记录,并在操作区域挂警示标示,每小时记录一次。 五、总结 虽然电池容量测试耗时耗力,却是检测电池性能最好最直接的方式,很多故障隐患都能在此过程中显现出来.

蓄电池充放电试验方法

蓄电池充放电 阀控式蓄电池俗称“免维护蓄电池”被广泛应用于备用电源系统中,“免维护”仅指无需加水、加酸、换液,而日常的检测和维护工作仍是不可缺少的。因蓄电池在运行中欠充、过充、过放、环境温度过高等都会使蓄电池的性能劣化,所以只有对其进行核对性放电才能客观、准确地测出蓄电池的真实容量, 才能保证直流电源系统运行的可靠性。 步骤/方法 1.放电前,应提前对电池组做均充,以使电池组达到满充电状态,一般以 2.35V/单体充电12小时,静置12-24h。 2.记录电池组浮充总电压、单体浮充电压、负载电流、环境温度以及整流器 (或开关电源)的其它设置参数,同时检查所有的螺钉是否处于拧紧状态。 3.结合基站/交换局的实际情况,断开电池组和开关电源之间的连接,确认 假负载处于空载状态后,把假负载正确连接到电池组正负极上,15分钟后记录电池的开路电压。 4.根据情况需要,确定电池组的放电倍率,一般以3小时率或10小时率放 电(3小时率放电电流为0.25C10,10小时率放电电流为0.10C10),在假负载上选择相匹配的负载档,对电池组进行放电。 5.在放电过程中,考虑到假负载上的电流表显示准确度不够,需用钳形电流 表对放电电流进行检测,根据钳形表的实际显示,对假负载进行调整,使电池组放电电流到要求的放电电流,等放电5分钟左右,开始记录电池组的总电压、单体电压、放电电流、环境温度以及连接条的温度等。

6.若是选择10小时率放电,应每1小时(3小时率放电,则每30分钟)测量 一次电池的放电总压、单体电压、放电电流等:在放电的后期应提高测量的频率,10小时率是在9小时后每30分钟测量一次;3小时率是在2小时后每15分钟测量一次。放电过程中,同时应重点监控环境温度、电池单体和连接条的温度,有没有出现异常情况,同时电池组中放电电压最低的单体电池。 7.对于新安装的电池组,放电结束条件是电池组放出容量达到额定容量要求 或电池组中有一个单体达到1.80V,而对于已经在线使用的电池组是以总压达到43.2V(48V电池系统)为放电结束。 8.对于放电过程中的情况,如在到放电终止时,电池组放出的容量经核算没 有达到所规定的额定容量,电池组的出厂容量可能存在问题,应及时联系相关厂家前来处理。 9.放电结束,先让假负载空载,接着再断开电池组与假负载的连接,把电池 与开关电源连接上,此时应注意已经放过电的电池组与整流器之间的压差较大,连接时可能会出打火现象,最好是先调低开关电源的浮充电压值,使开关电源的浮充电压值尽量接近电池组的开路电压,以减小火花。 10.若放电情况正常可观察和记录充电开始的情况,若放电情况不正常,应监 测电池组的充电情况,确保电池的正常充电。 注意事项:

铅酸蓄电池初充电工艺

附件7:牵引用铅酸蓄电池初充电工艺 安全注意事项: 1、酸性电解液是强腐蚀性液体。用电解液工作时,要使用橡胶手套、保护眼镜、长袖衣服。确保可随时使用水。 2、如果偶然将电解液溅到皮肤或衣服,立刻用水冲洗10到20分钟。若眼睛受到影响,用水冲洗并要求专业医疗。 1、准备工作: 将电解液注入蓄电池内部后,需要静止至少20分钟,使电解液充分渗透到极板内部,并等待至电解液温度低于30℃之后方可以充电,但是灌酸后到充电开始的间隔时间不得超过24小时。 注意: a.初充电蓄电池用的电解液比重值应控制在1.21克/cm3至1.22克/cm3之间 b.在充电过程中,每小时检测一次蓄电池温度,如果发现温度大于40℃,则立即停止充 电直至蓄电池温度降到室温后,方可继续充电。 c.每次充电完成后静置蓄电池1小时后再放电。 d.充电后要及时排除酸雾、清洁电池架和地面。 e.停止放电后,应尽速充电,不要超过3小时。 2、第一次充电:充入量1.5C10(Ah)。(C10为电池容量) 第一阶段:以1/10C10(A)进行充电,2小时后测量全部电池单节闭路电压,作好记录,从中选出10节电压较低的作为“领示电池”,充电到8小时后开始测量“领示电池”电压,至平均电压达到2.4V时,转入第二阶段充电。 第二阶段:用1/20C10(A)进行充电,每隔6小时测量一次“领示电池”电压,作好记录,到电池出现充足电现象时,转入第三阶段充电。 第三阶段:间歇充电,以1/10C10(A)进行充电:每次1小时,间隔20分钟,共进行3次。 3、第一次放电:以1/10C10(A)进行放电,到5小时后开始测量全部电池单节电压,并记录, 以后每隔一小时测量一次;到7小时,有10节电池闭路电压达到1.8V时,即停止放电(早期低于1.8V的单节挑出)。 4、第二次充电:充入量5C10(Ah),把电池各单节重新连接好,以1/10C10(A)电流进行充电, 过程与第一次充电相同。 5、第二次放电:最大放电量为0.91C10(Ah)。 以1/10C10(A)进行放电,到第5小时开始测量全部单节闭路电压,以后每隔一小时测量一次;到第8小时开始每隔30分钟测量一次,放至9小时停止;有10节电池电压达到 1.8V时,即可以确定容量;早期出现的1.8V的单节应该甩开。如果容量达不到0.9C10 时,应该进行一次充放电循环,允许进行二次循环;如果仍然达不到0.9C10应另行处理。 6、第三次充电:充入电量为1.5C10(Ah),充电过程与容量检查的第三次充电过程完全相同。 最后进行电解液比重调整,比重值应为1.26克/cm3到1.29克/cm3。

蓄电池实验报告doc

蓄电池实验报告 篇一:直流系统蓄电池充放电试验报告 2 篇二:蓄电池测试 报告 蓄电池测试报告 使用单位:凯翔电池型号:产品名称:制造厂商:测试单位:凯翔测试人员:测试日期:打印日期:测试站点:凯翔 05 XX-11-10 XX-02-20 电流曲线图: 特性比较图: 单体条形图: 容量分析: 篇三:实验报告01--车用蓄电池技术状况的检查 实验一车用蓄电池技术状况的检查 实验时间:XX年9月29日实验地点:A-08 107 指导教师:亢凤林 一、实验目的 1、认识铅酸免维护蓄电池 2、高效放电计在检测蓄电池技术状况中的正确使用; 3、认识和正确使用蓄电池充电机。 二、实验设备

蓄电池、12V高率放电计; GZL-24V-60型过载保护硅整流充电机。 三、实验方法及步骤 1、观察6-QW-54蓄电池外观; 记录:可以看到两个接线柱:红色的一个标有“+”,另一个黑色标有”—”两个都是螺栓接线柱,一个蓄电池技术状态观察窗口,从外边可以看到蓝色的圆点 2、观察蓄电池技术状态指示器 记录:看到蓝色的圆环中间位黑色的圆点 记录分析:说明技术状态良好存电充足 3、12V高率放电计的正确使用; (1)使用高率放电计辨别蓄电池正负极 方法步骤:把高效放电计两个接线端接在蓄电池的两极,要保证两个接线柱都与电极接触完好,通过观察高效放电计的只是灯判定蓄电池的正负极。 (2)使用高率放电计辨别蓄电池技术状态 方法步骤:保持高效放电计的两个接线端接通蓄电池的两极,通过观察放电计上的电压表示数,观察时间最好不超过五秒。 测量数据:11.2V 数据分析:11—12V技术状态良好,9-11V技术状态较好,小于9V技术状态不好。通过本次测量电压表示数为11.2V

铅酸蓄电池充放电工艺.(DOC)

铅酸蓄电池充放电工艺 铅酸蓄电池充放电工艺 一、电池主要技术参数 1、铅酸蓄电池单格标称电压为2V(每槽),12V电池=2V×6槽,6V电池=2V×3槽。 2、电池安时容量(Ah)=放电电流(A)×放电时间(h) 。放电时间根据标准的要求选择,一般有5小时率、10小时率、20小时率。 3、充放电流(A)=电池安时容量(Ah)÷小时率(h) 。小时率(h)=电池安时容量(Ah)÷充放电流(A) 。 二、电池安时容量测试与判定(以12V10Ah 为例) 一般应根据要求的小时率容量进行恒流放电计算连续放电时 间来判定是否合格。 例1、10小时率容量:10Ah=1A×10h 12V10Ah电池用1A电流放电应≥10小时为合格,若<10小时为不合格。

例2、20小时率容量:10Ah =0.5A×20h 12V10Ah电池用0.5A电流放电应≥20小时为合格,若<20小时为不合格。 例3、5小时率容量:10Ah=2A×5h 12V10Ah电池用2A电流放电应≥5小时为合格,若<5小时为不合格。 三、电池放电生产工艺(以12V10Ah为例) 1 、一般用5 小时率的电流放电至单格电压为1.6V时终止放电,若电池完全充足电后放电时间设置≥6小时。 2、例:12V10Ah电池放电电流设置为2A,终止电压设置为1.6V ×6格=9.6V,放电时间设置6小时。 3、若采用10小时率放电单格终止电压设置为1.7V,则1.7V×6格(12V)=10.2V,放电电流设置为1A,放电时间设置≥12小时。 4、若采用20小时率放电单格终止电压设置为1.8V,则1.8V×6格(12V)=10.8V,放电电流设置为0.5A,放电时间设置≥24小时。 5、新装未充电电池根据极板带电量放电容量一般小于额定容量,根据实际测试而定。

蓄电池充放电实验记录.docx

` 吉沙电厂通讯电源直流蓄电池组容量校核充放电报告 时间: 2015/4/3 负责人:诺 参加人:付友国、周晓 放电前:(停充状态,供厂用负载电流4A)全组电压 50V 放电开始后:(放电总电流23A)全组电压V(盘上指针表读电流,并一只数字表读电压) 放电过程记录附后页 放电曲线充电曲线 单缸电压电压 1.83V 8.4h9h 时问时间 均充充入电量约 185Ah 后,充电装置过压保护动作,充电电流被限制,后改用大浮充再充,充入电量约 8×4=32(Ah)总充入容量:约 217Ah 后转为正常浮充。

` 蓄电池容量核定放电记录(2009/4/4 8:00) 缸电压 v缸电压缸电压全压放电电流记录时间 号号v号v v A 1 2.0339 2.0477 2.03214232009/4/3 8:40 2 2.0340 2.0378 2.03 3 2.0441 2.0379 2.04 4 2.0342 2.0380 2.03 5 2.0343 2.0481 2.03 6 2.0444 2.0482 2.03 7 2.0445 2.0483 2.03 8 2.0446 2.0484 2.04 9 2.0447 2.0585 2.04 10 2.0348 2.0486 2.04 11 2.0349 2.0487 2.04 12 2.0450 2.0588 2.04 13 2.0351 2.0489 2.04 14 2.0452 2.0490 2.04 15 2.0453 2.0391 2.03 16 2.0354 2.0492 2.04 17 2.0355 2.0493 2.03 18 2.0456 2.0394 2.04

蓄电池定期充放电试验记录表

蓄电池定期充放电记录表 试验内容蓄电池核对性充放电试验 工作标准充放电时长分别为10小时,每小时测量一次单体电压并记录。 试验周期每年5月10-15日 注意事项 每组蓄电池充放电试验前所带负荷必须倒至另外一组蓄电池组运行;充放电参数已设定 好,不需再更改参数。 开始时间结束时间试验结果试验人工作票号值长备注 年月日 时分年月日 时分 年月日 时分年月日 时分 年月日 时分年月日 时分

和安风电场蓄电池放电试验记录表电池型号HZB2-200 额定容量A·h 200 额定电压V 2 电池特性阀控铅酸介质状态硫酸电瓶个数104 放电电流A 放电电压V 室温℃ 测量时间:年月日时分 班组:测量人: 瓶号电压V 瓶号电压V 瓶号电压V 瓶号电压V 1 27 53 79 2 28 54 80 3 29 55 81 4 30 56 82 5 31 57 83 6 32 58 84 7 33 59 85 8 34 60 86 9 35 61 87 10 36 62 88 11 37 63 89 12 38 64 90 13 39 65 91 14 40 66 92 15 41 67 93 16 42 68 94 17 43 69 95 18 44 70 96 19 45 71 97 20 46 72 98 21 47 73 99 22 48 74 100 23 49 75 101 24 50 76 102 25 51 77 103 26 52 78 104

和安风电场蓄电池充电试验记录表电池型号HZB2-200 额定容量A·h 200 额定电压V 2 电池特性阀控铅酸介质状态硫酸电瓶个数104 充电电流A 充电电压V 室温℃ 测量时间:年月日时分 班组:测量人: 瓶号电压V 瓶号电压V 瓶号电压V 瓶号电压V 1 27 53 79 2 28 54 80 3 29 55 81 4 30 56 82 5 31 57 83 6 32 58 84 7 33 59 85 8 34 60 86 9 35 61 87 10 36 62 88 11 37 63 89 12 38 64 90 13 39 65 91 14 40 66 92 15 41 67 93 16 42 68 94 17 43 69 95 18 44 70 96 19 45 71 97 20 46 72 98 21 47 73 99 22 48 74 100 23 49 75 101 24 50 76 102 25 51 77 103 26 52 78 104

蓄电池充放电试验步骤

蓄电池充放电试验步骤 直流系统蓄电池充放电试验 MK-11-65AH/220V 型直流电源 一、 1、断开直流系统蓄电池充电开关。 2、拆除蓄电池充电开关接线,并用绝缘胶带做好标记。 3、将放电试验仪器与蓄电池出充电关连接。 4、合上蓄电池充电开关,调节放电试验仪器将电流控制在10A以内 5、每隔半小时记录电流、每块电池的电压及温度。 6、当电池电压降到10、5V时停止放电试验。 7、试验过程中随时检查电池,若温度或电压出现明显变化将其隔离后再进行试验。 8、当故障蓄电池达到整组蓄电池的20%时,更换整组蓄电池。 记录各只蓄电池的端电压、温度,进行下面步骤: (1)选择放电电流为10小时放电率的电流,在直流屏上合上放电柜的小开关,观察放电柜电流表显示值应小于10小时率放电电流,然后调节放电电阻,使放电电流为10小时放电率电流为止。此时,观察毫伏表所反映的电流与放电柜的电流一致,当明显不一致时,应检查接线是否有误,如果只存在一定误差,应以毫伏表的读数为准; (2)维持该放电电流,初始阶段每两小时记录一次每只电池的端电压、温度,观察电池是否出现酸液外溢、外壳裂损等异常现象。———————————————————————————————————————————————

但当放电至电池电压普遍降至10.9V左右时,应每小时记录一次。在放电末期,当电池电压普遍降至10.87V左右时,电池电压下降很快,应密切注意电池的端电压,防止过放电; (3) 在放电过程中,如果有个别电池过早降至终止电压10.8V或其它异常现象要对其进行隔离,方法是先断开放电小开关,中止放电,再将异常电池与前后电池的连接板断开,使异常电池与蓄电池组隔离,然后用已准备好的长2m、截面积为50mm2的短接线将异常电池前后的电池连接,使蓄电池组重新构成回路,这样就将异常电池隔离。之后在直流屏上合上接放电柜的放电小开关3QF,继续放电。注意应该先断开异常电池与前后电池间的连接板,再将其前后电池连接,否则将使电池正负极直接短路,造成损坏电池、伤害人身的事故; (4)蓄电池的放电终止电压为10.8V,当电池电压普遍降为10.8V时,并使电压不合标准的电池数控制在3% 以内,断开直流屏上放电柜小开关3QF,停止放电,观察各电池是否有异常,如果有,应该分析原因并解决问题。 (5) 放电完毕,检查各只蓄电池电压、温度、电池绝缘等是否正常,并计算出放电容量; 1) 电池容量的计算方法为: C25=Ct/[1+0.008(t-25?)] 式中:C25——换算为25?时的容量,Ah Ct——电解液平均温度为t?时的容量,Ah T——电解液的平均温度,? ——————————————————————————————————————————————— 上式只适用于电解液温度在10-40?范围内;

蓄电池充放电检修工艺

蓄电池核对性充放电检修工艺 一、蓄电池核对性充放电必应严格按周期进行。变电所蓄电池核对性充放电每年进行一次。进行蓄电池核对性充放电的过程必须做详细的记录,包括:蓄电池核对性充放电的时间、操作程序、测量记录、运行方式(均充、浮充)、容量计算、环境温度、测量人等。 二、蓄电池核对性充放电的一般程序(以100Ah,12V为例): 1.对其中一组蓄电池核对性充放电时,另一组蓄电池必须保证充足电。严禁对两组蓄电池同时进行放电。 2.先对蓄电池进行均充电。进行均充电的目的是使蓄电池达到其额定容量。对于自动均充的直流系统,将蓄电池转入自动均充运行,当蓄电池由自动均充运行转为浮充运行2小时后对蓄电池进行放电。 3.在对蓄电池进行核对性充放电前,要对蓄电池进行全面测量,并将测量数据写入相应的记录,同时记录当时的环境温度、运行方式(含充放电电压电流)、测量时间、测量人等。 4.以10小时放电率对蓄电池进行放电,单组标准容量为100Ah的蓄电池,以10A恒定电流进行放电。(65Ah的以6.5A恒定电流放电) A、放电的过程中,要每隔1小时定期对蓄电池进行测量一次:当蓄电池放出额定容量的70%或者某一单瓶电压接近10.80V(1.80×6)时,要每隔10分钟对蓄电池进行测量一次;当蓄电池某一单瓶电压达到10.80V(1.80× 6)时,应立即停止放电。 B、当蓄电池放出的容量较少而某一单瓶电压已经达到10.80V(1.80× 6)时,要立即停止放电,并将蓄电池转为均衡充电方式运行,在该单瓶充满、电压达到稳定的正常单瓶电压后转入浮充2小时以上,重新进行放电,过程同A;经过一定的均衡充电,该单瓶电压仍然达不到稳定的正常单瓶电压,则要将该瓶退出运行并对其进行单独充电,直到该单瓶电压达到稳定的正常单瓶电压(如果仍然达不到稳定的正常单瓶电压,说明该电瓶不合格)后,将其连接到原来的电池组中,重新进行A的过程。 C.经过几次均衡充电,某一单瓶放出容量不足80%时电压达到10.80V 时,其他蓄电池电压较高且整组蓄电池放出未达到85%,该蓄电池容量明

蓄电池充放电试验步骤

直流系统蓄电池充放电试验 MK-11-65AH/220V 型直流电源 一、 1、断开直流系统蓄电池充电开关。 2、拆除蓄电池充电开关接线,并用绝缘胶带做好标记。 3、将放电试验仪器与蓄电池出充电关连接。 4、合上蓄电池充电开关,调节放电试验仪器将电流控制在10A以内 5、每隔半小时记录电流、每块电池的电压及温度。 6、当电池电压降到10、5V时停止放电试验。 7、试验过程中随时检查电池,若温度或电压出现明显变化将其隔离后再进行试验。 8、当故障蓄电池达到整组蓄电池的20%时,更换整组蓄电池。 记录各只蓄电池的端电压、温度,进行下面步骤: (1)选择放电电流为10小时放电率的电流,在直流屏上合上放电柜的小开关,观察放电柜电流表显示值应小于10小时率放电电流,然后调节放电电阻,使放电电流为10小时放电率电流为止。此时,观察毫伏表所反映的电流与放电柜的电流一致,当明显不一致时,应检查接线是否有误,如果只存在一定误差,应以毫伏表的读数为准; (2)维持该放电电流,初始阶段每两小时记录一次每只电池的端电压、温度,观察电池是否出现酸液外溢、外壳裂损等异常现象。但当放电至电池电压普遍降至10.9V左右时,应每小时记录一次。在放电末期,当电池电压普遍降至10.87V左右时,电池电压下降很快,应密切注意电池的端电压,防止过放电; (3) 在放电过程中,如果有个别电池过早降至终止电压10.8V或其它异常现象要对其进行隔离,方法是先断开放电小开关,中止放电,再将异常电池与前后电池的连接板断开,使异常电池与蓄电池组隔离,然后用已准备好的长2m、截面积为50mm2的短接线将异常电池前后的电池连接,使蓄电池组重新构成回路,这样就将异常电池隔离。之后在直流屏上合上接放电柜的放电小开关3QF,继续放电。注意应该先断开异常电池与前后电池间的连接板,再将其前后电池连接,否则将使电池正负极直接短路,造成损坏电池、伤害人身的事故; (4)蓄电池的放电终止电压为10.8V,当电池电压普遍降为10.8V时,并使电压不合标准的电池数控制在3% 以内,断开直流屏上放电柜小开关3QF,停止放电,观察各电池是否有异常,如果有,应该分析原因并解决问题。 (5) 放电完毕,检查各只蓄电池电压、温度、电池绝缘等是否正常,并计算出放电容量; 1) 电池容量的计算方法为: C25=Ct/[1+0.008(t-25℃)] 式中:C25——换算为25℃时的容量,Ah Ct——电解液平均温度为t℃时的容量,Ah

蓄电池在线充放电测试系统操作流程

?技术介绍 在所有信息化、自动化程度不断提高的运行设备、运行网络系统中,不间断供电是一个最基础的保障.而无论是交流还是直流的不间断供电系统,蓄电池作为备用电源在系统中起着极其重要的作用。平时蓄电池处于浮充备用状态,一旦交流电失电或其它事故状态下,蓄电池则成为负荷的唯一能源供给者。 我们知道,蓄电池除了正常的使用寿命周期外,由于蓄电池本身的质量如材料、结构、工艺的缺陷及使用不当等问题导致一些蓄电池早期失效的现象时有发生。 为了检验蓄电池组的可备用时间及实际容量,保证系统的正常运行,根据电源系统的维护规程,需要定期或按需适时的对蓄电池组进行容量的核对性放电测试,以早期发现个别的失效或接近失效的单体电池予以更换,保证整组电池的有效性;或者对整组电池的预期寿命作出评估. ?操作优势 本次测试可在蓄电池在线状态下,作为放电负载,通过连续调控放电电流,实现设定值的恒流放电。在放电时,当蓄电组端电压或单体电压,跌至设定下限值、或设定的放电时间到、或设定的放电容量到,仪器自动停止放电,并记录下所有有价值的、连续的过程实时数据. ?适用范围 本试验可使用于24V、48V、72V、110V、220V、480V、600V等系列的蓄电池组。

?蓄电池测量原理 由于蓄电池电化学反应的复杂性,以及各种材料、结构、制造工艺及使用环境的不同,致使不同厂家蓄电池的特性存在较大差异,即使同一厂家生产的蓄电池,其单体特性也会有一定的离散性.迄今为止,世界上尚没有一种简单有效的方法能够对电池性能进行快速准确的判定。蓄电池性能的检测和失效预测,仍是一个很复杂的电化学测量难题。 曾在电力、通信、金融、交通等行业中大量使用的固定式隔酸防爆铅酸蓄电池,可通过测量端电压、查看电解液密度、液位、温度等了解电池状态。然而,阀控式铅酸蓄电池的密封、贫液式设计,使得我们很难掌握其健康状况,隔酸防爆蓄电池的检测维护手段已不再适用于阀控式蓄电池,这正是当前蓄电池运行管理的缺憾和难点。 目前,常用的检测方法为平时测量电池的端电压和每年进行核对性放电容量测试。 我们认为: 1、蓄电 池浮充状态下的端电压与容量无对应关系.

铅酸蓄电池制造工艺

铅酸蓄电池制造工艺流程 1、极板的制造 包括:铅粉制造、板栅铸造、极板制造、极板化成、装配电池。 ⑴铅粉制造设备铸粒机或切段机、铅粉机及运输储存系统; ⑵板栅铸造设备熔铅炉、铸板机及各种模具; ⑶极板制造设备和膏机、涂片机、表面干燥、固化干燥系统等; ⑷极板化成设备充放电机; ⑸水冷化成及环保设备。 2、装配电池设备 汽车蓄电池、摩托车蓄电池、电动车蓄电池、大中小型阀控密封式蓄电池装配线、电池检测设备(各种电池性能检测)。 ⑴典型铅酸蓄电池工艺过程概述 铅酸蓄电池主要由电池槽、电池盖、正负极板、稀硫酸电解液、隔板及附件构成。 ⑵工艺制造简述如下 铅粉制造:将1#电解铅用专用设备铅粉机通过氧化筛选制成符合要求的铅粉。 板栅铸造:将铅锑合金、铅钙合金或其他合金铅通常用重力铸造的方式铸造成符合要求的不同类型各种板板栅。 极板制造:用铅粉和稀硫酸及添加剂混合后涂抹于板栅表面再进行干燥固化即是生极板。 极板化成:正、负极板在直流电的作用下与稀硫酸的通过氧化还原反

应生产氧化铅,再通过清洗、干燥即是可用于电池装配所用正负极板。装配电池:将不同型号不同片数极板根据不同的需要组装成各种不同类型的蓄电池。 3、板栅铸造简介 板栅是活性物质的载体,也是导电的集流体。普通开口蓄电池板栅一般用铅锑合金铸造,免维护蓄电池板栅一般用低锑合金或铅钙合金铸造,而密封阀控铅酸蓄电池板栅一般用铅钙合金铸造。 第一步:根据电池类型确定合金铅型号放入铅炉内加热熔化,达到工艺要求后将铅液铸入金属模具内,冷却后出模经过修整码放。 第二步:修整后的板栅经过一定的时效后即可转入下道工序。板栅主要控制参数:板栅质量;板栅厚度;板栅完整程度;板栅几何尺寸等; 4、铅粉制造简介 铅粉制造有岛津法和巴顿法,其结果均是将1#电解铅加工成符合蓄电池生产工艺要求的铅粉。铅粉的主要成份是氧化铅和金属铅,铅粉的质量与所制造的质量有非常密切的关系。在我国多用岛津法生产铅粉,而在欧美多用巴顿法生产铅粉。 岛津法生产铅粉过程简述如下: 第一步:将化验合格的电解铅经过铸造或其他方法加工成一定尺寸的铅球或铅段; 第二步:将铅球或铅段放入铅粉机内,铅球或铅段经过氧化生成氧化铅;

(完整版)阀控式免维护铅酸蓄电池充放电试验规程

阀控式免维护铅酸蓄电池充放电试验规程 1 总则 1.1 本通则规定了阀控式免维护铅酸蓄电池的充放电试验内容、要求和周期。 1.2 本通则适用于现场维护人员对蓄电池的充放电试验。 1.3 现场维护人员应具有操作所需要的电工知识,对现场情况熟悉,且具有安全防护能力。 2 阀控式免维护铅酸蓄电池维护要求 2.1 蓄电池应每月进行一次巡视、检查并记录整组电压和各个标示电池电压。 2.2 阀控式免维护铅酸蓄电池核对充放电周期: 新安装的阀控式免维护铅酸蓄电池组,应进行全核对性充放电试验,以后每隔2年进行一次核对性充放电试验,运行了6年以后的阀控蓄电池,应每年做一次核对性充放电试验。 3 阀控式免维护铅酸蓄电池充放电项目 3.1 检查电池表面是否完好无鼓胀变形,电池连接的接触良好,极柱的连接表面无腐蚀。 3.2 准备好充放电工器具,记录表格及开工资料。 3.3 确定电池充放电时间和要求放出容量预测值。充足电后进入放电,以10小时放电率,单体终止电压最低不能低于1.80V。 3.4 在放电过程中每隔1小时记录一次单体电压,总电压,充放电电流;当有电池达到1.90 V后,15分钟记录一次,1.85V时,10分钟记录一次。并检查电池发热,充电装置运行情况。 3.5 充放电工作结束后应进行数据分析,对电池的电压有不正常下降,容量不足的电池应单独进行充电或更换处理。 4 阀控式免维护铅酸蓄电池充放电技术要求 4.1 蓄电池应处在清洁、阴凉及干燥的远离热源和可能产生火花的地方,室温应保持在16℃~30℃的范围内。 4.2 蓄电池室内应通风良好,以防室内的氢气含量超过4%而有爆炸的危险。 4.3 蓄电池不能过电流或过电压充电,亦不能过放电,每次放电完后,应及时充电,需充电的时间在10小时以上。 4.4 阀控式铅酸蓄电池对充电设备及温度等外部环境因素较为敏感。电池的充电电压应随着温度的上升而下降,一般每升高一度,充电电压下降2~4mV。 4.5 检验电池充足电方办法:电池系统恒压充电到后期,电流减少并趋向稳定值,充电电流连续三小时保持稳定,即表示电池系统已充足电。 4.6 新装电池初始容量达到额定值的95%容量即为合格。在用电池容量达到额定值的80%容量为合格。 5阀控式免维护铅酸蓄电池充放电方法和步骤 5.1 充电 5.1.1 检查电池是否完好无损,记录电池的编号。在具备充电情况下开启充电装置。

蓄电池的特性

? (1)使用寿命长 高强度紧装配工艺,提高电池装配紧度,防止活物质脱落,提高电池使用寿命。 低酸比重电液,提高电池充电接受能力,增强电池深放电循环能力。 增多酸量设计,确保电池不会因电解液枯竭缩短电池使用寿命。 因此GFM系列蓄电池的正常浮充设计寿命可达15年以上(25℃) (2)高倍率放电性能优良 高强度紧装配工艺,电池内阻极小,大电流放电特性优良,比一般电池提高20[%]以上。 (3)自放电低 高纯度原料和特殊造工艺,自放电很小,室温储存半年以上也可无需补电。 (4)维护简单 特殊氧气吸收循环设计,克服了电池在充电过程中电解失水的现象,在使用过程中电解液水份含量几乎没有变化,因此电池在使用过程中完全无需补水,维护简单。 (5)安全性高 电池内部装有特制安全阀,能有效隔离外部火花,不会引起电池内部发生爆炸。 (6)安装简捷 电池立式、侧卧、叠层安装均可,安装时占地面积小,灵活方便。 (7)洁净环保 电池使用时不会产生酸雾,对周围环境和配套设计无腐蚀,可直接将电池安装在办公室或配套设备房内,无需作防腐处理。 蓄电池的充放电特性 ?蓄电池具有自放电效应。从生产制造车间到用户使用,大约要延误数月的时间。 以PA-NASONIC蓄电池为例,在30℃的环境温度下贮藏8个月,蓄电池的残存容量仅为出厂时的一半,因此对于新购买的与UPS配套的蓄电池,一般要进行一次较长时间的充电,这叫做初充电。蓄电池的初充电电流大小应按0.1C来充电,蓄电池在放电终了后可进行再充电,这叫正常充电。目前在UPS中普遍采用两种充电方式:浮充和脉充。所谓浮充电是指整流器的输出与蓄电池并联工作,并同时向负载供电,实际上此时整流器提供的电流分两路,一路送给负载,另一路送给蓄电池,以补充蓄电池自身内部损耗,浮充充电工作方式接线简单,对改善UPS输出瞬态响应特性有好处。脉冲充电的特点是充电电流随蓄电池容量而变化,用这种方式充电,可以缩短充电时间。 1.充电电压 由于UPS蓄电池属于备用工作方式,市电正常情况下处于充电状态,只有停电时才会放电。为延长蓄电池的使用寿命,UPS的充电器一般采用恒压限流的方式控制,蓄电池充满后即转为浮充状态。

蓄电池充放电维护方案..

蓄电池充放电维护 一、蓄电池充放电维护的概论 二、IEEE1188 之相关规定三、中国移动公司电源维护规程四、蓄电池维护方案

蓄电池充放电维护的概论 1、电源维护的必要性在电力和通信企业中,各种通信设备必须有交流或直流电源供给,方能完成通信工作。蓄电池可以将电能转换为化学能而储存起来,在用电时再将化学能转变为电能,是一种供电方便、安全可靠的直流电源。它具有较稳定的电压和较大的容量;蓄电池可与整流模块并联浮充供电,也可以作为市电中断时的备用电源,它不受市电突然中断影响,因此,一直在通信系统得到了十分广泛的应用。如:浮充供电、事故照明、信号指示、摇控、油机发电机组和汽车等的起动点火等都离不开蓄电池。因此,作为储能装置的各种蓄电池在通信电源系统中是直流供电系统的重要组成部分,蓄电池在电信企业中的重要性越加显明。 蓄电池使用得好坏,对于能否保证通信的安全可靠关系极大,而且对于蓄电池的使用寿命有直接影响。维护蓄电池要保证使它经常处于良好可靠的状态,在任何情况下应保证供电不中断。 对蓄电池运行和维护的基本要求是:要使蓄电池经常处于充分充满的状态,而又不产生过充电,在单独向主机供电时,应放出额定容量的80%以上。 阀控式密封蓄电池因为有突出的特点已被广泛应用,但在制造和运行中也还存在着一些值得注意的问题,应时刻牢记它决不是"免维护"电池。为此,在1994年2月22日,原 邮电部电信总局(1994)108 号文下发各省,指出目前装有安全阀的阴极吸收式密封铅酸蓄电池,不是"免维护"蓄电池(称为阀控式密封蓄电池),不要被"免维护"所误导。 2、充放电维护的必要性 对于蓄电池维护,最常用的方法就是放电试验,采取用实际负载进行蓄电池的核对放电维护存在着一些风险性,并且一次放电试验的时间很长,维护人员的劳动强度很大,容易造成疲劳工作降低工作质量. 建议采用先进的智能放电仪表进行每年一次的核对放电试验,由于智能仪表简单易操作,有各方面的安全自动保护功能和高测试精度,所以可大大降低维护人员 的劳动强度,提高工作质量. 在铅酸蓄电池的使用中,如果蓄电池组长时间处于浮充或闲置等相对静止状态,池极板上活 蓄电性物质的活性就会下降,使容量逐渐降低,从而影响蓄电池的寿命,所以保持蓄电池处于 动态的活性状态是蓄电池维护的重中之重。 另外,当铅酸蓄电池长期处于浮充或闲置状态,正极板的二氧化铅和负极板的海绵 状铅的活性降低,蓄电池的容量降低,因此需要对蓄电池进行定期充放电。

相关文档
最新文档