马尔可夫链的概念及转移概率

马尔可夫链的概念及转移概率
马尔可夫链的概念及转移概率

第四章

4.1 马尔可夫链的的概念及转移概率

一、知识回顾

二、马尔可夫链的的定义

三、转移概率

四、马尔可夫链的一些简单例子

五、总结

一、知识回顾

1. 条件概率

定义:设A,B为两个事件,且,称

为事件A发生条件下B事件发生的条件概率。

将条件概率公式移项即得到所谓的乘法公式:

2.全概率公式

设试验E的样本空间为S,A为E的事件,若为S的一个完备事件组,既满足条件:

1)两两互不相容,即

2).,且有,则

此式称为全概率公式。

3.矩阵乘法

矩阵乘法的定义

如果

那么矩阵C叫做矩阵A和B的乘积,记作

4.马尔可夫过程的分类

马尔可夫过程按其状态和时间参数是连续的或离散的,可分为三类:(1)时间、状态都是离散的马尔科夫过程,称为马尔可夫链;

(2)时间连续、状态离散的马尔科夫过程称为连续时间的马尔可夫链的;(3)时间、状态都连续的马尔科夫过程。

二、马尔科夫链的定义

定义4.1设有随机过程,若对于任意的整数和任意的,条件概率都满足

(4.1.1)

则称为马尔科夫链,简称马氏链。

式(4.1.1)即为马氏链,他表明在状态已知的条件下,的条件概率与无关,而仅与所处的状态有关。

式(4.1.1)是马尔科夫链的马氏性(或无后效性)的数学表达式。由定义知

=

=

=

可见,马尔科夫链的统计特性完全由条件概率

所决定。如何确定这个条件概率,是马尔科夫链理论和应用中的重要问题之一。

现举一例说明上述概念:

例4.1.1 箱中装有c个白球和d个黑球,每次从箱子中任取一球,抽出的球要到从箱子中再抽出一球后才放回箱中,每抽出一球作为一次取样试验。

现引进随机变量序列为,每次取样试验的所有可能结果只有两个,即白球或黑球。若以数代表白球,以数代表黑球则有

由上所述的抽球规则可知,任意第n次抽到黑球或白球的概率只与第n-1次抽得球的结果有关,而与抽的球的结果无关,由此可知上述随机变量序列,为马氏链。

三、转移概率

定义4.2称条件概率

为马尔科夫链在时刻N的一步转移概率,其中,简称为转移概率。

条件概率:随机游动的质点在时刻n处于状态的条件下,下一步转移到状态的你改率。

一般地,转移概率不仅与状态i,j有关,而且与时刻n有关。当不依赖与时刻n时,表示马尔科夫链具有平稳转移概率。

定义 4.3若对任意的,马尔科夫链的转移概率

与n无关则称马尔科夫链是齐次的,并记为。

下面我们只讨论齐次马尔科夫链通常将“齐次”两个字省略。

设P表示一步转移概率所组成的矩阵,且状态空间,则

称为系统状态的一步转移概率矩阵。它具有性质:

(1) ;

(2) .

(2)式中对j求和是对状态空间的所有可能状态进行的,此性质说明一步转移概率矩阵中任一行元素之和为1.通常称满足上述(1)、(2)性质的矩阵为随机矩阵。

定义4.4称条件概率

为马尔科夫链的n步转移概率,并称

为马尔科夫链的n步转移矩阵,其中,即也是随机矩阵。

当n=1是,,此时一步转移矩阵. 此外我们规定

定理 4.1设为马尔科夫链,则对任意整数

和,n步转移概率具有下列性质:

(1)

(2)

(3)

(4)

证(1)利用全概率公式及马尔科夫性,有

=

==

(2)在(1)中令l=1,k=得

这是一个递推公式,故可递推得到

(3)在(1)中令l=1,利用矩阵乘法可证。

(4)由(3),利用归纳法可证。

定理4.1中(1)式称为切普曼——柯尔莫哥洛夫方程,简称C-K方程。它在马尔科夫链的转移概率的计算中起着重要的作用。(2)式说明n步转移概率完全由一步转移概率决定。(4)式说明齐次马尔科夫链的n步转移概率矩阵是一步转移概率矩阵的n次乘方。

定义4.5设为马尔科夫链,称

为的初始概率和绝对概率,并分别成和为的初始分布和绝对分布,简记为和。称概率向量

为n时刻的绝对概率向量,而称

为初始概率

定理4.2设为马尔科夫链,则对任意和,绝对概率具有下列性质:

(1);

(2);

(3);

(4).

证(1)

=

(2)

=

=

(3)与(4)中式是(1)与(2)中式的矩阵乘积形式,显然成立。证毕。

定理4.3设为马尔科夫链,则对任意和,有

证由全概率公式及马氏性质有

=

=证毕

一、马尔可夫链的的一些简单例子

马尔科夫链在研究质点的随机运动、自动控制、通信技术、生物工程、经济管理等领域中有着广泛的应用。

例4.1无限制随机游动

设质点在数轴上移动,每次移动一格,向右移动的概率为p,向左移动的概率为,这种运动称为无限制随机游动。以表示时刻n质点所处的位置,则是一个齐次马尔科夫链,试写出它的一步和k步转移概率。

解显然的状态空间,其一步转移概率矩阵为

设在第k不转移中向右移了x步,向左移了y步,且经过k步转移状态从i 进入j,则

从而

由于x,y都只能取整数,所以必须是偶数。又在k步中哪x

步向右,哪y步向左是任意的,选取的方法有种。于是

例4.2赌徒输光问题

两赌徒甲、乙一系列赌博。赌徒甲有a元。赌徒乙有b元,每赌一局输者给赢者1元,没有和局,直到两人中有一个输光为止。设在每一局中,甲赢的概率

为p,输的概率为,求甲输光的概率。

这个实质上是带有两个吸收壁的随机游动,其状态空间,.故现在的问题是求质点从a点出发到达0状态先于到达c状态的

概率.

解设表示甲从状态i出发转移到状态0的概率,我们要计算的就是。由于0和c是吸收状态,故

由全概率公式

(3.1)

上式的含义是,甲从有i元开始赌到输光的概率等于“他接下去赢了一局(概率为p),处于状态i+1后再输光”;和“他接下去输了一局(概率为q),处于状态i-1后再输光”这两个事件的和事件的概率。

由于p+q=1,(3.1)式实质上是一个差分方程

(3.2)其中,其边界条件为

(3.3)先讨论r=1,即的情况,此时(3.2)为

令得

将代入最后一式,得参数

所以

令i=a,求得甲输光的概率为

上述结果表明,在p=q情况下(即甲、乙每局比赛中输赢是等可能的情况下),甲输光的概率与乙的赌本b成正比,即赌本小者输光的可能性大。

由于甲、乙的地位是对称的,故乙输光的概率为

由于表明甲、乙中必有一人要输光,赌博迟早要结束。

再讨论r1,即的情况。由(3.2)式得

(4.14)令k=0,由于,有

代入(3.4)式,得

,k=1,2,…,c-1.

令k=a,的甲输光的概率

由对称性,乙输光的概率为(=p/q)

由于因此在r1时,即时两个人中也总有一个人要输光的。

例4.3天气预报有问题

设昨日、今日都下雨,明日有雨的概率为0.7;昨日无雨,今日有雨,明日有雨的概率为0.5;昨日有雨、今日无雨,明日有雨的概率为0.4;昨日、今日均无雨,明日有雨的概率为0.2.若星期一、星期二均下雨,求星期四下雨的概率。

解设昨日,今日连续两天有雨称为状态;昨日无雨,今日有雨称为状态;昨日有雨,今日无雨称为状态;昨日,今日无雨称为状态;。由于天气预报模型可看作一个四状态的马尔可夫链,其转移概率为

其中R代表有雨,N代表无雨。类似的可以得到所有状态的一步转移概率。于是它的一步转移概率矩阵为

其两步转移概率矩阵为:

由于星期四下雨意味着过程所处的状态为0

或1,因此星期一,星期二连续下雨,星期四又下雨的概率为

例4.4 设质点在线段[1,4]上作随机游动,假设它只能在时刻

发生移动,且只能停留在

1,2,3,4点上。当质点转移到2,3点时,它以的

概率向左或向右移动一格,或停留在原处。当质点移动到点1时,它以概率1停留在原处。当质点移动到点4时,它以概率1移动到点3。若以

表示质点在时刻

n 所处的位置,则

是一个齐次马尔科夫链,其转移概率矩阵为

各状态之间的转移关系及相应的转移概率如图所示。

例中的点1称为吸收壁,即质点一旦到达这种状态后就被吸收住了,不再移动;点4称为反射壁,即质点一旦到达这种状态后,必然被反射出去。

例4.5 生灭链。观察某种生物群体,以

表示在时刻n 群体的数目,

设为i 个数量单位,如在时刻n+1增生到i+1个数量单位的概率为,减灭到i-1个数量单位的概率为

,保持不变的概率为

,则

1/3

1

4

3

1/3

1

1

21/3

为齐次马尔科夫链,,其转移概率为

(),称此马尔科夫链为生灭链。

总结

随机过程 第五章 连续时间的马尔可夫链

第五章 连续时间的马尔可夫链 5.1连续时间的马尔可夫链 考虑取非负整数值的连续时间随机过程}.0),({≥t t X 定义5.1 设随机过程}.0),({≥t t X ,状态空间}0,{≥=n i I n ,若对任意 121...0+<<<≤n t t t 及I i i i n ∈+121,...,,有 })(,...)(,)()({221111n n n n i t X i t X i t X i t X P ====++ =})()({11n n n n i t X i t X P ==++ (5.1) 则称}.0),({≥t t X 为连续时间马尔可夫链. 由定义知,连续时间马尔可夫链是具有马尔可夫性的随机过程,即过程在已知现在时刻n t 及一切过去时刻所处状态的条件下,将来时刻1+n t 的状态只依赖于现在状态而与过去无关. 记(5.1)式条件概率一般形式为 ),(})()({t s p i s X j t s X P ij ===+ (5.2) 它表示系统在s 时刻处于状态i,经过时间t 后转移到状态j 的转移概率. 定义5.2 若(5.2)式的转移概率与s 无关,则称连续时间马尔可夫链具有平稳的或齐次的转移概率,此时转移概率简记为 ),(),(t p t s p ij ij = 其转移概率矩阵简记为).0,,()),(()(≥∈=t I j i t p t P ij 以下的讨论均假定我们所考虑的连续时间马尔可夫链都具有齐次转移概率.简称为齐次马尔可夫过程. 假设在某时刻,比如说时刻0,马尔可夫链进入状态i,而且接下来的s 个单位时间单位中过程未离开状态i,(即未发生转移),问随后的t 个单位时间中过程仍不离开状态i 的概率是多少呢?由马尔可夫我们知道,过程在时刻s 处于状态i 条件下,在区间[s,s+t]中仍然处于i 的概率正是它处于i 至少t 个单位的无条件概率..若记 i h 为记过程在转移到另一个状态之前停留在状态i 的时间,则对一切s,t 0≥有 },{}{t h P s h t s h P i i i >=>+> 可见,随机变量i h 具有无记忆性,因此i h 服从指数分布. 由此可见,一个连续时间马尔可夫链,每当它进入状态i,具有如下性质: (1) 在转移到另一状态之前处于状态i 的时间服从参数为i v 的指数分布;

5最标准全面的马尔可夫模型例题(以中天会计事务所为例)

中天会计事务所马尔可夫模型例题一、问题分析 中天会计事务所由于公司业务日益繁忙,常造成公司事务工作应接不暇,解决该公司出现的这种问题的有效办法是要实施人力资源的供给预测技术。根据对该公司材料的深入分析,可采用马尔可夫模型这一供给预测方法对该事务所的人力资源状况进行预测。 马尔可夫分析法是一种统计方法,其方法的基本思想是:找出过去人力资源变动的规律,用以来推测未来人力变动的趋势。马尔可夫分析法适用于外在环境变化不大的情况下,如果外在环境变化较大的时候这种方法则难以用过去的经验情况预测未来。马尔可夫分析法的分析过程通常是分几个时期来收集数据,然后在得出平均值,利用这些数据代表每一种职位的人员变动频率,就可以推测出人员的变动情况。 二、项目策划 (一)第一步是编制人员变动概率矩阵表。 根据公司提供的内部资料:公司的各职位人员如下表1所示。 表1:各职位人员表 职位代号人数 合伙人P 40 经理M 80 高级会计师S 120 会计员 A 160 制作一个人员变动概率矩阵表,表中的每一个元素表示从一个时期到另一个时期(如从某一年到下一年)在两个工作之间调动的雇员数量的历年平均百分比(以小数表示)。(注:一般以3—5年为周期来估计年平均百分比。周期越长,根据过去人员变动所推测的未来人员变动就越准确。) 表2:历年平均百分比人员变动概率矩阵表 职位合伙人 P 经理M 高级会计师S 会计员A 职位年度离职升为 合伙 人 离职升为经 理 降为 会计 员 离职升为高级 会计师 离职 2005 0.20 0.08 0.13 0.07 0.05 0.11 0.12 0.11 2006 0.23 0.07 0.27 0.05 0.08 0.12 0.15 0.29 2007 0.17 0.13 0.20 0.08 0.03 0.10 0.17 0.20 2008 0.21 0.12 0.21 0.03 0.07 0.09 0.13 0.19 2009 0.19 0.10 0.19 0.02 0.02 0.08 0.18 0.21 平均0.20 0.10 0.20 0.05 0.05 0.10 0.15 0.20

马尔可夫链模型简介

马尔可夫链模型简介 设考察对象为一系统,若该系统在某一时刻可能出现的事件集合为,}{N N E E E E E E ??????,2,1,2,1,两两互斥,则陈i E 为状态。N i ???=,2,1。称该系统从一种状态i E 变化到另一状态j E 的过程称为状态转移,并把整个系统不断实现状态转移的过程称为马尔可夫过程。 定义1 具有下列两个性质的马尔可夫过程称为马尔可夫链: (1)无后效性,即系统的第n 次实验结果出现的状态,只与第1-n 次有关,而与它以前所处的状态无关; (2)具有稳定性,该过程逐渐趋于稳定状态,而与初始状态无关。 定义2 向量),,,(21n u u u u ???= 成为概率向量,如果u 满足: ?? ???=???=≥∑=n j j j u n j u 11,,2,10 定义3 如果方阵P 的每行都为概率向量,则称此方阵为概率矩阵。 如果矩阵A 和B 皆为概率矩阵,则AB ,k A ,k B 也都是概率矩阵(k 为正整数)。 定义4 系统由状态i E 经过一次转移到状态j E 的概率记为ij P ,称矩阵 ????????????????????????=32 12222111211N N N N N P P P P P P P P P P 为一次(或一步)转移矩阵。 转移矩阵必为概率矩阵,且具有以下两个性质: 1、P P P k k )1()(-=; 2、k k P P =)(

其中)(k P 为k 次转移矩阵。 定义5 对概率矩阵P ,若幂次方)(m P 的所有元素皆为正数,则矩阵P 称为正规概率矩阵。(此处2≥m ) 定理1 正规概率矩阵P 的幂次方序列P ,2P ,3P ,…趋近于某一方阵T ,T 的每一行均为同一概率向量t ,且满足t tP = 。 马尔可夫链模型如下: 设系统在0=k 时所处的初始状态 ),,() 0()0(2)0(1)0(N S S S S ???=为已知,经过k 次转移后的状态向量 ),,()()(2)(1)(k N k k k S S S S ???=),2,1(???=k ,则 ??????? ?????? ?????????????=NN N N N N k P P P P P P P P P S S 212222111211)0() ( 此式即为马尔可夫链预测模型。 由上式可以看出,系统在经过k 次转后所处的状态)(k S 取决与它的初始状态)0(S 和转移矩阵P 。 马尔可夫引例 例1:市场占有率预测 设有甲、乙、丙三家企业,生产同一种产品,共同供应1000家用户,各用户在各企业间自由选购,但不超出这三家企业,也无新的用户,假定在10月末经过市场调查得知,甲,乙,丙三家企业拥有的客户分别是:250户,300户,450户,而11月份用户可能的流动情况如下表所示:

基于马尔可夫模型的语言发展趋势预测

基于马尔可夫模型的语言发展趋势预测 发表时间:2019-03-14T15:24:06.727Z 来源:《知识-力量》2019年6月中作者:张浩1 姜晓丽1 朱英豪2 [导读] 为了预测世界语言发展趋势,将语言使用者分为两个部分来分别预测其数量。 (1.华北理工大学建筑工程学院,河北唐山 063210;2.华北理工大学以升教育创新基地,河北唐山 063210)摘要:为了预测世界语言发展趋势,将语言使用者分为两个部分来分别预测其数量。对于母语使用者,根据语言区域的自然增长率和净移民率计算出随时间变化的母语使用者的人数。对于第二或第三语言使用者,将影响使用者人数的三种因子归一化处理,利用层次分析法赋予相应的权重后得到各种语言的发展强度数值。建立马尔可夫预测模型模拟若干年后的第二或第三语言使用者数量,并模拟50年内排名前十四的语言的母语使用者数量的变化趋势。关键词:层次分析法;马尔可夫模型;聚类分析;语言使用者 人类不仅仅只掌握母语这一种语言,越来越多的人开始说第二语言甚至第三语言。在考虑某种语言的总使用人数时,需要在母语使用者人数的基础上加上第二或者第三语言使用者人数。根据可能影响语言的使用的因素,模拟各种语言的使用者随时间变化的分布。建立模型预测在未来50年里,英语的母语使用者的数量和语言的总使用者的数量的变化,并考虑它们是否会被另一种语言替代。 1.模型假设 ●忽略小概率灭绝事件,比如重大自然灾害的影响导致某一语言的灭绝等。 ●在几十年的时间里,各个语言区域都是稳定的发展,不会出现特别大的起伏的情况。 ●假设每个国家的移民一旦定居,他们的子孙都以此国家的官方语言为母语。 2.数量预测模型对于语言使用者数量的预测,我们需要将其分为母语使用者和其它的语言使用者(包括第二和第三语言使用者)两个方向来调查。 2.1母语使用者针对国家而言,母语使用者人数与该国家的居民人数直接相关。根据该国家的移民率,我们可以得到母语使用者人数随时间的变化为: 2.2 总使用者对于一种语言的总使用者人数,我们需要全面考虑它的变化,不仅仅考虑语言区域居民人数的增加或者减少,还需要考虑其它的语言使用者的变化。上文我们已经得知母语使用者的数量随时间的变化,下面我们将解决其它的语言使用者的预测问题。 2.2.1三种影响因子根据上文可得,我们将影响语言发展的因素分为区域的综合实力、商业往来和旅游业的发展状况三个部分。针对这三个部分,我们选取三个指标作为影响因子,分别是区域人均GDP、区域贸易对GDP的贡献度、区域国际游客数量。[1~2] 为进行统一,我们将十种语言的三种影响因子均除以该影响因子中的最大值。将得到的新结果运用层次分析法构造判断矩阵,得出三种影响因子的权重向量分别为0.545、0.272、0.183。我们可以得到关于语言发展强度的方程: 2.2.2马尔科夫模型以其亲代的第二语言作为他的初始状态,余下的九种语言是另外的九种状态,建立马尔科夫预测模型[3]。然后基于语言的发展强度,根据两种语言之间的强度比值来确定一个人的语言从一种状态转移到另一种状态的概率值。定义世界十大母语依次用数字0-9表示其语言状态,由此计算状态转移矩阵。 2.3 模型的应用 2. 3.1英语的语言使用者我们搜集到英语语言区域的平均自然增长率和平均净移民率[4]分别为1.04和0.0039,根据公式1我们可以求解得出英语的母语使用者在五十年以后的数量为:(4)

HMM隐形马尔可夫模型实验报告(可打印修改)

《模式识别与机器学习》 课程实验报告

1实验内容 1. Design an HMM model, and generate sequential data (training and test) with the model. 2. Learning model parameters on the training data. 3. Test the model learned on the test data:Estimate the most probable values for the latent variables. 2实验环境 Window7, matlab 7.11.0 3实验原理 HMM即隐性马尔可夫模型,此模型可认为是状态空间模型的一个特殊情况。当令状态空间模型中的潜变量为离散的时,我们即得到了隐性马尔可夫模型。 3.1模型状态 在一个典型的HMM模型中,通常有两个状态集合来描述该模型状态: 1. 隐含状态,通常用S表示。 这些状态之间满足马尔可夫性质,是马尔可夫模型中实际所隐含的状态。这些状态通常无法通过直接观测而得到。(例如S1、S2、S3等等)。 2. 可观测状态,通常用O表示。 在模型中与隐含状态相关联,可通过直接观测而得到。(例如O1、O2、O3 等等)。可观测状态的数目不一定要和隐含状态的数目一致。

3.2模型参数 一个典型的HMM模型包含以下参数: 1. 初始状态概率矩阵π。 表示隐含状态在初始时刻t=1时刻的概率矩阵,(例如t=1时,P(S1) =p1、P(S2)=P2、P(S3)=p3,则初始状态概率矩阵π=[ p1 p2 p3 ]). 2. 隐含状态转移概率矩阵A。 描述了HMM模型中各个状态之间的转移概率,N代表隐含状态数目。其中Aij = P( Sj | Si ),1≤i,,j≤N。表示在 t 时刻、状态为 Si 的条件下,在t+1 时刻状态是 Sj 的概率。 3. 观测状态发射概率矩阵B。 表示在 t 时刻、隐含状态是 Sj 条件下,观察状态为 Oi 的概率。令N代表隐含状态数目,M代表可观测状态数目,则:Bij = P( Oi |Sj ), 1≤i≤M,1≤j≤N. 一般来说,可以用λ=(A,B,π)三元组来表示一个隐性马尔可夫模型。给定了这三个参数,我们便得到了一个HMM模型。在实验过程中,我们在matlab环境下指定各组参数,得到一个HMM后,便可以利用这个模型生成一定量的数据作为训练集与测试集。 3.3相关算法 根据实验内容,可以得知这个实验中主要涉及到利用HMM解决的三类问题: 1.给定观察得到的序列O,如何调整参数λ,使P(O|λ)最大。即通过给定 O,不断估算一个适合的参数λ=(A,B,π),使发生这个O的概率P(O|λ)最大。这个问题的一种有效解决算法是Baum-Welch算法,即EM算法的一种特殊形式。且通过对BW算法的分析可以看出,该算法以前后向算法为基础。前后向算法用于计算在某一时刻t,潜变量处于某一状态的概率。EM 算法的具体过程在此不再赘述。 2.给定观测序列O=O1O2O3…Ot和模型参数λ=(A,B,π),怎样有效计算某一

隐马尔可夫模型及其应用

小论文写作: 隐马尔可夫模型及其应用 学院:数学与统计学院专业:信息与计算科学学生:卢富毓学号:20101910072 内容摘要:隐马尔可夫模型是序列数据处理和统计学习的重要概率模型,已经成功被应用到多工程任务中。本小论文首先从隐马尔可夫模型基本理论和模型的表达式出发,进一步阐述了隐马尔可夫模型的应用。 HMM 隐马尔可夫模型(Hidden Markov Model,HMM)作为一种统计分析模型,创立于20世纪70年代。80 年代得到了传播和发展,成为信号处理的一个重要方向,现已成功地用于语音识别,行为识别,文字识别以及故障诊断等领域。 隐马尔可夫模型状态变迁图(例子如下) x—隐含状态 y—可观察的输出 a—转换概率(transition probabilities) b—输出概率(output probabilities) 隐马尔可夫模型它用来描述一个含有隐含未知参数的马尔可夫过程。其难点是从可观察的参数中确定该过程的隐含参数。然后利用这些参数来作进一步的分析,例如模式识别。 在正常的马尔可夫模型中,状态对于观察者来说是直接可见的。这样状态的转换概率便是全部的参数。而在隐马尔可夫模型中,状态并不是直接可见的,但受状态影响的某些变量则是可见的。每一个状态在可能输出的符号上都有一概率分布。因此输出符号的序列能够透露出状态序列的一些信息。 HMM的基本理论 隐马尔可夫模型是马尔可夫链的一种,它的状态不能直接观察到,但能通过观测向量序列观察到,每个观测向量都是通过某些概率密度分布表现为各种状态,每一个观测向量是由一个具有相应概率密度分布的状态序列产生。所以,隐马尔可夫模型是一个双重随机过程----具有一定状态数的隐马尔可夫链和显示随机函数集。自20世纪80年代以来,HMM被应用于语音识别,取得重大成功。到了

马尔可夫链模型

马尔可夫链模型 马尔可夫链模型(Markov Chain Model) 目录 [隐藏] ? 1 马尔可夫链模型概述 ? 2 马尔可夫链模型的性质 ? 3 离散状态空间中的马尔可夫链 模型 ? 4 马尔可夫链模型的应用 o 4.1 科学中的应用 o 4.2 人力资源中的应用 ? 5 马尔可夫模型案例分析[1] o 5.1 马尔可夫模型的建 立 o 5.2 马尔可夫模型的应 用 ? 6 参考文献 [编辑] 马尔可夫链模型概述 马尔可夫链因安德烈·马尔可夫(Andrey Markov,1856-1922)得名,是数学中具有马尔可夫性质的离散时间随机过程。该过程中,在给定当前知识或信息的情况下,过去(即当期以前的历史状态)对于预测将来(即当期以后的未来状态)是无关的。 时间和状态都是离散的马尔可夫过程称为马尔可夫链, 简记为。 马尔可夫链是随机变量的一个数列。这些变量的范围,即他们所有可能 取值的集合,被称为“状态空间”,而Xn的值则是在时间n的状态。如果Xn + 1对于过去状态的条件概率分布仅是Xn的一个函数,则 这里x为过程中的某个状态。上面这个恒等式可以被看作是马尔可夫性质。

马尔可夫在1906年首先做出了这类过程。而将此一般化到可数无限状态空间是由柯尔莫果洛夫在1936年给出的。 马尔可夫链与布朗运动以及遍历假说这两个二十世纪初期物理学重要课题是相联系的,但马尔可夫寻求的似乎不仅于数学动机,名义上是对于纵属事件大数法则的扩张。 马尔可夫链是满足下面两个假设的一种随机过程: 1、t+l时刻系统状态的概率分布只与t时刻的状态有关,与t时刻以前的状态无关; 2、从t时刻到t+l时刻的状态转移与t的值无关。一个马尔可夫链模型可表示为=(S,P,Q),其中各元的含义如下: 1)S是系统所有可能的状态所组成的非空的状态集,有时也称之为系统的状态空间,它可以是有限的、可列的集合或任意非空集。本文中假定S是可数集(即有限或可列)。用小写字母i,j(或S i,S j)等来表示状态。 2)是系统的状态转移概率矩阵,其中P ij表示系统在时刻t处于状态i,在下一时刻t+l处于状态i的概率,N是系统所有可能的状态的个数。对于任意i∈s,有 。 3)是系统的初始概率分布,q i是系统在初始时刻处于状态i的概率, 满足。 [编辑] 马尔可夫链模型的性质 马尔可夫链是由一个条件分布来表示的 P(X n + 1 | X n) 这被称为是随机过程中的“转移概率”。这有时也被称作是“一步转移概率”。二、三,以及更多步的转移概率可以导自一步转移概率和马尔可夫性质:

马尔可夫模型介绍(从零开始)

马尔可夫模型介绍(从零开始) (一):定义及简介: 介绍(introduction) 通常我们总是对寻找某一段时间上的模式感兴趣,这些模式可能出现在很多领域:一个人在使用电脑的时候使用的命令的序列模式;一句话中的单词的序列;口语中的音素序列。总之能产生一系列事件的地方都能产生有用的模式。 考虑一个最简单的情况:有人(柯南?)试图从一块海藻来推断天气的情况。一些民间的传说认为“soggy”的海藻意味着潮湿(wet)的天气,“dry”的海藻预示着晴朗(sun)。如果海藻处于中间状态“damp”,那就无法确定了。但是,天气的情况不可能严格的按照海藻的状态来变化,所以我们可以说在一定程度上可能是雨天或是晴天。另一个有价值的信息是之前某些天的天气情况,结合昨天的天气和可以观察到的海藻的状态,我们就可以为今天的天气做一个较好的预报。 这是在我们这个系列的介绍中一个非常典型的系统。 ?首先我们介绍一个可以随时间产生概率性模型的系统,例如天气在晴天或者雨天之间变动。?接下来我们试图去预言我们所不能观察到的"隐形"的系统状态,在上面的例子中,能被观察到的序列就是海藻的状态吗,隐形的系统就是天气情况 ?然后我们看一下关于我们这个模型的一些问题,在上面那个例子中,也许我们想知道 1. 如果我们观察一个星期每一天的海藻的状态,我们是否能知相应的其天气情况 2. 如果给出一个海藻状态的序列,我们是否能判断是冬天还是夏天?我们假设,如果海藻干(d ry)了一段时间,那就意味着是夏天如果海藻潮湿(soggy)了一段时间,那可能就是冬天。 (二):生成模式(Generating Patterns) ?确定的模式(Deterministic Patterns) 考虑交通灯的例子,一个序列可能是红-红/橙-绿-橙-红。这个序列可以画成一个状态机,不同的状态按照这个状态机互相交替

5马尔可夫链模型

马尔可夫链模型 在考察随机因素影响的动态系统时,常常碰到这样的情况,系统在每个时期所处的状态是随机的,从这个时期到下个时期的状态按照一定的概率进行转移,并且下个时期的状态只取决于这个时期的状态和转移概率,与以前各时期的状态无关。这种性质称为无后效性或马尔可夫性。通俗的说就是已知现在,将来与历史无关。 具有马氏性的,时间、状态无为离散的随机转移过程通常用马氏链(Markov Chain)模型描述。 马氏链模型在经济、社会、生态、遗传等许多领域中有着广泛的应用。值得提出的是,虽然它是解决随机转移过程的工具,但是一些确定性系统的状态转移问题也能用马氏链模型处理。 马氏链简介: 马氏链及其基本方程:按照系统的发展,时间离散化为 0,1,2,n = ,对每个n ,系统的状态用随机变量n X 表示,设n X 可以 取k 个离散值1,2,,n X k = ,且n X i =的概率记作() i a n ,称为状态概 率,从n X i =到1 n X j +=的概率记作ij p ,称为转移概率。如果1 n X +的 取值只取决于n X 的取值及转移概率,而与1 2,,n n X X -- 的取值无关, 那么这种离散状态按照离散时间的随机转移过程称为马氏链。 由状态转移的无后效性和全概率公式可以写出马氏链的基本方程为 1 (1)()1,2,,k i j ij j a n a n p i k =+= =∑

并且() i a n 和ij p 应满足 1 1 ()10,1,2,;0 ;1 1,2,,k k j ij ij j j a n n p p i k ====≥==∑∑ 引入状态概率向量和转移概率矩阵 12()((),(),,()) {}k ij k a n a n a n a n P p == 则基本方程可以表为1 (1)()(0)n a n a n P a P ++== 例1:某商店每月考察一次经营情况,其结果用经营状况好与孬表示。若本月经营状况好,则下月保持好的概率为0.5,若本月经营状况不好,则下月保持好的概率为0.4,试分析该商店若干时间后的经营状况。 解:商店的经营状况是随机的,每月转变一次。用随机变量n X 表示第n 个月的经营状况,称为经营系统的状态.1,2 n X =分别表示 好与不好,0,1,n = 。用() i a n 表示第n 月处于状态i 的概率(1,2i =) 即()()i n a n P X i ==,ij p 表示本月处于状态i ,下月转为状态j 的概率。 这里1 n X +无后效性,只取决于n X 和ij p 。 112112220.5,0.4,0.5,0.6p p p p ==∴== 根据全概率公式可以得到: 11112212112222 (1)()()0.50.5(1)()(1)()()0.4 0.6a n a n p a n p a n a n P P a n a n p a n p +=+??? ?+==? ?+=+?? ? 假设这个递推公式存在极限w ,有w w P = ,即()0w P E -=。于 是当经营状况好或孬时,经计算可以得到下面的结果

马尔可夫链模型讲解

马尔可夫链模型(Markov Chain Model) 目录 [隐藏] 1 马尔可夫链模型概述 2 马尔可夫链模型的性质 3 离散状态空间中的马尔可夫链模 型 4 马尔可夫链模型的应用 o 4.1 科学中的应用 o 4.2 人力资源中的应用 5 马尔可夫模型案例分析[1] o 5.1 马尔可夫模型的建立 o 5.2 马尔可夫模型的应用 6 参考文献 [编辑] 马尔可夫链模型概述 马尔可夫链因安德烈·马尔可夫(Andrey Markov,1856-1922)得名,是数学中具有马尔可夫性质的离散时间随机过程。该过程中,在给定当前知识或信息的情况下,过去(即当期以前的历史状态)对于预测将来(即当期以后的未来状态)是无关的。 时间和状态都是离散的马尔可夫过程称为马尔可夫链, 简记为 。 马尔可夫链是随机变量的一个数列。这些变量的范围,即他们所有可能取值的集合,被称为“状态空间”,而Xn的值则是在时间n的状态。如果Xn + 1对于过去状态的条件概率分布仅是Xn的一个函数,则 这里x为过程中的某个状态。上面这个恒等式可以被看作是马尔可夫性质。

马尔可夫在1906年首先做出了这类过程。而将此一般化到可数无限状态空间是由柯尔莫果洛夫在1936年给出的。 马尔可夫链与布朗运动以及遍历假说这两个二十世纪初期物理学重要课题是相联系的,但马尔可夫寻求的似乎不仅于数学动机,名义上是对于纵属事件大数法则的扩张。 马尔可夫链是满足下面两个假设的一种随机过程: 1、t+l时刻系统状态的概率分布只与t时刻的状态有关,与t时刻以前的状态无关; 2、从t时刻到t+l时刻的状态转移与t的值无关。一个马尔可夫链模型可表示为=(S,P,Q),其中各元的含义如下: 1)S是系统所有可能的状态所组成的非空的状态集,有时也称之为系统的状态空间,它可以是有限的、可列的集合或任意非空集。本文中假定S是可数集(即有限或可列)。用小写字母i,j(或S i,S j)等来表示状态。 2)是系统的状态转移概率矩阵,其中P ij表示系统在时刻t处于状态i,在下一时刻t+l处于状态i的概率,N是系统所有可能的状态 的个数。对于任意i∈s,有。 3)是系统的初始概率分布,q i是系统在初始时刻处 于状态i的概率,满足。 [编辑] 马尔可夫链模型的性质 马尔可夫链是由一个条件分布来表示的 P(X | X n) n+ 1 这被称为是随机过程中的“转移概率”。这有时也被称作是“一步转移概率”。二、三,以及更多步的转移概率可以导自一步转移概率和马尔可夫性质:

马尔可夫链

3.5 马尔可夫链预测方法 一、基于绝对分布的马尔可夫链预测方法 对于一列相依的随机变量,用步长为一的马尔可夫链模型和初始分布推算出未来时段的绝对分布来做预测分析方法,称为“基于绝对分布的马尔可夫链预测方法”,不妨记其为“ADMCP 法”。其具体方法步骤如下: 1.计算指标值序列均值x ,均方差s ,建立指标值的分级标准,即确定马尔可夫链的状态空间I ,这可根据资料序列的长短及具体间题的要求进行。例如,可用样本均方差为标准,将指标值分级,确定马尔可夫链的状态空间 I =[1, 2,…,m ]; 2.按步骤1所建立的分级标准,确定资料序列中各时段指标值所对应的状态; 3.对步骤2所得的结果进行统计计算,可得马尔可夫链的一步转移概率矩阵1P ,它决定了指标值状态转移过程的概率法则; 4.进行“马氏性” 检验; 5.若以第1时段作为基期,该时段的指标值属于状态i ,则可认为初始分布为 (0)(0,,0,1,0,0)P = 这里P (0)是一个单位行向量,它的第i 个分量为1,其余分量全为0。于是第2时段的绝对分布为 1(1)(0)P P P =12((1),(1),,(1))m p p p = 则第2时段的预测状态j 满足:(1)max{(1),}j i p p i I =∈; 同样预测第k +1时段的状态,则有 1()(0)k P k P P =12((),(),,())m p k p k p k = 得到所预测的状态j 满足: ()max{(),}j i p k p k i I =∈ 6.进一步对该马尔可夫链的特征(遍历性、平稳分布等)进行分析。 二、叠加马尔可夫链预测方法 对于一列相依的随机变量,利用各种步长的马尔可夫链求得的绝对分布叠加来做预测分析,的方法,称为“叠加马尔可夫链预测方法”,不妨记其为“SPMCP 法’。其具体方法步骤如下: 1) 计算指标值序列均值x ,均方差s ,建立指标值的分级标准(相当于确定马尔可夫链的状态空间),可根据资料序列的长短及具体问题的要求进行; 2) 按1)所建立的分级标准,确定资料序列中各时段指标值所对应的状态; 3) 对2)所得的结果进行统计,可得不同滞时(步长)的马尔可夫链的转移概率矩阵,它决定了指标值状态转移过程的概率法则; 4) 马氏性检验; 5) 分别以前面若干时段的指标值为初始状态,结合其相应的各步转移概率矩阵即可预测出该时段指标值的状态概率 (6)将同一状态的各预测概率求和作为指标值处于该状态的预测概率,即 ,所对应的i 即为该时段指标值的预测状态。待该时段的指标值确定之后,将其加 入到原序列之中,再重复步骤"(1)一(6)",可进行下时段指标值状态的预测。 (7)可进一步对该马尔可夫链的特征(遍历性、平稳分布等)进行分析。

马尔可夫链模型

马尔可夫链 在自然界与社会现象中,许多随机现象遵循下列演变规律,已知某个系统(或过程)在时刻0t t =所处的状态,与该系统(或过程)在时刻0t t >所处的状态与时刻0t t <所处的状态无关。例如,微分方程的初值问题描述的物理系统属于这类随机性现象。随机现象具有的这种特性称为无后效性(随机过程的无后效性),无后效性的直观含义:已知“现在”,“将来”和“过去”无关。 在贝努利过程(){} ,1X n n ≥中,设()X n 表示第n 次掷一颗骰子时出现的点数,易见,今后出现的点数与过去出现的点数无关。 在维纳过程(){} ,0X t t ≥中,设()X t 表示花粉在水面上作布朗运动时所处的位置,易见,已知花粉目前所处的位置,花粉将来的位置与过去的位置无关。 在泊松过程(){,0}N t t ≥中,设()N t 表示时间段[0,]t 内进入某商店的顾客数。易见,已知时间段0[0,]t 内进入商店的顾客数()0N t ,在时间段()0[0,]t t t >内进入商店的顾客数 ()N t 等于()0N t 加上在时间段0(,]t t 内进入商店的顾客数()()0N t N t -,而与时刻0t 前进 入商店的顾客无关。 一、马尔可夫过程 定义:给定随机过程 (){},X t t T ∈。如果对任意正整数3n ≥,任意的 12,,1, ,n i t t t t T i n <<<∈=,任意的11, ,,n x x S -∈S 是()X t 的状态空间,总有 ()()()1111|,n n n n P X x X t x X t x --≤== ()() 11|,n n n n n P X x X t x x R --=≤=∈ 则称(){} ,X t t T ∈为马尔可夫过程。 在这个定义中,如果把时刻1n t -看作“现在”,时刻n t 是“将来”,时刻12, ,n t t -是“过 去”。马尔可夫过程要求:已知现在的状态()11n n X t x --=,过程将来的状态()n X t 与过程过去的状态()()1122, ,n n X t x X t x --==无关。这就体现了马尔可夫过程具有无后效性。 通常也把无后效性称为马尔可夫性。 从概率论的观点看,马尔可夫过程要求,给定()()1111,,n n X t x X t x --==时,() n X t 的条件分布仅与()11n n X t x --=有关,而与()()12, ,n X t X t -无关。

论述马尔可夫模型的降水预测方法

随机过程与随机信号处理课程论文

论述马尔可夫模型的降水预测方法 摘要:预测是人们对未知事物或不确定事物行为与状态作出主观的判断。中长 期降水量的预测是气象科学的一个难点问题, 也是水文学中的一个重要问题。今年来,针对降水预测的随机过程多采用随机过程中的马尔可夫链。本文总结了降水预测的马尔可夫预测的多种方法和模型,对其中的各种方法的马尔可夫链进行了比较和分析,得出了一些有用的结论。 关键字:降水预测,随机过程,马尔可夫链,模拟 前言:大气降水是自然界水循环的一个重要环节。尤其在干旱半干旱地区, 降 水是水资源的主要补给来源, 降水量的大小,决定着该地区水资源的丰富程度。因此, 在水资源预测、水文预报中经常需要对降水量进行预报。然而, 由于气象条件的变异性、多样性和复杂性, 降水过程存在着大量的不确定性与随机性, 因此到目前为止还难以通过物理成因来确定出未来某一时段降水量的准确数值。在实际的降水预测中,有时不必预测出某一年的降水量,仅需预测出某个时段内降水的状况既可满足工作需要。因此,预测的范围相应扩大,精度相应提高。因此对降水的预测可采用随机过程的马尔可夫链来实现。 用随机过程中马尔可夫链进行预测是一种较为广泛的预测方法。它可用来预测未来某时间发生的变化, 如预测运输物资需求量、运输市场等等。马尔可夫链, 就是一种随机时间序列, 它表示若已知系统的现在状态, 则系统未来状态的规律就可确定, 而不管系统如何过渡到现在的状态。我们在现实生活中, 有很多情况具有这种属性, 如生物群体的生长与死亡, 一群体增加一个还是减少一个个体, 它只与当前该生物群体大小有关, 而与过去生物群体大小无关。] 本文针对降水预测过程中采用马尔可夫链进行模拟进行了综述和总结。主要的方法有利用传统的马尔可夫链的方法模拟;有采用加权的马尔可夫链模拟来进行预测;还有基于模糊马尔可夫链状模型预测的方法;还有通过聚类分析建立降水序列的分级标准来采用滑动平均的马尔可夫链模型来预测降水量;从这些方法中我们可以看出,马尔可夫链对降水预测有着重要的理论指导意义。 1.随机过程基本原理 我们知道,随机变量的特点是,每次试验结果都是一个实现不可预知的,但为确定的量。而在实际中遇到的许多物理现象,实验所得到的结果是一个随时间变化的随机变量,且用一个或多个随机变量我们有时无法描述很多这种现象的的全部统计规律,这种情况下把随时间变化的随机变量的总体叫做随机过程。对随机过程的定义如下:

连续马尔科夫过程的转移概率及应用

《随机过程》 课程设计(论文) 题目: 连续马尔科夫过程的转移 概率及应用 学院:理学院 专业:应用统计学 班级: 13090501 学生姓名:张志达 学生学号: 1309050131 2015年 12 月 29 日

摘要 选取 1978 ~ 2009 年四川农村居民人均生活消费值的 32 个样本,首先,通过 Markov 预测法预测未来生活消费水平的增长速度以 10% ~ 20% 的概率较大; 然后,为提高预测精度,在传统 ARMA 模型中加入时间变量 t 进行建模并预测,预测结果表明平均相对误差率为 1. 56% ,其中 2006 ~ 2009 年的相对误差的绝对值均小于 0. 5% ; 最后,将 Markov 预测和 ARMA 模型对2010 ~ 2012 年的预测结果对比,发现两者在生活消费增长幅度上吻合,预测结果可靠。结果表明,在与目前相似的政策力度下,短期内四川省农村居民消费需求将持续增长,需进一步扩大消费市场。 关键词农村居民; 生活消费; Markov 预测

目录 一.连续马尔科夫过程的转移概率及其应用 (4) 二.连续时间马尔可夫链基本理论 (5) 2.1定义 (5) 2.2转移概率 (5) 三. 马尔可夫过程研究的问题的分析 (7) 数据来源与研究方法 (7) 2.计算状态转移概率矩阵 (8) 3.结果与分析 (10) 四结论和展望 (11) 五.参考文献 (12) 六计算结果及程序 (12)

一.连续马尔科夫过程的转移概率及其应用 1951年前后,伊藤清建立的随机微分方程的理论,为马尔可夫过程的研究开辟了新的道路。1954年前后, W.费勒将半群方法引入马尔可夫过程的研究。流形上的马尔可夫过程、马尔可夫向量场等都是正待深入研究的领域。 类重要的随机过程,它的原始模型马尔可夫链,由俄国数学家Α.Α.马尔可夫于1907年提出。人们在实际中常遇到具有下述特性的随机过程:在已知它目前的状态(现在)的条件下,它未来的演变(将来)不依赖于它以往的演变(过去)。这种已知“现在”的条件下,“将来”与“过去”独立的特性称为马尔可夫性,具有这种性质的随机过程叫做马尔可夫过程。荷花池中一只青蛙的跳跃是马尔可夫过程的一个形象化的例子。青蛙依照它瞬间或起的念头从一片荷叶上跳到另一片荷叶上,因为青蛙是没有记忆的,当现在所处的位置已知时,它下一步跳往何处和它以往走过的路径无关。如果将荷叶编号并用012,,......x x x 分别表示青蛙最初处的荷叶号码及第一次、第二次、……跳跃后所处的荷叶号码,那么{},0n x n ≥ 就是马尔可夫过程。液体中微粒所作的布朗运动,传染病受感染的人数,原子核中一自由电子在电子层中的跳跃,人口增长过程等等都可视为马尔可夫过程。还有些过程(例如某些遗传过程)在一定条件下可以用马尔可夫过程来近似。 关于马尔可夫过程的理论研究,1931年Α.Η.柯尔莫哥洛夫发表了《概率论的解析方法》,首先将微分方程等分析方法用于这类过程,奠定了它的理论基础。1951年前后,伊藤清在P.莱维和C.H.伯恩斯坦等人工作的基础上,建立了随机微分方程的理论,为研究马尔可夫过程开辟了新的道路。1954年前后,W.弗勒将泛函分析中的半群方法引入马尔可夫过程的研究中,Ε.Б.登金(又译邓肯)等并赋予它概率意义(如特征算子等)。50年代初,角谷静夫和J.L.杜布等发现了布朗运动与偏微分方程论中狄利克雷问题的关系,后来G.A.亨特研究了相当一般的马尔可夫过程(亨特过程)与 位势的关系。目前,流形上的马尔可夫过程、马尔可夫场等都是正待深入研究的领域。

第三章 马尔可夫链

第三章 马尔可夫链 一、马尔可夫链的概念 马尔可夫过程是一类有重要应用意义的随机过程,它具有如下特征:随机过程‘将来’所处的状态仅与‘现在’所处的状态有关,而与‘过去’曾处于什么状态无关。 马尔可夫过程按其状态和时间参数是离散还是连续的可以分成三类 (1) 时间和状态都是离散的马尔可夫过程,称为马尔可夫链。 (2) 时间连续、状态离散的马尔可夫过程,称为连续时间的马尔可夫链。 (3) 时间和状态都连续的马尔可夫过程。 本章介绍马尔可夫链 定义1 设}0,{≥n X n 为随机序列,其状态空间为},,,{210 i i i I =,如果对任意正整数n 及任意n+2个状态I i i i i n ∈+1210,,,, ,有 },,,{110011n n n n i X i X i X i X P ====++ }{11n n n n i X i X P ===++ 则称此随机序列}0,{≥n X n 为马尔可夫链。 若将时刻n 称为‘现在’,将时刻n+1称为‘将来’,而把0,1,2,……,n-1称为‘过去’。定义中的等式便可通俗解释为:在已知}0,{≥n X n ‘现在’所处的状态条件下,‘将来’所要达到的状态与‘过去’所经历的状态无关,这一特性常称为马尔可夫的无后效性。 例1.一个n 级数字传输系统,每一级的输入和输出信号只取0或1两个值,每一级的输出是下一级的输入;并假定当一级输入为0时,其输出为0和为1的概率分别为p 和1-p;当输入为1时,其输出为1和0的概率分别为p 和1-p (见图)

令Xn 表示第n 级输出,则{ Xn,n ≥0}便为一个马尔可夫链。 例2.从1,2,……,N 数字中任取一个数,记为X0;再从1,2,……,X0数字中任取一个数,记为X1;再从1,2,……,X1中任取一个数,记为X2;依此类推,在1,2,……,Xn-1中任取一个数,记为Xn 。可以证明{ Xn,n ≥0}为马尔可夫链。 事实上,{ Xn,n ≥0}的状态空间为I={1,2,……,N},对任意正整数n ,取n+1个状态I i i i i n ∈,,,,210 ,由题意可知 故{ Xn,n ≥0}为马尔可夫链。 二、转移概率 由马尔可夫链的无后效性和乘法公式有 },,,{1100n n i X i X i X P === },,,{},,,{111100111100----===?=====n n n n n n i X i X i X P i X i X i X i X P },,,{}{11110011----===?===n n n n n n i X i X i X P i X i X P = }{}{}{}{000011221111i X P i X i X P i X i X P i X i X P n n n n n n n n ========------ 由此可见,马尔可夫链的统计特性完全由条件概率

相关文档
最新文档