神经生物学考试重点

神经生物学考试重点
神经生物学考试重点

19世纪神经电缆论 benjiamin franklin《电的试验和观察》

1809年Gall颅像学理论

1861年Broca从失语症病人中启发

1839年Schwann提出了“细胞理论”

1865年 Otto Deiters提出的神经元模型

神经科学分析四个层次:

分子、细胞、系统、行为、认知神经科学

模式动物:猴、犬类、鼠类果蝇,猫,兔

神经系统都是由神经细胞和神经胶质细胞构成。

神经元:

神经系统的结构和机能单位是神经元。

神经元的结构可分为两部分:胞体和突起。按功能分为运动神经元、感觉神经、中间神经元神经胶质细胞:

分为星状细胞、少突胶质细胞、小胶质细胞、管膜细胞

功能:

①支持、绝缘、保护和修复作用②营养和物质代谢的作用③对离子、递质的调节和免疫功能④在发育中神经细胞沿神经胶质细胞的突起迁移

第二章

RP是指神经元未受到刺激时存在于细胞膜内外两侧的电位差。-30~-90mV

证明RP的实验:

(甲)当A、B电极都位于细胞膜外,无电位改变,证明膜外无电位差。

(乙)当A电极位于细胞膜外, B电极插入膜内时,有电位改变,证明膜内、外间有电位差。

(丙)当A、B电极都位于细胞膜内,无电位改变,证明膜内无电位差。

膜电位:因电位差存在于膜的两侧所以又称为膜电位

RP产生机制的膜学说:

∵静息状态下①细胞膜内外离子分布不均;

②细胞膜对离子的通透具有选择性:

K+ ≥ Na+, K+ ≥ Cl- , A-≈0;

[K+]i顺浓度差向膜外扩散,[A-]i不能向膜外扩散;[K+]i↓、[A-]i↑→膜内电位↓(负电场)[K+]o↑→膜内电位↑(正电场);膜外为正、膜内为负的极化状态,当扩散动力与阻力达到动态平衡时=RP,RP的产生主要是K+向膜外扩散的结果。∴RP=K+的平衡电位

Nernst公式的计算

EK=RT/ZF?ln[K+]O/[K+]i =59.5 log[K+]O/[K+]i

若[K+]I=0,则Em=0;[K+]I逐渐增加,则Em逐渐增加,

若[K+]o>>[K+]i,则膜内部电位变正。[K+]o=[K+]i,则Em=0

改变Na+或Cl-浓度,则Em不产生显著性变化

AP概念:可兴奋细胞受到刺激,细胞膜在静息电位基础上发生一次短暂的、可逆的,并可向周围扩布的电位波动称为动作电位。

图像

动作电位的特征:①是非衰减式传导的电位。②具有“全或无”的现象:即同一细胞上的AP大小不随刺激强度和传导距离而改变的现象。

机制:(1)AP产生的基本条件:

①膜内外存在[Na+]差:[Na+]i<[Na+]O ≈ 1∶10;

②膜在受到阈刺激而兴奋时,对离子的通透性增加:即电压门控性Na+、K+通道激活而开放。当细胞受到刺激,细胞膜上少量Na+通道激活而开放,Na+顺浓度差少量内流→电位差↓→局部电位,当膜内电位变化到阈电位时→Na+通道大量开放,Na+顺电化学差和膜内负电位的吸引→再生式内流,膜内负电位减小到零并变为正电位(AP上升支),Na+通道关→Na+内流停+同时K+通道激活而开放,K+顺浓度差和膜内正电位的排斥→K+迅速外流,膜内电位迅速下降,恢复到RP水平(AP下降支),∵ [Na+]i↑、[K+]O↑→激活Na+-K+泵,Na+泵出、K+泵回,∴离子恢复到兴奋前水平→后电位

去极化:膜内外电位差向小于RP值的方向变化的过程。

超极化:膜内外电位差向大于RP值的方向变化的过程。

复极化:去极化后再向极化状态恢复的过程。

阈电位:是激活电压门控性Na+通道的临界值。即阈电位先引发一定数量的Na+通道开放,Na+迅速大量内流后,再引发更多数量的Na+通道开放,爆发AP。

离子学说:①[Na+ ]o稍减, AP上升慢,超射减少速度变慢(A曲线3);

②减少50%,超射几乎减少一半,上升相更慢(图B曲线2);

③减少33%,超射几乎完全消失(图A曲线2)。

离子电流的分离方法:

离子置换法,逆向电位法,药理学方法:河豚毒素(TTX): 专一性地阻断钠通道,作用可逆。四乙二胺(TEA) 特点:钾电流消失,但不影响钠电流。

第四章

突触:一个神经元和另一个神经元之间的机能连接点,是神经元之间传递信息的特殊结构。

2. 突触的结构:突触前、突触间隙和突触后。

按结构和机制的不同分为:电突触和化学突触。按传递的性质分为:兴奋性突触和抑制性突触。

兴奋性突触后电位

1、概念:

兴奋性递质引起突触后膜去极化,下一级神经元容易发生兴奋(AP),这种电位变化称为EPSP (excitatory Postsynaptic Potential)。

2、EPSP具有局部电位的特点:

①电紧张性扩布;

②等级性电位,即其大小与刺激强度呈正比;

③可进行时间和空间上的总和。

机制:突触前轴突末梢的AP,Ca2+内流:降低轴浆粘度和消除突触前膜内的负电位;突触小泡中兴奋性递质释放,递质与突触后膜受体结合,突触后膜离子通道开放,Na+(主) K+通透性↑,Na+内流、 K+外流,去极化,EPSP

抑制性突触后电位

1、概念:

抑制性递质引起突触后膜超极化,下一级神经元难以发生兴奋(AP),这种电位变化称为IPSP。

2、IPSP也具有局部电位的特点:

①电紧张性扩布;

②等级性电位,即其大小与刺激强度呈正比;

③可进行时间和空间上的总和(总和的结果是使突触后神经元不易兴奋-即抑制)。

机制:突触前轴突末梢的AP,Ca2+内流:降低轴浆粘度和消除突触前膜内的负电位;突触小泡中抑制性递质释放,递质与突触后膜受体结合,突触后膜离子通道开放,Cl-(主) K+通透性↑,Cl-内流、 K+外流,超极化,IPSP。

区别

EPSP IPSP。

突出前神经元兴奋性抑制性

递质兴奋性抑制性

突触兴奋性抑制性

后膜P离子PNa,PK,PCl增加,PK,PCl增加

后膜电位去极化超极化

结果突出后神经元易产生AP(兴

奋) 突出后神经元难产生AP(抑制)

电突触:电流被动地穿过突触前和突触后膜之间的间隙连接, 电流的流动改变突触后膜电位,

化学突触:神经递质在与突触后膜受体分子结合后能打开或关闭突触后离子通道。

第五章

神经递质

功能:神经元之间靠突触传递信息,主要是通过突触前膜释放化学物质即神经递质完成的。分类:

乙酰胆碱(Ach):第一个确定的神经递质,广泛存在于中枢和周围神经系统中。

氨基酸类:谷氨酸(Glu) 兴奋性神经递质GABA:抑制性神经递质, Gly:一种抑制性神经递质。

嘌呤类。生物胺类。神经肽。其它一些可能的神经递质

神经递质的合成

合成场所:在神经细胞体内合成的。合成的先决条件(之一):细胞中是否存在合成这种神

经递质的酶系及原材料。

第六章

离子通道的基本特征

(1)不同的离子通道是互相独立的;

(2)通道是孔洞而不是载体;

(3)离子通道的化学本质是蛋白质结构;

(4)通道对离子通透的特异性依赖孔洞大小、离子形成氢键的能力及通道内位点相互作用的强度。

钠通道分子结构

钠通道蛋白是一个寡聚体,它由一个α亚单位和两个小亚单位(β1和β2)组成。每个α亚单位由4个重复的同源域(I-IV)组成,每个域内有6个跨膜区(S1-S6),S5-S6之间的区域可能形成作为通道衬里的非螺旋发夹结构。

第七章

受体:能与配体结合并能传递信息,引起效应的细胞成分,它是存在于细胞膜上或细胞质内的蛋白质大分子。

2、受体的组成:

接受部分:功能是与递质、激素和药物等配体特异地结合;

效应部分它起换能作用。

3、受体的鉴定标准:

饱和性:受体与配体结合在剂量-反应曲线上有饱和现象。

特异性:具有高度立体特异性。

可逆性:配体与受体结合是通过离子键、氢键、或分子之间引力作用结合,这种结合是可逆的。

根据结构受体分为三类:

①离子通道型受体

②G蛋白耦联型受体

③酶耦联的受体

Ach受体由5个亚单位组成,即2个α,1个β,1个γ和1个δ亚基 , ACh与受体的α亚单位结合。

G蛋白(GTP binding proteins)所有能与GTP结合的蛋白质都可以称为"G蛋白",并不是都参与细胞信号传递。。G蛋白+ GTP活化态;G蛋白+ GDP失活化态。G蛋白偶联型受体

56环胞内侧是G蛋白结合部位

CAMP信号通路:

1.激素结合膜上[G蛋白耦联]受体→α亚单位结合GTP→G蛋白(+)

2.G蛋白(+)→(膜效应器酶)腺苷酸环化酶(+)

3. ATP ↓(细胞内) →cAMP↑(第二信使) cAMP通过激活cAMP依赖性蛋白激酶(PKA)

系统来实现的PKA为四聚体组成的别构酶(C2R2)4分子cAM与两个调节亚基结合后,

调节亚基脱落,游离的催化亚基具有蛋白激酶活性 PKA激活需Mg2+

一个钙调蛋白(148个亚基,哑铃型)可以结合4个Ca2+。

第十一章

视网膜结构:横向细胞(水平细胞、无长突细胞、网间细胞、 Müller细胞)

纵向(感光细胞(视杆细胞,视锥细胞)、视神经节细胞、双极细胞)

视杆细胞:感受弱光,不能辨色。视锥细胞:感受强光和辨色的能力。黄斑处仅有视锥细胞

光能转换机制

视杆系统或晚光觉系统:视杆细胞和与它们相联系的双极细胞和神经节细胞等成分组成,对光的敏感度较高,能在昏暗的环境中感受光刺激而引起视觉,无色觉而只能区别明暗;视物时有较粗略的轮廓,精确性差。

视锥系统或昼光觉系统:视锥细胞和与它们有关的传递细胞等成分组成,对光的敏感性较差,在类似白昼的强光条件下才能被刺激,视物时可辨别颜色,且对物体表面的细节和轮廓境界都能看得很清楚,有高分辨能力。

视紫红质在光照时迅速分解为视蛋白和视黄醛.

在暗处,是全反型的视黄醛变为11-顺型的视黄醛,很快再同视蛋白结合。此外,贮存在视网膜的色素细胞层中的维生素A也是全反型的,它们也可在耗能的情况下变成11-顺型的,进入视杆细胞,然后再氧化成11-顺型的视黄醛,参与视紫红质的合成补充;人在暗处视物时,实际是既有视紫红质的分解,又有它的合成,这是人在暗光处能不断视物的基础;光线愈暗,合成过程愈超过分解过程,视网膜中处于合成状态的视紫红质数量也愈高,这也使视网膜对弱光愈敏感。

在亮光处,视紫红质的分解增强,合成过程甚弱,视紫红质处于分解状态,视杆细胞几乎失去了感受能力;事实上,人在亮光处是靠视锥来完成的,在视紫红质和再合成的过程中,有一部分视黄醛被消耗,这最终要靠由食物进入血液循环(相当部分贮存于肝)中的维生素A 来补充。长期摄入维生素A不足,将会影响人在暗光处的视力,引起夜盲症。

感光细胞的外段是进行光-电转换的关键部位。视杆细胞的静息电位只有-30~-40mV。

外段膜在无光照时,有相当数量的Na+通道处于开放状态并有持续的Na+内流,而内段膜有Na+泵的连续活动将Na+移出膜外,这样就维持了膜内外的Na+平衡。

当视网膜受到光照时,可看到外段膜两侧电位短暂地向超极化的方向变化,它是在暗处或无光照时处于去极化状态,而在受到光刺激时,跨膜电位反而向超极化方向变化,因此视杆细胞的感受器电位(视锥细胞也一样),表现为一种超极化型的慢电位。

光照时,感受器细胞外段盘膜的视色素受光量子作用,视色素分解为视黄醛和视蛋白,同时激活盘膜上的鸟苷酸结合蛋白(G蛋白),G蛋白随之激活磷酸二酯酶(PDE), PDE使胞浆中的cGMP水解为GMP, 使胞浆内cGMP浓度下降,导致感受器细胞外膜上cGMP门控钠通道关闭,暗电流减少或消失,这时感受器细胞便转而处于超极化状态,递质释放下降或完全消失。

视杆细胞外段和整个视杆细胞都没有产生动作电位的能力,只能以电紧张性的扩布到达它的终足部分,影响终点(相当于轴突末稍)外的递质释放。

三原色学说、对比色学说视锥细胞功能是它有辨别颜色的能力

神经节细胞是唯一能产生动作电位的,视神经纤维的节细胞大致可分为三类,分别称为X-、Y-和W-细胞。X-和Y-细胞“中心-周边感受野”中心撤光反应细胞

节细胞的感受野:指视网膜上某一特定的区域,受到刺激时可能使该节细胞发生反应。视觉中枢通路:视网膜神经节细胞的轴突形成视神经,经过视交叉部分地交换神经纤维后,形成视束,传到中枢的许多部位,其中包括丘脑的外膝体、四叠体上丘和视皮层等(鼻侧交叉,颞侧不交叉。

外膝体:中继细胞、中间神经元

第十二章

听小骨:分别称为锤骨、砧骨和镫骨;

耳蜗:前庭阶、鼓阶和蜗管。前庭阶和鼓阶在基部各有一窗,称前庭窗(卵圆窗)和圆窗,窗上均有膜,圆窗外即鼓室,卵圆窗膜为镫骨底板封盖。前庭阶与鼓阶在蜗顶处经蜗孔通连;此两阶内充满外淋巴。蜗管夹在前庭阶与鼓阶之间,充满内淋巴。分隔蜗管与鼓阶的膜状结构称基底膜,有感受细胞、听神经末梢等组成的声音感受器就在基底膜上,称螺旋器。

耳蜗复核、上橄榄复核、外侧丘系核和下丘统称听觉的脑干中枢。

听觉两个传导方式:

从外耳的集声至耳蜗基底膜的运动及毛细胞纤毛的倾斜属机械过程或称“声学过程”。毛细胞受刺激引起包括离子通道激活电变化,继而是化学递质释放,突触兴奋和听神经冲动发放,冲动经多次突触转换至各级中枢后则是一连串复杂的信息加工、处理、整合和感知等复杂神经活动,统属“生理过程”。

声-电换能及听神经的兴奋过程

在蜗管的内淋巴液中通常维持有+80mV的静息电位,螺旋器毛细胞内的电位为-40~-80mV(以鼓阶处电位为0)。电流因而不断从蜗管经盖膜、毛细胞的纤毛等结构流入毛细胞内,形成回路。当声波使基底膜产生机械运动时,毛细胞与盖膜的相对位置变化形成一种剪力使纤毛倾斜,改变了回路的阻抗,从而调制了通过的电流。

对改变回路阻抗起主要作用的是位于纤毛尖端处K+通道。蜗管内K+的浓度很高,通道开放时大量K+流入毛细胞内使膜电位去极化。纤毛随基底膜的起伏交替地向外侧和内侧倾斜,K+通道便交替地开放和关闭,毛细胞的膜电位从而交替地去极化和超极化。这便完成了声-电的换能。内毛细胞膜电位的去极化使细胞壁上的Ca2+通道开放,Ca2+流入胞内激活了细胞向突触释放化学递质的环节,递质的释放使听神经的传入纤维兴奋并发放冲动

第十三章

味觉感受器是味蕾,每一味蕾含数十个狭长的梭形上皮细胞,味蕾的上皮细胞包括味细胞、分泌细胞和基细胞等几种类型。味细胞顶端的纤毛会集于味孔处,接受味质刺激。菌状味蕾群(含味蕾3个左右,味蕾总数约24%)分布在前2/3的舌面上,以舌尖处最多;盘状味蕾群一般有9个,在舌后部成“人”形,各含味蕾250个左右(约48%);舌两侧后部各有一片叶状味蕾群,“叶”面上有20个左右平行的隆起,有味蕾共600个左右(约28%)。

嗅觉换能机制:

嗅觉感受细胞的纤毛表面上有上千种受体蛋白,分别可与一种或数种不同嗅质(odorant)分子结合的特异性。结合后通过与纤毛膜内G蛋白的耦合激活腺苷酸环化酶,在ATP的作用

下产生环化腺苷酸(cAMP),后者作为第二信使激活纤毛膜上的Ca2+和Na+通道,Ca2+和Na2+进入纤毛后使之去极化;Ca2+激活纤维膜上的CI-通道,CI-从纤毛内流出进一步加深去极化。去极化到一定水平,嗅觉末梢(即纤毛)便兴奋并发放神经冲动;这是嗅觉换能和兴奋的主要途径。另一途径是受体蛋白与G蛋白耦合后激活磷酸脂酶,产生的三磷脂肌醇(IP3)作为第二信使,激活Ca2+和Na+通道后的使膜电位去极化、神经兴奋、冲动发放等环节。

第十四章

躯体感受器

功能:机械感受器、伤害感受器、温度感受器

形态:游离的(伤害、温度)、囊状的(其他)。

躯体感觉的性质决定于感受器和中枢部位,

感觉的强度取决于:

①感觉N冲动传入的频率;

②参与反应的感受器数目;

③参与反应感受器点状分布密度(触压觉:指尖>四肢>躯干;温觉:冷觉>热觉)

浅部感觉传导路:传递皮肤、口、鼻腔粘膜的痛、温度、触觉、压觉。先交叉后上行。深部感觉传导路(本体感觉):来自肌腱关节等深部的位置觉、运动觉、振动觉,还传导皮肤的精细辨别性触觉。先上行后在薄束核和楔束核交叉至丘体反射给大脑皮层。

体表感觉代表区投射特点:

Ⅰ.左右交叉:(头面部是双侧性外);

Ⅱ.倒置分布:(头面部是直立外);

Ⅲ.精细正比:?皮层投射区的大小与感觉分辨的精细程度呈正比(如拇指和食指的投射区大);

皮肤痛与内脏痛的比较:

疼痛特点:皮肤痛①产生和消失迅速②定位明确、分辫能力强③慢痛情绪反应明显

④无牵涉痛⑤能产生初级痛觉过敏和次级痛觉过敏;

内脏痛①产生缓慢、持续久②定位不清、分辫能力差③情绪反应明显

④有牵涉痛⑤能产生初级痛觉过敏和次级痛觉过敏

致痛物质:电、机械、化学物质(如K+、H+、组胺、5-HT、PG等)

敏感刺激:锐性刺激(切割、烧灼等);钝性刺激(牵拉、痉挛、炎症、缺血等)

感受器:游离神经末梢(其特异性不如其他类感受器,刺激阈比其他类感受器高)

传导纤维:躯体传入纤维(快痛Aδ,慢痛C) ;自主N传入纤维

牵涉痛(referred pain):内脏疾病引起体表某部位的疼痛或痛觉过敏现象。

第十五章

本体感受器即前庭器官,前庭器官是内耳的一部分,由三个半规管、椭圆囊、和球囊组成,统称迷路。

本体感觉:深度感觉,是人体对自身运动状态和头在空间位置的感受。

第十六章

运动系统是中枢神经系统中与运动控制有关结构的总称。包括脊髓、脑干、大脑皮层、小脑和基底神经节等。

运动的分类:1、反射运动2、随意运动3、节律运动

反射运动

定义:最简单和基本的运动,由特异性的感觉刺激引起。产生的运动具有固定的轨迹。

特点:

1)很少受意识的影响。

2)当一个特异的刺激出现的时候,反射即以固定的形式“自动地”发生,因而是一些定型的非随意性反应。

3)具有等级特征即刺激强度越大、反应幅度越大、速度越快。

随意运动

定义:达到某一目的而进行的运动,可由感觉刺激,也可因主观愿意而引起。

特点: 1)具有很强目的性和习得性2)受意识调节的运动

节律运动

定义:介于反射运动与随意运动之间的一类运动(如呼吸、咀嚼、行走),具有反射运动和随意运动两方面的特征。

特点:

1)运动可以随意地开始和终止,但运动一旦发起就不在需要意识的参与。

2)在运动过程中仅受感觉信息的调制。

大脑皮层运动区特点:

1、对躯体运动的调节支配具有交叉的性质,即一侧皮层主要支配对侧的躯体的肌肉。

2、具有精细的机能定位,即一部分皮层的刺激引起一定肌肉的收缩。

3、机能代表区的大小与运动的精细复杂程度有关。

4、刺激所得肌肉运动反应单纯,不发生肌肉群的协同性收缩。

运动单位:一个α运动神经元及其所支配的全部肌纤维所组成的功能单位称为运动单位。

小脑的功能区:

1、前庭小脑:维持躯体的平衡

2、脊髓小脑:通过调节肌紧张调节躯干和肢体的活动,调节随意运动。脊髓小脑通过脊髓小脑束接受躯体感觉和外周感觉信息传入外。

3、皮层(大脑)小脑

认知神经科学知识点总结

1、认知科学——是研究智能实体与其环境相互作用园里的科学。 2、智能实体——是人类、动物和智能机的泛称。 3、研究人类智能的科学有心理学、心里语言学;研究动物智能的有动物心理学 和比较心理学;研究机器智能的科学有计算机科学,特别是人工智能学以及人工神经网络的研究。 4、神经科学是一大类学科的总称,这些学科均以“分析神经系统的结构和功能, 揭示各种神经活动的基本规律,在各个水平上阐明其机制,以及预防、诊治神经和精神疾病患”为自己的基本研究内容,包括神经生理学、神经解剖学、神经胚胎学。。P2。。。等。这些学科彼此渗透,互相支持,新技术、新概念层出不穷,日新月异,构成当代生物医学发展的前沿学科之一。 5、《人治神经科学》一书的主要思想就是阐明组成脑的分子和细胞如何以其可 塑性参与脑结构与功能系统的形成,进而通过结构与功能系统映射的进化,逐渐出现了人类的意识和多层次的精神活动。 6、人治神经科学的基本理论: (1)物理符号论、信息加工学说和特征检测理论 (2)联结理论、并行分布处理和群编码理论 (3)模块论或动功能系统论 (4)基于环境的生态现实理论:认知科学家们一直把认知过程堪称是发生在每个人头脑或智能系统内部的信息加工过程。而环境作用的观点则 认为认知决定于环境,发生在个体与环境交互作用之中,而不是简单 发生在每个人的头脑之中。 (5)机能定位论:试图为每一种高级功能在脑内找到一个中枢,或一种特意的细胞。到20世纪80年代前后,曾以半讽刺的方式,否定了祖母 细胞是识别熟悉面孔的特意细胞。 7、认知神经科学方法包括两大类互补的研究方法:一类是无创性脑功能(认知) 成像技术;另一类是清醒动物认知生理心理学研究方法。前一类方法中又分为脑代谢功能成像和生理功能成像两种;后一类方法中包括单细胞记录、多细胞记录、多维(阵列)电极记录法和其他生理心理学方法(手术法、冷却法、药物法等)。

《神经生物学》考试大纲

《神经生物学》考试大纲 《神经生物学》考试大纲适用于中国科学院心理研究所认知神经科学专业硕士研究生入学考试。神经生理学是生理学的一部分,主要研究神经系统的功能。同神经生物学、心理学、神经病学、临床神经生理学、电生理学、行为学和神经解剖学等有着非常密切的关系。要求考生深入了解各部分的基本概念,系统地掌握各部分的主要理论及其实验方法,能够将所学的知识应用到分析问题、设计实验和解决问题中去。 考试内容及要求: 一、细胞的基本功能 1、了解细胞膜的结构和物质转运功能 2、熟悉细胞的跨膜信号传导过程 3、掌握细胞生物电现象的各种机制 4、了解肌细胞的收缩机制 二、神经元与神经胶质细胞的一般功能 1、熟悉神经元的结构、功能和分类 2、了解神经胶质细胞的特征和功能 三、神经元的信息传递 1、熟悉突触传递的定义、分类和相关术语 2、掌握神经递质和受体的定义、分类和组成 3、了解反射弧中枢部分的活动规律 四、感觉系统总论 1、掌握感觉和感觉器官一般概念 2、了解感受器信号及感觉信息的编码 3、了解感觉通路中的信号编码和处理

4、掌握感知觉的一般规律 五、神经系统的感觉分析功能 1、熟悉躯体感觉的传入通路、皮层代表区和各种躯体感觉的特点 2、了解内脏感觉的传入通路、皮层代表区和各种内脏感觉的特点 3、熟悉视觉、听觉的传入通路、皮层代表区和功能特点 4、了解平衡感觉、嗅觉和味觉的一般概念 六、痛觉及其调制 1、掌握损伤性刺激引起伤害性感受器兴奋的机制 2、熟悉脊髓背角作为痛觉初级中枢的作用 3、了解伤害性信息传到脑的几条上行传到通路 4、熟悉丘脑作为痛觉整合中枢的作用 5、掌握脊髓伤害性信息传递的节段性调制 6、熟悉脑高级中枢对背角伤害性信息传递的下行调制 七、大脑皮层的运动功能 1、掌握运动传出的最后公路 2、熟悉初级运动皮层和前运动区的定义和作用 3、了解皮层神经元的组成 4、掌握初级运动皮层和皮层脊髓系统的组成和功能 5、了解大脑皮层运动区的传入 6、了解初级运动皮层的运动参数编码过程 7、熟悉辅助运动区和前运动皮层的运动功能 8、了解后顶叶皮层在运动中的作用 9、熟悉姿势的中枢调节

神经生物学重点复习

第一篇神经活动的基本过程 第一章神经元和突触 一、名词解释: 1、神经元:神经细胞即神经元,是构成神经系统的结构和功能的基本单位。 2、突触:神经元之间进行信息传递的特异性功能接触部位称之为突触。 3、神经胶质细胞:是广泛分布于中枢神经系统内的、除了神经元以外的所有细胞。 具有支持、滋养神经元的作用,也有吸收和调节某些活性物质的功能。 二、问答题: 1. 神经元的主要结构是什么?可分为哪些类型? 神经元的主要结构包括胞体(营养和代谢中心)、树突(接受、传导兴奋)、轴突(产生、传导兴奋)。分类: 1)、根据神经元突起的数目分类:单极神经元、双极神经元、多极神经元、假单极神经元。 2)、根据树突分类:①按树突的分布情况分类:双花束细胞、a细胞、锥体细胞、星形细胞。②按树突是否有棘突:有棘神经元、无棘神经元。③按树突的构型:同类树突、异类树突、特异树突神经元。 3)、根据轴突的长度分类:高尔基I型神经元、高尔基II型神经元。 4)、根据功能联系分类:初级感觉神经元、运动神经元、中间神经元。 5)、根据神经元的作用分类:兴奋性神经元、抑制性神经元。 6)、根据神经递质分类:胆碱能神经元、单胺能神经元、氨基酸能神经元、肽能神经元。 2. 简述突触的分类。 突触:神经元之间进行信息传递的特异性功能接触部位称之为突触。分类: 1)、根据突触连接的成分分类:轴—体、轴—树、轴—轴三种最为主要。 2)、根据突触连接的方式分类:依傍性突触、包围性突触。 3)、根据突触连接的界面分类:I型突触(非对称性突触)、II型突触(对称性突触)。 4)、根据突触囊泡形态分类:S型突触、F型突触。 5)、根据突触的功能特异性分类:兴奋性突触、抑制性突触。 6)、根据突触的信息传递机制分类:化学突触、电突触。 3. 试述化学突触的结构特征。 化学突触:通过神经递质在细胞之间传递信息的突触。由突触前成分、突触后成

神经生物学复习大全

2009年神经生物学复习资料 一名词解释 静息电位:活细胞处于安静状态时存在于细胞膜两侧的电位差,称为静息电位, 在多数细胞中呈现稳定的内负外正的极化状态,通常是采用细胞内记录获得。 阈电位和阈强度:能使Na+通道大量开放从而产生动作电位的临界膜电位。(或 能使膜出现Na+内流与去极化形成负反馈的膜电位值)称为阈电位。在一定的刺 激持续作用下,引起组织兴奋所必需的最小刺激强度,称为阈强度。 动作电位“全或无”现象:指动作电位的产生,不会因为刺激因素的不同或强度 的差异而使动作电位的形状发生改变,即动作电位只要发生,它的波形就不发生 变化。 后电位:在锋电位下降支最后恢复到静息电位水平前,膜两侧电位还要经历一些 微小而较缓慢的波动,称为后电位。 突触:一个神经元和另一个神经元之间的机能连接点,神经元之间传递信息的特 殊结构。突触的结构一般可由突触前膜、突触间隙、突触后膜组成。根据突触连接的界面分类:分为Ⅰ型突触或非对称突触;Ⅱ型突触或对称突触。根据突触的功能特性分类:分为兴奋性突触和抑制性突触。根据突触的信息传递机制分类:分为化学突触和电突触。 突触整合:不同突触的冲动传入在神经元内相互作用的过程。它不是突触电位的 简单代数和,其本质是突触处激活的电导和离子流的对抗作用,从而控制膜电位 的去极化和超极化的相对数量。(当神经元具有两个或者两个以上的信号同时输入的时候,这些信号在神经元上就会发生叠加,这种现象称为突触整合。两次兴奋造成的神经元去极化作用将大于单个兴奋性;如果兴奋性突触后电位和抑制性突触后电位同时发生,则两种作用可能会互相抵消。) 电压依赖性离子通道 离子通道是神经系统中信号转导的基本元件。能产生神经元的电信号,调节神经递质的分泌,也能将细胞外的电解质、化学刺激及细胞内产生的化学信号转变成电反应。有两个基本特性:对离子的特异性和对调节的易感性。有一类通道对电压变化敏感,受电压变化的调节而关闭。 化学依赖性通道:能特异性结合外来化学刺激的信号分子,引起通道蛋白质的变构作用而使通道开放,然后靠相应离子的易化扩散完成跨膜信号传递的膜通道蛋白。 化学门控通道:能特异性结合外来化学刺激的信号分子,引起通道蛋白质的变构作用而使通道开放,然后靠相应离子的易化扩散完成跨膜信号传递的膜通道蛋白。 时间性总和:局部兴奋的叠加可以发生在连续解接受多个阈下刺激的膜的某一点,即当前面刺激引起的局部兴奋尚未消失时,与后面刺激引起的局部刺激发生叠加。 G蛋白:能与GTP 结合的蛋白称为G 蛋白,它能接到神经递质、光、味、激素和其他细胞外信使的作用。一般说来。G蛋白是一个三聚体结构,由alpha、beta、garma亚基组成,具有多种类型。 反常整流:也称为内向整流器,钾通道的一种,因去极化而关闭,只有在膜处于超极化并且大于静息电位时才开放,此时开放的钾电流为内向的,驱使膜电位趋向钾离子平衡电位。 快瞬性钾通道:也称早期钾电流,可被很小的去极化作用迅速激活和失活,特别是在一次动作电位之后。被超极化作用“去失活”而接通。 生长锥:神经元轴突和树突生长的末端被称为生长锥,它是一种高度能动的细胞结构特化形式,它的三个结构域是中央区、片状伪足和丝状伪足。其功能活动受细胞胞体(细胞内游离Ca2+ 浓度)和外部环境(神经递质、细胞外基质、细胞粘连分子)的调节。 先驱神经纤维:在神经束中轴突生长期间,发育期间形成较早,最早到达靶组织的轴突,是其他轴突发育为神经束的引路向导。

神经生物学复习题

希望在全面复习的基础上,然后带着下列的问题重点复习 一、名词解释 神经元、神经调质、离子通道、突触、化学突触、电突触、皮层诱发电位、信号转导、受体、神经递质、神经胚、神经诱导、神经锥、感受器、视网膜、迷路、味蕾、习惯化、敏感化、学习、联合型学习、非联合性学习、记忆、陈述性记忆、非陈述记忆、程序性记忆、边缘系统、突触可塑性、量子释放、动作电位、阈电位、突触传递、语言优势半球、RIA、LTP、CT、PET、MRI、兴奋性突触后电位、儿茶酚胺、神经递质转运体、神经胚、半规管、传导性失语、离子通道、神经生物学、神经科学、免疫组织化学法、细胞外记录、EEG、突触小泡、纹外视皮层、半侧空间忽视、 二、根据现有神经生物学理论,判断下列观点是否正确?说明其理由。 1、神经系统在发育过程中,从神经胚到形成成熟的神经系统,其神经细胞的数 量是不断增多的。 2、在神经科学的发展过程中,西班牙的哈吉尔(Cajal)、英国的谢灵顿 (Sherrinton)和俄国的巴甫洛夫做出了杰出的贡献,并因此获得诺贝尔生理学或医学奖,其中哈吉尔主要是因创立了条件反射理论,谢灵顿主要是因创立神经元的理论,而巴甫洛夫主要是因创立反射(突触)学说。 3、神经元是神经组织实施其功能的主要细胞,但其数量在神经组织并不是最多 的。 4、海马的LTP与哺乳动物的学习记忆形成的机制有关。 5、神经系统的功能学研究方法和形态学研究方法是本质上不同的两种方法,因 此迄今尚没有办法把功能学和形态学研究结合起来。 6、一个神经元一般只存在一种神经递质或调质。 7、大脑功能取决于脑的重量。 8、神经肌肉接头处是一个化学突触。

9、Bernstein 的膜假说和Hodgkin等的离子学说均能很好地解释神经细胞静息 电位和动作电位的产生。 10、EPSP有“全和无”现象 11、抑制性突触后电位的产生与氯通道激活有关,而兴奋性突触后电位的产 生与钠通道激活有关。 12、视锥决定了眼的最佳视锐度(空间分辨率),视杆决定视敏度。 13、神经管的细胞不是神经干细胞,神经元及神经胶质细胞不能由神经管的 细胞转化。 14、哺乳动物特殊感觉的形成需要经过丘脑的投射,而一般感觉的形成则一 般不经过丘脑的投射。 15、语言的优势在大脑左半球,所以语言的形成与右半球无关。 16、在神经科学的发展过程中,一些实验材料的应用对一些神经生物学理论 的创立有重要的作用,其中海兔对乙酰胆碱作用的了解,鱼类的电器官对学习记忆机制的阐述,枪乌贼对细胞生物电离子学说的建立有重要的意义。 17、神经元是神经组织实施其功能的主要细胞,其树突和轴突分别有接受和 传出神经信息的作用。 18、REM睡眠与觉醒时脑电图相似,而这两个时期脑和躯体状态有明显的不 同。 19、采用脑透析术可引导脑的诱发电位。 20、ATP是神经系统中的一种神经递质或调质。 21、钾通道既有电压依赖性离子通道,也有化学门控性离子通道。 22、视觉的形成需要经过丘脑的投射,而听觉的形成则一般不经过丘脑的投 射。 23、裂脑实验证明大脑两个半球的功能既有对称性,也有不对称性。 24、典型的突触结构主要由突触前膜、突触间隙和突触后膜组成。 25、大脑皮层中央后回是运动代表区,中央前回是躯体感觉代表区。

认知神经科学期末复习题及参考答案

《认知神经科学》期末复习 一、概论 1.什么是认知神经科学? [ppt]认知神经科学是阐明认知活动的心理过程和脑机制的科学。其研究模式是将行为、认知过程、脑机制三者有机地结合起来 [书]认知神经科学是在传统的心理学、生物学、信息科学、计算机科学、生物医学工程,以及物理学、数学、哲学等学科交叉的层面上发展起来的一门新兴学科,在分子(基因)、细胞、网络(神经回路)、脑区、全脑、行为等各个水平上对人类的所有初级和高级的精神活动的心理过程和神经机制—包括感知觉、运动、注意、记忆、语言、思维、情绪、意识等—开展研究。简而言之,它是研究脑如何创造精神的。 二. 方法: 2. 结构磁共振成像的空间contrast与功能共振成像的时间contrast 的概念 结构像的空间contrast:结构像一般认为是比较固定的,在短时间内不会变化,所以空间contrast是被试间某个脑区volume大小的contrast; 功能像的时间contrast:功能像在时间维度上是变化的,使用block design/event related design时,可以在被试内做时间上的experimental condition vs. baseline的contrast,当然在这之后也可以做被试间的两个时间上的experimental condition vs. baseline的contrast的contrast。 3. fMRI研究中的多重比较校正的概念。为什么需要做多重比较?常用的矫正方法有哪些(列举3个左右)?(答案1:在我们进行voxel-by-voxel比较时,由于比较次数很多,那么犯I型错误的数量也随之增加,如果还以只进行一次比较的α值为犯I型错误的概率的话,就会出现假阳性的结果,所以理论上比较次数大于1次的分析都应该进行多重比较校正。 另外,在fMRI数据分析中,我们相信脑的活动应该在灰质的一定范围内,而不是仅在一个voxel内,所以通过多重比较校正我们可以把这些单个的假阳性voxel排除。fMRI数据分析中常用的多重比较校正有FDR(false discovery rate),FWE(family-wise error)和AFNI提供的校正方法。) 4. 在磁共振成像中的血液动力学响应函数指的是什么? 血液动力学响应函数受区域性脑血流(rCBF)、血体积(rCBV)等的变化影响,是随着刺激出现从平稳状态先降低,再升高,再降低,最后恢复到平稳状态的一条函数曲线。 5. 什么是成像设备的空间分辨率与时间分辨率? 这两个分辨率都应该指设备进行功能成像的描述。 空间分辨率(Spatial Resolution)是指成像设备在什么空间水平上反映大脑活动的信号,也就是能在什么样的空间水平上分辨出不同的信号的变化,可以反映为突触级,神经元级,voxel级,脑回级等空间分辨率。 时间分辨率(Temporal Resolution)是指成像设备在脑活动后多长时间内能记录下活动信号,可以反映为毫秒(ms)级,秒(m)级,分钟(min)级,小时(h)级等时间分辨率; 空间分辨率:单细胞记录 > 颅内ERPs > 颅外ERPs、fMRI、PET。 时间分辨率:MEG、颅外ERPs > fMRI、TMS、PET。 6. BOLD-fMRI, NIRS, EEG/ERP这三种成像各自的特点是什么?哪两个之间可以同时记录,好处在哪里?

神经生物学考试重点整理版3

谷氨酸受体与突触可塑性—长时程增强(p307) 长时程增强L TP:给突触前纤维一个短暂的高频刺激后,突触传递效率和强度增加几倍且能持续数小时至几天保持这种增强的现象。 早期L TP: ?Ca/CaM依赖的蛋白激酶II(CaMKII) ?蛋白激酶C(PKC) 产生逆行信使(NO),促进突触前神经元递质的释放 CaMKII能触发在突触后膜上插入AMPA受体或增加谷氨酸受体通道的传导性?晚期L TP:3小时以上 ?蛋白激酶A(PKA)和胞外信号调节激酶(ERK)通路 ?需要有基因的转录和蛋白质的合成 ?(在谷氨酸突触传递过程中,AMPA受体和NMDA受体都会被激活 ?AMPA受体介导的快速反应 ?NMDA受体介导的较慢但持续时间长的反应 ?AMPA受体激活引起的去极化是移除阻滞在NMDA受体上的Mg2+所必需的?NMDA受体激活后,大量的胞外Ca2+进入细胞; ?由NMDA受体介导的神经递质传递较慢并且持续时间长) 胆碱能受体的分型、分布和作用机理

?烟碱型乙酰胆碱受体(上两个是外周神经系统,后两个是中枢的) 毒蕈碱型乙酰胆碱受体

?儿茶酚胺的种类,合成途径(Tyrosine是酪氨酸)酪氨酸羟化酶(TH)多巴脱羧酶(DDC) 多巴胺-β-羟化酶(DBH)苯乙胺-N-甲基转移酶(PNMT)(a-左旋多巴,b-多巴胺,c-去甲,d-肾上腺素) ?

?5-HT的降解代谢途径 失活 5-HT释放后,主要通过膜转运体重摄取 酶解 重摄取: 5-HT膜转运体属Na+/CI-依赖型转运体 5-HT被膜转运体摄入胞浆再经囊泡 单胺类转运体进入囊泡内储存 酶解: 5-HT →MAO →5-HIAA 主要酶解失活途经 5-HT →MAO →5-MIAA 病理情况HIOMT (5-甲氧基吲哚乙酸) 5-HT →AANMT →N-甲基5-羟色胺 芳香烃胺氮位甲基移位酶(AANMT) 5-HT →HIOMT →N-乙酰基-5-甲基5-HT(松果体) 5-HT氮位乙酰转移酶(褪黑素melatonin)

神经生物学试题大全

神经生物学试题 一、名词解释 1. 膜片钳 2. 后负荷 3. 横桥 4. 后电位 5. Chemical-dependent channel 6. 兴奋—收缩耦联 7. 动作电位“全或无”现象 8. 钙调蛋白 9. 内环境 10. Channel mediated facilitated diffusion 11. 正反馈及例子 12. 电紧张性扩布 13. 钠泵(Na+—K+泵) 14. 阈电位 15. Chemically gated channel 16. 绝对不应期 17. 电压门控通道 18. Secondary active transport 19. 主动运转 20. 兴奋

21. 易化扩散 22. 等张收缩 23. 超极化 24. (骨骼肌)张力—速度曲线 25. 时间性总和 26. cotransport 27. Single switch 28. 胞饮 29. 最适前负荷 30. excitability兴奋性 31. 阈电位和阈强度 二、选择题 1. 正常的神经元,其细胞膜外侧比细胞间质 A. 略带正电 B. 略带负电 C. 中性 D. 不一定 三、填空题 1. 钾离子由细胞内转运到细胞外是通过易化扩散方式,转运Ach是通过方式,从神经末梢释放到突触间隙。葡萄糖是通过_______进入小肠粘膜上皮细胞。 2. 物质通过细胞膜的转运方式有_______ _______ _______ _______ 3. 可兴奋细胞在受到刺激而兴奋时,都要首先产生_______。 在神经纤维上,兴奋波的传导速度快慢取决于_______和________。 4. 骨骼肌细胞横管系统的功能是________,纵管系统的功能是________。 5. 易化扩散是指________物质在_________的帮助下_______。

神经生物学试卷试题及包括答案.docx

神经生物学思考题 1.叙述浅感觉传导通路。 ⑴躯干四肢的浅感觉传导通路:第 1 级神经元:脊神经节细胞→第 2 级神经元:脊髓后角(第Ⅰ、Ⅳ到Ⅶ 层)→脊髓丘脑束→第 3 级神经元:背侧丘脑的腹后外侧核→内囊→中央后回中、上部和中央旁小叶后部 ⑵头面部的浅感觉传导通路:第 1 级神经元:三叉神经节→ 三叉神经脊束→第 2 级神经元:三叉神经脊束核(痛温觉) 第 2 级神经元:三叉神经脑桥核(触压觉) →三叉丘系→第 3 级神经元:背侧丘脑的腹后内侧核→内囊→中央后回下部 2.叙述周围神经损伤后再生的基本过程。 轴突再生通道和再生微环境的建立→轴突枝芽长出与延伸→靶细胞的神经 重支配→再生轴突的髓鞘化和成熟 轴突再生通道和再生微环境的建立:损伤远侧段全程以及近侧端局部轴突 和髓鞘发生变形、崩解并被吞噬细胞清除,同时施万细胞增殖并沿保留的基底 膜管规则排列形成 Bungner 带,这就构成了轴突再生的通道。同时,施万细胞 分泌神经营养因子、黏附分子、细胞外基质分子等,为轴突再生营造适宜的微 环境。 轴突枝芽长出与延伸:再生通道和再生微环境建立的同时或紧随其后,在 损伤神经近侧轴突末梢的回缩球表面形成胚芽,长出许多新生轴突枝芽或称为 丝足。新生的轴突枝芽会反复分支,在适宜的条件下,轴突枝芽逾越断端之间 的施万细胞桥长入远侧端的 Bungner 带内,而后循着 Bungner 带一每天 1mm 到数毫米的速度向靶细胞延伸。 靶细胞的神经重支配:轴突枝芽不断向靶细胞生长延伸,最终达到目的地 并与靶细胞形成突触联系。

再生轴突的髓鞘化和成熟:在众多的轴突枝芽中,往往只有一条并且通常 是最粗的一条能到达目的地,与靶细胞形成突触联系,其他的轴突枝芽逐渐溃 变消失,而且也只有到达目的地的那条轴突才重新形成髓鞘,新形成的髓鞘起 初比较细,也比较薄,但随着时间的推移,轴突逐渐增粗,髓鞘也逐渐增厚, 从而使有髓神经纤维不断趋于成熟。 3.Concept and stage of memory,Types, and features of each type of memory 从心理学来讲,记忆是存储,维持,读取信息和经验的能力。 ② 记忆的基本过程:编码,储存,提取 ③ 记忆类型:感觉记忆短时记忆长时记忆 ④ 感觉记忆特点:包括图像记忆声像记忆触觉记忆味觉记忆嗅觉记忆 信息保持的时间极短并且每次收录的信息有限,若不及时处理传送至短时 记忆,很快就会消失。信息的传输与衰变取决于注意的程度。 短时记忆特点:又称工作记忆。是有意识记忆,信息保持的时间很短,易 受干扰而遗忘,经复述可以转入长时记忆 长时记忆特点:包括程序性记忆和陈述性记忆。程序性记忆是指如何做事 情的记忆,包括对知觉技能,认知技能,运动技能的记忆,其定位是小脑深部 核团和纹状体。陈述性记忆是指人对事实性资料的记忆,其定位是海马和大脑 皮层。长时记忆的信息内容不仅限于外界收录的讯息,更包括创造性意念,知 识。记忆容量非常大,且可在长时间内保有信息。 4.Changes of electrophysiology and structure when long term memory is formed 电生理的改变:包括LTP(长时程增强效应):给突触前纤维一个短暂的高 频刺激后,突触传递效率和强度增加几倍且能持续数小时至几天保持这种增强 的现象。 LTD(长时程抑制效应) LTP和 LTD相互影响,控制着长时程记忆的形成。 LTP强化长时记忆, LTD则在长时记忆形成过程中起到调节作用。 突触前的变化包括神经递质的合成、储存、释放等环节;突触后变化包括 受体密度、受体活性、离子通道蛋白和细胞内信使的变化

神经生物学复习题2016

一、名词解释 神经元:神经系统结构和功能的基本单位,由胞体,轴突,树突组成。 神经调质:由神经元产生,作用于特定的受体,但不在神经元之间起直接传递信息的作用,能调节信息传递的效率、增强或削弱递质的效应的化学物质。 离子通道:是各种无机离子跨膜被动运输的通路。在神经系统中是信号转导的基本元件之一。 突触:一个神经元和另一个神经元之间的机能连接点。 化学突触:通过化学物质在细胞之间传递神经信息的突触。 电突触:直接通过动作电流的作用到达下一级神经元或靶细胞的突触。 皮层诱发电位:在感觉传入的冲动的刺激下,大脑皮层某一区域产生较为局限的电位变化。 信号转导:生物学信息(兴奋或抑制)在细胞间或细胞内转换和传递,并产生生物学效应的过程。 局部电位:能引起膜电位偏离静息电位而尚未达到阈电位的变化。 受体:能与配体结合并能传递信息、引起效应的细胞成分。它是存在于细胞膜上或细胞质内的蛋白质大分子。 G-蛋白偶联受体:在与激动剂结合后,只有经过G蛋白转导才能将信号传递至效应器,结构上由单一多肽链构成,形成7次跨膜结构的受体蛋白。 神经递质:是指由突触前神经元合成并在末梢处释放,经突触间隙扩散,特异性作用于突触后神经元或效应器细胞上的受体,引起信息从突触前传递到突触后的一些化学物质。 神经递质转运体:膜上将递质重新摄取到突触前神经末梢或周围胶质细胞中储存起来的功能蛋白。 神经胚:原肠胚的外胚层经过发育,经神经板、神经褶、神经沟,最后形成神经管,这就是神经胚的形成,经历上述变化的胚胎。 神经诱导:在原肠胚中,原肠背部中央的脊索与其上方覆盖的预定神经外胚层之间细胞的相互作用,使外胚层发育为神经组织的过程。 神经生长锥:神经元轴突和树突生长的末端。 先驱神经纤维:指在发育期间形成较早,最早到达靶组织的轴突,它们是其他轴突发育为神经束的引路向导。 感受器:把各种形式的刺激能量(机械能、热能、光能和化学能)转换为电信号,并以神经冲动的形式经传入神经纤维到达中枢神经系统的结构。 视网膜:视觉系统的第一级功能结构,可将光能转换为神经电信号。 光致超极化:光照引起感受器细胞超极化效应的过程。 视觉感受野:视觉系统中,任何一级神经元都在其视网膜有一个代表区,在该区内的化学变化能调制该神经元的反应,则称这个特定的视网膜区为该神经元的视觉感受野。视皮层功能柱:具有相似视功能的细胞在厚度约2mm的视皮层内部以垂直于皮层表面的方式呈柱状分布。 on-中心细胞:细胞的感受野对中心闪光呈去极化反应。 迷路:前庭器官和耳蜗共同组成极复杂的内耳结构。 行波:声波引起膜振动从耳蜗基部开始,逐渐向蜗顶传播。 本体感觉:指人和高等动物对身体运动的感觉。

大脑的奥秘——神经科学导论(期末考试答案)

一、 单选题(题数:50,共 50.0 分)
1
下列说法错误的是()。 (1.0 分)
1.0 分
?
A、
没有声音刺激时耳蜗会自发发生声波震动
?
B、
如果检测不到自发耳声发射,有可能外毛细胞功能出现问题
?
C、
在不打开大脑直接观察的情况下,不同的细胞类型,不同的通路位置的异常是无法检测到的
?
D、
传出神经纤维的活动会刺激外毛细胞,接着会改变外毛细胞机械特性会产生自发的声音发射
正确答案: C 我的答案:C
2
自主神经系统对心血管活动的调控中错误的是()。 (1.0 分)
1.0 分
?
A、
心脏受到交感神经和副交感神经双重调控,前者是兴奋作用,后者具有抑制作用
?
B、

当血压升高时,动脉管壁受到牵拉,交感神经会兴奋,血管会收缩
?
C、
动脉血压降低时,压力感受器传入冲动减少,迷走神经紧张性减弱,交感神经紧张性会加强,血管会收缩
?
D、
血压升高时,压力感受器传入冲动增加,迷走神经紧张性活动加强,心交感神经紧张性活动减弱,血管会 舒张
正确答案: B 我的答案:B
3
在小鼠关键期内进行过一次单眼剥夺实验,然后又使其恢复;同一只小鼠在关键期之外,再 进行一次单眼剥夺实验,它的可塑性变化为()。(1.0 分)
1.0 分
?
A、
由于在关键期之外,所以不存在可塑性
?
B、
可塑性增强
?
C、
由于在关键期内做过单眼剥夺实验存在记忆,当再一次进行时此类实验是可能达到相同效果
?
D、
可塑性减弱
正确答案: C 我的答案:C
4
关于情景记忆,不正确的说法是()。

同济大学神经生物学复习

神经营养因子 1、神经营养因子NTF是一类由神经所支配的组织(如肌肉)和星形胶质细胞产生的且为神经元生长与存活所必需的蛋白质分子。 神经营养因子通常在神经末梢以受体介导式入胞的方式进入神经末梢,再经逆向轴浆运输抵达胞体,促进胞体合成有关的蛋白质,从而发挥其支持神经元生长、发育和功能完整性的作用。近年来,也发现有些NT 由神经元产生,经顺向轴浆运输到达神经末梢,对突触后神经元的形态和功能完整性起支持作用。 2、分类 一神经营养素家族NTs:又称为NGF 家族,氨基酸序列的同源性大于50%。 包括nerve growth factor, NGF, Brain-derived neurotrophic factor , BDNF,NT-3、NT-4/5, NT-6 二其它NTF:主要包括GDNF,是TGF-β超家族成员之一 CNTF,属于成血细胞因子超家族 ①神经营养素(neurotrophins)家族: NGF、BDNF、NT-3、NT-4/5等; ②细胞因子家族: 睫状神经营养因子(CNTF)、白细胞抑制因子(LIF)、白细胞介素6(interleukin-6) ; ③成纤维细胞生长因子家族: 碱性成纤维细胞生长因子(bFGF); 酸性成纤维生长因子(aFGF); ④胶质细胞源性神经营养因子(GDNF); ⑤细胞外基质分子,如N-CAM,L1。 3、神经营养因子的生物学效应 ←NT-3: 是本体感觉神经元存活所必需 ←BDNF: 胆碱能、多巴胺能神经元。AD与PD ←NGF:前脑基底节胆碱能神经元—海马、皮质,构成胆碱能通路,与学习、记忆有关。 与AD ←GDNF: 多巴胺能、运动神经元强效营养作用。AD 与PD。促进运动神经元的生长与分化,是目前已知的效应最强的胆碱能运动神经元营养因子。基因修饰嗅鞘细胞能促进损伤区神经纤维再生。 神经营养因子作用: 神经元存活阻止神经元死亡 神经生长刺激轴突和树突的延长 神经再生发芽刺激成人神经元轴突和树突发芽 合成代谢作用增加神经元胞体大小 分化诱导神经元表型蛋白的合成 调节传输增加神经递质、神经肽以及它们的合成酶的合成 电性质改变离子通道的活性和水平 掌握神经营养因子的生物学效应

2019级北大认知神经科学复习重点

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 2019级北大认知神经科学复习重点 2019 级北大认知神经科学复习重点一、名词解释 1. 神经元: 神经细胞是神经系统最基本的结构与功能单位,所以又将其称为神经元。 神经系统的一切机能都是通过神经元实现的。 神经元虽然在形态、大小、化学成分和功能类型上各异,但是在结构上大致相同,都是由细胞体、轴突、和树突组成的。 2. 突触是神经元之间发生联系的细微结构,由突触前膜(轴突末梢)、突触后膜(下一个神经元的树突或胞体)和突触间隙(前,后膜之间的缝隙)三个部分组成,突触间隙因突触的种类不同宽窄不一。 3. 中枢神经系统和外周神经系统 a 中枢神经系统由脑和脊髓组成。 b 外周神经系统由 12 对脑神经和 31 对脊神经组成,它们分别传递头部、面部和躯干的感觉与运动信息。 在脑、脊神经中都有支配内脏运动的纤维,分布于内脏、心血管和腺体中,称为自主神经或植物神经系统,它们维持机体的生命过程。 4. 脑的结构: 大脑: 1 / 11

大脑皮层、髓质、基底神经节间脑: 丘脑、上丘脑、下丘脑、底丘脑脑干: 中脑、桥脑、延脑小脑: 灰质、白质、深部核 5. 全或无规则是指每个神经元都有一个刺激阈值;对阈值以下的刺激不发生反应,对阈值以上的刺激,不论其强弱均给出同样高度的神经脉冲发放。 6. 神经递质与调质神经递质是一些小分子或中分子的化学物质,由突触前末梢释放。 越过突触间隙,作用于突触后膜。 神经调质作用于释放的神经细胞体或稍远的神经末梢,调节自身的生成和释放速度。 根据神经递质的化学结构,可将其分为如下几类: 胆碱类,单胺类,氨基酸类,肽类 7. 受体: 是蛋白大分子, 8. 脑的电现象第 1 页共 6 页脑的电现象可分为自发电活动和诱发电活动两大类,两类脑电活动变化都在大脑直流电位的背景上发生。 自发电活动记录就是脑电图(EEG) 9. 平均诱发电位: 20 世纪 60 年代以来,在计算机叠加和平均技术的基础上,对大脑诱发电位变化进行了大量研究.这种大脑平均诱发电位是一组复合波,刺激以后 10 毫秒之内出现的一组波称为早成分,代表接受刺激的感觉器官发出的神经冲动, 10~50 毫秒的一组称为中成分, 50 毫秒以后的一组波称为晚成分。

神经生物学复习提纲-2014

神经生物学复习提纲 2014 一、名词解释 1.突触后电位:突触传递在突触后神经元中所产生的电位变化。 有兴奋性突触后电位和抑制性突触后电位。突触前膜将递质释 放如间隙后,经扩散到达突触后膜,作用于后膜上的特异性受 体或门控通道,引起后膜对某些离子通透性改变,使某些离子 进出后膜,发生去极化或超极化,形成电位。 2.电压门控通道:细胞中一种接收外来电位变化,通过通道的开 闭而引起细胞膜出现新的电位变化或其他细胞内功能变化的 离子通道。他们具有和离子通道相类似的结构。但是在他们的 分子结构中,存在一些对跨膜电位敏感的亚基或基团。 3.耳蜗电位:在耳蜗未受刺激时,以鼓阶中的外淋巴的电位为参 考零电位,蜗管内淋巴所具有的电位。 4.神经-肌肉接头:运动神经元轴突末梢在骨骼肌肌纤维上的接 触点。从神经纤维传来的信号即通过接头传给肌纤维。神经肌 肉接头是一种特化的化学突触,其递质是Ach。无脊椎动物的 神经肌肉接头的递质是谷氨酸或γ-氨基丁酸。 5.G蛋白耦联受体:一大类膜蛋白受体的统称。其立体结构中都 有七个跨膜α螺旋,且其肽链的C端和连接第5和第6个跨 膜螺旋的胞内环上都有G蛋白的结合位点。只见于真核生物之 中,参与很多细胞信号传导过程。 6.高尔基腱器官:脊椎动物承受骨骼肌张力的器官。在腱纤维的

纺锤形的腱束上,缠绕着感觉神经末梢,与肌梭的构造相似,能感受肌肉工作中张力的变化。 7.光致超极化:光刺激导致的感受器细胞的膜电位超极化-细胞 膜的内部电位向负方向发展,外部电位向正方向发展,使膜内外电位差增大,极化状态加强。 8.关键期:指个体发展过程中环境影响能起最大作用的时期。或 细胞通讯能改变细胞命运的一段时期。 9.逆向跨神经元的变性:由于丧失神经元支配的靶组织而使该神 经元发生逆向变性或死亡。 10.昼夜节律:生命活动以24小时左右为周期的变动。发光菌的 发光、植物的光合作用和动物的摄食、躯体活动、人体生理功能也有明显昼夜节律波动。昼夜节律与人类的活动密切相关,节律紊乱,会造成工作效率下降。 11.工作记忆:工作记忆是一种对信息进行暂时加工和贮存的容量 有限的记忆系统。是知觉、长时记忆和动作之间的接口,因此是思维过程的基础支撑结构。在许多复杂的认知活动中起重要作用。 12.生长锥:是指在神经索顶端部分的圆锥形突起构造,三个结构 域是中央区、片状伪足和丝状伪足。在脊椎动物胚的中枢神经或者神经节伸长的神经细胞中常常可以看到。在生长锥上能生出进行波状运动的扇形膜状物。 13.味蕾:味觉感受器。在舌头表面,密集着许多小的突起。这些

神经生物学期末考试复习题-Dec2013

神经生物学期末考试复习题 一单选题 1下列哪些行为状态与篮斑的去甲肾上腺素能神经元活动有关? A.促进随意运动的发起; B.掠夺性攻击和对恐惧认识的降低; C.调节注意力、意识、学习和记忆、焦虑和疼痛、情绪和脑代谢; D.与奖赏、精神紊乱有关。 2下列哪项反应不属于自主神经系统的功能? A.支配心脏和血管以调节血压和血流; B.参与技巧、习惯和行为的记忆形成; C.对生殖器和生殖器官的性反应具有重要作用; D.与机体免疫系统相互作用。 3下列哪项不参与无脊椎动物记忆的神经基础? A.突触传递的修饰可以产生学习和记忆; B.神经的活动转化为细胞内第二信使时,可触发突触修饰; C.现存突触蛋白的改变可以产生记忆; D.长时程增强(LTP)和长时程抑制(LTD)。 4 伤害性感受器是______神经纤维。 A. Aα纤维 B. Aβ纤维 C. Aδ纤维 D. Aδ和C纤维 5下面哪种说法是正确的______ A. 嗅觉感受器细胞是特化的组织细胞; B. 嗅觉感受器的信息转导机制可能只有一种; C. 味觉感受器的信息转导机制可能也只有一种; D. 每种乳突仅对一种基本味觉敏感,具有选择性。 6下面哪种说法不正确_______

A. 脑对脊髓运动的调控通过外侧通路和腹内侧通路; B. 外侧通路控制肢体远端肌肉的随意运动; C. 腹内侧通路控制姿势肌肉的运动; D. 位于脊髓的下运动神经元α运动神经元与γ运动神经元兴奋时都产生肌力。 7 神经元有几个轴突? A 1 B 2 C 3 D 4 8 神经系统来源于哪个胚层? A.内胚层 B.中胚层 C.外胚层 D.内胚层和外胚层 9.人患有腹内侧下丘脑综合症的症状主要包括: A.肥胖; B.消瘦; C.水肿; D.脱水; 10.GABA受体是几聚体? A.二; B. 三; C. 四; D.五 二名词解释 1.交感神经兴奋引起的4F反应:fight,fright,flee,sex 强烈的动员机体,以牺牲机体长时程健康为代价实现短时间的应答 2.边缘系统(limbic system)边缘系统包括边缘叶,相关皮质及皮质下结构。Broca 规定的边缘叶包括围绕脑干和胼胝体的环状结构,包括扣带回,杏仁核,海马,海马旁回,皮质包括额叶脏部,岛叶,颞极。皮质下结构包括杏仁核,海马,上丘,下丘,丘脑前核。功能是嗅觉,内脏,自主神经,内分泌,性,学习,记忆,摄食。

神经生物学 名词解释

受体:能与内源性配基(递质,调质等)或相应药物与毒素等结合,并产生特定效应的细胞蛋白质。按跨膜信息转导分为:受体门控离子通道,G蛋白耦联受体,酶活性受体。 突触:两个神经元之间或神经元与效应器细胞之间相互接触、并借以传递信息的部位。 神经元:高等动物神经系统的结构和功能单位。包括细胞体、轴突和树突。 神经胶质细胞:广泛分布于中枢神经系统内的,除了神经元以外的所有细胞。具有支持、滋养神经元的作用,也有吸收和调节某些活性物质的功能,参与构成血脑屏障。 曲张体:轴突末梢上形成的串珠状的膨大 兴奋性:指可兴奋组织或细胞受到刺激时发生兴奋反应(动作电位)的能力过特性。极化:由于跨膜电位的存在,细胞处于静息状态时的电模型,膜内负膜外正。处于静息状态的细胞,维持正常的新陈代谢,静息电位总是稳定在一定的水平上,对外不显电性。 去极化:去极化是指跨膜电位处于较原来状态下的跨膜电位的绝对值较低的状态。是通过向膜外的电流流动或改变外液的离子成分而产生。 超极化:细胞膜的内部电位向负方向发展,外部电位向正方向发展,使膜内外电位差增大,极化状态加强。 静息电位:指未受刺激时神经元膜内外两侧的电位差。 动作电位:可兴奋组织或细胞受到阈上刺激时,在静息电位基础上发生的细胞膜两侧的电变化。神经元兴奋和活动的标志,是神经信息编码的基本单元,是信息赖以产生、编码、运输、加工和整合的载体。 阈刺激:引起有机体反应的最小刺激 阈电位:当膜电位去极化达到某一临界值时,就出现膜上的Na﹢大量开放,Na﹢大量内流而产生动作电位,膜电位的这个临界值为。 局部电位:细胞受到阈下刺激时,细胞膜两侧产生的微弱电变化。细胞受刺激后去极化未达到阈电位的电位变化。 突触电位:突触传递在突触后神经元中所产生的电位变化,有兴奋性突触后电位和抑制性。 刺激的全或无定理:小于阈值的刺激,机体不反应。增强刺激,就产生固定形态大小的动作电位,跟强的刺激不能产生更大的动作电位。 条件反射:在生活过程中通过一定条件,在非条件反射的基础上建立起来的反射,是高级神经活动的基本调节方式,人和动物共有的生理活动。形成条件反射的基本条件是无关刺激与非条件刺激在时间上的相结合。 牵张反射:指肌肉在外力或自身的其它肌肉收缩的作用下而受到牵拉时,由于本身的感受器受到刺激,诱发同一肌肉产生收缩的一类反射。是脊髓环路所介导的一种最简单的运动反射,它的反射环路仅由2个神经元,即1个肌梭感受神经元和1个运动神经元所构成。 屈肌反射:当肢体皮肤受到伤害性刺激时(如针刺、热烫等),该肢体的屈肌强烈收缩,伸肌舒张,使该肢体出现屈曲反应,以使该肢体脱离伤害性刺激,此种反应称为屈肌反射。 运动单位:一个α运动神经元与其所支配的所有肌纤维就组成了一个完成肌肉收缩活动的基本功能单位。 去大脑僵直:在去大脑僵直动物上可以看到,动物伸肌的张力增大,四肢伸直,头

神经生物学复习提纲2014212版

神经生物学复习提纲 2014 我们的锅版 名词解释10*3 3句话 单选10*2 简答题7*6+1*8 一、名词解释 1.突触后电位 化学突触传递在突触后膜产生的突触反应,表现为膜电位偏离静息电位的变化。根据变化方向和对突触后神经元兴奋性的影响,分为突触后膜去极化形成的兴奋性突触后电位(EPSP)和突触后膜超极化形成的抑制性突触后电位(IPSP)。根据时间参数特征分为快的、慢的和迟慢突触后电位。根据传递级数分为单突触、双突触和多突触的突触后电位。 2.电压门控通道 通过神经元膜电位的改变控制功能状态(开或关)的离子通道,如电压门控钠通道、钾通道、钙通道、氯离子通道及非选择性阳离子通道等。能够通过开关产生跨膜离子电流,是神经电信号产生和传播的基础。 3.耳蜗电位 在安静或给予声音刺激时,耳蜗可产生直流或交流的多种电位,统称耳蜗电位(cochlear potential)。通常耳蜗电位包括微音器电位、总和电位、耳蜗内电位和听神经复合动作电位等。 4.神经-肌肉接头 α运动神经的轴突离开脊髓后直接支配骨骼肌。Α运动神经元的轴突是有髓纤维,它们在到达肌肉前先脱去髓鞘,以裸露的轴突末梢嵌入到肌细胞膜上称为终板的凹陷中,从而与肌细胞形成突触联系。这种神经与肌肉之间的突触结构成为神经-肌肉接头。接头中神经元的轴突末梢与肌肉终板不直接联系,而被充满细胞外液的接头间隙隔开。终板有规则地向细胞内凹入,形成许多褶皱。 5.G蛋白耦联受体 通过与GTP结合蛋白相互作用而发挥效应的受体。该类受体特点为,在与激动剂结合后,之后通过G蛋白转导,才能将信号传递至效应器。在结构上均由单一的多肽链构成,形成7次跨膜结构。由配体结合域和G蛋白结合域组成。 6.高尔基腱器官 高尔基腱器官(Golgi tenden organ)是肌肉张力变化的感受装置,与梭外肌串联排列。分布于肌腹与肌腱的连接处。其结构与肌梭相似,亦呈梭形,表面被结缔组织的被囊所包裹,囊内有数根腱纤维束,也有1--2条感觉神经末梢分布于腱纤维束上。 腱器官的传入冲动对支配同一肌纤维的α运动神经元起抑制作用。主要功能是对肌肉主动收缩的张力信息进行编码。 7.光致超极化 光致超级化是光感受器的换能机制。是光照引起感受器细胞超级化效应的过程。存在于外段膜上的视紫红质被光照激活后,视蛋白构象改变激活G蛋白,继而激活磷酸二酯酶(PDE), cGMP水解,钠通道关闭导致超极化。 8.关键期 发育命运受环境影响的一个特定时期或细胞间通讯能改变细胞命运的一段

相关文档
最新文档