PCB 平面变压器漏感与自互感精确仿真间的关系

PCB 平面变压器漏感与自互感精确仿真间的关系
PCB 平面变压器漏感与自互感精确仿真间的关系

变压器电压互感器电流互感器使用知识汇编

变压器、电压互感器、电流互感器使用知识汇编 (031):主变差动与瓦斯保护的作用有哪些区别??答:1)主变差动保护是按循环电流原理设计制造的,而瓦斯保护是根据变压器内部故障时会产生或分解出气体这一特点设计制造的。 2)差动保护为变压器的主保护,瓦斯保护为变压器内部故障时的主保护。 3)保护范围不同:A差动保护:?1)主变引出线及变压器线圈发生多相短路。?2)单相严重的匝间短 3)在大电流接地系统中保护线圈及引出线上的接地故障。 B瓦斯保护: 1)变压器内部多相短路 2)匝间短路,匝间与铁芯或外及短路 3)铁芯故障(发热烧损)?4)油面下将或漏油。?5)分接开关接触不良或导线焊接不良。?(032):主变冷却器故障如何处理??答:1)当冷却器I、II段工作电源失去时,发出“#1、#2电源故障“信号,主变冷却器全停跳闸回路接通,应立即汇报调度,停用该套保护。 2)运行中发生I、II段工作电源切换失败时,“冷却器全停”亮,这时主变冷却器全停跳闸回路接通,应立即汇报调度停用该套保护,并迅速进行手动切换,如是KM1、KM2故障,?不能强励磁。?3)当冷却器回路其中任何一路故障,将故障一路冷却器回路隔离。 (033):开口杯档板式瓦斯继电器工作原理? 答:正常时,瓦斯继电器开口杯中充满油,由于油自身重力产生力矩小

于疝气重力产生的力矩,开口杯,使的触点处于开断位置。当主变发生轻微故障时,气体将到瓦斯继电器,?迫使油位下降,使开口杯随油面 034):不符合并列下将,使触点接通,发出“重瓦斯动作“信号。?( 运行条件的变压器并列运行会产生什么后果??答:当变比不相同而并列运行时,将会产生环流,影响变压器的出力,如果是百分阻抗不相符而并列运行,就不能按变压器的容量比例分配负荷,也会影响变压器的出力。接线组 别不相同并列运行时,会使变压器短路。 (035):两台变压器并列运行应满足的条件是什么??答: 两台变压器并列运行应满足下列条件:a)绕组结线组别相同;b)电压比相等;c)阻抗电压相等;d)容量比不超过3:1。 40,在什么情况下需将运行中的变压器差动保护停用??答:变压器在运行中有以下情况之一时将差动保护停用: 1)差动二次回路及电流互感器回路有变动或进行校验时。?2) 继电保护人员测定差动保护相量图及差压时。 3) 差动电流互感器一相断线或回路开路时。?4) 差动回路出现明显异常现象时。 5)差动保护误动跳闸后。?(036):变压器除额定参数外的四个主要数据是什么??短路损耗、空载损耗、阻抗电压、空载电流。?(037):自耦变压器的中性点为什么必须接地? 运行中自耦变压器的中性点必须接地,因为当系统中发生单相接地故障时,如果自耦变压器的中性点没有接地,就会使中性点

电流互感器的分类及功能

测量用电流互感器 测量用电流互感器(或电流互感器的测量绕组。在正常工作电流范围内,向测量、计量等装置提供电网的电流信息。 测量用电流互感器主要与测量仪表配合,在线路正常工作状态下,用来测量电流、电压、功率等。 测量用微型电流互感器主要要求: 1、绝缘可靠; 2、足够高的测量精度; 3、当被测线路发生故障出现的大电流时互感器应在适当的量程内饱和(如500%的额定电流)以保护测量仪表; 保护用电流互感器 保护用电流互感器(或电流互感器的保护绕组。在电网故障状态下,向继电保护等装置提供电网故障电流信息。 保护用电流互感器主要与继电装置配合,在线路发生短路过载等故障时,向继电装置提供信号切断故障电路,以保护供电系统的安全。保护用微型电流互感器的工作条件与测量用互感器完全不同,保护用互感器只是在比正常电流大几倍几十倍的电流时才开始有效的工作。 保护用互感器主要要求: 1、绝缘可靠; 2、足够大的准确限值系数; 3、足够的热稳定性和动稳定性; 保护用互感器在额定负荷下能够满足准确级的要求最大一次电流叫额定准确限值一次电流。准确限值系数就是额定准确限值一次电流与额定一次电流比。当一次电流足够大时铁芯就会饱和起不到反映一次电流的作用,准确限值系数就是表示这种特性。保护用互感器准确等级5P、10P。 互感器分为电压互感器和电流互感器两大类测量用电压互感器(或电压互感器的测量绕组。在正常电压范围内,向测量、计量装置提供电网电压信息。 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有 10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供

电流互感器使用注意事项

电流互感器使用注意事项 主要注意下面七个方面 1)电流互感器的接线应遵守串联原则 即一次绕阻应与被测电路串联 而二次绕阻则与所有仪表负载串联。 2)按被测电流大小 选择合适的变化 否则误差将增大。同时 二次侧一端必须接地 以防绝缘一旦损坏时 一次侧高压窜入二次低压侧 造成人身和设备事故 3)二次侧绝对不允许开路 因一旦开路 一次侧电流I1全部成为磁化电流 引起φm和E2骤增 造成铁心过度饱和磁化 发热严重乃至烧毁线圈;同时 磁路过度饱和磁化后 使误差增大。电流互感器在正常工作时 二次侧近似于短路 若突然使其开路 则励磁电动势由数值很小的值骤变为很大的值 铁芯中的磁通呈现严重饱和的平顶波 因此二次侧绕组将在磁通过零时感应出很高的尖顶波 其值可达到数千甚至上万伏 危机工作人员的安全及仪表的绝缘性能。 另外 二次侧开路使E2达几百伏 一旦触及造成触电事故。因此 电流互感器二次侧都备有短路开关 防止一次侧开路。如图l中K0 在使用过程中 二次侧一旦开路应马上撤掉电路负载 然后 再停车处理。一切处理好后方可再用。 4)为了满足测量仪表、继电保护、断路器失灵判断和故障录波等

装置的需要 在发电机、变压器、出线、母线分段断路器、母联断路器、旁路断路器等回路中均设具有2 8个二次绕阻的电流互感器。对于大电流接地系统 一般按三相配置;对于小电流接地系统 依具体要求按二相或三相配置 5)对于保护用电流互感器的装设地点应按尽量消除主保护装置的不保护区来设置。例如 若有两组电流互感器 且位置允许时 应设在断路器两侧 使断路器处于交叉保护范围之中 6)为了防止支柱式电流互感器套管闪络造成母线故障 电流互感器通常布置在断路器的出线或变压器侧。 7)为了减轻发电机内部故障时的损伤 用于自动调节励磁装置的电流互感器应布置在发电机定子绕组的出线侧。为了便于分析和在发电机并入系统前发现内部故障 用于测量仪表的电流互感器宜装在发电机中性点侧。

史上最全的变压器及互感器知识汇总

史上最全的变压器及互感器知识汇总 云回路| 2016-03-01 17:58 上万电气人已关注云回路公众号↑↑↑ 变压器型号含义 干式变压器: 例如,(SCB10-1000KVA/10KV/0.4KV): S的意思表示此变压器为三相变压器,如果S换成D则表示此变压器为单相。 C的意思表示此变压器的绕组为树脂浇注成形固体。 B的意思是箔式绕组,如果是R则表示为缠绕式绕组,如果是L则表示为铝绕组,如果是Z则表示为有载调压(铜不标)。 10的意示是设计序号,也叫技术序号。 1000KVA则表示此台变压器的额定容量(1000千伏安)。 10KV的意思是一次额定电压,0.4KV意思是二次额定电压。 电力变压器产品型号其它的字母排列顺序及涵义。 (1)绕组藕合方式,涵义分:独立(不标);自藕(O表示)。 (2)相数,涵义分:单相(D);三相(S)。 (3)绕组外绝缘介质,涵义分;变压器油(不标);空气(G):气体(Q);成型固体浇注式(C):包绕式(CR):难燃液体(R)。 (4)冷却装置种类,涵义分;自然循环冷却装置(不标):风冷却器(F):水冷却器(S)。(5)油循环方式,涵义:自然循环(不标);强迫油循环(P)。 (6)绕组数,涵义分;双绕组(不标);三绕组(S);双分裂绕组(F)。 (7)调压方式,涵义分;无励磁调压(不标):有载调压抑(Z)。 (8)线圈导线材质,涵义分:铜(不标);铜箔(B);铝(L)铝箔(LB)。(9)铁心材质,涵义;电工钢片(不标);非晶合金(H)。 (10)特殊用途或特殊结构,涵义分;密封式(M);串联用(C);起动用(Q);防雷保护用(B);调容用(T);高阻抗(K)地面站牵引用(QY);低噪音用(Z);电缆引出(L);隔离用(G);电容补偿用(RB);油田动力照明用(Y);厂用变压器(CY);全绝缘(J);同步电机励磁用(LC)。 一、电力变压器型号说明如下: 变压器的型号通常由表示相数、冷却方式、调压方式、绕组线芯等材料的符号,以及变压器容量、额定电压、绕组连接方式组成。请问下列电力变压器型号代号含义是什么? 变压器型号 一、电力变压器型号说明如下: 变压器的型号通常由表示相数、冷却方式、调压方式、绕组线芯等材料的符号,以及变压器容量、额定电压、绕组连接方式组成。请问下列电力变压器型号代号含义是什么? D S J L Z SC SG JMB YD BK(C) DDG D-单相S-三相J-油浸自冷L-绕组为铝线Z-又载调压SC-三相环氧树脂浇注 SG-三相干式自冷JMB-局部照明变压器YD-试验用单相变压器BF(C) -控制变压器(C为C型铁芯结构)DDG-单相干式低压大电流变压器 表1:变压器的型号和符号含义 型号中符号排列顺序含义代表符号 内容类别

电流互感器的分类方法

互感器分为电压互感器和电流互感器两大类。电压互感器可在高压和朝高压的电力系统中用于电压和功率的测量等。电流互感器可用在交换电流的测量、交换电度的测量和电力拖动线路中的保护。 电压互感器 按用途分 测量用电压互感器或电压互感器的测量绕组:在正常电压范围内,向测量、计量装置提供电网电压信息; 保护用电压互感器或电压互感器的保护绕组:在电网故障状态下,向继电保护等装置提供电网故障电压信息。 按绝缘介质分 干式电压互感器:由普通绝缘材料浸渍绝缘漆作为绝缘,多用在及以下低电压等级; 浇注绝缘电压互感器:由环氧树脂或其他树脂混合材料浇注成型,多用在及以下电压等级; 油浸式电压互感器:由绝缘纸和绝缘油作为绝缘,是我国最常见的结构型式,常用于及以下电压等级; 气体绝缘电压互感器:由气体作主绝缘,多用在较高电压等级。 通常专供测量用的低电压互感器是干式,高压或超高压密封式气体绝缘(如六氟化硫)互感器也是干式。浇注式适用于35kV及以下的电压互感器,35kV以上的产品均为油浸式。 按相数分 绝大多数产品是单相的,因为电压互感器容量小,器身体积不大,三相高压套管间的内外绝缘要求难以满足,所以只有3-15kV的产品有时采用三相结构。 按电压变换原理分 电磁式电压互感器:根据电磁感应原理变换电压,原理与基本结构和变压器完全相似,我国多在及以下电压等级采用; 电容式电压互感器:由电容分压器、补偿电抗器、中间变压器、阻尼器及载波装置防护间隙等组成,用在中性点接地系统里作电压测量、功率测量、继电防护及载波通讯用; 光电式电压互感器:通过光电变换原理以实现电压变换,还在研制中。

艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有 10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。 如需进一步了解相关互感器产品的选型,报价,采购,参数,图片,批发等信息,请关注艾驰商城https://www.360docs.net/doc/b112222485.html,。

如何正确选择及使用电流互感器

浅谈如何正确选择及使用电流互感器 1.前言 近几年来,随着我国电力工业中城网及农网的改造,以及供电系统的自动化程度不断提高,电流互感器作为电力系统的一种重要电气设备,已被广泛地应用于继电保护、系统监测和电力系统分析之中。电流互感器作为一次系统和二次系统间联络元件,起着将一次系统的大电流变换成二次系统的小电流,用以分别向测量仪表、继电器的电流线圈供电,正确反映电气设备的正常运行参数和故障情况,使测量仪表和继电器等二次侧的设备与一次侧高压设备在电气方面隔离,以保证工作人员的安全。同时,使二次侧设备实现标准化、小型化,结构轻巧,价格便宜,便于屏内安装,便于采用低压小截面控制电缆,实现远距离测量和控制。当一次系统发生短路故障时,能够保护测量仪表和继电器等二次设备免受大电流的损害。下面就有关电流互感器的选择和使用作一浅薄探讨,以飨各位读者朋友。 2电流互感器的原理 互感器,一般W1≤W2,可见电流互流感器为一“变流”器,基本原理与变压器相同,工作状况接近于变压器短路状态,原边符号为L1、L2,副边符号为K1、K2。互感器的原边串接入主线路,被测电流为I1,原边匝数为W1,副边接内阻很小的电流表或功率表的电流线圈,副边电流为I2,副边匝数为W2。原副边电磁量及规定正方向由电工学规定。 由原理可知,当副边开路时,原边电流I1中只有用来建立主磁通Φm的磁化电流I0,当副边电流不等于零时,则产生一个去磁磁化力I2W1,它力图改变Φm,但U1一定时,Φm是基本不变的,即保持I0W1不变,因为I2的出现,必使原边电流Il增加,以抵消I2W2的去磁作用,从而保证I0W1不变,故有:I1W1=I0W1+(-I2W2) (1) 即I0=I1+W2I2/W1 (2) 在理想情况下,即忽略线圈的电阻,铁心损耗及漏磁通可得: I1W1=-I2W2 有:Il/I2=-W2/W1 3 电流互感器的选择 3.1 电流互感器选择与检验的原则 1)电流互感器额定电压不小于装设点线路额定电压; 2)根据一次负荷计算电流IC选择电流互感器变化; 3)根据二次回路的要求选择电流互感器的准确度并校验准确度; 4)校验动稳定度和热稳定度。 3.2 电流互感器变流比选择 电流互感器一次额定电流I1n和二次额定电流I2n之比,称为电流互感器的额定变流比,Ki=I1n/I2n ≈N2/N1。 式中,N1和N2为电流互感器一次绕组和二次绕组的匝数。 电流互感器一次侧额定电流标准比(如20、30、40、50、75、100、150(A)、2Xa/C)等多种规格,二次侧额定电流通常为1A或5A。其中2Xa/C表示同一台产品有两种电流比,通过改变产品顶部储油柜外的连接片接线方式实现,当串联时,电流比为a/c,并联时电流比为2Xa/C。一般情况下,计量用电流互感器变流比的选择应使其一次额定电流I1n不小于线路中的负荷电流(即计算IC)。如线路中负荷计算电流为350A,则电流互感器的变流比应选择400/5。保护用的电流互感器为保证其准确度要求,可以将变比选得大一些。 表1 电流互感器准确级和误差限值 3.3 电流互感器准确度选择及校验 所谓准确度是指在规定的二次负荷范围内,一次电流为额定值时的最大误差。我国电流互感器的准确度和误差限值如表1所示,对于不同的测量仪表,应选用不同准确度的电流互感器。

变压器与低压断路器、互感器及母线等配合

10/0.4kV变压器与低压断路器、互感器及母线等配合表 变压器容量S e (kVA) 阻抗 电压 U k% 额定电流(A) 低压出口短 路电流(kA) 总出线断 路器额定 电流(A) 互感器 变比 (A) 变压器低压侧出线选择中性点接地线 母线槽 (A) 铜母线(TMY-)规格YJV电缆规格铜母线 镀锌 扁钢高压侧低压侧I p I k 160 4 9.2 231 14.7 5.77 250 300/5 —4(40?4) 3?150+1?7015?325?4 200 4 11.5 289 18.4 7.22 315 400/5 —4(40?4)3?185+1?9515?325?4 250 4 14.5 361 22.95 9.00400 500/5 630 4(40?4)3?300+1?15015?340?4 315 4 18.2 455 28.92 11.34500 650/5 630 4(50?4) 2(3?150)+1?7020?340?4 400 4 23.1 578 36.72 14.40630 800/5 800 4(63?6.3) 2(3?185)+1?9520?340?4 500 4 28.9 723 45.90 18.00800 800/5 1000 3(80?6.3)+1(63?6.3) 3?2(1?240)+1(1?240)25?340?5 630 4 36.4 910 57.83 22.681000 1000/5 1250 3(80?8)+1(63?6.3) 3?2(1?300)+1(1?300)25?350?5 800 6 46.2 1156 48.96 19.201250 1500/5 1600 3(100?8)+1(80?6.3) 3?4(1?150)+2(1?150)30?450?5 1000 6 57.8 1445 61.20 24.001600 2000/5 2000 3(125?10)+1(80?8) 3?4(1?240)+2(1?240)30?450?5 1250 6 72.3 1806 76.50 30.002000 2500/5 2500 3[2(100?10)]+1(100?10) 3?4(1?300)+2(1?300)30?463?5 1600 6 92.5 2312 97.92 38.40 2500 3000/5 3150 3[2(125?10)]+1(125?10) —40?4 80?5 2000 6 115.6 2890 122.4 48.00 3200 4000/5 4000 3[2(125?10)]+1(125?10) —40?4 100?5 2500 6 144.5 3613 153.0 60.00 4000 4000/5 5000 3[3(125?10)]+1(125?16) —40?580?8

电流互感器设计实例

电流互感器设计实例 作为磁性元件设计的最后一部分内容,我们将设计一个电流互感器。使用电流互感器可以减小测量变换器原边电流时的损耗。 电流互感器与一般的电压变压器的区别在什么地方呢?这个问题即使是资深的磁性元件设计人员也很难回答。基本的区别在于:变压器试图把电压从原边变换到副边,而电流互感器试图把电流从原边变换到副边。电流互感器的电压大小由负载决定。 我们通过一个实际的设计例子,可以更好地理解电流互感器的工作原理。 假设用电流互感器测量变换器的原边电流,原边10A电流对应1V电压。当然,我们可以用一个1V/10A=100mΩ的电阻来测量,但是电阻将造成的损耗为1V×10A=10W,这么大的损耗对几乎所有的设计来说都是不能接受的。所以,要选用电流互感器,如图5-26所示。 当然,为了减少绕组电阻,我们把原边的匝数取为1匝,同时为了使电流降到一个比较低的水平,副边匝数应该比较多。如果副边匝数为N,由欧姆定律可得(10/N)R=1V,在电阻中消耗的功率为P=(1V)2/R。我们假设消耗的功率为50mW(也就是说,我们可以使用100mW规格的电阻),这就要求R不得小于20Ω,如果采用20Ω的电阻,由欧姆定律可得副边匝数N=200。 现在我们来看磁芯,假设二极管是普通的一般的二极管,通态电压大约为1V,电流为10A/200=50mA。互感器输出电压为1V,加上二极管的通态电压1V,总电压大约2V。2 50kHz频率工作时,磁芯上的磁感应强度不会超过 可以很小,由于原边流过电流的时间不可能超过开关周期(否则,磁芯无法复位)。因此A e 而B也不会很大。这个例子里磁芯的尺寸不能通过损耗要求或磁通饱和要求来确定,更大的可能是由原副边之间的隔离电压来确定。如果隔离电压没有要求,磁芯的大小一般由2 00匝的绕组所占体积来确定。你可以用40号的导线流过500mA的峰值电流,但是这种导线实在太细,一般的变压器厂家不会为你绕制。 实用提示除非一定要用,一般情况下不要使用规格小于36号线的导线。 现在我们来分析为什么不能用电压变压器来替代电流互感器?已经知道副边电压只有2V,因此原边电压为2V/200=100mV。如果输入直流电压为48V,那么电流互感器原边10 mV电压对48V电压来说是微不足道的——那样你可以在副边得到50mA的电流,而对原边几乎没有什么影响。假设另一种情况(不现实的),原边的输入直流电压只有5mV,那么互感器的原边不可能有10mV的电压,同时由于原边阻抗(如反射副边阻抗)也比较大,决定了副边根本不可能产生50mA的电流。即使整个5mV电压全部加在原边,副边也只能产生200×5mV=1V的电压:不能在转换电阻上产生足够的电压。因此,电压变压器只能用作变压器,不能用来检测电流。

平面变压器的技术分析

平面变压器的技术分析 中心议题:平面变压器的特性研究平面变压器的插入技术平面变压器的标准化设计 解决方案:使变压器中磁性能量储存的空间减少,导致漏感的减少使电流传输过程中在导体上理想分布,导致交流阻抗的减少绕组间更好的耦合作用,导致更低的漏感 磁性元件的设计是开关电源的重要部分,因为平面变压器在提高开关电源的特性方面有着很大的优势,因此近年来得到了广泛的应用。对于一个理想的变压器来说,初级线圈所产生的磁通都穿过次级线圈,即没有漏磁通。而对普通变压器来说,初级线圈所产生的磁通并非都穿过次级线圈,于是就产生了漏感,电磁耦合的紧密要求也无法满足。而平面变压器只有一匝网状次级绕组,这一匝绕组也不同于传统的漆包线,而是一片铜皮,贴绕在多个同样大小的冲压铁氧体磁芯表面上。所以,平面变压器的输出电压取决于磁芯的个数,而且平面变压器的输出电流可以通过并联进行扩充,以满足设计的要求。因此,平面变压器的特点就显而易见了:平面绕组的紧密耦合使得漏感大大地减小;平面变压器特殊的结构使得它的高度非常的低,这使变换器做在一个板上的设想得到实现。但是,平面结构存在很高的容性效应等问题,大大限制了它的大规模使用,不过,这些缺点在某些应用中,也有可能转换为一种优点。另外,平面的磁芯结构增大了散热面积,有利于变压器散热。1平面变压器的特性研究如前所述,平面变压器的优点主要集中在较低的漏感值和交流阻抗。绕组问的间隙越大意味着漏感越大,也就产生更高的能量损失。平面变压器利用铜箔与电路板间的紧密结合,使得在相邻的匝数层间的间隙非常的小,因此能量损耗也就很小了。在平面型变压器里,其“绕组”是做在印制电路板上的扁平传导导线或是直接用铜泊。扁平的几何形状降低了开关频率较高时趋肤效应的损耗,也就是涡流损耗。因此,能最有效地利用铜导体的表面导电性能,效率要比传统变压器高得多。图1给出了一个平面变压器的剖面图,并且利用两层绕组间距离的不同,而获得在不同间隙下的漏感和交流阻抗值。图2与图3给出了在不同的间隙下漏感和交流阻抗的变化,可以明显地看出间隙越大,漏感越大,交流阻抗越小。在间隙增加1mm的状况下漏感值增加了5倍之多。因此,在满足电气绝缘的情况下,应该选用最薄的绝缘体来获得最小的漏感值。然而,容性效应在平面变压器中是非常重要的,在印制电路板上紧密绕制的导线使得容性效应非常的明显。而且绝缘材料的选取对容性值也有着非常大的影响,绝缘材料的介电常数越高,变压器的容性值越高。而容性效应会引起EMI,因为从初级到次级的绕组中只有容性回路的绕组传播这种干扰。为了验证,笔者做了一个试验,在铜导线的间隙增加O.2mm的情况下,而电容值就减少了20%。因此,如果需要一个比较低的电容值,则必须在漏感和电容值之间做出一个折中的选择。2插入技术插入技术是指在布置变压器原、副边绕组时,使原边绕组与副边绕组交替放置,增加原、副边绕组的耦合以减小漏感,同时使得电流平均分布,减小变压器损耗。现在插入技术的研究被分为两个方面,即应用于变压器的插入(正激电路)和应用于连接电感器的插入(反激电路)。因此,插入技术现在已经被放在不同的拓扑中作为不同的磁性部件来研究。2.1应用于平面变压器的插入技术应用于变压器中的插入技术的主要优点如下:1)使变压器中磁性能量储存的空间减少,导致漏感的减少;2)使电流传输过程中在导体上理想分布,导致交流阻抗的减少;3)绕组间更好的耦合作用,导致更低的漏感。为了说明插入技术的特征,图4给出了应用3种不同插入技术的结构,P代表初级绕组,s代表次级绕组。试验显示SPSP结构是最好的,因为初级和次级的绕组都是间隔插人的。图5显示了在500kHz时,3种结构的交流阻抗和漏感值,通过比较可以很容易地发现应用了插入技术的变压器,交流阻抗和漏感值都有了很大的减少。2.2多绕组变压器中平面结构的优势平面变压器另一个重要的优点是高度很低,这使得在磁芯上可以设置比较多的匝数。一个高功率密度的变换器需要一个体积比较小的磁性元件,平面变压器很好地满足了这一要求。例如,在多绕组的变压器中需要非常多的匝数,如

电流互感器如何按照绝缘介质分类

干式电流互感器。由普通绝缘材料经浸漆处理作为绝缘。 浇注式电流互感器。用环氧树脂或其他树脂混合材料浇注成型的电流互感器。 油浸式电流互感器。由绝缘纸和绝缘油作为绝缘,一般为户外型。当前中国在各种电压等级均为常用。 气体绝缘电流互感器。主绝缘由气体构成。 按电流变换原理分 电磁式电流互感器。根据电磁感应原理实现电流变换的电流互感器。 光电式电流互感器。通过光电变换原理以实现电流变换的电流互感器。 按安装方式分 贯穿式电流互感器。用来穿过屏板或墙壁的电流互感器。 支柱式电流互感器。安装在平面或支柱上,兼做一次电路导体支柱用的电流互感器。 套管式电流互感器。没有一次导体和一次绝缘,直接套装在绝缘的套管上的一种电流互感器。 母线式电流互感器。没有一次导体但有一次绝缘,直接套装在母线上使用的一种电流互感器。 按原理分为电磁感应式和电容分压式两类。 电磁感应式多用于220kV及以下各种电压等级。电容分压式一般用于110kV以上的电力系统,330~765kV超高压电力系统应用较多。电压互感器按用途又分为测量用和保护用两类。对前者的主要技术要求是保证必要的准确度;对后者可能有某些特殊要求,如要求有第三个绕组,铁心中有零序磁通等。 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。

电流互感器接线原理及使用注意事项

龙源期刊网 https://www.360docs.net/doc/b112222485.html, 电流互感器接线原理及使用注意事项 作者:王平东 来源:《商品与质量·学术观察》2013年第09期 摘要:本文对电流互感器的结构原理、接线原则及使用注意事项进行了详细分析,为实际工作提供了可靠的参考依据。 关键词:电流互感器结构原理接线原则注意事项 为了保证电力系统安全经济运行,必须对电力设备的运行情况进行监视和测量,但一般的测量和保护装置不能直接接入一次高压设备,需要将一次系统的大电流按比例变换成小电流,供给测量仪表和保护装置使用。 在测量交变电流的大电流时,为便于二次仪表测量,需要转换为比较统一的电流(我国规定电流互感器的二次额定为5A或1A),另外线路上的电压都比较高,如直接测量是非常危 险的,电流互感器就起到变流和电气隔离作用,它是电力系统中测量仪表、继电保护等二次设备获取电气一次回路电流信息的传感器。电流互感器将高电流按比例转换成低电流,电流互感器一次侧接在一次系统,二次侧接测量仪表、继电保护等。 电气调试是电力工作中一项重要的内容,在电气调试工作中,二次回路检查又是一项重要的调试内容,它是关系到电力系统的测量、保护、通讯等功能能否发挥作用的前提。在二次回路中,电流互感器的接线是否正确又是电流二次回路是否正确的基础,所以电流互感器的接线正确性非常重要。很多电气调试人员对它没有深刻的理解,经常搞错,造成诸如差动保护误动作、电度表反转等。下面对这个问题做一个全面、细致的论述。 1、电流互感器结构原理 电流互感器的结构较为简单,由相互绝缘的一次绕组、二次绕组、铁心以及构架、壳体、接线端子等组成。其工作原理与变压器基本相同,一次绕组的匝数(N1)较少,直接串联于 电源线路中,一次负荷电流(L1)通过一次绕组时,产生的交变磁通感应产生按比例减小的二次电流(L2);二次绕组的匝数(N2)较多,与仪表、继电器、变送器等电流线圈的二次负荷(Z)串联形成闭合回路,见图1。 图1 电流互感器结构原理图 由于一次绕组与二次绕组有相等的安培匝数,I1N1=I2N2,电流互感器额定电流比。电流互感器实际运行中负荷阻抗很小,二次绕组接近于短路状态,相当于一个短路运行的变压器。 2、电流互感器的接线原则

平面变压器在电源中的设计应用

平面变压器在电源中的设计应用 文章通过对平面变压器所具有的特点进行系统的分析,并且结合在电源中的一些实例,从而进一步探讨平面变压器设计和实际应用等问题。 标签:平面变压器;开关电源;集肤效应 前言 现代的工作和生活对许多电子产品提出了小型化的要求。而作为电子产品工作的能源-开关电源是必不可少的。特别是功率较大的电子产品,电源部分占据了较大的体积和重量,。而在在开关电源中,磁性器件大概占到开关电源体积和重量的30%-40%。降低磁性器件的体积和重量就显得尤为重要。平面变压器具有体积小,功率密度高刚好能满足这些要求。因此,平面变压器取代传统变压器是开关电源发展的一个趋势。 1 平面的绕组特点 平面变压器绕线方式就是借鉴了印制电路板的形成方式,平面变压器具有很多优点。下面我们就对其特点进行分析,第一,平面变压器绕线方式就是借鉴了印制电路板的形成方式,使用这种方式对其进行生产,实际效率相对较高;第二,平面变压器的实际绕组参数是统一的,相对的离散性比较小;第三,平面变压器使用的是高性能的绝缘材料,使压层、线圈之间的保持良好的绝缘性;第四,其实际的引脚的位置可以根据实际需要进行自由分配,局限性相对较小,数量上也能够随之进行增减;第五,能够将集肤效应降到最低;第六,其相对的物理结构相当密实,线圈的固化结构也非常紧密、不需要使用支架进行绕线,自激振荡性小,相对能量的损耗也较小;第七,还能与控制应用模板进行统一的设计和装配。由于平面变压器是一种新型的技术,不管是在理论上、材料的性能上、电能的性能指标、实际体积等众多方面有一定的提升和创新。 2 实际应用 我们在平面变压器电源中的可行性实验里,使用文中提到的理论依据进行研究,从而进行了一系列工程化的工作,其平面变压器的电源有很多种不同的设计。 以320VDC/12VDC 25A变换器为例,对比常规变压器以及平面变压器。将双管反激电路作为主电路,将开关频率黄蓉胡阳 设置为100千赫,借助普通高频变压器的设计方案,联合应用两个EI33型磁芯,设计30匝原边,使用0.81毫米直径的漆包线作为绕组,2匝副边,0.3毫米铜皮的绕组,将2层使用并联的方式。 EI-33型磁芯參数具体为:有效截面积(Ae)为118mm2;有效磁路长度(Le)

电流互感器分类及原理

1、电流互感器(Current Transformer,CT) 电力系统电能计量和保护控制的重要设备,是电力系统电能计量、继电保护、系统诊断与监测分析的重要组成部分,其测量精度、运行可靠性是实现电力系统安全、经济运行的前提。目前在电力系统中广泛应用的是电磁式电流互感器。 2、电流互感器国标(GB 1208-87S) 1)准确级:以该准确级在额定电流下所规定的最大允许电流误差百分数标称。 2)测量用电流互感器的标准准确级有:0.1、0.2、0.5、1、3、5; 特殊要求的电流互感器的准确级有:0.2S和0.5S; 保护用电流互感器准确级有:5P和10P两级。 3、电磁式电流互感器 1)原理: 一次线圈串联于被测电流线路中,二次线圈串接电流测量设备,一二次侧线圈绕在同一铁芯上,通过铁芯的磁耦合实现一次二次侧之间的电流传感过程。一二次侧线圈之间以及线圈与铁芯之间要采取一定的绝缘措施,以保证一次侧与二次侧之间的电气隔离。根据应用场合以及被测电流大小的不同,通过合理改变一二次侧线圈匝数比可以将一次侧电流值按比例变换成标准的1A或5A电流值,用于驱动二次侧电器设备或供测量仪表使用。 2)缺点: ①.绝缘要求复杂,体积大,造价高,维护工作量大; ②.输出端开路产生的高电压对周围人员和设备存在潜在的威胁; ③.固有的磁饱和、铁磁谐振、动态范围小、频率响应范围窄; ④.输出信号不能直接和微机相连,难以适应电力系统自动化、数字化的发展趋势。 4、电子式电流互感器 1)特征: ①.可以采用传统电流互感器、霍尔传感器、空心线圈(或称为Rogowski coils)或光学装置 作为一次电流传感器,产生与一次电流相对应的信号; ②.可以利用光纤作为一次转换器和二次转换器之间的信号传输介质; ③.二次转换器的输出可以是模拟量电压信号或数字量。 2)分类 (1)按传感原理的不同划分:光学电流互感器和光电式电流互感器 I、光学电流互感器(Optical Current Transformer,简称OCT) 原理:传感器完全基于光学技术和光学器件来实现。 II、光电式电流互感器(Opto-Electronic Current Transformer,简称OECT) 原理:传感部分采用电子器件而信号的传输采用光学器件和光学技术,是光电子技术的结合。 (2)按传感侧是否需要电源划分:无源型电流互感器和有源型电流互感器 I、无源型电流互感器:光学电流互感器的传感和传输部分均采用无源光学器件,其利用Farady 磁光效应,传感和传输信号都是来自二次侧的光信号,一次侧不需要额外能量供给。因此光学电流互感器属于无源型电流互感器。 II、有源型电流互感器:一种基于传统电流传感原理、采用有源器件调制技术、由光纤将高压端转换得到的光信号传送到低压端解调处理并得到被测电流信号的新型电流互感器、由于其电路

电流互感器工作原理

电流互感器 1、原理 一次电流I 1流过一次绕组,建立一次磁动势 (N 1I 1),亦被称为一次安匝,其中N 1为一次绕组的匝数;一次磁动势分为两部分,其中小一部分用于励磁,在铁心中产生磁通,另一部分用来平衡二次磁动势(N 2I 2),亦被称为二次安匝,其中N 2为二次绕组的匝数。励磁电流设为I 0,励磁磁动势(N 1I 0),亦被称为励磁安匝。平衡二次磁动势的这部分一次磁动势,其大小与二次磁动势相等,但方向相反。磁势平衡方程式如下: 120121I N I N I N ? ? ? += 在理想情况下,励磁电流为零,即互感器不消耗能量,则有 12120I N I N ? ? += 若用额定值表示,则 1212 N N I N I N ? ? =- 其中1N I ? ,2N I ? 为一次、二次绕组额定电流。

额定一次、二次电流之比为电流互感器额定电流比,12N N N I K I = P 1 1I ? P 2 2 I ? Z B 电流互感器工作原理 E 2 11I N ? 22I N ? 22I N ? - 01I N ?

电流互感器的等值电路如下图所示: Z 1 Z 2 1 I ? 2I ? ? Z M 2U ? Z B ' 1 E ? 2E ? 根据电工原理,励磁电流在铁心中建立主磁通,它穿过一次、二次绕组的全部线匝。由于互感器铁心有磁滞和涡流损耗,励磁电流的一部分供给这些损耗,称为有功部分,另一部分用于励磁,称为无功部分。所以励磁电流与主磁通相差角,这个角称为铁损角。主磁通在二次绕组中感应出电动势2E ? ,相位相差90(滞后);则: 222()B E I Z Z ? ? =+ 式中 Z 2---二次绕组的内阻抗, Z 2= R 2 +jX2

电力变压器电流互感器的探讨

电力变压器电流互感器的探讨 【摘要】本文介绍了电流互感器过电压保护装置内部结构和工作运行原理,并对改进其运行过程中的安全性提出了有效对策和建议,以期为行业技术人员提供有益指导经验和借鉴。 【关键词】电流互感器;过电压保护装置;电力系统;应用 前言 电流互感器在电力系统中具有广泛的应用空间,例如电流、电压的一次测量、计量和回路安全保护等,都需要发挥其的功能作用。电力系统在正常运转过程中,电流互感器电阻值低于正常值,电流互感器此时类似于一个短路,电压较低。互感器在在运行过程中,二次绕组如果形成通路或者经过一次绕组的电压过大,就会在电力回路中形成数千伏的高压电压,这会严重损害二次系统的绝缘系统,甚至还会对互感器产生严重的毁坏。为了防止电力系统运行出现各种安全事故,保证工作人员生命安全,最近几年来开始研发一种全新的保护装置,它就是电流互感器保护装置,在电力行业得到了广泛普及和推广。本文将全面介绍电力系统保护装置的工作原理,分析其中存在的主要问题。 1、电力系统保护装置的工作原理 电流互感器过电压保护装置对安装环境要求相对较高。容易受各种外部环境因素的影响,电力系统容易出现各种异常过电压,对电力系统造成巨大的威胁。该保护装置具有良好的工作稳定性,电力系统在正常运行时过电流相对较小,电阻较高。由于过电流较小,因此电力回路中的动作值和测量表读数误差没有明显影响,此时保护装置控制电路处于断开工作状态。当电流互感器二次回路形成通路时,在二次绕组中会形成较高的过电压,此时如果保护装置能够在出现异常电压的同时,及时将二次绕组形成短路并发出报警信号,高电压危险就能够得到有效控制。 2、保护装置的组成内容 过电压保护装置主要组成部分有以下三种模块:电源模块、系统模块单元、显示模块。电源模块为保护装置提供动力,由电源线路和电源组成。开关电源装置负责控制整个装置的电源供应,电源装置正常工作电压是220伏。输出板负责处理控制模块发出的工作信号,针对安全操作给出相应的警报提示等。工作模块单元有电阻、处理器和回路路线等组成部分。 非线性电阻主要负责搜集电流互感器工作运行信息,搜集整理后的信息被传送到中央处理器进行深入处理,中央处理器根据信息分析结果做出应对决策和发出操作信号。显示模块单元由一些发光指示元件组成,主要接收控制模块传来的命令,使相应的发光指示元件动作并记忆存储。

平面变压器的工作原理

平面变压器的结构原理与应用 摘要:大多数DC/DC变换器都需要隔离变压器 而平面变压器技术在隔离变压器的许多方面实现了重要的突破。介绍了平面变压器的结构、性能和使用方法。 关键词:隔离变压器平面变压器开关电源 在DC/DC变换中,基本的Buck、Boost、Cuk变换器是不需要开关隔离变压器的。但如果要求输出与输入隔离,或要求得到多组输出电压,就要在开关元件与整流元件之间使用开关隔离变压器,所以绝大多数变换器都有隔离变压器。目前开关电源的发展趋势是效率更高、体积更小、重量更轻,而传统的隔离变压器在效率、体积、重量等方面严重制约了开关电源的进一步发展。同时由于变压器涉及到的主要参数有电压、电流、频率、变比、温度、磁芯u值、漏抗、损耗、外形尺寸等,所以一直无法象其它电子元器件那样有现成的变压器可供选用,常常要经过繁琐的计算来选用磁芯和绕组导线,而且绕组绕制对变压器的性能也有较大影响,加之变压器的许多重要参数不易测量,给使用带来一定的盲目性,很难在频率响应、漏抗、体积和散热等方面达到满意效果。平面变压器(FlatTransformer 技术则在隔离变压器的许多方面实现了重要的突破。 目前,国外的许多电源产品中都开始采用平面变压器技术,如蓄电池充电电源、通信设备分布式电源、UPS等。而国内的隔离开关变压器在材料、工艺等方面与国外先进国家有一定差距,阻碍了开关电源开关高频的提升和效率提高,使开关电源产品停留在一个较低的水平。平面变压器技术将会为高频开关电源的设计和产品化提供有益的帮助。 传统变压器的绕组常常是绕在一个磁芯上,而且匝数较多。而平面变压器(单元)只有一匝网状次级绕组,这一匝绕组也不同于传统的漆包线,而是一片铜皮,贴绕在多个同样大小的冲压铁氧体磁芯表面上。所以平面变压器的输出电压取决于磁芯的个数,而且平面变压器的输出电流可以通过并联进行扩充,以满足设计的要求。并且平面变压器原边绕组的匝数通常也只有数匝,不仅有效降低了铜损和分布电容、电抗,而且为绕制带来了很多便利。由于磁芯是用简单的冲压件组合而成的,性能的一致性大大提高,也为大批量生产降低了成本。 1 平面变压器的结构和性能 1.1 结构 平面变压器通常有2个或2个以上大小一样的柱状磁芯(图1a)。现以2个磁芯的平面变压器为例介绍其结构。每个磁芯柱在对角线上的两角都用铜皮连接,铜皮在通过磁芯柱时紧贴磁芯内壁(图1b)。两个磁芯并排放置,相邻的两角用铜皮焊接起来,在一个磁芯的一个外侧面上的两个角上的铜皮用一片铜皮焊接在一起,这里就是平面变压器次级线圈的中心,如果在这里引出抽头,就是次级线圈的中心抽头;在另一个磁芯

变压器和互感器3

第七章配电变压器和互感器 7-1 简述变压器的基本工作原理 变压器是改变交变电压的大小并保持频率不变传递功率静止的电气设备。它主要是由绕组在同一铁心上的两个或两个以上的绕组所组成。各个绕组之间是通过交变磁场联系在一起的。 变压器的基本工作原理就是电磁感应原理的实际运用。现以单相变压器为例,予以说明。 接电源的绕组称为一次绕组,接负载的绕组称为二次绕组,当一次绕组接通电源后,交流电流通过该绕组并产生励磁作用,铁心中就会产生交变磁通Φ。此磁通不仅穿过一次绕组,而且也穿过二次绕组,因此分别在两个绕组上产生感应电动势E1和E2。当二次绕组与负载电路接通后,便有电流I2流入负载,从而有电能输出。 7-2变压器是如何分类的?变压器型号中字母符号及其含义如何? 变压器的分类与型号中字母符号及其含义见表7-1 表7-1 变压器的分类和型号中字母符号含义

7-3 电力变压器由哪些基本部件构成的?各有什么作用? 变压器主要是由一个闭合的铁心,并在其上套有两个绕组所组成的。可见,铁心和绕组是变压器的最基本的组成部分。此外还有油箱、储油柜、散热器、防爆管、吸湿器、绝缘套管等。 变压器各部件的作用如下。 (1)铁心是变压器产生电磁感应的主磁路,变压器的一、二次绕组均绕在铁心上。铁心是用导磁性能良好的硅钢片叠装组成的闭合磁路。为减少涡流和磁滞损耗,铁心一般采用含硅1%-5% 、厚度为0.35-0.5mm的涂漆硅钢片叠装而成。 (2)绕组是变压器的电路部分。变压器分高、低压绕组,或称一次、二次(原边、副边或初级、次级)两个绕组。它采用绝缘铜线或铝线绕成多层的线圈并套装在铁心上,导线的绝缘是采用纸或沙包浸漆。 (3)油箱即是变压器的外壳,有时盛装变压器油的容器。油箱内装有铁心、一、二次绕组和变压器油。它还可以起到散热的作用。 (4)储油柜它主要起到储油和补油的作用。当温度变化时变压器油就会随着油温的变化而膨胀或收缩,储油柜可以保证油箱内始终充满油。这样还可以减少油与空气的接触面积,能防止油的过速受潮和氧化。储油柜的容积一般是变压器油箱的1/10。储油柜上装油位计管,用以监视油面的高低。 (5)吸湿器由一个铁管和玻璃容器组成,内部装有干燥剂(如硅胶等)。储油柜内的油通过吸湿器可与外界空气相通。吸湿器内的干燥剂可以吸收空气中的水分和杂质,以使油保持良好的电气性能。

变压器中性点电流互感器

一、概述 XK-ZJB-110/220系列变压器中性点成套设备是按DL/T620-1997《交流电气装置的过电压保护及绝缘配合》中关于110kV/220 kV有效接地电力网中变压器中性点采用间隙保护的相关规定制造,并按照国家电网公司2005年 6月出 版的《十八项电网重大反事故措施》中防止接地网和过电压事故的技术要求进行设计。适用于110kV和220kV有效接地电力网中不接地变压器的中性点过电压保护。 为使110kV、220 kV变电站内的变压器中性点设备性能可靠、安装调试及操作方便、布置简洁美观,日新电气还推出集变压器中性点棒间隙、间隙电流互感器、隔离开关、避雷器、端子箱及安装支架等电气设备于一体的变压器中性点成套设备。 用户可选用纯间隙的变压器中性点过电压保护方案,也可选用间隙与避雷器并联工作,协同保护的方案。避雷器与隔离开关可根据工程需要,灵活组配。隔离开关的操动机构可选择手动或电动方式。所有产品的电气及机械性能均在出厂前完成全套的调试与检测,亦可方便的在使用现场进行再校正。 二、环境条件 2.1 适用于户内或户外环境; 2.2 环境温度:不低于-40℃,不高于+55℃; 2.3 相对湿度:不大于95%(25℃); 2.4 海拔高度不超过3000m,超出3000m可根据实际情况特制; 2.5 地震烈度7度及以下地区;最大风速不超过35m/S; 2.6 安装场所的空气中不应含化学腐蚀气体和蒸气,无爆炸性尘埃。 2.7 不适用于非水平安装的场所。 三、性能特点 3.1 电流互感器与棒间隙直接连接; 3.2 间隙放电电压稳定,间隙距离易于调整; 3.3 使用不锈钢精加工电极,表面不易锈蚀; 3.4 安装支架采用现场免焊接设计技术,有效解决户外产品的防腐蚀问题;

相关文档
最新文档