Pt100的高精度测温方法

合集下载

Pt100热电阻测温实验

Pt100热电阻测温实验

Pt100热电阻测温实验:T(℃)404550556065707580859095100 V/mv-11.9-12.9-16.0-19.1-21.8-24.7-27.5-30.2-32.8-36.5-19.3-41.5-44.4 V/mv-4.3-9.1-10.7-14.2-18.4-21.2-24.3-26.9-28.4-30.9-33.1-37.3-41.1平均值-8.1-11-13.4-16.7-20.1-23.0-25.9-28.6-30.6-33.7-36.1-39.4-42.8程序x=[40:5:100];y=[-8.1,-11.0,-13.4,-16.7,-20.1,-23.0,-25.9,-28.6,-30.6,-33.7,-36.1,-39.4,-42.8];p=polyfit(x,y,1);z=polyval(p,x);plot(x,z,'-k',x,y,'r.')title('Vop-p-X曲线')grid onxlabel('X/mm')ylabel('V/v')hold on(1)灵敏度计算:x=[40:5:100];y=[-8.1,-11.0,-13.4,-16.7,-20.1,-23.0,-25.9,-28.6,-30.6,-33.7,-36.1,-39.4,-42.8];P=polyfit(x,y,1)程序结果:p =-0.5699 14.5538由以上程序可得两条直线方程分别为:V1=-0.5699 x+14.5538所以灵敏度分别为 S1=-0.5699mV/℃(2)非线性误差:x=[40:5:100];y=[-8.1,-11.0,-13.4,-16.7,-20.1,-23.0,-25.9,-28.6,-30.6,-33.7,-36.1,-39.4,-42.8];P1=polyfit(x,y,1)p=polyfit(x,y,1);z=polyval(p,x);c=abs(z-y);Vm=max(c)程序结果:Vm = 0.6363所以,满量程输出由图可得为 -42.8mV,非线性误差为 0.6363.思考题1、总结Pt100热电阻传感器有哪些优缺点。

超实用简单的的pt100测温点路

超实用简单的的pt100测温点路

热电阻Pt100测温电路铂电阻温度传感器是利用其电阻和温度成一定函数关系而制成的温度传感器,由于其测量准确度高、测量范围大、复现性和稳定性好等,被广泛用于中温(-200℃~650℃)范围的温度测量中。

PT100是一种广泛应用的测温元件,在-50~600℃℃范围内具有其他任何温度传感器无可比拟的优势,包括高精度、稳定性好、抗干扰能力强等。

由于铂电阻的电阻值与温度成非线性关系,所以需要进行非线性校正。

校正分为模拟电路校正和微处理器数字化校正,模拟校正有很多现成的电路,其精度不高且易受温漂等干扰因素影响,数字化校正则需要在微处理系统中使用,将Pt电阻的电阻值和温度对应起来后存入EEPROM中,根据电路中实测的AD值以查表方式计算相应温度值。

常用的Pt电阻接法有三线制和两线制,其中三线制接法的优点是将PT100的两侧相等的的导线长度分别加在两侧的桥臂上,使得导线电阻得以消除。

常用的采样电路有两种:一为桥式测温电路,一为恒流源式测温电路。

其中图1为三线制桥式测温电路,图2为两线制桥式测温电路,图3为恒流源式测温电路。

下面分别对桥式电路和恒流源式电路的原理在设计过程中应注意事项进行说明(注:这两个电路本人均有采用及试验,证明可行)一、桥式测温电路桥式测温的典型应用电路如图1所示(图1和图2均为桥式电路,分别画出来是为了说明两线制接法和三线制接法的区别)。

测温原理:电路采用TL431和电位器VR1调节产生4.096V的参考电源;采用R1、R2、VR2、Pt100构成测量电桥(其中R1=R2,VR2为100Ω精密电阻),以下内容回复可见当Pt100的电阻值和VR2的电阻值不相等时,电桥输出一个mV级的压差信号,这个压差信号经过运放LM324放大后输出期望大小的电压信号,该信号可直接连AD转换芯片。

差动放大电路中R3=R4、R5=R6、放大倍数=R5/R3,运放采用单一5V供电。

设计及调试注意点:1. 同幅度调整R1和R2的电阻值可以改变电桥输出的压差大小;2. 改变R5/R3的比值即可改变电压信号的放大倍数,以便满足设计者对温度范围的要求3. 放大电路必须接成负反馈方式,否则放大电路不能正常工作4. VR2也可为电位器,调节电位器阻值大小可以改变温度的零点设定,例如Pt100的零点温度为0℃,即0℃时电阻为100Ω,当电位器阻值调至109.885Ω时,温度的零点就被设定在了25℃。

pt100测温原理

pt100测温原理

pt100测温原理PT100测温原理。

PT100是一种常用的温度传感器,它采用铂电阻作为测温元件,具有高精度、稳定性好等特点,广泛应用于工业自动化控制领域。

PT100测温原理是基于铂电阻的温度特性,通过测量电阻值的变化来确定温度的变化。

本文将详细介绍PT100测温原理及其相关知识。

PT100的工作原理是利用铂电阻在温度变化下的电阻值变化特性。

铂电阻的电阻值随温度的变化而变化,这种变化是线性的,因此可以通过测量电阻值来确定温度的变化。

PT100的命名中的“100”代表了在0摄氏度时的电阻值为100欧姆,随着温度的升高或降低,电阻值会相应地增加或减小。

PT100传感器通常由铂电阻、外壳、引出线等组成。

当PT100传感器受到温度的影响时,铂电阻的电阻值发生变化,通过引出线将变化的电阻值传递给测温仪表或控制系统。

测温仪表或控制系统通过对电阻值的测量和计算,可以准确地得到当前的温度值。

在实际应用中,PT100传感器的精度和稳定性对温度测量的准确性起着至关重要的作用。

因此,在选择和使用PT100传感器时,需要考虑传感器的精度等参数,以及传感器与测温仪表或控制系统的匹配性。

除了PT100传感器外,还有其他类型的铂电阻温度传感器,如PT1000、PT500等,它们的工作原理基本相同,只是在电阻值和温度特性上有所不同。

在实际应用中,需要根据具体的温度测量要求来选择合适的铂电阻温度传感器。

总之,PT100测温原理是基于铂电阻的温度特性,通过测量电阻值的变化来确定温度的变化。

在工业自动化控制领域,PT100传感器具有广泛的应用前景,对于温度测量的精度和稳定性要求较高的场合,PT100传感器是一个理想的选择。

希望本文对于PT100测温原理有所帮助,谢谢阅读!。

(完整word版)Pt100铂电阻测温电路-重要

(完整word版)Pt100铂电阻测温电路-重要

常用电路图R2、R3、R4 和Pt100 组成传感器测量电桥,为了保证电桥输出电压信号的稳定性,电桥的输入电压通过TL431 稳至2.5V。

从电桥获取的差分信号通过两级运放放大后输入单片机。

电桥的一个桥臂采用可调电阻R3,通过调节R3 可以调整输入到运放的差分电压信号大小,通常用于调整零点。

放大电路采用LM358 集成运算放大器,为了防止单级放大倍数过高带来的非线性误差,放大电路采用两级放大,如图5。

1 所示,前一级约为10 倍,后一级约为3倍。

温度在0~100 度变化,当温度上升时,Pt100 阻值变大,输入放大电路的差分信号变大,放大电路的输出电压Av 对应升高。

注意:虽然电桥部分已经经过TL431 稳压,但是整个模块的电压VCC 一定要稳定,否则随着VCC 的波动,运放LM358 的工作电压波动,输出电压Av 随之波动,最后导致A/D 转换的结果波动,测量结果上下跳变。

铂热电阻阻值与温度关系为:式中,A=0.00390802;B=-0.000000580;C=0。

0000000000042735。

可见Pt100 在常温0~100摄氏度之间变化时线性度非常好,其阻值表达式可近似简化为:RPt=100(1+At),当温度变化1 摄氏度,Pt100 阻值近似变化0.39 欧。

Pt100 的分度表(0℃~100℃)程序处理一般在使用PT100 的温度采集方案中,都会对放大器LM358 采集来的模拟信号AV进行温度采样,即进行A/D 转换。

A/D 处理包括两方面内容,一是A/D 值的滤波处理,二是A/D 值向实际温度转换。

由于干扰或者电路噪声的存在,在采样过程当中会出现采样信号与实际信号存在偏差的现象,甚至会出现信号的高低波动,为了减小这方面原因造成的测量误差,在实际采样时采样18 个点,然后再除去其中偏差较大的两个点,即一个最大值和一个最小值,再对剩余的16 个点取均值,这样得到的A/D 转换结果比较接近实际值。

Pt100温度传感器详解

Pt100温度传感器详解

Pt100就是说它的阻值在0度时为100欧姆,PT100温度传感器。

是一种以铂(Pt)作成的电阻式温度传感器,属于正电阻系数,其电阻和温度变化的关系式如下:R=Ro(1+αT)Pt100温度传感器的主要技术参数如下:测量范围:-200℃~+850℃;允许偏差值△℃:A级±(0.15+0.002│t│),B 级±(0.30+0.005│t│);热响应时间<30s;最小置入深度:热电阻的最小置入深度≥200mm;允通电流≤5mA。

另外,Pt100温度传感器还具有抗振动、稳定性好、准确度高、耐高压等优点。

PT100温度传感器三根芯线的接法:PT100铂电阻传感器有三条引线,可用A、B、C(或黑、红、黄)来代表三根线,三根线之间有如下规律:A与B或C之间的阻值常温下在110欧左右,B与C之间为0欧,B与C在内部是直通的,原则上B与C没什么区别。

仪表上接传感器的固定端子有三个:A线接在仪表上接传感器的一个固定的端子.B和C接在仪表上的另外两个固定端子,B和C线的位置可以互换,但都得接上。

如果中间接有加长线,三条导线的规格和长度要相同。

热电阻的3线和4线接法:是采用2线、3线、4线,主要由使(选)用的二次仪表来决定。

一般显示仪表提供三线接法,PT100一端出一颗线,另一端出两颗线,都接仪表,仪表内部通过桥抵消导线电阻。

一般PLC为四线,每端出两颗线,两颗接PLC输出恒流源,PLC通过另两颗测量PT100上的电压,也是为了抵消导线电阻,四线精确度最高,三线也可以,两线最低,具体用法要考虑精度要求和成本。

PT100温度传感器产品特征:1、不锈钢套管封装,经久耐用;2、活动螺丝固定,使用方便;3、按照国际IEC751国际标准制造,即插即用;4、多种探头尺寸可选、适应面广;5、高精度、高稳定、高灵敏;6、外形小巧,经济实用。

特性指标:●测温范围:-200-400℃●探头长度:5cm/10cm/15cm/20cm●探头直径:Φ5mm●电阻变化:0.3851Ω/℃●安装方式:活动螺丝固定●螺丝规格:M8*1.0●引线长度:一般2米,可订制长度(专用引线)●引线接法:三线式●接线方式:接线叉●套管材质:不锈钢●传感器件:PT(铂)PT100温度传感器采用三线式接法的原因:PT100温度传感器0℃时电阻值为100Ω,电阻变化率为0.3851Ω/℃。

基于 pt1000 的高精度多点式无线测温系统

基于 pt1000 的高精度多点式无线测温系统
北方工业大学硕士学位论文
基于 pt1000 的高精度多点式无线测温系统 摘 要
高炉炼铁是现代炼铁的主要方法,冶炼的整个过程都是在高炉这个密闭的空间内进行。由 于其高温高压的特点,无法直接获得高炉内部情况,而只能通过对高炉炉身冷却水温差的监测 以推测高炉内部的异常状况。通过对冷却水温差的在线监测,并通过炉体热负荷管理,进而指 导高炉的操作和维护。 现在通用的基于总线的高炉冷却水温监测系统已经很难满足任意布局、移动性的要求。随 着无线技术在我国军事、医疗、农业、建筑等领域广泛应用,将无线技术应用于高炉冷却水温 监测已是大势所趋。本文主要介绍了一种高精度可无线传输的测温系统,用于高炉冷却水温监 测,主要由两大部分组成,第一部分是基于 Pt1000 铂热电阻的高精度测温系统,第二部分是 以 Chipcon 公司的 CC1010 作为传输核心的 Zigbee 无线数据传输网络。 终端节点模块主要完成温度数据的采集,包括铂电阻测温电路和无线数据发送。Pt1000 铂热电阻通过桥式电路得到温度数据, 数据经信号调理后送到 CC1010 的 ADC 端口进行 A/D 转 换,CC1010 的 51 核心直接读取转换后的数字信号,处理后将数据打包然后通过 CC1010 的射 频部分将温度数据发送出去。协调节点模块主要完成 Zigbee 无线网络的组建和无线温度数据 的接收及显示。 整个系统主要包含无线接收、 STC89C52 数据处理、 LCD1602 液晶显示三个部分, 通过无线接收到温度数据,经 STC89C52 处理后在液晶屏幕上显示测温结果。
关键词:Pt1000,无线测温,CC1010,高精度,多点式
1
北方工业大学硕士学位论文
High precision multi-point wireless temperature measurement system based on Pt1000 Abstract

pt100测温原理

pt100测温原理

pt100测温原理PT100测温原理。

PT100是一种常用的温度传感器,它的测温原理基于铂电阻的温度特性。

在工业自动化领域,PT100传感器被广泛应用于温度测量和控制系统中。

本文将介绍PT100测温原理的相关知识,包括其工作原理、特点和应用。

首先,我们来了解一下PT100传感器的工作原理。

PT100传感器是一种基于铂电阻的温度传感器,其测温原理是利用铂电阻的温度特性来实现温度测量。

铂电阻的电阻值随温度的变化而变化,随着温度的升高,铂电阻的电阻值也会相应增加。

PT100传感器通常采用铂丝制成,其电阻值随温度的变化符合国际标准IEC751的曲线特性。

PT100传感器的工作原理可以简单描述为,当传感器暴露在温度环境中时,铂电阻的电阻值随温度的变化而变化,通过测量铂电阻的电阻值,我们可以准确地计算出环境的温度。

这种基于铂电阻温度特性的测温原理使得PT100传感器具有高精度、稳定性和可靠性的特点。

其次,我们来了解一下PT100传感器的特点。

PT100传感器具有以下几个特点,首先,高精度。

由于铂电阻的温度特性曲线相对平缓,PT100传感器的测温精度较高,通常可以达到0.1摄氏度。

其次,稳定性好。

铂电阻的温度特性使得PT100传感器具有较好的稳定性,能够长期稳定地工作在各种环境条件下。

再次,线性度好。

PT100传感器的电阻值与温度之间的关系符合较好的线性特性,便于进行温度的准确计算。

最后,抗干扰能力强。

PT100传感器的信号输出较小,能够抵抗外界干扰,适用于工业环境中的温度测量和控制。

最后,我们来了解一下PT100传感器的应用。

PT100传感器广泛应用于工业自动化领域的温度测量和控制系统中,包括化工、电力、冶金、石油、制药等行业。

在这些行业中,温度是一个重要的参数,对生产过程和产品质量有着重要的影响。

PT100传感器凭借其高精度、稳定性和可靠性的特点,能够满足工业环境中对温度测量的严格要求,被广泛应用于各种温度传感和测量系统中。

Pt100热电阻两、三、四线制接法对测温精度的影响

Pt100热电阻两、三、四线制接法对测温精度的影响

2009年10月29日
Pt100热电阻两线制、三线制和四线制接法对测温精度的影响?
1、Pt100热电阻的三种接线方式在原理上的不同:
二线制和三线制是用电桥法测量,最后给出的是温度值与模拟量输出值的关系。

四线制没有电桥,完全只是用恒流源发送,电压计测量,最后给出测量电阻值。

2、Pt100热电阻的三种接法对测温精度的影响:
连接导线的电阻和接触电阻会对Pt100铂电阻测温精度产生较大影响,铂电阻三线制或者四线制接线方式能有效消除这种影响。

与热电阻连接的检测设备(温控仪、PLC输入等)都有四个接线端子I+、I-、V+、V- 。

其中,I+、I-端是为了给热电阻提供恒定的电流,V+、V-是用来检测热电阻的电压变化,依此检测温度变化。

(1)四线制就是从热电阻两端引出四线,接线时电源回路和电压测量回路独立分开接线,测量精度高,需要导线多。

(2)三线制就是引出三线,Pt100铂电阻接线时电源回路的参端和电压测量回路的参考为一条线(即检测设备的I-端子和V-端子短接)。

精度稍好。

(3)两线制就是引出两线,Pt100铂电阻接线时电流回路和电压测量回路合二为一(即检测设备的I-端子和V-端子短接,I+端子和V+端子短接)。

测量精度差。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一Pt100 的高精度测温方法
1.
在工业生产过程中,温度一直都是一个很重要的物理参数,温度的检测和控制直接和安

全生产、产品质量、生产效率、节约能源等重大技术经济指标相联系,因此在国民经济的各
个领域中都受到了人们的普遍重视。温度检测类仪表作为温度测量工具,也因此得到广泛应
用。
由于传统的温度测量仪器响应慢、精度低、可靠性差、效率低下,已经不能适应高速发
展的现代化工业。随着传感器技术和电子测量技术的迅猛发展,以单片机为主的嵌入式系统
已广泛应用于工业现场,新型的电子测温仪器不仅操作简单,而且精度比传统仪器有很大提
高。目前在工业生产现场使用最广泛的温度传感器主要有热电偶和热电阻,例如铂热电阻
Pt100就是使用最广泛的传感器之一。

2. Pt100 的特性
铂电阻是用很细的铂丝(Ф0.03~0.07mm)绕在云母支架上制成,是国际公认的高精度测
温标准传感器。因为铂电阻在氧化性介质中,甚至高温下其物理、化学性质都非常稳定,因
此它具有精度高、稳定性好、性能可靠的特点。因此铂电阻在中温(-200~650℃)范围内得

广泛应用。目前市场上已有用金属铂制作成的标准测温热电阻,如Pt100、Pt500、Pt1000
等。
它的电阻—温度关系的线性度非常好,如图1所示是其电阻—温度关系曲线,在-200~650℃
温度范围内线性度已经非常接近直线。
铂电阻阻值与温度的关系可以近似用下式表示:
在0~650℃范围内:
Rt =R0 (1+At+Bt2)
在-190~0℃范围内:
Rt =R0 (1+At+Bt2+C(t-100)t3)
式中A、B、C 为常数,
A=3.96847×10-3;
B=-5.847×10-7;
C=-4.22×10-12;

图1 Pt100 的电阻—温度关系曲线
Rt 为温度为t 时的电阻值;R0 为温度为0℃时的电阻值,以Pt100 为例,这种型号的铂
热电阻,R0 就等于100Ω,即环境温度等于0 度的时候,Pt100 的阻值就是100Ω。当温度
变化的时候,Pt100 的电阻也随之变化,通过以上电阻-温度表达式便可以计算出相对应的
温度。
在实际应用中,一般使用单片机来进行温度的计算,由于该表达式比较复杂,用单片机处理
这样的计算过程,将会占用大量的资源,程序的编写上也相当复杂,所以一般采用先查表,
再插值的方法换算出温度。

3. Pt100 测温原理
Pt100 是电阻式温度传感器,测温的本质其实是测量传感器的电阻,通常是将电阻的变
化转换成电压或电流等模拟信号,再将模拟信号转换成数字信号,再由处理器换算出相应温
度。采用Pt100 测量温度一般有两种方案:
1.设计一个恒流源通过Pt100 热电阻,通过检测Pt100 上电压的变化来换算出温度;
2.采用惠斯顿电桥,电桥的四个电阻中三个是恒定的,另一个用Pt100 热电阻,当Pt100
电阻值变化时,测试端产生一个电势差,由此电势差换算出温度。
两种方案的区别只在于信号获取电路的不同,其原理上基本一致,如图2 所示。

图2 Pt100 测温原理
如图3 所示,是以华邦的78E51 单片机为处理器,采用恒流源为信号获取电路的测温
方案,恒流源通过Pt100 热电阻,温度变化引起Pt100 电阻值的变化,从引起电压的变化,
放大后经AD 采用后,送由单片机处理,换算出相应温度。为了达到高精度、宽量程的测温
要求,选用的是AD 转换芯片是12 位串行AD 芯片MAX1270。

图3 采用恒流源的Pt100 测温方案
4. 提高Pt100 测温精度的方案
4.1 通过改善Pt100 接线方式对误差进行补偿
铂热电阻的使用,一般有三种接法,分别是二线制接法、三线制接法和四线制接法,如图4
所示,不同的接法适应于不同的精度要不求。


1.二线制接法:如图4(a)所示,这种接法不考虑Pt100 电缆的导线电阻,将A/D 采样端

与电流源的正极输出端接在一起,这种接法由于没有考虑测温电缆的电阻,因此只能适用于
测温距离较近的场合。
2.三线制接法:如图4(b)所示,这种接法增加了用于A/D 采样的补偿线,三线制接法消
除了连接导线电阻引起的测量误差,这种接法适用于中等测温距离的场合。
3.四线制接法:如图4(c)所示,这种接法不仅增加了A/D 采样补偿线,还加了一条A/D
对地的补偿线,这样可以近一步的减小测量误差,可以用于测温距离较远的场合。
如果只从精度上考虑,采用四线制接法效果最好。
4.2 通过对采样信号进行滤波减小随机误差
由于外界干扰或某些不可预知的因素,模拟量在受到干扰后,经A/D 转换后的结果偏
离了真实值,可能会出现一些随机的误差,如果只采样一次,无法确定结果是否可信。必须
通过多次采样得到一个A/D 转换的数据序列,通过软件算法处理后才能得到一个可信度较
高的结果。这种方法就是数字滤波。

图5 去极值平均滤波程序流程图
滤波器是一种能使有用频率信号通过而同时抑制(或大为衰减)无用频率信号的电子装
置,可分为模拟滤波器和数字滤波器。模拟滤波器是主要采用R、L、C 等无源器件组成的
滤波电路或由运放和R、C 组成的有源滤波器。而数字滤波则是采用软件算法实现滤波的。
数字滤波的前提是对同一数据进行多次采样,在单片机系统中一般有以下几种方法:
1.中值滤波:一般采样5、7 次,排序后取中间值。
2.算术平均滤波:一般采样8 次,求平均值。
3.去极值平均滤波:去掉最大最小值后求平均值一般采样10、12 次。
4.加权平均滤波:各加权系数之和为1。
5.滑动平均滤波:本次采样值和前n 次采样值求平均。
数据滤波方法选用要视现场环境和被测对象而定,在本系统中采用的是去极值均值滤
波,算术平均滤波不能将明显的脉冲干扰或粗大误差消除,只能将其影响削弱。因明显干扰
或粗大误差使采样值远离其实际值,可以比较容易地将其剔除,不参与平均值计算,从而使
平均滤波的输出值更接近真实值。
以去极值平均滤波为例,程序流程图如图5 所示。算法原理如下:对于温度信号对应的
电压采样值,连续采样n 次,将其累加求和,同时找出其中最大值和最小值,再从累加和中
减去最大值和最小值,按n-2 个采样值求平均,即有效采样值。
4.3 通过插值算法校正Pt100 的非线性度
由Pt100 的特性可知,虽然Pt100 的线性度比较好,但是由于其温度—电阻函数关系并
非线性,用单片机运算则占用资源和时间都比较多。通常采用查表和线性插值算法进行标
度变换的方法计算出温度,不仅运算快、占用单片机内部资源少,而且可以一定程度上对
Pt100 进行线性化校正,从而达到非常精确的测温效果。
要查表首先要在单片机的ROM 区建立一个电阻—温度分度表,在检测值的范围内均匀选择若
干个标定点,标定的点数越多则表格越大,对系统的描述也越精确。Pt100 的铂电阻
温度分度表,可以向Pt100 的厂商索要,考虑到单片机的程序存储空间资源和实际的测量精
度要求,并不需要每隔一摄氏度就取一个标定点,根据精度要求选择适当的温度间隔。例如
[5]
在-200~650℃范围内每隔5℃标定一个Pt100 的电阻值,即共171 个标定点,分别记作
R[i],对应的温度记作T[i],i 取0~170。

图5 插值算法示意图
如图5 所示,采用线性插值算法进行标度变换时,将检测值Rx 通过顺序查表,与标定
点R[i]比较,确定区间R[i] Tx=T[i]+ ((Rx-R[i])/( R[i+1]-R[i]))* (T[i+1]-T[i])
因为是每隔5℃标定一个电阻值,所以T[i+1]- T[i]=5,即:
Tx=T[i]+5*(Rx-R[i]/R[i+1]-R[i])
[举例]:现经A/D 采样和滤波得Pt100 的电阻值为Rx=112.68Ω,求此时实测对象的温
度Tx。
解:已知查Rx=112.68Ω,
表得 R[46]R[46]=111.67Ω,R[47]=113.61Ω,
T[46]=30℃,
代入式2 得:
Tx=T[46]+5*(Rx-R[46])/(R[47]-R[46])=30+5*(112.68-111.67)/(113.61-111.67)=32.60
答:此时实测对象的温度Tx 为32.60℃。

相关文档
最新文档