复合材料细观力学235页PPT

合集下载

复合材料力学第11章单层复合材料的细观力学分析

复合材料力学第11章单层复合材料的细观力学分析
24
11.3.5 面内剪切强度S 面内剪切破坏是由基体和界面剪切损坏引起。面内剪切强度S可用 下式表示:
25
11.4 短纤维复合材料的细观力学分析
11.4.1 应力传递理论
由图示可列出平衡条件: 化简为
积分得 化简为
26
剪应力分布未知,为求解,需对纤维的周围界面和末端材料变形作 假设: (1)纤维长度中点由对称条件得剪应力为零; (2)末端 (3)纤维周围基体是理想刚塑性体,应力-应变关系如图所示。 这样界面剪应力沿纤维长度是常数,其值为基体屈服应力 ,上式 变为:
20
单根纤维在y方向屈曲时位移v用三角级数表示为
21
(1)拉伸型式 经过推导可得,纤维受压时的最小临界应力为:
复合材料最大应力为:
与纤维相比基体基本不受力,即
,则可得:
22
(2)剪切型式 经过推导,
2.横向拉裂理论 横向破坏应变比基体破坏应变小,有经验关系式:
23
即得 11.3.3 横向拉伸强度
11.6 刚度的弹性力学分析方法
11.6.1 弹性力学的极值法 1. E的下限 经过推导得出:
38
2. E的上限
39
11.6.2 精42
2. 的的预测 3.
43
44
11.6.3 接触时的弹性力学解
以后
45
46
11.6.4 Halpin-蔡方程
47
单向纤维增强复合材料的变形: (1)纤维和基体都是弹性变形; (2)基体发生塑性变形,纤维继续弹性变形; (3)纤维和基体都处于塑性变形; (4)纤维断裂或基体开裂导致复合材料破坏;
16
1.等强度分析的纤维
假定纤维应变等于基体应变,则复合材料 的强度为 如果复合材料拉伸强度大于单纯基体强度, 则纤维起增强作用必须超过的临界 值为

复合材料细观结构的数学模型及其应用(宋来忠)PPT模板

复合材料细观结构的数学模型及其应用(宋来忠)PPT模板

第7章大量不规则颗粒随机分布区域的三维数学模型
7.2空间点到颗粒的距离与误差估计
7.2.2求点到 颗粒距离的 搜索法
7.2.1空间点 到颗粒的距 离
7.2.3搜索法 求距离的误 差分析
0 5 2.2.5参数曲面沿向量场的伸缩变形 0 6 2.2.6基本matlab程序
07
o
n
e
第3章大量不规则颗粒随机分布区域的 二维数学模型
第3章大量不规则颗粒随机分布区 域的二维数学模型
3.1平面上点与椭圆的位置关系判别 3.2单颗增强颗粒的参数方程 3.3点到增强颗粒边界的距离 3.4几何模型的建立 3.5二维不规则颗粒模型的matlab 程序 3.2单颗增强颗粒的参数方程 3.3点到增强颗粒边界的距离 3.4几何模型的建立 3.5二维不规则颗粒模型的
6.4搜索法求距离误 差分析
6.5具有大量椭球颗 粒/孔洞的随机分布
区域模拟的算法
6.6视骨料为椭球的 混凝土试件的几何模

作为覆盖的不规则骨料颗粒模型 6.8椭球颗粒模型的matlab程序 6.8椭球颗粒模型的MATLAB程序
第6章大量椭球随机分布区域的数学模型
6.8椭球颗粒模型的matlab程序
6.8.1点到椭球的距 离程序
2
6.8.2椭球作图程序
6.8.3二级配椭球骨 料模型创建程序
11
o
n
e
第7章大量不规则颗粒随机分布区域的 三维数学模型
第7章大量不规则颗粒随机分布区 域的三维数学模型
7.1单颗颗粒的参数方程 7.2空间点到颗粒的距离与误差估计 7.3几何模型的创建 7.4三维不规则颗粒模型的matlab 程序 7.2空间点到颗粒的距离与误差估计 7.3几何模型的创建 7.4三维不规则颗粒模型的 M AT L A B 程 序

复合材料的基本理论

复合材料的基本理论

层 板 模 型
几 种 主 要 的

学பைடு நூலகம்


几种主要的力学模型 层板模型
层板模型
3方向: E 3c = E m • f m + E I •〔1- f m 〕
2方向:
1 fm1fm 2 E2c Em EI
3 1
泊松比〔泊桑比、泊松收缩〕 νij:在i方向加力时,j方向上产生的收缩
23c
2.2 物理性能的复合法那么
对于复合材料,最引人注目的是其高 比强度、高比弹性模量等力学性能。但 是其物理性能(non-structural properties)也应该通过复合化得到提高。 物理性能包括 加和〔平均〕特性 乘积〔传递〕特性 构造敏感特性
复合材料的复合效应
线性效应
加和效应 平均效应 相补效应 相抵效应
✓ 颗粒的尺寸越小,体积分数越大,强化效果越好。
2) 连续纤维增强
并联模型
串联模型
基体 增强体
连续纤维增强〔并联模型,等应变模型〕
复合材料的载荷=基体载荷+纤维载荷 Pc=Pm+Pr
因为P=σ •A,所以σ c •A c= σ m •A m+ σ r •A r ----〔1〕
A c= A m+ A r
有限差分与有限元模型
a x 2 2 b y 2 2 c x 2 y d x e y f g h t 0
❖ 自变量:x、y〔空间〕;t〔时间〕 ❖ 函数:φ〔温度、浓度、电势、动量等〕 ❖ 拉普拉斯方程、泊松方程、高斯方程、
菲克方程、傅立叶方程、胡克方程、柯 西-雷曼方程、纳维-斯脱克斯方程等
非线性效应
乘积效应 系统效应 诱导效应 共振效应

2024版复合材料力学讲课课件

2024版复合材料力学讲课课件

31
课程总结回顾
复合材料力学基础知识
涵盖了复合材料的组成、结构、性能 及其力学行为等方面的基本概念和原
理。
复合材料的力学性能
深入探讨了复合材料的强度、刚度、 韧性等力学性能,以及不同加载条件
下的力学响应。
复合材料的失效与破坏
分析了复合材料的失效模式、破坏机 理和寿命预测方法,为学生提供了对
复合材料耐久性的全面理解。
应力-应变关系
分析复合材料在不同加载条件下 的应力-应变关系,可以揭示其弹 性性能的变化规律。
弹性力学模型
建立复合材料的弹性力学模型, 如层合板理论、等效连续介质模 型等,可以预测其宏观弹性性能。
2024/1/25
16
塑性力学方法
01
屈服准则
通过确定复合材料的屈服准则, 可以判断其在复杂应力状态下的 塑性变形行为。
复合材料力学研究内容
1 2
复合材料的力学性能 研究复合材料的强度、刚度、韧性等力学性能。
复合材料的破坏机理 研究复合材料在不同应力状态下的破坏形式和机 理。
3
复合材料的优化设计 通过改变复合材料的组分、结构等,优化其力学 性能。
2024/1/25
5
复合材料力学发展历程
2024/1/25
起步阶段
01
随着汽车工业向电动化、智能化、轻量化方 向发展,复合材料的应用前景广阔。
2024/1/25
29
其他领域应用拓展及创新点
体育器材
复合材料可用于制造高性能的体育器材,如自行车 车架、高尔夫球杆、滑雪板等,提高运动成绩和体 验。
医疗器械
复合材料可用于制造医疗器械和人体植入物,如手 术器械、人工关节等,提高医疗器械的性能和人体 相容性。

细观力学的研究内容Eshelby等效夹杂理论自洽理论PPT课件

细观力学的研究内容Eshelby等效夹杂理论自洽理论PPT课件
statistical homogenneity
非均匀材料组分的特征尺寸< < RVE尺寸< < 结构特征尺寸
第7页/共29页
三、均匀化方法(homogenization theory for heterogeneous)
homogenization
Statistical homogenneity matrix and inclusion
0 ij
n r
r 1 (r) ij
r第122页/共29页
General theory of eigenstrain
1.Definition of eigenstrain(本征应变) 非弹性应变,热膨胀、相变、塑性应变等。 Stress-free transformation
eigenstrain本征应力—无外力及约束情况下,自平衡的内部应力。
第18页/共29页
四、线弹性复合材料的均匀化
对多相复合材料,平均应力、应变等可用体积分数表示
F 1 FdV 1 ( FdV FdV )
V VV
V V1
V2
V1 1 FdV V2 1 FdV
V V1 V1
V V2 V2
v1 F (1) v2 F (2)
ij
n
vi
(i) ij
Ω
ij
eij
ij
eij 弹性应变
D
几何方程
ij
1 2 (ui, j
u j,i )
物理方程
ij
Cijklekl
Cijkl (kl
kl
)
Cijkl
(uk
,l
ห้องสมุดไป่ตู้
kl
)
ij Cijkl kl Cijkluk ,l

复合材料力学-3-PPT精选文档67页

复合材料力学-3-PPT精选文档67页
1
2

E 2 2

E 2 V f
2 Ef

Vm
2 Em

W
纤维 基体
E2

E fE m V m E f V fE m
E2
1
E m V m V f(E m / E f )
2 与试验值相比,较小,由于纤维随
基体模量正化
机排列,兼有串联和并联的成分 12
刚度的材料力学分析方法
1
Gm
V
m

V
f
G G
m f

基体
1
纤维
基体
m/2 f

14
刚度的材料力学分析方法
进一步工作
采用各种不同的模型,可以给出不同的弹性常数
欧克凡尔考虑了由于纤维约束引起在基体中的三向 应力状态而得到了如下的混合率表达式
E1

Ef Vf

E
' m
V
m
E2

E
f
E
' m
Vm
E
f
(1


2 m
)
时 1 1 m m 2 2 m 2 m 2 d E E d d V V d d 1 1 d d 2 2 d 2 d 2 E m m E V m m V m
U* 0

24
证明:表观弹性模量的上限
U *221 1d 4 d d 2 d 222EdV d1 1m m 4 m 2 m 222Em V mV
由于 UU*
1 2E2V221 1d 4 d d 2 d 222EdV d1 1m m 4 m 2 m 222Em V mV

材料导论第十四章复合材料ppt课件

材料导论第十四章复合材料ppt课件
混凝土=水泥+砂+石
复合材料的种类
金属基
陶瓷基
按基体相分
聚合物基
水泥基
复 合 材
按增强相 的形态分
颗粒增强 纤维增强 晶须增强
碳纤维 玻璃纤维 有机纤维
复合纤维

编织物增强
按用途分
结构复合材料 承受载荷,作为承力结构使用
功能复合材料
电、磁、光、热、声、摩 擦、阻尼、化学分离性能
复合材料的特点
多相: 至少两相 复合效应:不仅保留了原组成材料的特色,而且
3、石墨/镁复合材料
这种材料密度低、线膨胀系数为零,尺寸的稳定性好,是金属基复合材料中具 有最高比强度和比弹性模量的复合材料。可在石墨纤维表面沉积TiB2,提高石 墨纤维的润湿性。
金属基复合材料
长纤维增强金属基复合材料
4、碳化硅/钛复合材料
碳化硅纤维比强度高、比模量高,高温强度高,耐热、耐氧化,与金属的反 应小,润湿性好。
主要应用于飞机发动机部件和涡轮叶片以及火箭发动机箱体材料。
5、氧化铝/铝复合材料
氧化铝纤维在氧化气氛中稳定,能在高温下保持其强度、刚度, 且硬度高,耐磨性好。这种复合材料具有高强度和高刚度,可用于 汽车发动机活塞和其他发动机零件。
金属基复合材料
1、氧化铝/铝复合材料
短纤维/晶须增强金属基复合材料 2、碳化硅/铝复合材料 3、氧化铝/镍复合材料
突出特点
性树脂基体—热塑性玻璃钢。
密度低:1.6~2.0g/cm3;
比强度高:较最高强度的合金钢还高3倍;
耐烧蚀
耐腐蚀
应用
航空航天工业:如雷达罩、机舱门、燃料箱、行李架和地板等。 火箭:发动机壳体、喷管。 汽车工业:如汽车车身、保险杠、车门、挡泥板、灯罩、内部装饰件等。 石油化工工业:如玻璃钢贮罐、容器、管道、洗涤器、冷却塔等

复合材料PPT

复合材料PPT
总论 复合材料的基体材料 复合材料的增强材料 复合材料的界面 聚合物基复合材料 金属基复合材料 碳/碳复合材料
第一章
总 论
1.1 发展概况
1.2 复合材料定义、命名 和分类 1.3 复合材料的基本性能
第一章 总 论
1.1 发展概况
材料发展历史: 石器、铜器、铁器时代等 实现生产、科学目的: 新材料研究 材料科学历史: 四十多年
问 题: (1)复合产物能否为液体或气体? (2)复合材料是不是只能是一个
连续相与一个分散相的复合?
1.2.2 命名
例:玻璃纤维增强树脂基复合材料命名
玻璃钢 玻纤增强塑料、玻璃塑料、玻璃布 层压板、玻璃纤维复合材料
命名原则:
增强材料+基体材料+复合材料
例:碳纤维环氧树脂复合材料 书写: 碳/环氧复合材料
亚短钢纤维(长度40—60mm) 短钢纤维(长度20—35mm) 超短钢纤维(长度<15mm)
横截面形状:圆形、矩形截面 钢纤维主要品种:不锈钢、低碳钢
图 15
高架桥
1.3.6 三种复合材料性能比较 (1)使用温度、硬度 使用温度: CMC >MMC > PMC 硬 度: CMC >MMC > PMC
纤维增强树脂基复合材料:
● 基体强韧性降低裂纹扩展速度 ● 纤维对裂纹阻隔作用,使裂纹 尖端变纯或改变方向
裂纹扩展路径曲折、复杂
图12 三种材料疲劳性能比较
1—碳纤维复合材料
3—铝合金
2—玻璃钢
金属疲劳强度=20—50%抗张强度
碳纤维复合材料疲劳强度=
70—80%抗张强度
(3)减振性能好 影响自振频率因素:
1.3.2 聚合物基复合材料及主要性能
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档