滚动轴承的振动机理与信号特征

滚动轴承的振动机理与信号特征
滚动轴承的振动机理与信号特征

滚动轴承的振动机理与信号特征

滚动轴承的振动可由外部振源引起,也可由轴承本身的结构特点及缺陷引起。此外,润滑剂在轴承运转时产生的流体动力也可以是振动(噪声)源。上述振源施加于轴承零件及附近的结构件上时都会激励起振动。

一、滚动轴承振动的基本参数

1.滚动轴承的典型结构

滚动轴承的典型结构如图1所示,它由内圈、外圈、滚动体和保持架四部分组成。

图1 滚动轴承的典型结构

图示滚动轴承的几何参数主要有:

轴承节径D:轴承滚动体中心所在的圆的直径

滚动体直径d:滚动体的平均直径

内圈滚道半径r1:内圈滚道的平均半径

外圈滚道半径r2:外圈滚道的平均半径

接触角α:滚动体受力方向与内外滚道垂直线的夹角

滚动体个数Z:滚珠或滚珠的数目

2.滚动轴承的特征频率

为分析轴承各部运动参数,先做如下假设:

(1)滚道与滚动体之间无相对滑动;

(2)承受径向、轴向载荷时各部分无变形;

(3)内圈滚道回转频率为fi;

(4)外圈滚道回转频率为fO;

(5)保持架回转频率(即滚动体公转频率为fc)。

参见图1,则滚动轴承工作时各点的转动速度如下:

内滑道上一点的速度为:Vi=2πr1fi=πfi(D-dcosa)

外滑道上一点的速度为:VO=2πr2fO=πfO(D+dcosa)

保持架上一点的速度为:Vc=1/2(Vi+VO)=πfcD

由此可得保持架的旋转频率(即滚动体的公转频率)为:

从固定在保持架上的动坐标系来看,滚动体与内圈作无滑动滚动,它的回转频率之比与d/2r1成反比。由此可得滚动体相对于保持架的回转频率(即滚动体的自转频率,滚动体通过内滚

道或外滚道的频率)fbc

根据滚动轴承的实际工作情况,定义滚动轴承内、外圈的相对转动频率为

一般情况下,滚动轴承外圈固定,内圈旋转,即:

同时考虑到滚动轴承有Z个滚动体,则滚动轴承的特征频率如下:滚动体在外圈滚道上的通过频率zfoc为:

滚动体在内圈滚道上的通过频率Zfic为:

滚动体在保持架上的通过频率(即滚动体自转频率fbc)为:

3.止推轴承的特征频率

止推轴承可以看作上述滚动轴承的一个特例,即α=90°,同时内、外环相对转动频率为轴的转动频率fr,此时滚动体在止推环滚道上的频率为:

滚动体相对于保持架的回转频率为:

以上各特征频率是利用振动信号诊断滚动轴承故障的基础,对故障诊断非常重要。

4.滚动轴承的固有振动频率

滚动轴承在运行过程中,由于滚动体与内圈或外圈冲击而产生振动,这时的振动频率为轴承各部分的固有频率。

固有振动中,内、外圈的振动表现最明显,如图2所示

图2 滚动轴承套圈横截面简化图与径向弯曲振动振型示意图

轴承圈在自由状态下的径向弯曲振动的固有频率为:

式中n—振动阶数(变形波数),n=2,3,…;

E—弹性模量,钢材为210GPa;

I—套圈横截面的惯性矩,mm 4;

γ—密度,钢材为7.86X10-6kg /mm3;

A—套圈横截面积,A滚bh动mm 2轴

D承的振可由外部源引起,动mm轴

g承也本身结构动g特9800mm /S2点

及缺陷动。此润滑剂在运转

时产缺生流体力以是噪动缺生是噪声上时述施加于

运部R承缺生零,轴

E承件源附近动缺陷加210GPa ;

都承会构动缺陷加7.86X10-6kg /mm3轴

g承也本身结构动g特9800mm /S2点

5激励噪引一、基述施参

加数.典型动。如图所示声励噪引一此、基述施它内参1部点

参1励噪引一、基述施参(圈和保振上和持架振四分)

组持成润引一声是噪几何、基

成润声引一流时主要有:声是噪节径中动时心圆直引一平均道半、接触角声轴时心节α受方向时与动垂励噪线节励夹声参外个珠持参外或目构如征频率为构析各先动做下分部假体触角是噪节径中点

1激引一道半、接触角声是噪

励噪引一做一设产动直内做析之间无一设声励相滑对析之动;载一设荷构体时变形回动

触角引即声角公个噪动是噪述施加Zfoc(见3)点则工作速度是噪声是π得如旋型从固定声引一坐身标系本来看从固点

2.引一缺构比反源触角声是噪

励噪引一声引自荷构润通比反源(见4)动、过圆要根据析实产动际力以情润声引自是噪点做荷构况反通及义比反源产动是噪述施加fn, 2fn., 3f.n,般轴做荷构况反通比及义比反源产动

是噪述施加般同滑考述(fn加引虑分述施)点速圆到度止推是噪动润例以做=°生引一动止环即生引一节励利引一析润例以点

见3 励噪引一声一设荷构节励相间无声与用

见4 引一声引自荷构

3.引一α受方向声信;

(1)身号外个珠构触角声是噪

直引一诊断声身号外(架振持保振励夹外征励噪线外)声个珠构触角声是噪节径中做引一部故障润础动速心非常触角声是噪加先述是噪(故励噪线做励夹图声重行述施先程冲击)点先述是噪征引即声是而析这体触角引一声,自是噪动做到和表断现最体触角引自是噪点参2它明声是噪述施显个珠构套滑声与用点参部动n加成横滑动Z加生(励噪线)滑动fic加截面励噪线做架振励夹图声重行述施动fc加简化弯分结动fbc加励噪线主及内简化弯声分噪述施点参2 是噪述施显个珠构套滑声与用

现外曲截所示到现速度是噪声意状点做见5部动引一架振身号行态部式—时个珠动生面滑

Z=8动架振四分动要架振个珠套滑同过加nZ-1动nZ动nZ阶1产动及保振,自是噪波…弹性垂现于

见5 架振个珠施触角保振,自是噪声意状(n=1动Z特8)做见部模量钢何加材1惯声生显个套矩γ产声弹性点要个套加nZ产动保振做,自密积噪动但球与nZ士1个波峰数的波纹面接触时,在外圈箭头方向上有最大位移。在另一种情况下,当编号为“1”的球与波谷接触时,波峰数为nZ个时,外圈则无径向位移;在nZ士1个波峰数时,外圈在与箭头相反方向有最大位移。由此可以说明在波峰数等于nZ士1时产生振动的原因。

表2中所列的条件是理想的,即波纹是均匀分布,波纹形状是正弦变化的。而对实际的波纹形状,可能有其他频率成分出现。用类似方法可说明波峰数对轴向振动的影响。对于精密轴承,波纹度引起的轴心摆动是不能忽视的。图6所示为在机床中使用的加有预紧力的两个超精密向心球轴承,由于滚道波纹度引起轴心摆动轨迹。此时轴心轨迹呈现内卷形和外卷形两种形式。还应注意,不仅轴承滚道和滚动体的波纹度会引起轴承振动,轴承的内外配合面及轴颈和轴承座孔的波纹度对精密轴承也会引起类似的振动,因为在预紧力作用下,轴承装配后会引起套圈的相应变形。

图6 由轴承零件波纹度引起的轴心摆动

(2)轴承偏心引起的振动

如图7所示,当轴承游隙过大或滚道偏心时都会引起轴承振动,振动频率为nfn,fn为轴回转频率,n=1,2,…。

(3)滚动体大小不均匀引起轴心摆动

如图8所示,滚动体大小不均匀会导致轴心摆动,还有支承刚性的变化。振动频率为fc和nfc士fn,n=1,2,…,此处fc为保持架回转频率,fn为轴回转频率。

图7 轴承偏心引起的轴承振动图8 滚动体大小不均匀引起的轴心摆动(4)轴弯曲引起轴承偏斜

轴弯曲会引起轴上所装轴承的偏移,造成轴承振动。轴承的振动频率为nfc士fn,n=1, 2,…。此处fc为保持架回转频率,fn为轴回转频率。

4.滚动轴承的声响

滚动轴承在运转时由于各种原因会产生振动,并通过空气传播成为声音,声音中包含着轴承状态的信息。轴承声响有如下几种:

所谓轴承本质的声音是一切轴承都有的声音。滚道声是滚动体在滚动面上滚动而发生的,是一种滑溜连续的声音。它与套圈的固有振动有关,频率一般都在1kHz以上,并与轴承转速有关。辗压声主要发生在脂润滑的低速重载圆柱滚动轴承中,类似于“咯吱咯吱”的声音。

保持架声音是由保持架的自激振动引起的,保持架振动时会与滚动体发生冲撞而发出声音。高频振动声是由加工面的波纹度引起的振动而发出的声音。

在与使用有关的声音中,伤痕声是由滚动面上的压痕或锈蚀引起的,为周期性的振动和声音。尘埃声是非周期性的。

综合以上所述,正常的轴承在运转时也会有十分复杂的振动和声响,而故障轴承的声音则更复杂。

三、故障轴承振动信号特点

轴承发生故障后,其振动特征会有明显的变化,主要有以下几方面。

1.疲劳剥落损伤

当轴承零件上产生了疲劳剥落坑后(图9以夸大的方式画出了疲劳剥落坑),在轴承运转中会因为碰撞而产生冲击脉冲。图10给出了钢球落下产生的冲击过程的示意图。在冲击的第一阶段,在碰撞点产生很大的冲击加速度〔图10(a)和(b)〕,它的大小和冲击速度v成正比(在轴承中与疲劳损伤的大小成正比)。第二阶段,构件变形产生衰减自由振动(图c),振动频率取决于系统的结构,为其固有频率(图d)。振幅的增加量A也与冲击速度v成正比(图e)。

在滚动轴承剥落坑处碰撞产生的冲击力的脉冲宽度一般都很小,大致为微秒级。因力的频谱宽度与脉冲持续时间成反比,所以其频谱可从直流延展到100~500kHz。疲劳剥落损伤可以在很宽的频率范围内激发起轴承一传感器系统的固有振动。由于从冲击发生处到测量点的传递特性对此有很大影响,因此测点位置选择非常关键,测点应尽量接近承载区,振动传递界面越少越好。

图9 轴承零件上的疲劳剥落坑

有疲劳剥落故障轴承的振动信号如图11(a)所示,图11(b)为其简化的波形。T取决于碰撞的频率,T=1/f碰。在简单情况下,碰撞频率就等于滚动体在滚道上的通过率ZFic或Zfoc 或滚动体自转频率fbc 。

图10 冲击过程示意图

图11 有疲劳剥落故障轴承的振动信号

2.磨损

随着磨损的进行,振动加速度峰值和RMS值缓慢上升,振动信号呈现较强的随机性,峰值与RMS值的比值从5左右逐渐增加到5.5~6。如果不发生疲劳剥落,最后振动幅值可比最初增大很多倍,变化情况见图12。

3.胶合

图13为一运转过程中发生胶合的滚动轴承的振动加速度及外圈温度的变化情形。在A点以前,振动加速度略微下降,温度缓慢上升。A点之后振动值急剧上升,而温度却还有些下降,这一段轴承表面状态已恶化。在B点以后振动值第二次急剧上升,以致超过了仪器的测量范围,同时温度也急剧上升。在B点之前,轴承中已有明显的金属与金属的直接接触和短暂的滑动,B点之后有更频繁的金属之间直接接触及滑动,润滑剂恶化甚至发生炭化,直至发生胶合。从图中可以看出,振动值比温度能更早地预报胶合的发生,由此可见轴承振动是

一个比较敏感的故障参数。

图12 轴承磨损时振动加速度

图13 发生胶合的轴承试验曲线

文章链接:中国化工仪器网https://www.360docs.net/doc/b1183453.html,/Tech_news/Detail/29236.html

滚动轴承故障诊断分析

滚动轴承故障诊断分析 学院名称:机械与汽车工程学院专业班级: 学生姓名: 学生学号: 指导教师姓名:

摘要 滚动轴承故障诊断 本文对滚动轴承的故障形式、故障原因、常用诊断方法等诊断基础和滚动轴承故障的振动机理作了研究,并建立了相应的滚动轴承典型故障(外圈损伤、内圈损伤、滚动体损伤)的理论模型,给出了一些滚动轴承故障诊断常见实例。通过对滚动轴承故障振动机理的研究可以帮助我们了解滚动轴承故障的本质和特征。本文对特征参数的提取,理论推导,和过程都进行了详细的阐述, 关键词:滚动轴承;故障诊断;特征参数;特征; ABSTRACT : The Rolling fault diagnosis In the thesis ,the fault types,diagnostic methods an d vibration principle of rolling bearing are discussed.the thesis sets up a series of academic m odels of faulty rolling bearings and lists some sym ptom parameters which often used in fault diagnosis of rolling bearings . the study of vibration prin ciple of rolling bearings can help us to know the essence and feature of rolling bearings.In this pa

滚动轴承的振动机理与信号特征

滚动轴承的振动机理与信号特征 滚动轴承的振动可由外部振源引起,也可由轴承本身的结构特点及缺陷引起。此外,润滑剂在轴承运转时产生的流体动力也可以是振动(噪声)源。上述振源施加于轴承零件及附近的结构件上时都会激励起振动。 一、滚动轴承振动的基本参数 1.滚动轴承的典型结构 滚动轴承的典型结构如图1所示,它由内圈、外圈、滚动体和保持架四部分组成。 图1 滚动轴承的典型结构 图示滚动轴承的几何参数主要有: 轴承节径D:轴承滚动体中心所在的圆的直径 滚动体直径d:滚动体的平均直径 内圈滚道半径r1:内圈滚道的平均半径 外圈滚道半径r2:外圈滚道的平均半径 接触角α:滚动体受力方向与内外滚道垂直线的夹角 滚动体个数Z:滚珠或滚珠的数目 2.滚动轴承的特征频率 为分析轴承各部运动参数,先做如下假设:

(1)滚道与滚动体之间无相对滑动; (2)承受径向、轴向载荷时各部分无变形; (3)内圈滚道回转频率为fi; (4)外圈滚道回转频率为fO; (5)保持架回转频率(即滚动体公转频率为fc)。 参见图1,则滚动轴承工作时各点的转动速度如下: 内滑道上一点的速度为:V i=2πr1f i=πf i(D-dcosa) 外滑道上一点的速度为:V O=2πr2f O=πf O(D+dcosa) 保持架上一点的速度为:V c=1/2(V i+V O)=πf c D 由此可得保持架的旋转频率(即滚动体的公转频率)为: 从固定在保持架上的动坐标系来看,滚动体与内圈作无滑动滚动,它的回转频率之比与d/2r1成反比。由此可得滚动体相对于保持架的回转频率(即滚动体的自转频率,滚动体通过内滚道或外滚道的频率)fbc 根据滚动轴承的实际工作情况,定义滚动轴承内、外圈的相对转动频率为 一般情况下,滚动轴承外圈固定,内圈旋转,即: 同时考虑到滚动轴承有Z个滚动体,则滚动轴承的特征频率如下:滚动体在外圈滚道上的通过频率zfoc为:

有效振动分析的信号处理

有效振动分析的信号处理 摘要 有效的振动分析首先始于从工业标准的振动传感器,如加速度传感器获得一个准确的时域变化的信号。一个手持式数字仪器一般接入原始的模拟信号,并为用户的多种要求进行处理。根据用户对分析的要求和原始信号的最初单位,信号可被直接处理或经由数学积分器变换成振动测量的其他单位。根据感兴趣的频率,信号可能要经过一系列高通滤波器和低通滤波器的调理。根据期望得到的结果,信号可能被多次采样和平均。如果在数字仪器中需进行时间波形分析,那么确定采样点数和采样速率是必要的。观察的时间长度等于采样周期乘以采样点数。大部分手持式仪器也具有FFT(快速傅里叶变换)处理方法,把全局时变输入信号采样分解为其单独的频率分量。在老式模拟仪器中,这个分析功能是由扫频滤波器来实现的。 定义FFT处理时要考虑很多设置参数:(1)分辨率线数;(2)最大频率;(3)平均类型;(4)平均次数,和(5)窗类型。这些参数互相作用影响得到的结果,并且需要在信息质量和完成数据采集所耗时间之间进行折中考虑。 预知维修的成功依赖于数据采集和变换过程中的几个要素:(1)总振动水平的趋势;(2)复合振动信号各个频率分量的幅值和频率;(3)在相同运行条件下,机器某一部分的振动信号相对于机器上另一个测量的相位关系。 本文将带领读者从振动传感器的输出,经过典型的现代数字技术振动测量仪器所完成的信号处理流程的各个阶段。并且,本文重点介绍了预知维修领域为完成准确分析而进行的快速有效的振动数据采集中所需的多个数据采集设置参数和折中考虑。 关乎振动分析成功的几项内容,将给予详细论述:模拟信号采样和调理;抗混淆测量;噪声滤波器技术;频带-低通,高通,带通;数据平均方法;和FFT频率转换。 1.讨论 振动分析始于传感器输出的时变物理信号。从此信号的输入到振动测量仪器,有很多可能的选择去分析信号。本文的目的是关注内部信号处理路径,以及它和原始振动问题的最终根源分析之间的关系。首先,我们看如图1所示的仪器中典型信号路径的框图。 2.时间波形 图2.所示是一个典型的来自加速度传感器的模拟时间波形信号。

齿轮箱的故障类型及振动机理改

第2章齿轮箱的故障和振动信号 2.1齿轮箱故障的主要形式 齿轮箱系统是包含齿轮、轴承、传动轴及箱体等结构的复杂系统。其中主要故障发生在齿轮、轴承和传动轴上。在齿轮箱的诊断中,一般只给出是否产生故障及产生故障的位置,根据振动信号的特点,一般常见的典型故障形式有齿轮失效、轴和轴系失效、箱体共振和轴承疲劳脱落和点蚀等几种【5】。 在这些常见故障中,齿轮和滚动轴承的故障占齿轮箱故障的80%左右【4】。因此,对齿轮和滚动轴承的故障类型和振动机理进行剖析,对于识别齿轮箱故障类型有重要的意义。 2.1.1齿轮的故障类型及振动机理 (1)齿轮的故障类型齿轮的故障类型大致可分为以下两种类型: 1)由制造误差和装配误差引起的故障。具体的故障包括齿轮偏心、齿距偏差、齿形误差、轴线不对中、齿面一段接触等故障。齿轮制造时造成的主要缺陷有:偏心、齿距偏差和齿形误差等。齿轮装配不当,也会造成齿轮的工作性能恶化。当齿轮的这些误差较严重时,会引起齿轮传动中忽快忽慢的转动,啮合时产生冲击引起较大的振动和噪声等【5】。 2)运行中产生的故障齿轮除上述故障外,其在本身运行过程中也会形成许多常见的故障,例如断齿、齿根疲劳裂纹、齿面磨损、点蚀剥落、严重交合等等。齿轮预定寿命内不影响使用的磨损成文正常磨损,如果因使用不当、用材不当、接触面存在硬颗粒以及润滑油不足等原因引发早期磨损,将导致齿轮形变、重量损失、齿厚变薄、噪声增大等后果,甚至会导致齿轮失效。其中若润滑油不足,还会导致齿面胶合,胶合一旦发生,齿面状况变差,功耗增大,从而使得振动信号变强。 (2)齿轮的振动机理一对啮合齿轮,可以看作一个具有质量、弹簧和阻尼的振动系统,其力学模型如图2-1所示。 图2-1齿轮对的力学模型 其振动方程为【4】: M r X+CX+K t X=K t E1+K t E2(t)2-1式中 X——为沿作用线上齿轮的相对位移 K(t)——齿轮啮合刚度 M r——齿轮副的等效质量

滚动轴承的振动信号特征分析报告

南昌航空大学实验报告 课程名称:数字信号处理 实验名称:滚动轴承的振动信号特征分析实验时间: 2013年5月14日 班级: 100421 学号: 10042134 姓名:吴涌涛 成绩:

滚动轴承的振动信号特征分析 一、实验目的 利用《数字信号处理》课程中学习的序列运算、周期信号知识、DFT 知识,对给定的正常轴承数据、内圈故障轴承数据、外圈故障轴承数据、滚珠故障轴承数据进行时域特征或频域特征提取和分析,找出能区分四种状态(滚动轴承的外圈故障、内圈故障、滚珠故障和正常状态)的特征。 二、实验原理 振动机理分析:机械在运动时,由于旋转件的不平衡、负载的不均匀、结构刚度的各向异性、间隙、润滑不良、支撑松动等因素,总是伴随着各种振动。 振动的幅值、频率和相位是振动的三个基本参数,称为振动三要素。 幅值:幅值是振动强度的标志,它可以用峰值、有效值、平均值等方法来表示。 频率:不同的频率成分反映系统内不同的振源。通过频谱分析可以确定主要频率成分及其幅值大小,从而寻找振源,采取相应的措施。 相位:振动信号的相位信息十分重要,如利用相位关系确定共振点、测量振型、旋转件动平衡、有源振动控制、降噪等。对于复杂振动的波形分析,各谐波的相位关系是不可缺少的。 在振动测量时,应合理选择测量参数,如振动位移是研究强度和变形的重要依据;振动加速度与作用力或载荷成正比,是研究动力强度和疲劳的重要依据;振动速度决定了噪声的高低,人对机械振动的敏感程度在很大频率范围内是由速度决定的。速度又与能量和功率有关,并决定动量的大小。 提取振动信号的幅域、时域、频域、时频域特征,根据特征进行故

障有无、故障类型和故障程度三个层次的判断。 三、 实验内容 Step1、使用importdata ()函数导入振动数据。 Step2、把大量数据分割成周期为单元的数据,分割方法为: 设振动信号为{x k }(k =1,2,3,…,n )采样频率为f s ,传动轴的转动速率为V r 。 采样间隔为: 1 s t f ?= (1) 旋转频率为: 60 r r V f = (2) 传动轴的转动周期为: 1 r T f = (3) 由式(1)和(3)可推出振动信号一个周期内采样点数N : 1 1s r r s f f T N t f f = ==? (4) 由式(2)可得到传动轴的转动基频f r =29.95Hz ,再由式(3)可得到一个周期内采样点数N=400.67,取N =400。 Step3、提取振动信号的特征,分析方法包括: 1、时域统计分析指标(波形指标(Shape Factor)、峰值指标(Crest Factor)、脉冲指标(Impulse Factor)、裕度指标(Clearance Factor)、峭度指标(KurtosisValue) )等,相关计算公式如下: (1)波形指标: P f X WK X = (5) 其中,P X 为峰值,X 为均值。p X 计算公式如下:

MATLAB在机械振动信号中的应用

MATLAB在机械振动信号中的应用 申振 (山东理工大学交通与车辆工程学院) 摘要:综述了现代信号分析处理理论、方法如时域分析(包括时域参数识别、相关分析等)、频域分析(包括傅立叶变换、功率谱分解等),并结合MATLAB中的相关函数来对所拟合的振动信号进行时域分析和频域分析,并对绘出的频谱图进行说明。 关键词:时域分析频域分析MATLAB 信号是信息的载体,采用合适的信号分析处理方法以获取隐藏于传感观测信号中的重要信息(包括时域与频域信息等),对于许多工程应用领域均具有重要意义。对获取振动噪声信号的分析处理,是进行状态监测、故障诊断、质量检查、源识别、机器产品的动态性能测试与优化设计等工作的重要环节,它可以预先发现机械部件的磨损和缺陷等故障,从而可以提高产品的质量,降低维护费用。随着测试技术的迅速发展,各种信号分析方法也随之涌现,并广泛应用在各个领域[1]。 时域描述简单直观,只能反映信号的幅值随时间的变化,而不能明确的揭示信号随时间的变化关系。为了研究信号的频率组成和各频率成分的幅值大小、相位关系,应对信号进行频谱分析,即把时域信号通过适当的数学方法处理变成频率f(或角频率 )为独立变量,相应的幅值或相位为因变量的频域描述。频域分析法将时域分析法中的微分或差分方程转换为代数方程,有利于问题的分析[2]。 MATLAB是MathWorks公司于1982年推出的一种功能强大、效率高、交互性好的数值计算和可视化计算机高级语言,它将数值分析、矩阵运算、信号处理和图形显示

有机地融合为一体,形成了一个极其方便、用户界面良好的操作环境。随着其自身版本的不断提高,MATLAB 的功能越来越强大,应用范围也越来越广,如广泛应用于信号处理、数字图像处理、仿真、自动化控制、小波分析及神经网络等领域[3]。 本文主要运用了MATLAB R2014a 对机械振动信号进行分析。分析过程包括时域分析和频域分析两大部分,时域分析的指标包括随机信号的均值、方差以及均方值。频域分析的性能指标包括对功率谱分析、倒频谱分析。在进行上述分析之前先要对振动信号进行拟合。机械振动分为确定性振动和随机振动,确定性振动又分为周期振动和非周期振动,周期振动又进一步分为简谐振动和复杂的周期振动。所以可以根据上述的分类来拟合振动信号[2]。在设计信号的处理程序时,运用MATLAB 中的相关函数来对所拟合的振动信号进行时域分析和频域分析,并对绘出的频谱图进行说明。 1 时域分析 1.1 均值 对于一个各态历经随机随机信号()x t ,其均值x μ为 1lim ()T x T x t dt T μ→∞=? (1) 式中 ()x t ——样本函数; T ——观测时间; x μ——常值分量。 1.2 方差 2 x σ是描述随机信号的波动分量,定义为 2 201lim [()]T x x T x t dt T σμ→∞=-? (1) 它表示信号()x t 偏离其均值x μ平方的均值,方差的正平方根x σ称为标准差。

王济-matlab在振动信号处理中的应用代码

程序4-1 %最小二乘法消除多项式趋势项%%%%%%%%%%%%%%%%%%%%%%%% clear % 清除内存中所有变量和函数 clc % 清除工作窗口中所显示的内容close all hidden % 关闭所有隐藏的窗口%%%%%%%%%%%%%%%%%%%%%%%% %提示用键盘输入输入数据文件名 fni=input('消除多项式趋势项-输入数据文件名:','s'); %以只读方式打开数据文件 fid=fopen(fni,'r'); sf = fscanf(fid,'%f',1); %读入采样频率值 m = fscanf(fid,'%d',1); %读入拟合多项式阶数 fno = fscanf(fid,'%s',1);%读入输出数据文件名 x = fscanf(fid,'%f',inf);%读入时程数据存成列向量 %关闭数据文件 status=fclose(fid); %取信号数据长度 n=length(x); %建立离散时间列向量 t=(0:1/sf:(n-1)/sf)'; %计算趋势项的多项式待定系数向量a a=polyfit(t,x,m); %用x减去多项式系数a生成的趋势项 y=x-polyval(a,t); %将分成2行1列的图形窗口的第1列设为当前绘图区域subplot(2,1,1); %绘制x对于t的时程曲线图形 plot(t,x); %在图幅上添加坐标网格 grid on; %将分成2行1列的图形窗口的第2列设为当前绘图区域subplot(2,1,2); %绘制y对于t的时程曲线图形 plot(t,y); %在图幅上添加坐标网格 grid on; %以写的方式打开文件或建立一个新文件 fid=fopen(fno,'w'); %进行n次循环将计算结果写到输出数据文件中 for k=1:n %每行输出两个实型数据,t为时间,y为消除趋势项后的结果fprintf(fid,'%f %f\n',t(k),y(k)); %循环体结束语句

电机滚动轴承的故障分析判断方法

电机滚动轴承的故障分析判断方法 轴承在机械中主要是起支撑及减少摩擦的作用,因此轴承的精度、噪声等都直接关系到机械的使用及寿命。转动轴承在设备中的应用非常广泛,转动轴承状态好坏直接影响旋转设备的运行状态,尤其在连续性大型生产企业,大量应用于大型旋转设备重要部位。因此实际生产中作好转动轴承状态监测与故障诊断是搞好设备维修与治理的重要环节。我们经过长期实践与摸索,积累了一些转动轴承实际故障诊断的实用技巧。本文将主要对转动轴承常见的故障诊断并做出分析。 一、转动轴承故障诊断的方式及要点 转动轴承的早期故障是滚子和滚道剥落、凹坑、破裂、腐蚀和杂物嵌进。产生的原因包括搬运粗心,安装不当、不对中、轴承倾斜、轴承选型不正确、润滑不足或密封失效、负载分歧适以及制造缺陷。根据经验,对转动轴承进行状态监测和故障诊断的实用方法是振动分析。振动分析对于转动轴承的诊断是将由加速度传感器获得的加速度信号,经过1kHz的高通滤波器往除低频信号后,对其进行包络处理,将调制信号移至低频,最后进行频谱分析,以便找出信号的特征频率。 根据转动轴承的结构特点、使用条件不同,它所引起的振动是频率在1kHz以上,数千赫乃至数十千赫的高频振动(固有振动),通常情况下是同时包含了上述两种振动成分。因此检测转动轴承振动速度和加速度信号时应同时覆盖或分别覆盖上述两个频带,必要时可以采用滤波器取出需要的频率成分。考虑到转动轴承多用于中小型机械,其结构通常比较轻薄,因此传感器的尺寸和重量都应尽可能地小,以免对被测对象造成影响,改变其振动频率和振幅大小。 转动轴承的振动属于高频振动,对于高频振动的丈量,传感器的固定采用手持式方法显然分歧适,一般也不推荐磁性座固定,建议采用钢制螺栓固定,这样不仅谐振频率高,可以满足要求,而且定点性也好,对于衰减较大的高频振动,可以避免每次丈量的偏差,使数据具有可比性。 实用中需留意选择测点的位置和采集方法。要想真实正确反映转动轴承振动状态,必须留意采集的信号要正确真实,因此要在离轴承最近的地方安排测点,在电机自由端一般有后风扇罩,其测点选择在风扇罩固定螺丝处有较好监测效果。另外必须留意对振动信号进行多次采集和分析、综合进行比较,才能得到正确结论。 1转动轴承故障的频谱和波形特征 (1)径向振动在轴承故障特征频率及其低倍频处有波峰,若有多个同类型故障(内滚道、外滚道等),则在故障特征频率的低倍频处有较大的峰值; (2)内滚道故障特征频率有边带,边带间隔为l倍频的倍数; (3)转动体特征频率处的边带,边带间隔为保持架故障特征频率; (4)在加速度频谱的中高区域若有峰群忽然生出,表明有疲惫故障; (5)径向诊断时域波形有垂直复冲击迹象(有轴向负载时,轴向振动波形与径向相同,或者其波峰系数大于5,表明故障产生了高频冲击现象)。 2转动轴承的故障诊断方法 转动轴承的振动信号分析故障诊断方法分为简易诊断和精密诊断两种。简易诊断的目的是初步判定被列为诊断对象的转动轴承是否出现了故障;精密诊断的目的是要判定在简易诊断中被以为是出现故障轴承的故障种别及原因。由于转动轴承自身的特点,一旦损坏普通维修很难修复,大多采用更换的维修方式进行处理;而精密诊断的主要作用是理论研究和在特

滚动轴承故障机理分析 (DEMO)

滚动轴承故障的机理分析 一、轴承产生振动机理 由于滚动轴承的内、外圈和滚动体都是弹性体,构成振动系统或以子系统的形式耦合在整个系统中。内、外圈和滚动体都有自己的振动特征----固有频率和振型。所以从轴承的振源不同,滚动轴承的振动可分为非轴承故障性振动和轴承故障性振动。使用同步平均处理拾得的振动信号来寻找轴承故障几乎是不可能的,因为轴承信息中的基频是非同步的。滚动轴承有损伤时,其振动波形往往是调幅波。相当于载波的是轴承各部件及传感器本身以其固有频率振动的高频成分,起调制作用的是与损伤有关的低频成分。 冲击振动从分析的角度来看可以分为两种类型。第一种是直接分析由于滚动体通过工作面上的缺陷、产生反复冲击而形成1kHz以下的低频振动,或称为轴承的通过振动,它是滚动轴承的重要特征信息之一。但是由于这一频带中的噪声干扰很大,所以不容易捕捉到早期诊断信息。第二类是分析由于冲击而激起的轴承零件的固有振动。实际应用中可以利用的固有振动有三种: 1)轴承内、外圈一阶径向固有振动,其频带范围一般在1—8kHz之间。 2)轴承零件其他固有振动,其频率范围多在20一60kHz之间。 3)加速度传感器的一阶固有频率,其频率中心通常选择在10一25kHz附近。 1、非轴承故障性振动 非轴承故障性振动主要有安装不当或制造误差引起的偏心,转子或转轴不平衡引起的振动,这类振动往往被用来作为对转子故障进行诊断的信息。在滑动轴承和高速旋转机械中更是如此。 2、滚动轴承结构引起的振动 对于水平轴旋转时,每个钢珠通过轴的正下方时,轴就会略为向上升起。这样就产生了回转轴端部的上下运动。这种运动也称为滚动元件的通过振动。 3、轴承故障性振动 轴承故障性振动主要由下列各种原因引起: 1)由于载荷过大引起内、外圈和滚动体变形过大导致的旋转轴中心随滚动体位置变化所引起的振动----传输振动。还有因安装不准确或滚动体大小不一致引起的振动。一般情况下,这样的振动其频率较低(≤1KHz)。 2)由于润滑脂的润滑性能不良引起的非线性振动。

滚动轴承故障振动分析

Detecting rolling element bearing faults with vibration analysis https://www.360docs.net/doc/b1183453.html, https://www.360docs.net/doc/b1183453.html, Detecting rolling element bearing faults is the highest priority for most vibration analysts. Detecting the fault at the earliest opportunity should be the priority, however in reality most analysts do not detect the fault in the first or even the second stage of failure. This article is going to help you to detect faults at stage one so that you can truly be in control of your maintenance program. In this article I will describe the four stages of bearing failure and how to understand and successfully utilize the airborne ultrasound, Shock Pulse, Spike Energy, PeakVue, enveloping/demodulation, time waveform analysis and spectral analysis methods. I will also explain why you should not rely on trending overall level readings. Reducing bearing faults No article of this nature can be complete without a discussion of the reasons why bearings fail in the first place. Your first priority should be to minimize the causes of bearing failure. If you can do that successfully, then you will not need to rely on the vibration analysis techniques as much. That is not to say that I want to put vibration analyst’s out of work, or that you should even consider downsizing your vibration monitoring program (because there will always be bearing failures and other mechanical faults) – the point is that the path to equipment reliability does not begin with vibration analysis. The fact is that if you properly purchase, transport, store, install, and lubricate your bearings, and you operate machines that are balanced, aligned and operating well away from natural frequencies, your bearings will last longer. You may not have control over many of these factors, but if you are involved in vibration analysis then there are two things you can definitely do: look for the presence of conditions that will cause bearings to have a reduced life, and perform root cause analysis when you detect bearing damage. I opened this article by pointing out that the detection of rolling element bearing faults is the highest priority for most vibration analysts. The sad truth is that for too many analysts it is the only priority. Unbalance, misalignment, soft foot, and resonance often have a much lower priority. Although these faults conditions appear first on most wall charts, they can be the trickiest to diagnose. Phase analysis is a powerful, yet

车辆振动信号的特征提取方法比较

第37卷 第4期吉林大学学报(工学版) Vol.37 No.4 2007年7月Journal o f Jilin U niv ersity(Engineering and T echnolo gy Edition) July2007车辆振动信号的特征提取方法比较 廖庆斌1,李舜酩1,覃小攀2 (1.南京航空航天大学能源与动力学院,南京210016; 2.吉林大学汽车工程学院,长春130022) 摘 要:针对用于车辆振动信号分析的常用方法:小波分析方法和H ilbert H uang变换方法,以及作者新近提出的时序多相关 经验模式分解方法,通过仿真对比分析了它们各自的特点以及它们在振动信号特征提取中的适用性。非线性信号的仿真分析表明,在没有噪声或分析对象背景噪声较小的情况下,后两种方法能提取到特征信号,小波分析不适合非线性信号的分析;在强背景噪声下,前两种方法均不能得到满意的特征信息,而时序多相关 经验模式分解方法能提取到所需的目标信息。最后将时序多相关 经验模式分解方法用于某特种车辆特征信号的提取,得到了满意的结果,验证了该方法在车辆振动信号特征提取中的有效性。 关键词:信息处理技术;振动信号;特征提取;小波分析;H ilbert H uang变换;时间序列多相关;经验模式分解 中图分类号:T N911;U270 文献标识码:A 文章编号:1671 5497(2007)04 0910 06 Comparison of feature extraction methods of vehicle vibration signal Liao Qing bin1,Li Shun m ing1,Qin Xiao pan2 (1.College of E ner gy and P ower E ngineer ing,N anj ing Univer sity of A er onautics and A s tronautics,N anj ing210016, China;2.College of A uto motiv e Engineer ing,J ilin Univ er sity,Changchun130022,China) Abstract:The v ibration signals o f a vehicle alw ay s car ry the dynamic info rmation of the vehicle.These signals are very useful for the health monitoring and fault diag no sis.H ow ever,in many cases, because these sig nals have v ery low signal to no ise ratio(SNR),to ex tract feature co mpo nents beco mes difficult and the applicability of info rmation drops dow n.T he characters of feature extraction of vibration signal w er e compared,among the tw o popular m ethods named w avelet analy sis(WA)and H ilbert H uang translatio n(H H T)and the multi correlatio n o f tim e series and empirical mo de decom po sitio n(M CT S EM D),via simulation.And the applicability of them w as analyzed using the simulatio n signal.The H H T and M CTS EM D can extract the feature signal in no interference of noise or the SNR is a larg e number,w hile the WA is not suit for the featur e ex tr actio n o f nonlinear signal. In the str ong backgro und noise,the WA and H H T can not w ork w ell,contrasting them;the M CTS EM D can ex tract the w anted object inform ation.A t last,T he M CTS EM D method w as used to ex tract the featur e sig nal of som e special vehicle,a satisfactor y result can be g et,this validity of MCT S EMD w as validated in the feature ex traction of v ehicle vibration sig nal. Key words:info rmatio n processing;v ibration signal;feature extraction;w avelet analy sis;H ilbert H uang 收稿日期:2006 06 22. 基金项目:航空科学基金资助项目(04I52066);国家自然科学基金资助项目(50675099). 作者简介:廖庆斌(1979 ),男,博士研究生.研究方向:振动、噪声的分析与控制.E mail:qb_liao@https://www.360docs.net/doc/b1183453.html, 通讯联系人:李舜酩(1962 ),男,教授,博士生导师.研究方向:振动噪声分析与控制,现代信号处理,转子振动监测与诊断.E ma il:lishunm ing69@https://www.360docs.net/doc/b1183453.html,

平稳和非平稳振动信号的处理方法综述

平稳和非平稳振动信号的处理方法 周景成 (东华大学机械工程学院,上海 201620) 摘要:本文主要综述了当前对于平稳和非平稳振动信号的处理方法及其优缺点,同时列举了目前振动信号处理的研究热点和方向。 关键词:稳态非稳态振动信号处理;方法;优缺点。 1.稳态与非稳态振动信号的界定 稳态振动信号是指频率、幅值和相位不变的动态信号,频率、幅值和相位做周期性变化的信号称为准稳态信号,而对于频率、幅值和相位做随机变化的信号则称为非稳态信号。 2. 稳态或准稳态振动信号的主要处理方法及其优势与局限 对于稳态振动信号,主要的分析方法有离散频谱分析和校正理论、细化选带频谱分析和高阶谱分析。对于准稳态信号主要采用的是解调分析。对于非稳态振动信号主要采用加Hanning窗转速跟踪分析、短时傅里叶变换、Wigner-Ville 分布和小波变换等。对于任一种信号处理方法都有其优势和劣势,没有完美的,具体在工程实际中采用哪一种分析方法得看具体的工程情况而定,不能一概而论。 2. 1 离散频谱分析与校正 离散频谱分析是处理稳态振动信号的常用方法,离散频谱分析实现了信号从时域到频域分析的转变。FFT成为数字信号分析的基础,广泛应用于工程技术领域。通过离散傅里叶变换将振动信号从时域变换到频域上将会获得信号更多的信息。对于这一方法,提高信号处理的速度和精度是当下两个主要的研究方向。由于计算机只能对有限多个样本进行运算,FFT 和谱分析也只能在有限区间内进行,这就不可避免地存在由于时域截断产生的能量泄漏,离散频谱的幅值、相位和频率都可能产生较大的误差,所以提高精度成为近一段时间主要的研究方向。上世纪70年代中期,有关学者开始致力于离散频谱校正方法的研究。目前国内外有四种对幅值谱或功率谱进行校正的方法:(1)比值校正法(内插法);(2)能量重心校正法;(3)FFT+FT谱连续细化分析傅立叶变换法;(4)相位差法。四种校正方法的原理和特点见表1[1]. 从理论上分析,在不含噪声的情况下,比值法和相位差法是精确的校正法,而能量重心法和FFT+FT谱连续细化分析傅立叶变换法是精度很高的近似方法。随着频谱校正技术的发展和不断完善,越来越广泛地被应用于分析各种实际问题和各类动态信号分析系统中,根据应用对象特点的不同,采用不同的校正方法。一般在只需要较高幅值精度时,多采用方法简便的三点卷积幅值法;需要精确的频率和相位采用比值法;在噪声较大时,采用相位差校正法或FFT+FT谱连续细化分析傅立叶变换法。 2. 2 细化选带频谱分析 振动信号中, 对密集型频谱的分析采用细化选带频谱分析方法, 该方法有 多种, 如复调制细化、相位补偿细化、Chirp- Z 变换、最大熵谱分析等, 其中

滚动轴承振动原理

讲义: 一.轴承振动的原理 二.影响静音轴承的原因 三.车间生产如何控制(注意哪些细节) 前言 随着高科技的发展,机械产品越来越向精密延伸。轴承行业也在逐步地革新换代,同时用户对轴承的使用也越来越向“静音”高要求。于是静音轴承成为了行业商场上的“紧俏品”,也成为了同行竞争的分档线。 一、轴承振动的原理 我们知道轴承的结构主要由4大件组成:内外圈、保持架、钢球,加上润滑剂就是5大件了。在轴承运转的过程中,这几大件相互之间形成的摩擦副有:外圈与保持架、内圈与保持架、滚动体与保持架、内、外圈与滚动体,结构是封闭式的摩擦副还存在密封圈(或防尘盖)与内外圈、油脂与机械物质等的摩擦。以上这些摩擦副最终形成了轴承运转时发出的声音,这种本能固有的声音行业上称做轴承的“基础噪音”。测振时这种声音一般表现的比较平稳、轻微、柔和,这与我们攻关的低噪音有所不同。轴承运转的过程中,由于轴承滚道工作面、滚动体、润滑不良等缺陷的影响,在加速度测振仪上,这些缺陷经过传感器而产生的振动脉冲更大地激起轴承本身固有频率振动,从而产生出人耳听起来不舒服的异常音。 下面我讲一下影响低噪音轴承的因素。

二、影响静音轴承的因素 1.产品结构的影响 从最近几年轴承结构的不断更新来看,以消除噪音为目的来改进产品结构的还不少,比如:内外滚道的优化设计、宽边保持架的采用、钢球的球形偏差改进等等。实际拆套中发现钢球往往有“猫眼”的,其实是保持架结构不合理导致。我计算过6308、6309、6311目前所用的保持架结构,6309、6311的在实际受力的情况下比理论受力结构变形量增大了()mm,这样运转时钢球必然撞击保持架,则易产生磨痕,影响低噪音控制。 2.零件缺陷的影响 (1). 钢球缺陷的影响 在轴承几大件中,钢球对成品轴承的振动影响最大。钢球的球形偏差及表面磕碰伤直接影响成品轴承的振动,因此严格控制钢球的球形偏差及表面磕碰伤,能够降低轴承的低频振动。目前钢球厂家在钢球的加工过程中提高研磨盘的加工质量,控制研磨盘的沟形偏差,并选用优质精研液,以降低钢球表面粗糙度。钢球的表面质量在测振仪上声音放大器一般表现为“嚓嚓沙沙”的锯齿音,在BVT型测振仪上比较明显,同时拆套后会发现钢球表面有划伤、麻点等缺陷,经打硬度此类钢球硬度一般都低于62.5HRC。实验表明如果钢球硬度在63.9HRC的没有锯齿音,钢球硬度在62.9HRC的锯齿音会减少40%,硬度在61.4HRC时一定有锯齿音。在测振时,钢球缺陷在S0910型上波形一般表现为幅值很大的尖峰脉冲,在BVT型声音一般为“嗡

振动信号处理仪器的主要分类

振动信号处理仪器的主要分类 传感器检测到的振动信号是时域信号,它只能给出振动强度的概念,只有经过频谱分析后,才可以估计其振动的根源和干扰,并用于故障诊断和分析。振动信号处理仪器主要有测振仪、频谱分析仪、传递函数分析仪和综合分析仪。 1. 测振仪 测振仪是用来直接显示位移、速度、加速度等振动量的峰值、峰峰值、平均值或方均根值的仪器。它主要由积分、微分电路、放大器、电压检波器和表头组成。 一般意义上的测振仪只能使人们获得振动的总强度而无法获得振动的其他方面信息,但祺迈KM生产的测振仪VIB05却可以除了基础的振动检测,还可以进行轴承状态的检测与红外测温,兼具了测振仪、轴承检测仪与测温仪于一体,是一款多功能型的振动和轴承状态检测仪。 2. 频谱分析仪 频谱分析仪是把振动信号的时间历程转换为频域描述的一种仪器。要分析产生振动的原因,研究振动对人类和其他结构的影响及研究结构的动态特性等,都要进行频谱分析。频谱分析仪的种类很多,之前有接触过VIB07多功能型机械状态分析仪,在中石油网上也看到过推荐的文章,功能比较多,一些小功能如听诊、测温也都很实用。

3. 频率特性与传递函数分析仪 由频率特性分析仪或传递函数分析仪为核心组成的测试系统,通常都采用稳态正弦激振法来测定机械结构的频率响应或机械阻抗等数据。 4. 数字信号处理系统 近年来,由于微电子技术和信号处理技术的迅速发展、快速傅里叶变换(FFT)算法的推广,在工程测试中,数字信号处理方法得到越来越广泛的应用,出现了各种各样的信号分析和数据处理仪器。这种具有高速控制环节和运算环节的实时数字信号处理系统和信号处理器,具有多种功能,因此又称为综合振动分析仪。如KMbalacner II是一款全功能、高效能的双通道的FFT振动分析及现场动平衡仪。它可以应用在众多行业的设备状态监测领域,如造纸业,石化,发电厂,机械制造等。KMbalancerⅡ可以采集各种现场数据,如振动值,轴承状态,频谱图和时域波形等,并可以通过KMVS Pro数据采集分析软件进一步整合分析设备故障。

毕业设计开题报告-轴承振动信号检测

毕业设计 (论文)开题报告机电与信息工程学院测控技术与仪器专业课题名称:小型刮板输送机减速器轴承振动信号检测 毕业设计(论文)起止时间: 2012年 2 月20 日~ 6 月9 日(共 14周)学生姓名:学号: 指导教师: 报告日期: 2012.2.15

说明: 1.本报告必须由承担毕业设计(论文)课题任务的学生在开学的第2周末之前独立撰写完成,并交指 导教师审阅。 2.每个毕业设计(论文)课题撰写本报告一份,作为指导教师、系主任审查学生能否承担该毕业设计 (论文)课题任务的依据,并接受学院的抽查。 3.开题报告采用B5纸型,双面打印。

1.本课题所涉及的问题在国内(外)的研究现状综述 振动监测这一名词国外早在50多年前就已经提出,但由于当时测试技术和振动监测诊断故障特征知识的不足,所以这项技术在20世纪70年代前都未有明显发展。国内提出振动监测也有30多年的历史,由于国内设备机组振动的特殊性,因而在振动监测故障诊断方法、故障机理的研究方面,具有独特的见解。经过50多年的现场故障诊断的实践,在机组振动故障特征方面积累了丰富的知识和经验,对其中许多故障的生成和产生振动的机理,都作了长期、深入的研究。纠正了传统的误解。在诊断思维模式方面,提出了正向推理,彻底扭转了振动监测故障原因难以查明的局面。目前若采用正向推理,诊断机组振动故障准确率一般都可达80%以上。 振动监测故障诊断就目前来分,可分为在线诊断和离线诊断。前者是对运行状态下的机组振动故障原因作出出线条的诊断,以便运行人员作出纠正性操作,防止事故扩大。因此,在线诊断在诊断时间上要求相对比较紧迫,目前采用计算机实现,故又称为自动专家诊断系统。系统的核心是专家经验,但是如何将分撒的专家经验进行系统化和条理化,变成计算机的语言,是目前国内外许多专家正在研究的一个技术问题,因此不能将这种诊断系统误解为能完全替代振动专家。即使到来,也是诊断专家设计和制造诊断系统,为缺乏振动知识和经验的运行人员服务,而不是诊断系统替代振动专家。 振动监测离线诊断是为了消除振动故障而进行的诊断,这种诊断在时间要求上不那么紧迫,可以将振动信号、数据拿出现成,进行仔细的分析、讨论或模拟实验,因此称它为振动监测离线诊断。离线诊断在故障诊断深入程度上要比在线诊断具体的多,因此难度也较大。

滚动轴承振动机理

一、数控机床滚动轴承的特点与故障 在数控机床上主轴轴承常用滚动轴承和滑动轴承。滚动轴承摩擦阻力小,可以预紧,润滑维护简单,能在一定转速范围和载荷变动范围下稳定的运动。数控机床最常用的滑动轴承是静压滑动轴承。静压滑动轴承的油膜压强是由液压缸从外界供给的,与主轴的转速无关。它的刚度大,回转精度高。但静压轴承需要一套液压装置,成本较高,一般用于重型或高精度数控机床。滚动轴承由专业化工厂生产,选购维修方便。数控主轴组件在可能的条件下,尽量使用滚动轴承。特别是大多数立式主轴和主轴装在套简内能够作轴向移动的主轴,用滚动轴承可以用润滑脂润滑避免漏油。在数控机床上使用的滚动轴承主要有:球轴承,滚珠轴承,圆锥滚子轴承三大类。箱式直线轴承 滚动轴承的损伤和破坏形式主要有:磨损、疲劳、断裂、腐蚀、压痕和胶合。可将这六种失效形式归类成三种类型的故障:表面皱裂、表面剥落和轴承烧损。 1 表面皱裂是由于轴承使用时间较长,磨损后滚动面全周慢慢劣化的异常形态。此时轴承的振动与正常轴承振动具有相同的特点。唯一区别是此时振动幅度变大了。 2 表面剥落是由疲劳、裂纹、压痕、胶合等失效形式造成滚动面的异常形态。它们所引起的振动为冲击振动,振动信号中含有轴承的传输振动和轴承构件的固有振动。可以通过查找这些固有振动中是否出现某一构件运行特征频率来判断轴承的故障。 3 烧损是由于轴承润滑状态恶化等原因造成的。在到达烧伤程度的过程中,轴承的振动值急速增大。润滑不良,载荷过大,冲击载荷,和转速过高是造成滚动轴承故障的主要原因。其中润滑不良是主要原因。数控机床由于本身的结构特点和切削工艺特点,其轴承受到的损坏也与普通机床不太一样。在数控机床中,数控机床主轴的转动速度和进给轴的进给速度都是受数控系统的监控,很少出现转速过高的现象,所以转速过高不会成为数控机床轴承的故障原因。数控机床的轴承一般采用强制润滑和油脂封入润滑,使用强制润滑的轴承不存在润滑不良的问题:采用油脂封入式润滑的轴承,才会因没有得到定期的保养而产生润滑不良的问题。因此,润滑不良的原因也不是数控机床轴承故障最主要原因。在加工中,数控机床可能会出现由于切削用量过大而产生的轴承所受载荷过大的现象。以及刀具以高速切入工件,造成对主轴轴承的瞬间冲击载荷的现象也是经常发生的。经过上面的分析,我们可以得到这样的结论,载荷过大,冲击载荷和润滑不良是造成数控机床轴承故障的主要原因。由此而产生的故障主要是表面剥落和烧损。这两者中发生概率最大的就是表面剥落。 如前所述,表面剥落的故障判断可以通过查找由故障产生的冲击振动中是否出现了某一构件运行特征频率。滚动轴承有四个组成构件,内环、外环、滚动体及保持架。其故障也都是这四个构件的损伤及破坏引起的,包括:内滚道故障,外滚道故障,滚动体故障,保持架碰外环故障和保持架碰内环故障。据统计在滚动轴承的故障中,90%的故障来自于外环和内环故障。 二、滚动轴承的振动按产生机理 滚动轴承的振动按产生机理又分为三种类型: 1 轴承结构的固有振动。包括将内环看作是弹性体而引起的固有振动:将外环看作是刚性体而引起的固有振动:将滚动体看作刚体而引起的固有振动。 2 强迫振动。由轴承零件制造或装配误差而引起的振动。如:内外环波纹度、滚动体直径差等制造误差。 3 冲击振动。内外环或滚动体表面上存在划痕、毛刺、锈斑、点蚀、剥落、凹坑等缺陷,或有灰尘,润滑,油污等情况存在时,会激励起轴承脉冲型振动,振动的周期与转速成反比。振幅和与缺陷的尺寸大

相关文档
最新文档