滚动轴承的振动机理与信号特征
(完整word版)(整理)滚动轴承故障诊断分析章节

滚动轴承故障诊断滚动轴承是应用最为广泛的机械零件质疑,同时,它也是机器中最容易损坏的元件之一。
许多旋转机械的故障都与滚动轴承的状态有关。
据统计,在使用滚动轴承的旋转机械中,大约有30%的机械故障都是由于轴承而引起的。
可见,轴承的好坏对机器工作状态影响极大。
通常,由于轴承的缺陷会导致机器产生振动和噪声,甚至会引起机器的损坏。
而在精密机械中(如精密机床主轴、陀螺等),对轴承的要求就更高,哪怕是在轴承上有微米级的缺陷,都会导致整个机器系统的精度遭到破坏。
最早使用的轴承诊断方法是将听音棒接触轴承部位,依靠听觉来判断轴承有无故障。
这种方法至今仍在使用,不过已经逐步使用电子听诊器来替代听音棒以提高灵敏度。
后来逐步采用各式测振仪器、仪表并利用位移、速度或加速度的均方根值或峰峰值来判断轴承有无故障。
这可以减少对设备检修人员的经验的依赖,但仍然很难发现早期故障。
随着对滚动轴承运动学、动力学的深化研究,对轴承振动信号中频率成分和轴承零件的几何尺寸及缺陷类型的关系有了比较清楚的了解,FFT级数的发展也使得利用频率域分析和检测轴承故障成为一种有效的途径。
也是目前滚动轴承监测诊断的基础。
从发展的历程看,滚动轴承故障检测诊断技术大致经历了以下阶段:1961年,W.F.Stokey完成了轴承圈自由共振频率公式的推导,并发表;1964年,O.G.Gustafsson研究了滚动轴承振动和缺陷、尺寸不均匀及磨损之间的关系,这与目前诊断滚动轴承故障的方法是基本一致的;1969年,H.L.Balderston根据滚动轴承的运动分析得出了滚动轴承的滚动体在内外滚道上的通过频率和滚动体及保持架的旋转频率的计算公式。
至此,有关滚动轴承监测诊断的理论体系已经基本完成;1976年,日本新日铁株式会社研制了MCV-021A机器检测仪,其方法是通过检测低频、中频和高频段轴承的信号特征来判断轴承的工作状态;1976~1983年之间,日本精工公司也积极在滚动轴承检测仪器方面做工作,相继推出了NB系列轴承检测仪,利用1~15kHz范围内的轴承振动信号的有效值(rms)和峰峰值(p-p)来诊断轴承的故障;1980年代至今,以改良频率分析的方法来精密诊断滚动轴承的故障、确定故障位置,一直是精密诊断采取的必备方法,其中包括细化谱分析、倒频谱分析、共振解调技术、包络分析技术等。
滚动轴承故障及其诊断方法

频率为
fo
f Bo Z
1 (1 2
d Dm
) frZ
(4) 单个滚动体有缺陷时的特征频率:如果单个有缺陷的 滚动体每自传一周只冲击外环滚道(或外环)一次,则其 相对于外环的转动频率为
f RS
f
Bo
(Dm
d
d
)
1 (1 2
d2 Dm2
)
fr
Dm d
滚动轴承的特征频率
(5) 保持架与内外环发生碰磨的频率: 保持架碰外环的频率(等于单滚动体的外环通过频率)
以及轴承套圈在座孔中或轴颈 上微小相对运动造成的微振腐蚀 (是微动磨损与腐蚀协同作用的结果)
1滚动轴承异常的基本形式
(5).断裂
过高的载荷会可能引起轴承零件断裂。 磨削、热处理和装配不当都会引起残余应力, 工作时热应力过大也会引起轴承零件断裂。 另外,装配方法、装配工艺不当,也可能造成 轴承套圈挡边和滚子倒角处掉块。
因为滚动体滚而不滑,所以滚动体与内环滚道接触点A的
速度为
VA Vi
又因外环固定,所以滚动体与接触点C的速度为
VC 0
而滚动体中心B的速度(即保持架的速度)为
VB
1 2
V
A
2
(Dm
d)
fr
单个滚动体(或保持架)相对于外环的旋转频率为
f Bo
VB lm
2
(Dm
滚动体损伤振动情况
当滚动体产生损伤时,如剥落、点蚀等,缺陷部位通过内圈或外 圈滚道表面时会产生冲击振动。 在滚动轴承无径向间隙时,会产生频率为nZfRS(n=1,2,…) 的冲击振动。 通常滚动轴承都有径向间隙,因此,同内圈存在点蚀时的情 况一样,根据点蚀部位与内圈或外圈发生冲击接触的位置不同, 也会发生振幅调制的情况,不过此时是以滚动体的公转频率fm进 行振幅调制。这时的振动频率为nzfRS±fm,如图所示。
滚动轴承和齿轮振动信号分析与故障诊断方法

滚动轴承和齿轮振动信号分析与故障诊断方法目录一、内容综述 (2)二、滚动轴承振动信号分析 (3)1. 滚动轴承工作原理及结构特点 (4)2. 振动信号产生机制 (5)3. 振动信号采集与处理 (6)三、齿轮振动信号分析 (7)1. 齿轮工作原理及故障类型 (8)2. 振动信号特征提取 (10)3. 齿轮故障识别与诊断 (11)四、滚动轴承与齿轮振动信号分析方法 (12)1. 时域分析 (13)2. 频域分析 (14)3. 时频域联合分析 (16)五、故障诊断方法 (17)1. 基于振动信号特征的故障诊断 (18)2. 基于模型的故障诊断 (20)3. 基于智能算法的故障诊断 (21)六、实验与应用实例 (22)1. 实验设计 (24)2. 实验结果与分析 (25)3. 应用实例介绍 (26)七、结论与展望 (28)1. 研究结论 (29)2. 展望未来发展趋势 (29)一、内容综述本文档旨在全面阐述滚动轴承和齿轮振动信号分析与故障诊断方法的研究现状、发展趋势及其重要性。
随着工业领域的快速发展,滚动轴承和齿轮作为机械设备中的关键部件,其运行状态的正常与否直接关系到整个系统的稳定性和效率。
针对滚动轴承和齿轮的振动信号分析以及故障诊断方法的研究具有极其重要的实际意义。
滚动轴承和齿轮的故障诊断主要依赖于振动信号分析,通过对振动信号的特征提取和模式识别,实现对设备状态的实时监测和故障诊断。
随着信号处理技术和人工智能技术的不断进步,滚动轴承和齿轮振动信号分析的方法日趋成熟,为设备的故障诊断提供了有力的技术支持。
本文首先概述了滚动轴承和齿轮的基本结构、工作原理及其在机械设备中的重要地位。
然后重点介绍了振动信号分析的基本原理和方法,包括信号采集、特征提取、模式识别等关键环节。
接着详细阐述了基于振动信号的故障诊断方法,包括传统方法如频谱分析、包络分析等,以及近年来新兴的基于机器学习和深度学习的诊断方法。
对滚动轴承和齿轮振动信号分析与故障诊断方法的未来发展趋势进行了展望。
轴承振动特征分析

轴承振动特征分析轴承是机械设备中常用的关键元件之一,其质量和工作状态对设备的性能和寿命有着重要的影响。
轴承振动特征分析是评估轴承工作状态和健康状况的重要手段,可以通过振动信号的分析和处理,获取轴承正常和异常工作状态的特征参数,从而判断轴承是否存在异常故障。
1.轴承振动信号采集与分析:通过安装合适的振动传感器(如加速度计、速度计等)在轴承或设备上采集振动信号,并进行信号分析和处理。
常用的分析方法包括时域分析、频域分析和时频域分析等。
在时域分析中,可以观察到振动信号的波形特征,如振幅和频率的变化;在频域分析中,可以通过傅里叶变换将时域信号转换为频域信号,进而分析信号的频谱特征,如频率和幅值的分布;在时频域分析中,可以结合时域和频域的特点,利用小波分析等方法研究信号的瞬态特性和频率特性。
2.轴承故障诊断与判定:通过对轴承振动信号的分析,可以判断轴承是否存在故障,如内圈和外圈的裂纹、滚道的磨损、滚珠的损坏等。
常见的故障特征参数包括峰值、峰值因子、峭度、波形指标、频谱指标等。
例如,当轴承存在内圈裂纹时,振动信号会出现高频峰值,而当存在滚珠损坏时,振动信号会出现冲击信号等。
通过识别和提取这些故障特征参数,可以进行故障类型的判定和诊断。
3.轴承故障预测与预警:根据轴承振动信号的变化规律,可以对轴承的剩余寿命进行预测和评估,从而提前进行维修和更换。
常见的预测方法包括统计模型、神经网络模型、遗传算法等。
通过对大量实际运行数据的分析和建模,可以建立轴承故障预测模型,根据振动信号的变化趋势和特征参数的变化情况,预测轴承的寿命和故障时间,提前进行维修和预防措施,以降低故障风险和成本损失。
4.轴承振动特征分析的应用与发展:轴承振动特征分析已经广泛应用于各个领域,如机械制造、航空航天、电力、石油化工等,对轴承的安全运行和性能提升起到了重要的作用。
未来,随着传感技术、智能化技术等的发展,轴承振动特征分析将更加精细化和自动化,可以实时监测和分析轴承的振动信号,提前预警故障风险和进行状态评估,从而实现设备的智能化管理。
滚动轴承振动原理

讲义:一.轴承振动的原理二.影响静音轴承的原因三.车间生产如何控制(注意哪些细节)前言随着高科技的发展,机械产品越来越向精密延伸。
轴承行业也在逐步地革新换代,同时用户对轴承的使用也越来越向“静音”高要求。
于是静音轴承成为了行业商场上的“紧俏品”,也成为了同行竞争的分档线。
一、轴承振动的原理我们知道轴承的结构主要由4大件组成:内外圈、保持架、钢球,加上润滑剂就是5大件了。
在轴承运转的过程中,这几大件相互之间形成的摩擦副有:外圈与保持架、内圈与保持架、滚动体与保持架、内、外圈与滚动体,结构是封闭式的摩擦副还存在密封圈(或防尘盖)与内外圈、油脂与机械物质等的摩擦。
以上这些摩擦副最终形成了轴承运转时发出的声音,这种本能固有的声音行业上称做轴承的“基础噪音”。
测振时这种声音一般表现的比较平稳、轻微、柔和,这与我们攻关的低噪音有所不同。
轴承运转的过程中,由于轴承滚道工作面、滚动体、润滑不良等缺陷的影响,在加速度测振仪上,这些缺陷经过传感器而产生的振动脉冲更大地激起轴承本身固有频率振动,从而产生出人耳听起来不舒服的异常音。
下面我讲一下影响低噪音轴承的因素。
二、影响静音轴承的因素1.产品结构的影响从最近几年轴承结构的不断更新来看,以消除噪音为目的来改进产品结构的还不少,比如:内外滚道的优化设计、宽边保持架的采用、钢球的球形偏差改进等等。
实际拆套中发现钢球往往有“猫眼”的,其实是保持架结构不合理导致。
我计算过6308、6309、6311目前所用的保持架结构,6309、6311的在实际受力的情况下比理论受力结构变形量增大了()mm,这样运转时钢球必然撞击保持架,则易产生磨痕,影响低噪音控制。
2.零件缺陷的影响(1). 钢球缺陷的影响在轴承几大件中,钢球对成品轴承的振动影响最大。
钢球的球形偏差及表面磕碰伤直接影响成品轴承的振动,因此严格控制钢球的球形偏差及表面磕碰伤,能够降低轴承的低频振动。
目前钢球厂家在钢球的加工过程中提高研磨盘的加工质量,控制研磨盘的沟形偏差,并选用优质精研液,以降低钢球表面粗糙度。
滚动轴承时域特征

滚动轴承时域特征
滚动轴承是机械设备中常用的一种轴承,其主要作用是支撑和转动机械设备中的轴。
在使用过程中,滚动轴承的时域特征是非常重要的,它可以反映出轴承的运行状态和健康状况。
滚动轴承的时域特征主要包括振动信号、声音信号和温度信号。
其中,振动信号是最常用的一种特征,它可以通过加速度传感器或振动传感器来采集。
振动信号的频率分布可以反映出轴承的运行状态,例如轴承的故障、磨损、松动等。
通过对振动信号进行分析,可以判断轴承的健康状况,及时进行维护和更换。
声音信号也是一种常用的时域特征,它可以通过麦克风或声音传感器来采集。
轴承在运行过程中会产生一定的噪声,当轴承出现故障时,噪声会变得更加明显。
通过对声音信号进行分析,可以判断轴承的健康状况,及时进行维护和更换。
温度信号也是一种常用的时域特征,它可以通过温度传感器来采集。
轴承在运行过程中会产生一定的热量,当轴承出现故障时,热量会变得更加明显。
通过对温度信号进行分析,可以判断轴承的健康状况,及时进行维护和更换。
滚动轴承的时域特征是非常重要的,它可以反映出轴承的运行状态和健康状况。
通过对时域特征的分析,可以及时发现轴承的故障和磨损,保证机械设备的正常运行。
因此,在使用滚动轴承时,需要
注意对时域特征的监测和分析,及时进行维护和更换,以保证机械设备的长期稳定运行。
滚动轴承复合故障机理及振动模型研究

哈尔滨工业大学工学硕士学位论文4.2 轴承振动测试系统 (33)4.3 轴承单点故障振动模型的建立与验证 (34)4.3.1 无故障轴承VC振动 (34)4.3.2 外圈单点故障分析 (36)4.3.3 内圈单点故障分析 (41)4.4 轴承复合故障振动模型的建立及验证 (45)4.4.1 内圈两点复合故障分析 (45)4.4.2 内外圈各一点复合故障分析 (49)4.5 本章小结 (52)结论 (53)参考文献 (54)攻读硕士学位期间发表的论文 (57)哈尔滨工业大学学位论文原创性声明和使用权限 (58)致谢 (59)哈尔滨工业大学工学硕士学位论文第1章绪论1.1课题的研究意义及目的本课题来源于国家自然科学基金资助项目:不完备信息下基于流向图的诊断知识获取理论与方法(编号:51175102)。
滚动轴承是一种广泛应用于各类旋转机械的通用基础部件,其运行状态的正常与否往往会对于整台机器的寿命、可靠性和精度等性能产生直接的影响。
据统计,旋转机械中30%的故障[1]287和大型异步电机中44%的故障[2]是由故障轴承引起的,而位于轴承内圈和外圈的故障占了其中的90% [1]287。
相较于其它机械零部件,滚动轴承的寿命具有离散性大的特点。
即使是生产过程完全一样的同一批轴承,它们的寿命也相差很大[3]1。
所以,对轴承按照设计寿命进行定期检查和维修是不合适的。
因此,需要对于轴承进行工况监测和故障诊断,及时发现轴承运行中存在的问题。
在轴承故障诊断的研究中,针对轴承中晚期单一故障的研究已经十分成熟,可以精确地对于轴承故障做出诊断。
然而,在工程实际中,故障轴承往往是多个故障并存的情况。
复合故障信号由于信号之间相互抵消、叠加,导致故障信号十分复杂,难以作出准确的诊断。
因此,如何对于复合故障进行有效的诊断,一直都是研究者重点关注的问题。
机械故障诊断学经过数十年的发展,在研究内容上基本可以划分为信号获取与传感技术、故障机理与征兆联系、信号处理与特征提取、识别分类与智能决策四个方面[3]64。
滚动轴承的故障机理及诊断讲义

4.轴承故障分析 图2是一台三柱塞注水泵轴承的包络谱。泵转速335rpm,排出压力25MPa,流量16m3/h, 驱动电机功率132KW,电机转速985rpm,电机与泵通过皮带传动。泵轴承为双排球面滚子轴承,型号22330。 根据轴承尺寸计算的轴承故障频率如下: 内圈故障频率BPIR=49.6Hz 外圈故障频率BPOR=34.2Hz 滚动体BSF=14.7Hz 保持架FTF=2.3Hz 曲轴转频f0=335rpm/60s=5.58Hz
旋转设备约有30%的故障是因滚动轴承引起的,因滚动轴承抱轴、保持架散落造成转子严重损坏给设备造成的损失是巨大的。最初的轴承故障诊断是靠有经验的设备管理和维修人员利用听音棒来判断,只能发现处于晚期的故障,不能及时发现处于早、中期的轴承故障,从而造成设备故障的扩展,并延缓维修时间。随着设备监测诊断技术的发展,各种信号分析与处理技术被用于轴承的故障诊断。
⒌擦伤
由于轴承内外滚道和滚动体接触表面上的微观凸起或硬质颗粒使接触面受力不均,在润滑不良、高速重载工况下,因局部摩擦产生的热量造成接触面局部变形和摩擦焊合,严重时表面金属可能局部熔化,接触面上作用力将局部摩擦焊接点从基体上撕裂。
轴承失效通常划分为四个阶段: 第一阶段:在轴承失效的初始阶段,故障频率出现在超声频段。有多种信号处理手段能够检测到这些频率,如峰值能量gSE、应力波PeakVue、包络谱ESP、冲击脉冲SPM等。此时,轴承故障频率在加速度谱和速度频谱图上均无显示。
请各位专家给予批评指正!
9、静夜四无邻,荒居旧业贫。。10、雨中黄叶树,灯下白头人。。11、以我独沈久,愧君相见频。。12、故人江海别,几度隔山川。。13、乍见翻疑梦,相悲各问年。。14、他乡生白发,旧国见青山。。15、比不了得就不比,得不到的就不要。。。16、行动出成果,工作出财富。。17、做前,能够环视四周;做时,你只能或者最好沿着以脚为起点的射线向前。。9、没有失败,只有暂时停止成功!。10、很多事情努力了未必有结果,但是不努力却什么改变也没有。。11、成功就是日复一日那一点点小小努力的积累。。12、世间成事,不求其绝对圆满,留一份不足,可得无限完美。。13、不知香积寺,数里入云峰。。14、意志坚强的人能把世界放在手中像泥块一样任意揉捏。15、楚塞三湘接,荆门九派通。。。16、少年十五二十时,步行夺得胡马骑。。17、空山新雨后,天气晚来秋。。9、杨柳散和风,青山澹吾虑。。10、阅读一切好书如同和过去最杰出的人谈话。11、越是没有本领的就越加自命不凡。12、越是无能的人,越喜欢挑剔别人的错儿。13、知人者智,自知者明。胜人者有力,自胜者强。14、意志坚强的人能把世界放在手中像泥块一样任意揉捏。15、最具挑战性的挑战莫过于提升自我。。16、业余生活要有意义,不要越轨。17、一个人即使已登上顶峰,也仍要自强不息。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
滚动轴承的振动机理与信号特征滚动轴承的振动可由外部振源引起,也可由轴承本身的结构特点及缺陷引起。此外,润滑剂在轴承运转时产生的流体动力也可以是振动(噪声)源。上述振源施加于轴承零件及附近的结构件上时都会激励起振动。一、滚动轴承振动的基本参数1.滚动轴承的典型结构 滚动轴承的典型结构如图1所示,它由内圈、外圈、滚动体和保持架四部分组成。
图1 滚动轴承的典型结构图示滚动轴承的几何参数主要有: 轴承节径D: 轴承滚动体中心所在的圆的直径 滚动体直径d: 滚动体的平均直径 内圈滚道半径r1: 内圈滚道的平均半径 外圈滚道半径r2: 外圈滚道的平均半径 接触角α: 滚动体受力方向与内外滚道垂直线的夹角 滚动体个数Z: 滚珠或滚珠的数目2.滚动轴承的特征频率 为分析轴承各部运动参数,先做如下假设:(1)滚道与滚动体之间无相对滑动;(2)承受径向、轴向载荷时各部分无变形;(3)内圈滚道回转频率为fi;(4)外圈滚道回转频率为fO;(5)保持架回转频率(即滚动体公转频率为fc)。 参见图1,则滚动轴承工作时各点的转动速度如下: 内滑道上一点的速度为:Vi=2πr1fi=πfi(D-dcosa) 外滑道上一点的速度为:VO=2πr2fO=πfO(D+dcosa) 保持架上一点的速度为:Vc=1/2(Vi+VO)=πfcD 由此可得保持架的旋转频率(即滚动体的公转频率)为:
从固定在保持架上的动坐标系来看,滚动体与内圈作无滑动滚动,它的回转频率之比与d/2r1成反比。由此可得滚动体相对于保持架的回转频率(即滚动体的自转频率,滚动体通过内滚道或外滚道的频率)fbc根据滚动轴承的实际工作情况,定义滚动轴承内、外圈的相对转动频率为一般情况下,滚动轴承外圈固定,内圈旋转,即:同时考虑到滚动轴承有Z个滚动体,则滚动轴承的特征频率如下:滚动体在外圈滚道上的通过频率zfoc为:
滚动体在内圈滚道上的通过频率Zfic为:滚动体在保持架上的通过频率(即滚动体自转频率fbc)为:3.止推轴承的特征频率 止推轴承可以看作上述滚动轴承的一个特例,即α=90°,同时内、外环相对转动频率为轴的转动频率fr,此时滚动体在止推环滚道上的频率为:
滚动体相对于保持架的回转频率为:以上各特征频率是利用振动信号诊断滚动轴承故障的基础,对故障诊断非常重要。4.滚动轴承的固有振动频率 滚动轴承在运行过程中,由于滚动体与内圈或外圈冲击而产生振动,这时的振动频率为轴承各部分的固有频率。 固有振动中,内、外圈的振动表现最明显,如图2所示
图2 滚动轴承套圈横截面简化图与径向弯曲振动振型示意图轴承圈在自由状态下的径向弯曲振动的固有频率为:
式中n—振动阶数(变形波数),n=2,3,…;E—弹性模量,钢材为210GPa;I—套圈横截面的惯性矩,mm 4; γ—密度,钢材为7.86X10-6kg /mm3;A—套圈横截面积,A滚bh动mm 2轴D承的振可由外部源引起,动mm轴g承也本身结构动g特9800mm /S2点
及缺陷动。此润滑剂在运转 时产缺生流体力以是噪动缺生是噪声上时述施加于运部R承缺生零,轴E承件源附近动缺陷加210GPa ; 都承会构动缺陷加7.86X10-6kg /mm3轴g承也本身结构动g特9800mm /S2点 5激励噪引一、基述施参 加数.典型动。如图所示声励噪引一此、基述施它内参1部点参1 励噪引一、基述施参(圈和保振上和持架振四分)
组持成润引一声是噪几何、基 成润声引一流时主要有:声是噪节径中动时心圆直引一平均道半、接触角声轴时心节α受方向时与动垂励噪线节励夹声参外个珠持参外或目构如征频率为构析各先动做下分部假体触角是噪节径中点1激引一道半、接触角声是噪 励噪引一做一设产动直内做析之间无一设声励相滑对析之动;载一设荷构体时变形回动触角引即声角公个噪动是噪述施加Zfoc(见3)点则工作速度是噪声是π得如旋型从固定声引一坐身标系本来看从固点2.引一缺构比反源触角声是噪 励噪引一声引自荷构润通比反源(见4)动、过圆要根据析实产动际力以情润声引自是噪点做荷构况反通及义比反源产动是噪述施加fn, 2fn., 3f.n,般轴做荷构况反通比及义比反源产动
是噪述施加般同滑考述(fn加引虑分述施)点速圆到度止推是噪动润例以做=°生引一动止环即生引一节励利引一析润例以点
见3 励噪引一声一设荷构节励相间无声与用
见4 引一声引自荷构3.引一α受方向声信;(1)身号外个珠构触角声是噪 直引一诊断声身号外(架振持保振励夹外征励噪线外)声个珠构触角声是噪节径中做引一部故障润础动速心非常触角声是噪加先述是噪(故励噪线做励夹图声重行述施先程冲击)点先述是噪征引即声是而析这体触角引一声,自是噪动做到和表断现最体触角引自是噪点参2它明声是噪述施显个珠构套滑声与用点参部动n加成横滑动Z加生(励噪线)滑动fic加截面励噪线做架振励夹图声重行述施动fc加简化弯分结动fbc加励噪线主及内简化弯声分噪述施点参2 是噪述施显个珠构套滑声与用
现外曲截所示到现速度是噪声意状点做见5部动引一架振身号行态部式—时个珠动生面滑Z=8动架振四分动要架振个珠套滑同过加nZ-1动nZ动nZ阶1产动及保振,自是噪波…弹性垂现于
见5 架振个珠施触角保振,自是噪声意状(n=1动Z特8) 做见部模量钢何加材1惯声生显个套矩γ产声弹性点要个套加nZ产动保振做,自密积噪动但球与nZ士1个波峰数的波纹面接触时,在外圈箭头方向上有最大位移。在另一种情况下,当编号为“1”的球与波谷接触时,波峰数为nZ个时,外圈则无径向位移;在nZ士1个波峰数时,外圈在与箭头相反方向有最大位移。由此可以说明在波峰数等于nZ士1时产生振动的原因。 表2中所列的条件是理想的,即波纹是均匀分布,波纹形状是正弦变化的。而对实际的波纹形状,可能有其他频率成分出现。用类似方法可说明波峰数对轴向振动的影响。对于精密轴承,波纹度引起的轴心摆动是不能忽视的。图6所示为在机床中使用的加有预紧力的两个超精密向心球轴承,由于滚道波纹度引起轴心摆动轨迹。此时轴心轨迹呈现内卷形和外卷形两种形式。还应注意,不仅轴承滚道和滚动体的波纹度会引起轴承振动,轴承的内外配合面及轴颈和轴承座孔的波纹度对精密轴承也会引起类似的振动,因为在预紧力作用下,轴承装配后会引起套圈的相应变形。
图6 由轴承零件波纹度引起的轴心摆动(2)轴承偏心引起的振动 如图7所示,当轴承游隙过大或滚道偏心时都会引起轴承振动,振动频率为nfn,fn为轴回转频率,n=1,2,…。(3)滚动体大小不均匀引起轴心摆动 如图8所示,滚动体大小不均匀会导致轴心摆动,还有支承刚性的变化。振动频率为fc和nfc士fn,n=1,2,…,此处fc为保持架回转频率,fn为轴回转频率。
图7 轴承偏心引起的轴承振动 图8 滚动体大小不均匀引起的轴心摆动(4)轴弯曲引起轴承偏斜 轴弯曲会引起轴上所装轴承的偏移,造成轴承振动。轴承的振动频率为nfc士fn,n=1, 2,…。此处fc为保持架回转频率,fn为轴回转频率。4.滚动轴承的声响 滚动轴承在运转时由于各种原因会产生振动,并通过空气传播成为声音,声音中包含着轴承状态的信息。轴承声响有如下几种:
所谓轴承本质的声音是一切轴承都有的声音。滚道声是滚动体在滚动面上滚动而发生的,是一种滑溜连续的声音。它与套圈的固有振动有关,频率一般都在1kHz以上,并与轴承转速有关。辗压声主要发生在脂润滑的低速重载圆柱滚动轴承中,类似于“咯吱咯吱”的声音。 保持架声音是由保持架的自激振动引起的,保持架振动时会与滚动体发生冲撞而发出声音。高频振动声是由加工面的波纹度引起的振动而发出的声音。 在与使用有关的声音中,伤痕声是由滚动面上的压痕或锈蚀引起的,为周期性的振动和声音。尘埃声是非周期性的。 综合以上所述,正常的轴承在运转时也会有十分复杂的振动和声响,而故障轴承的声音则更复杂。三、故障轴承振动信号特点 轴承发生故障后,其振动特征会有明显的变化,主要有以下几方面。1.疲劳剥落损伤 当轴承零件上产生了疲劳剥落坑后(图9以夸大的方式画出了疲劳剥落坑),在轴承运转中会因为碰撞而产生冲击脉冲。图10给出了钢球落下产生的冲击过程的示意图。在冲击的第一阶段,在碰撞点产生很大的冲击加速度〔图10(a)和(b)〕,它的大小和冲击速度v成正比(在轴承中与疲劳损伤的大小成正比)。第二阶段,构件变形产生衰减自由振动(图c),振动频率取决于系统的结构,为其固有频率(图d)。振幅的增加量A也与冲击速度v成正比(图e)。 在滚动轴承剥落坑处碰撞产生的冲击力的脉冲宽度一般都很小,大致为微秒级。因力的频谱宽度与脉冲持续时间成反比,所以其频谱可从直流延展到100~500kHz。疲劳剥落损伤可以在很宽的频率范围内激发起轴承一传感器系统的固有振动。由于从冲击发生处到测量点的传递特性对此有很大影响,因此测点位置选择非常关键,测点应尽量接近承载区,振动传递界面越少越好。
图9 轴承零件上的疲劳剥落坑有疲劳剥落故障轴承的振动信号如图11(a)所示,图11(b)为其简化的波形。T取决于碰撞的频率,T=1/f碰。在简单情况下,碰撞频率就等于滚动体在滚道上的通过率ZFic或Zfoc或滚动体自转频率fbc 。