2020高考数学刷题首秧第七章平面解析几何考点测试47圆与方程文含解析
精选新版2020高考数学专题训练《平面解析几何初步》完整版考核题(含答案)

2019年高中数学单元测试卷平面解析几何初步学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.过点A (1,-1)、B (-1,1)且圆心在直线x +y -2=0上的圆的方程是( )A .(x -3)2+(y +1)2=4B .(x +3)2+(y -1)2=4C .(x -1)2+(y -1)2=4D .(x +1)2+(y +1)2=4(2001全国文2)二、填空题2.一直线倾斜角的正切值为43,且过点()1,2P ,则直线方程为_____________。
3.过点(1,2)P 且与直线2100x y +-=垂直的直线方程为_____4.已知两条直线y =ax -2和y =(a +2)x +1互相垂直,则a 等于________.解析:∵直线y =ax -2和y =(a +2)x +1互相垂直,∴a ·(a +2)=-1,∴a =-1.5.若直线l :y =kx -1与直线x +y -1=0的交点位于第一象限,则实数k 的取值范围是 ________.解析:解法一:由⎩⎪⎨⎪⎧ y =kx -1x +y -1=0,得⎩⎪⎨⎪⎧ x =2k +1y =k -1k +1.由题意知⎩⎪⎨⎪⎧ 2k +1>0k -1k +1>0,∴k >1.解法二:直线l 过定点(0,-1),由数形结合知k >1.6.已知圆心角为120°的扇形AOB 的半径为1,C 为弧AB 的中点,点D ,E 分别在半径OA ,OB 上.若CD 2+CE 2+DE 2=269,则OD +OE 的最大值是________.7.过平面区域202020x y y x y -+≥⎧⎪+≥⎨⎪++≤⎩内一点P 作圆22:1O x y +=的两条切线,切点分别为,A B ,记APB α∠=,则当α最小时cos α= ▲ .8.直线(1)2x m y m ++=-与28mx y +=-垂直,则m =___▲___.9.已知04,k <<直线1:2280l kx y k --+=和直线222:2440l x k y k +--=与两坐标轴;围成一个 四边形,则使得这个四边形面积最小的k 值为10.已知圆C l :22(1)(1)1x y ++-=,圆C 2与圆C 1关于直线x -y -l =0对称,则圆C 2的方程为 .11.如图所示,有一块半径长为1米的半圆形钢板,现要从中截取一个内接等腰梯形部件ABCD ,设梯形部件ABCD 的面积为y 平方米.(I)按下列要求写出函数关系式:①设2CD x =(米),将y 表示成x 的函数关系式;②设()BOC rad θ∠=,将y 表示成θ的函数关系式(II)求梯形部件ABCD 面积y 的最大值.12.在平面直角坐标系xOy 中,设过原点的直线l 与圆C :22(3)(1)4x y -+-=交于M 、N 两点,若MN ≥l 的斜率k 的取值范围是______.13.已知直线3430x y +-=与直线6140x my ++=平行,则它们之间的距离是_________14. 设点A 在x 轴上,点B 在y 轴上,线段AB 中点M(2,−1),则线段AB 长为_________15.在平面直角坐标系xOy 中,直线3450x y +-=与圆224x y +=相交于A 、B 两点,则弦AB 的长等于16.在平面直角坐标系xOy 中,已知点M (0,3),直线l : x +y -4=0,点N (x ,y )是圆C :x 2+y 2-2x -1=0上的动点,MA ⊥l ,NB ⊥l ,垂足分别为A 、B ,则线段AB 的最大值为 ▲ .17.在平面直角坐标系xOy 中,若圆22(1)4x y +-=上存在A ,B 两点关于点(1,2)P 成中心对称,则直线AB 的方程为 .18.经过圆x 2+y 2+2x =0的圆心,且与直线x +y =0垂直的直线l 的方程是 ▲ .19.已知圆 C 与直线 0x y -= 及 40x y --= 都相切,且圆心在直线 0x y += 上,则圆C 的方程为___▲___.三、解答题20.选修4-4:坐标系与参数方程在极坐标系中,求圆4sin ρθ=上的点到直线cos 4πρθ⎛⎫+= ⎪⎝⎭将直线的极坐标方程cos 4πρθ⎛⎫+= ⎪⎝⎭21. (本小题满分16分) 已知函数()ln f x a b x =-(,a b R ∈),其图像在x e =处的切线方程为0x ey e -+=.函数()(0)k g x k x =>,()()1f x h x x =-. (Ⅰ)求实数a 、b 的值;(Ⅱ)以函数()g x 图像上一点为圆心,2为半径作圆C ,若圆C 上存在两个不同的点到原点O 的距离为1,求k 的取值范围;(Ⅲ)求最大的正整数k ,对于任意的(1,)p ∈+∞,存在实数m 、n 满足0m n p<<<,使得()()()h p h m g n ==.22.(本题满分14分)已知圆心()(1,2)0,1C ,且经过点(Ⅰ)写出圆C 的标准方程;(Ⅱ)过点(2,1)P -作圆C 的切线,求切线的方程及切线的长.23.已知圆22:()(2)4(0)C x a y a -+-=>及直线:30l x y -+=. 当直线l 被圆C 截得的弦长为 求(1)a 的值; (2)求过点(3,5)并与圆C 相切的切线方程.24.(本小题满分14分)设圆满足:①截y 轴所得弦长为2;②被x 轴分成两段圆弧,其弧长之比为3:1;③圆心到直线:20l x y -=,求该圆的方程.25. 已知圆C 经过P (4,– 2),Q (– 1,3)两点,且在y 轴上截得的线段长为径小于5.(1)求直线PQ 与圆C 的方程.(2)若直线l ∥PQ ,且l 与圆C 交于点A 、B ,90AOB ∠=︒,求直线l 的方程.26.根据下列条件求圆的方程:(1)经过坐标原点和点P (1,1),并且圆心在直线2x +3y +1=0上;(2)已知一圆过P (4,-2),Q (-1,3)两点,且在y 轴上截得的线段长为43,求圆的方程.27.求直线l 1:y =2x +3关于直线l :y =x +1对称的直线l 2的方程.28.已知圆22:(1)(2)25C x y -+-=及直线:(21)(1)74()l m x m y m m R +++=+∈(1)求证:不论m 取何值,直线l 与圆C 恒相交;(2)求直线l 被圆C 截得的现场的最小值及此时的直线方程29.已知对直线l 上任意一点(,)x y ,点(42,3)x y x y ++也在直线l 上,求直线l 的方程。
2018年高考数学考点通关练第七章平面解析几何47圆与方程试题文

考点测试47 圆与方程一、基础小题1.圆心在y轴上,半径为1,且过点(1,2)的圆的方程为( )A.x2+(y-2)2=1 B.x2+(y+2)2=1C.(x-1)2+(y-3)2=1 D.x2+(y-3)2=1答案 A解析设圆心坐标为(0,b),则由题意知 0-1 2+ b-2 2=1,解得b=2,故圆的方程为x2+(y-2)2=1.2.若曲线C:x2+y2+2ax-4ay+5a2-4=0上所有的点均在第二象限内,则a的取值范围为( )A.(-∞,-2) B.(-∞,-1)C.(1,+∞) D.(2,+∞)答案 D解析曲线C的方程可以化为(x+a)2+(y-2a)2=4,则该方程表示圆心为(-a,2a),半径等于2的圆.因为圆上的点均在第二象限,所以a>2.3.已知直线l:y=x与圆C:(x-a)2+y2=1,则“a=-2”是“直线l与圆C相切”的( )A.充分而不必要条件B.必要而不充分条件C .充要条件D .既不充分又不必要条件答案 A解析 直线l :y =x 与圆C :(x -a )2+y 2=1相切的充要条件是圆心C 到直线l 的距离等于半径,即|a -0|2=1,解得a =± 2.故由a =-2可推得直线l 与圆C 相切;反之,若直线l 与圆C 相切,不能推得a =-2,即“a =-2”是“直线l 与圆C 相切”的充分而不必要条件.4.对任意的实数k ,直线y =kx -1与圆x 2+y 2-2x -2=0的位置关系是( ) A .相离 B .相切C .相交D .以上三个选项均有可能答案 C解析 直线y =kx -1恒经过点A (0,-1),02+(-1)2-2³0-2=-1<0,∴点A 在圆内,故直线y =kx -1与圆x 2+y 2-2x -2=0相交,故选C.5.设圆的方程是x 2+y 2+2ax +2y +(a -1)2=0,若0<a <1,则原点与该圆的位置关系是( )A .原点在圆上B .原点在圆外C .原点在圆内D .不确定答案 B解析 将圆的方程化成标准方程为(x +a )2+(y +1)2=2a ,因为0<a <1,所以(0+a )2+(0+1)2-2a =(a -1)2>0,即 0+a 2+ 0+1 2>2a ,所以原点在圆外.6.若圆x 2+y 2=a 2与圆x 2+y 2+ay -6=0的公共弦长为23,则a 的值为( ) A .2 B .±2 C .1 D .±1答案 B解析 设圆x 2+y 2=a 2的圆心为O ,半径r =|a |,将x 2+y 2=a 2与x 2+y 2+ay -6=0联立,可得a 2+ay -6=0,即公共弦所在的直线方程为a 2+ay -6=0,原点O 到直线a 2+ay -6=0的距离为⎪⎪⎪⎪⎪⎪6a-a ,根据勾股定理可得a 2=3+⎝ ⎛⎭⎪⎫6a-a 2,解得a =±2.7.一束光线从圆C 的圆心C (-1,1)出发,经x 轴反射到圆C 1:(x -2)2+(y -3)2=1上的最短路程刚好是圆C 的直径,则圆C 的方程为( )A .(x +1)2+(y -1)2=4 B .(x +1)2+(y -1)2=5 C .(x +1)2+(y -1)2=16 D .(x +1)2+(y -1)2=25答案 A解析 圆C 1的圆心C 1的坐标为(2,3),半径为r 1=1.点C (-1,1)关于x 轴的对称点C ′的坐标为(-1,-1).因为C ′在反射线上,所以最短路程为|C ′C 1|-r 1,即[2- -1 ]2+[3- -1 ]2-1=4.故圆C 的半径为r =12³4=2,所以圆C 的方程为(x+1)2+(y -1)2=4,故选A.8.圆O 1:x 2+y 2-2x =0和圆O 2:x 2+y 2-4y =0的位置关系是________.答案 相交解析 由已知得O 1(1,0),r 1=1,O 2(0,2),r 2=2, ∴|O 1O 2|=5<r 1+r 2=3,且|O 1O 2|=5>r 2-r 1=1,故两圆相交. 二、高考小题9.[2016²浙江高考]已知a ∈R ,方程a 2x 2+(a +2)y 2+4x +8y +5a =0表示圆,则圆心坐标是________,半径是________.答案 (-2,-4) 5解析 方程a 2x 2+(a +2)y 2+4x +8y +5a =0表示圆,则a 2=a +2,故a =-1或2.当a =2时,方程为4x 2+4y 2+4x +8y +10=0,即x 2+y 2+x +2y +52=0,亦即⎝ ⎛⎭⎪⎫x +122+(y +1)2=-54,不成立,故舍去;当a =-1时,方程为x 2+y 2+4x +8y -5=0,即(x +2)2+(y +4)2=25,故圆心为(-2,-4),半径为5.10. [2015²湖北高考]如图,已知圆C 与x 轴相切于点T (1,0),与y 轴正半轴交于两点A ,B (B 在A 的上方),且|AB |=2.(1)圆C 的标准方程为________;(2)圆C 在点B 处的切线在x 轴上的截距为________. 答案 (1)(x -1)2+(y -2)2=2 (2)-2-1解析 (1)过点C 作CM ⊥AB 于M ,连接AC ,则|CM |=|OT |=1,|AM |=12|AB |=1,所以圆的半径r =|AC |=|CM |2+|AM |2=2,从而圆心C (1,2),即圆的标准方程为(x -1)2+(y -2)2=2.(2)令x =0,得y =2±1,则B (0,2+1), 所以直线BC 的斜率为k = 2+1 -20-1=-1,由直线与圆相切的性质知,圆C 在点B 处的切线的斜率为1,则圆C 在点B 处的切线方程为y -(2+1)=1³(x -0),即y =x +2+1,令y =0,得x =-2-1,故所求切线在x 轴上的截距为-2-1.11.[2016²全国卷Ⅰ]设直线y =x +2a 与圆C :x 2+y 2-2ay -2=0相交于A ,B 两点,若|AB |=23,则圆C 的面积为________.答案 4π解析 把圆C 的方程化为x 2+(y -a )2=2+a 2,则圆心为(0,a ),半径r =a 2+2.圆心到直线x -y +2a =0的距离d =|a |2.由r 2=d 2+⎝ ⎛⎭⎪⎫|AB |22,得a 2+2=a 22+3,解得a 2=2,则r 2=4,所以圆的面积S =πr 2=4π.12.[2016²天津高考]已知圆C 的圆心在x 轴的正半轴上,点M (0,5)在圆C 上,且圆心到直线2x -y =0的距离为455,则圆C 的方程为________.答案 (x -2)2+y 2=9解析 设圆C 的方程为(x -a )2+y 2=r 2(a >0),由题意可得⎩⎨⎧|2a |5=455,-a 2+5 2=r 2,解得⎩⎪⎨⎪⎧a =2,r 2=9,所以圆C 的方程为(x -2)2+y 2=9.13.[2016²全国卷Ⅲ]已知直线l :mx +y +3m -3=0与圆x 2+y 2=12交于A ,B 两点,过A ,B 分别作l 的垂线与x 轴交于C ,D 两点.若|AB |=23,则|CD |=________.答案 4解析 由题意可知直线l 过定点(-3,3),该定点在圆x 2+y 2=12上,不妨设点A (-3,3),由于|AB |=23,r =23,所以圆心到直线AB 的距离为d = 23 2- 3 2=3,又由点到直线的距离公式可得d =|3m -3|m 2+1=3,解得m =-33,所以直线l 的斜率k =-m =33,即直线l 的倾斜角为30°.如图,过点C 作CH ⊥BD ,垂足为H ,所以|CH |=23,在Rt △CHD 中,∠HCD =30°,所以|CD |=23cos30°=4.三、模拟小题14.[2017²深圳五校联考]已知直线l :x +my +4=0,若曲线x 2+y 2+2x -6y +1=0上存在两点P、Q关于直线l对称,则m的值为( )A.2 B.-2C.1 D.-1答案 D解析因为曲线x2+y2+2x-6y+1=0是圆(x+1)2+(y-3)2=9,若圆(x+1)2+(y-3)2=9上存在两点P、Q关于直线l对称,则直线l:x+my+4=0过圆心(-1,3),所以-1+3m+4=0,解得m=-1,故选D.15.[2016²湖南四地联考]若圆C:x2+y2+2x-4y+3=0关于直线2ax+by+6=0对称,过点(a,b)作圆的切线,则切线长的最小值是( )A.2 B.3C.4 D.6答案 C解析圆C的标准方程为(x+1)2+(y-2)2=2,所以圆心为点(-1,2),半径为 2.因为圆C关于直线2ax+by+6=0对称,所以圆心C在直线2ax+by+6=0上,所以-2a+2b+6=0,即b=a-3,点(a,b)到圆心的距离d= a+1 2+ b-2 2= a+1 2+ a-3-2 2=2a2-8a+26=2 a-2 2+18.所以当a=2时,d取最小值18=32,此时切线长最小,为 32 2- 2 2=16=4,所以选C.16.[2016²福建福州八中六模]已知圆O:x2+y2=4上到直线l:x+y=a的距离等于1的点至少有2个,则a的取值范围为( )A.(-32,32)B.(-∞,-32)∪(32,+∞)C.(-22,22)D.[-32,32]答案 A解析由圆的方程可知圆心为O(0,0),半径为2,因为圆上的点到直线l的距离等于1的点至少有2个,所以圆心到直线l的距离d<r+1=2+1,即d=|-a|12+12=|a|2<3,解得a∈(-32,32),故选A.17.[2016²湖南长郡中学月考]两圆x2+y2+2ax+a2-4=0 和x2+y2-4by-1+4b2=0恰有三条公切线,若a∈R且ab≠0,则1a2+1b2的最小值为( )A.1 B.3C.19D.49答案 A解析由题意知两圆的标准方程为(x+a)2+y2=4和x2+(y-2b)2=1,圆心分别为(-a,0)和(0,2b),半径分别为2和1,因为两圆恰有三条公切线,所以两圆外切,故有a2+4b2=3,即a2+4b2=9,所以1a2+1b2=19⎝⎛⎭⎪⎫9a2+9b2=19⎝⎛⎭⎪⎫1+4b2a2+a2b2+4≥19³(1+4+4)=1.当且仅当4b2a 2=a 2b 2,即|a |=2|b |时取等号,故选A.一、高考大题1.[2015²全国卷Ⅰ]已知过点A (0,1)且斜率为k 的直线l 与圆C :(x -2)2+(y -3)2=1交于M ,N 两点.(1)求k 的取值范围;(2)若OM →²ON →=12,其中O 为坐标原点,求|MN |. 解 (1)由题设,可知直线l 的方程为y =kx +1. 因为直线l 与圆C 交于两点,所以|2k -3+1|1+k 2<1. 解得4-73<k <4+73.所以k 的取值范围为⎝⎛⎭⎪⎫4-73,4+73.(2)设M (x 1,y 1),N (x 2,y 2).将y =kx +1代入圆C 的方程(x -2)2+(y -3)2=1,整理得(1+k 2)x 2-4(1+k )x +7=0. 所以x 1+x 2=4 1+k 1+k 2,x 1x 2=71+k 2.OM →²ON →=x 1x 2+y 1y 2=(1+k 2)x 1x 2+k (x 1+x 2)+1 =4k 1+k1+k2+8. 由题设可得4k 1+k1+k 2+8=12,解得k =1,所以l 的方程为y =x +1. 故圆C 的圆心(2,3)在l 上,所以|MN |=2.2.[2015²广东高考]已知过原点的动直线l 与圆C 1:x 2+y 2-6x +5=0相交于不同的两点A ,B .(1)求圆C 1的圆心坐标;(2)求线段AB 的中点M 的轨迹C 的方程;(3)是否存在实数k ,使得直线L :y =k (x -4)与曲线C 只有一个交点?若存在,求出k 的取值范围;若不存在,说明理由.解 (1)圆C 1的方程x 2+y 2-6x +5=0可化为(x -3)2+y 2=4,所以圆C 1的圆心坐标为(3,0).(2)设A (x 1,y 1),B (x 2,y 2)(x 1≠x 2),M (x 0,y 0),则x 0=x 1+x 22,y 0=y 1+y 22.由题意可知直线l 的斜率必存在,设直线l 的方程为y =tx . 将上述方程代入圆C 1的方程,化简得(1+t 2)x 2-6x +5=0.由题意,可得Δ=36-20(1+t 2)>0(*),x 1+x 2=61+t 2,所以x 0=31+t 2,代入直线l 的方程,得y 0=3t1+t2.因为x 2+y 20=9 1+t 2 2+9t 2 1+t 2 2=9 1+t 21+t 2 2=91+t 2=3x 0,所以⎝⎛⎭⎪⎫x 0-322+y 20=94. 由(*)解得t 2<45,又t 2≥0,所以53<x 0≤3.所以线段AB 的中点M 的轨迹C 的方程为⎝ ⎛⎭⎪⎫x -322+y 2=94⎝ ⎛⎭⎪⎫53<x ≤3.(3)由(2)知,曲线C 是在区间⎝ ⎛⎦⎥⎤53,3上的一段圆弧.如图,D ⎝ ⎛⎭⎪⎫53,253,E ⎝ ⎛⎭⎪⎫53,-253,F (3,0),直线L 过定点G (4,0).联立直线L 的方程与曲线C 的方程,消去y 整理得(1+k 2)x 2-(3+8k 2)x +16k 2=0. 令判别式Δ=0,解得k =±34,由求根公式解得交点的横坐标为x H ,I =125∈⎝ ⎛⎦⎥⎤53,3,由图可知:要使直线L 与曲线C 只有一个交点,则k ∈[k DG ,k EG ]∪{k GH ,k GI },k DG =253-053-4=-257,k EG =-253-053-4=257,即k ∈⎣⎢⎡ -257,⎦⎥⎤257∪⎩⎨⎧⎭⎬⎫-34,34. 二、模拟大题3.[2016²天津南开模拟]在平面直角坐标系xOy 中,圆C :x 2+y 2+4x -2y +m =0与直线x -3y +3-2=0相切.(1)求圆C 的方程;(2)若圆C 上有两点M ,N 关于直线x +2y =0对称,且|MN |=23,求直线MN 的方程. 解 (1)将圆C :x 2+y 2+4x -2y +m =0化为(x +2)2+(y -1)2=5-m , ∵圆C :x 2+y 2+4x -2y +m =0与直线x -3y +3-2=0相切, ∴圆心(-2,1)到直线x -3y +3-2=0的距离d =41+3=2=r ,∴圆C 的方程为(x +2)2+(y -1)2=4.(2)若圆C 上有两点M ,N 关于直线x +2y =0对称,则可设直线MN 的方程为2x -y +c =0,∵|MN |=23,半径r =2,∴圆心(-2,1)到直线MN 的距离为22- 3 2=1,即|-4-1+c |5=1,∴c =5±5,∴直线MN 的方程为2x -y +5±5=0.4.[2016²河南中原名校联考]已知圆C 的方程为x 2+(y -4)2=1,直线l 的方程为2x -y =0,点P 在直线l 上,过点P 作圆C 的切线PA ,PB ,切点为A ,B .(1)若∠APB =60°,求点P 的坐标;(2)求证:经过A ,P ,C (其中点C 为圆C 的圆心)三点的圆必经过定点,并求出所有定点的坐标.解 (1)由条件可得圆C 的圆心坐标为(0,4),PC =2,设P (a,2a ),则a 2+ 2a -4 2=2,解得a =2或a =65,所以点P 的坐标为(2,4)或⎝ ⎛⎭⎪⎫65,125.(2)证明:设P (a,2a ),过点A ,P ,C 的圆即是以PC 为直径的圆,其方程为x (x -a )+(y -4)(y -2a )=0,整理得x 2+y 2-ax -4y -2ay +8a =0,即(x 2+y 2-4y )-a (x +2y -8)=0.由⎩⎪⎨⎪⎧x 2+y 2-4y =0,x +2y -8=0得⎩⎪⎨⎪⎧x =0,y =4或⎩⎪⎨⎪⎧x =85,y =165,∴该圆必经过定点(0,4)和⎝ ⎛⎭⎪⎫85,165.5.[2017²东城模拟]已知圆C :x 2+y 2+2x -4y +3=0.(1)若圆C 的切线在x 轴和y 轴上的截距相等,求此切线的方程;(2)从圆C 外一点P (x 1,y 1)向该圆引一条切线,切点为M ,O 为坐标原点,且有|PM |=|PO |,求使|PM |取得最小值时点P 的坐标.解 (1)将圆C 配方,得(x +1)2+(y -2)2=2.①当切线在两坐标轴上的截距为零时,设切线方程为y =kx ,由|k +2|1+k2=2,得k =2±6,∴切线方程为y =(2±6)x .②当切线在两坐标轴上的截距不为零时,设切线方程为x +y -a =0(a ≠0),由|-1+2-a |2=2,得|a -1|=2,即a =-1或a =3.∴切线方程为x +y +1=0或x +y -3=0.综上,圆的切线方程为y =(2+6)x 或y =(2-6)x 或x +y +1=0或x +y -3=0. (2)由|PO |=|PM |,得x 21+y 21=(x 1+1)2+(y 1-2)2-2,整理得2x 1-4y 1+3=0,即点P 在直线l :2x -4y +3=0上.当|PM |取最小值时,|PO |取最小值,此时直线PO ⊥l , ∴直线PO 的方程为2x +y =0.解方程组⎩⎪⎨⎪⎧2x +y =0,2x -4y +3=0,得点P 的坐标为⎝ ⎛⎭⎪⎫-310,35.6.[2017²常州模拟]如图,已知圆心坐标为M (3,1)的圆M 与x 轴及直线y =3x 均相切,切点分别为A ,B ,另一圆N 与圆M 相切,且与x 轴及直线y =3x 均相切,切点分别为C ,D .(1)求圆M 与圆N 的方程;(2)过点B 作MN 的平行线l ,求直线l 被圆N 截得的弦长.解 (1)由于圆M 与∠BOA 的两边相切,故M 到OA ,OB 的距离相等,则点M 在∠BOA 的平分线上,同理,N 也在∠BOA 的平分线上,即O ,M ,N 三点共线,且直线ON 为∠BOA 的平分线,因为M (3,1),所以M 到x 轴的距离为1,即圆M 的半径为1,所以圆M 的方程为(x -3)2+(y -1)2=1.设圆N 的半径为r ,连接AM ,CN ,则Rt △OAM ∽Rt △OCN ,得OM ON =MA NC ,即23+r =1r,解得r=3,OC =33,所以圆N 的方程为(x -33)2+(y -3)2=9.(2)由对称性可知,所求弦长为过点A 的MN 的平行线被圆N 截得的弦长,此弦所在直线的方程为y =33(x -3),即x -3y -3=0,圆心N 到该直线的距离d = |33-33-3|1+3=32,故弦长为2r 2-d 2=33.。
2020年高考数学一轮复习考点47两直线的位置关系、距离公式必刷题理(含解析)

考点47 两直线的位置关系、距离公式1.(湖南省师范大学附属中学2019届高三下学期模拟三理)长方体1111ABCD A B C D -中,1AB BC ==,1BB ,设点A 关于直线1BD 的对称点为P ,则P 与1C 两点之间的距离为( )A .2B C .1 D .12 【答案】C【解析】将长方体中含有1ABD 的平面取出,过点A 作1AM BD ⊥,垂足为M ,延长AM 到AP ,使M P AM =,则P 是A 关于1BD 的对称点,如图所示,过P 作1PE BC ⊥,垂足为E ,连接PB ,1PC ,依题意1AB =,1AD ,12BD =,160ABD ∠=︒,30BAM ∠=︒,30PBE ∠=︒,12PE =,2BE =,所以11PC =. 故选C .2.(四川省宜宾市2019届高三第三次诊断性考试数学理)已知双曲线的左右焦点分别为,以它的一个焦点为圆心,半径为的圆恰好与双曲线的两条渐近线分别切于两点,则四边形的面积为( )A .3B .4C .5D .6 【答案】D【解析】 因为双曲线的左右焦点分别为 双曲线的渐近线方程为,即其中一条渐近线方程为以它的一个焦点为圆心,半径为的圆恰好与双曲线的两条渐近线分别切于A ,B 两点 根据焦点到渐近线的距离及双曲线中 的关系可得所以解得, 进而可求得切点则四边形的面积为故选:D 3.(河北省保定市2019年高三第二次模拟考试理)设点P 为直线l :40x y +-=上的动点,点(2,0)A -,()2,0B ,则||||PA PB +的最小值为( )A.BC.D【答案】A【解析】依据题意作出图像如下:设点()2,0B 关于直线l 的对称点为()1,B a b , 则它们的中点坐标为:2,22a b +⎛⎫ ⎪⎝⎭,且1PB PB = 由对称性可得:()011224022b a a b -⎧⨯-=-⎪⎪-⎨+⎪+-=⎪⎩,解得:4a =,2b = 所以()14,2B因为1||||||||PA PB PA PB +=+,所以当1,,A P B 三点共线时,||||PA PB +最大 此时最大值为1AB ==故选: A4.(贵州省贵阳市2019年高三5月适应性考试二理)双曲线的两条渐近线分别为,,为其一个焦点,若关于的对称点在上,则双曲线的渐近线方程为( )A .B .C .D .【答案】D【解析】不妨取, 设其对称点在, 由对称性可得:,解得:, 点在,则:,整理可得:,双曲线的渐近线方程为:. 故选:D .5.(广东省广州市普通高中毕业班2019届高三综合测试二理)已知点A 与点(1,2)B 关于直线30x y ++=对称,则点A 的坐标为( )A .(3,4)B .(4,5)C .(4,3)--D .(5,4)--【答案】D【解析】 设(),A x y ,则123052224(1)11x y x y y x ++⎧++=⎪=-⎧⎪∴⎨⎨-=-⎩⎪⋅-=-⎪-⎩,选D. 6.(甘肃省2019届高三第一次高考诊断考试理)抛物线28y x =的焦点到双曲线2214y x -=的渐近线的距。
2020版高考数学一轮复习课时规范练47直线与圆圆与圆的位置关系理北师大版

课时规范练47 直线与圆、圆与圆的位置关系基础巩固组1.(2018贵州凯里一中二模,4)直线y=x-和圆x2+y2-4x+2y-20=0的位置是()A.相交且过圆心B.相交但不过圆心C.相离D.相切2.( 2018陕西西安八校联考,3)若过点A(3,0)的直线l与曲线(x-1)2+y2=1有公共点,则直线l斜率的取值范围为()A.(-)B.C.-D.3.(2018重庆巴蜀中学月考,7)已知直线l:y=-ax+a是圆C:(x-2)2+(y-1)2=4的一条对称轴,过点A 作圆C的一条切线,切点为B,则|AB|=()A.4B.6C. D.24.已知圆M:x2+y2-2ay=0(a>0)截直线x+y=0所得线段的长度是2,则圆M与圆N:(x-1)2+(y-1)2=1的位置关系是()A.内切B.相交C.外切D.相离5.(2018北京,理7)在平面直角坐标系中,记d为点P(cos θ,sin θ)到直线x-my-2=0的距离.当θ,m变化时,d的最大值为()A.1B.2C.3D.46.已知圆C:x2+y2-2x+4y=0关于直线3x-ay-11=0对称,则圆C中以,-为中点的弦长为()A.1B.2C.3D.47.直线y=-x+m与圆x2+y2=1在第一象限内有两个不同的交点,则m的取值范围是()A.(,2)B.(,3)C. D.1,8.(2018安徽淮南一模,16)过动点P作圆:(x-3)2+(y-4)2=1的切线PQ,其中Q为切点,若|PQ|=|PO|(O为坐标原点),则|PQ|的最小值是.9.设直线y=x+2a与圆C:x2+y2-2ay-2=0相交于A,B两点,若|AB|=2,则圆C的面积为.10.(2018湖南长郡中学一模,14)若过点(1,1)的直线与圆x2+y2-6x-4y+4=0相交于A,B两点,则|AB|的最小值为.综合提升组11.(2018辽宁丹东模拟)圆心为(2,0)的圆C与圆x2+y2+4x-6y+4=0相外切,则圆C的方程为()A.x2+y2+4x+2=0B.x2+y2-4x+2=0C.x2+y2+4x=0D.x2+y2-4x=012.(2018湖南衡阳一模,12)若对圆x2+y2=1上任意一点P(x,y),|3x-4y+a|+|3x-4y-9|的取值与x,y 无关,则实数a的取值范围是()A.a≤-5B.-5≤a≤5C.a≤-5或a≥5D.a≥513.已知圆C:x2+y2=4,过点A(2,3)作圆C的切线,切点分别为P,Q,则直线PQ的方程为.14.(2018云南昆明应性检测,20)已知圆O:x2+y2=4上一动点A,过点A作AB⊥x轴,垂足为B点,AB 中点为P.(1)当A在圆O上运动时,求点P的轨迹E的方程;(2)过点F(-,0)的直线l与E交于M,N两点,当|MN|=2时,求线段MN的垂直平分线方程.创新应用组15.已知圆心为C的圆满足下列条件:圆心C位于x轴正半轴上,与直线3x-4y+7=0相切,且被y轴截得的弦长为2,圆C的面积小于13.(1)求圆C的标准方程;(2)设过点M(0,3)的直线l与圆C交于不同的两点A,B,以OA,OB为邻边作平行四边形OADB.是否存在这样的直线l,使得直线OD与MC恰好平行?如果存在,求出l的方程;若不存在,请说明理由.16.已知圆O:x2+y2=4,点A(-,0),B(,0),以线段AP为直径的圆C1内切于圆O,记点P的轨迹为C2.(1)证明:|AP|+|BP|为定值,并求C2的方程;(2)过点O的一条直线交圆O于M,N两点,点D(-2,0),直线DM,DN与C2的另一个交点分别为S,T,记△DMN,△DST的面积分别为S1,S2,求的取值范围.参考答案课时规范练47 直线与圆、圆与圆的位置关系1.A x2+y2-4x+2y-20=0可化简为(x-2)2+(y+1)2=25,故圆心为(2,-1),半径r=5.将(2,-1)代入y=x-中,3×2-4×(-1)-10=0,满足直线方程,故直线过圆心且与圆相交.故选A.2.D设直线l的方程为y=k(x-3),代入圆的方程中,整理得(k2+1)x2-(6k2+2)x+9k2=0,则Δ=4(1-3k2)≥0,解得-≤k≤,故选D.3.B∵直线l:y=-ax+a是圆C:(x-2)2+(y-1)2=4的一条对称轴,∴y=-ax+a过圆心C(2,1),∴1=-2a+a,解得a=-1,∴直线l的方程为y=x-1,A点坐标为(-4,-1),|AC|2=36+4=40,由勾股定理可得,|AB|2=|AC|2-r2=40-4=36,|AB|=6,故选B.4.B圆M的方程可化为x2+(y-a)2=a2,故其圆心为M(0,a),半径R=a.所以圆心到直线x+y=0的距离d==a.所以直线x+y=0被圆M所截弦长为2=2=a,由题意可得a=2,故a=2.圆N的圆心N(1,1),半径r=1.而|MN|==,显然R-r<|MN|<R+r,所以两圆相交.5.C设P(x,y),则x2+y2=1.即点P在单位圆上,点P到直线x-my-2=0的距离可转化为圆心(0,0)到直线x-my-2=0的距离加上(或减去)半径,所以距离最大为d=1+=1+.当m=0时,d max=3.6.D∵圆C:x2+y2-2x+4y=0关于直线3x-ay-11=0对称,∴直线3x-ay-11=0过圆心C(1,-2),∴3+2a-11=0,解得a=4,∴,-即为(1,-1),点(1,-1)到圆心C(1,-2)的距离d==1,圆C:x2+y2-2x+4y=0的半径r==,∴圆C中以,-为中点的弦长为2=2=4.故选D.7.D当直线经过点(0,1)时,直线与圆有两个不同的交点,此时m=1;当直线与圆相切时,有圆心到直线的距离d==1,解得m=(切点在第一象限),所以要使直线与圆在第一象限内有两个不同的交点,则1<m<.8. 设P(x,y),则x2+y2=(x-3)2+(y-4)2-1,即3x+4y=12,所以点P的运动轨迹是直线3x+4y=12,所以d min=,则|PQ|min==.9.4π圆C的方程可化为x2+(y-a)2=2+a2,直线方程为x-y+2a=0,所以圆心坐标为(0,a),半径r2=a2+2,圆心到直线的距离d=.由已知()2+=a2+2,解得a2=2,故圆C的面积为π(2+a2)=4π.10.4圆x2+y2-6x-4y+4=0的圆心为(3,2),半径r==3,点(1,1)与圆心(3,2)间的距离d==,所以|AB|的最小值|AB|min=2=2=4.11.D圆x2+y2+4x-6y+4=0,即(x+2)2+(y-3)2=9的圆心为(-2,3),半径为3.设圆C的半径为r.由两圆外切知,圆心距为=5=3+r.所以r=2,圆C的方程为(x-2)2+y2=4,即x2+y2-4x=0.故选D.12.D由x2+y2=1可知-5≤3x-4y≤5,令3x-4y=t,则|t+a|+|t-9|的取值与x,y无关,需-a≤t≤9,∴[-5,5]⫋[-a,9],所以a≥5.13.2x+3y-4=0以O(0,0),A(2, 3)为直径端点的圆的方程为x(x-2)+y(y-3)=0,即x2+y2-2x-3y=0,与圆C:x2+y2=4相减得2x+3y-4=0,故直线PQ的方程为2x+3y-4=0.14.解 (1)设P(x,y),则A(x,2y).将A(x,2y)代入x2+y2=4得点P的轨迹E的方程为+y2=1(y≠0).(2)由题意可设直线l方程为x=my-,由得(m2+4)y2-2my-1=0.所以所以|AB|=|y1-y2|===2.所以m=±.当m=时,中点纵坐标y0==,代入x=my-1得中点横坐标x0=-,斜率为k=-.故线段MN的垂直平分线方程为2x+y+=0.当m=-时,同理可得MN的垂直平分线方程为2x-y+=0.所以线段MN的垂直平分线方程为2x+y+=0或2x-y+=0.15.解 (1)设圆C:(x-a)2+y2=r2(a>0),由题意知解得a=1或a=.又S=πr2<13,∴a=1,∴圆C的标准方程为(x-1)2+y2=4.(2)当斜率不存在时,直线l为x=0,不满足题意.当斜率存在时,设直线l:y=kx+3,A(x1,y1),B(x2,y2),又l与圆C相交于不同的两点,联立得消去y得(1+k2)x2+(6k-2)x+6=0.∴Δ=(6k-2)2-24(1+k2)=12k2-24k-20>0,解得k<1-或k>1+.x1+x2=-,y1+y2=k(x1+x2)+6=,=+=(x1+x2,y1+y2),=(1,-3),假设∥,则-3(x1+x2)=y1+y2,解得k=∉-∞,1-∪1+,+∞,假设不成立,∴不存在这样的直线l.16.解 (1)证明:设AP的中点为E,切点为F,连接OE,EF(图略),则|OE|+|EF|=|OF|=2,故|BP|+|AP|=2(|OE|+|EF|)=4.∴点P的轨迹是以A,B为焦点,长轴长为4的椭圆.其中,a=2,c=,b=1,则C2的方程是+y2=1.(2)设直线DM的方程为x=my-2(m≠0).∵MN为圆O的直径,∴∠MDN=90°,∴直线DN的方程为x=-y-2,由得(1+m2)y2-4my=0,∴y M=,由得(4+m2)y2-4my=0,∴y S=,∴=,∴=.∵|DM|=|y M-0|,|DS|=|y S-0|,|DN|=|y N-0|,|DT|=|y T-0|,又∵△DMN,△DST都是有同一顶点的直角三角形, ∴=·=·.设s=1+m2,则s>1,0<<3,∴=4-1+∈4,.。
2020高考数学刷题首秧第七章平面解析几何考点测试49双曲线文含解析

考点测试49 双曲线一、基础小题1.已知双曲线C :-=1(a >0,b >0)的渐近线方程为y =±x ,则双曲线C 的离心y 2a 2x 2b 212率为( )A .B .C .D .525626答案 B解析 由题意可得=,则离心率e ===,故选B .a b 12c a 1+ba252.已知双曲线-=1的实轴长为10,则该双曲线的渐近线的斜率为( )x 2m 2+16y 24m -3A .±B .±C .±D .±54455335答案 D解析 由m 2+16=52,解得m =3(m =-3舍去).所以a =5,b =3,从而±=±,故b a 35选D .3.已知平面内两定点A (-5,0),B (5,0),动点M 满足|MA |-|MB |=6,则点M 的轨迹方程是( )A .-=1 B .-=1(x ≥4)x 216y 29x 216y 29C .-=1D .-=1(x ≥3)x 29y 216x 29y 216答案 D解析 由双曲线的定义知,点M 的轨迹是双曲线的右支,故排除A ,C ;又c =5,a =3,∴b 2=c 2-a 2=16.∵焦点在x 轴上,∴轨迹方程为-=1(x ≥3).故选D .x 29y 2164.双曲线-y 2=1的焦点到渐近线的距离为( )x 2mA .B .C .1D .2312答案 C解析 焦点F (,0)到渐近线x ±y =0的距离d ==1,故选C .m +1m |m +1±0|1+(m )25.已知双曲线C :-=1(a >0,b >0)的焦距为10,点P (2,1)在C 的渐近线上,则Cx 2a 2y 2b2的方程为( )A .-=1 B .-=1x 220y 25x 25y 220C .-=1 D .-=1x 280y 220x 220y 280答案 A解析 ∵-=1的焦距为10,∴c =5=.①x 2a 2y 2b2a 2+b 2又双曲线渐近线方程为y =±x ,且P (2,1)在渐近线上,∴=1,即a =2b .②b a2ba由①②解得a =2,b =,则C 的方程为-=1.故选A .55x 220y 256.已知双曲线C :-=1(a >0,b >0)的左、右焦点分别为F 1,F 2,点M 与双曲线Cx 2a 2y 2b2的焦点不重合,点M 关于F 1,F 2的对称点分别为A ,B ,线段MN 的中点在双曲线的右支上,若|AN |-|BN |=12,则a =( )A .3B .4C .5D .6答案 A解析 如图,设MN 的中点为C ,则由对称性知F 1,F 2分别为线段AM ,BM 的中点,所以|CF 1|=|AN |,|CF 2|=|BN |.由双曲线的定义,知|CF 1|-|CF 2|=2a =(|AN |-|BN |)=6,所以a =1212123,故选A .7.已知双曲线C :-=1(a >0,b >0)的离心率e =2,且它的一个顶点到相应焦点的x 2a 2y 2b2距离为1,则双曲线C 的方程为________.答案 x 2-=1y 23解析 由题意得Error!解得Error!则b =,故所求方程为x 2-=1.3y 238.设F 1,F 2分别为双曲线-=1的左、右焦点,点P 在双曲线上,若点P 到焦点F 1x 216y 220的距离等于9,则点P 到焦点F 2的距离为________.答案 17解析 解法一:∵实轴长2a =8,半焦距c =6,∴||PF 1|-|PF 2||=8.∵|PF 1|=9,∴|PF 2|=1或|PF 2|=17.又∵|PF 2|的最小值为c -a =6-4=2,∴|PF 2|=17.解法二:由题知,若P 在右支上,则|PF 1|≥2+8=10>9,∴P 在左支上.∴|PF 2|-|PF 1|=2a =8,∴|PF 2|=9+8=17.二、高考小题9.(2018·全国卷Ⅱ)双曲线-=1(a >0,b >0)的离心率为,则其渐近线方程为x 2a 2y 2b23( )A .y =±xB .y =±x23C .y =±x D .y =±x2232答案 A解析 ∵e ==,∴==e 2-1=3-1=2,∴=.因为该双曲线的渐近c a 3b 2a 2c 2-a 2a 2ba2线方程为y =±x ,所以该双曲线的渐近线方程为y =±x ,故选A .b a210.(2018·全国卷Ⅰ)已知双曲线C :-y 2=1,O 为坐标原点,F 为C 的右焦点,过Fx 23的直线与C 的两条渐近线的交点分别为M ,N .若△OMN 为直角三角形,则|MN |=( )A .B .3C .2D .4323答案 B解析 由题意分析知,∠FON =30°.所以∠MON =60°,又因为△OMN 是直角三角形,不妨取∠NMO =90°,则∠ONF =30°,于是FN =OF =2,FM =OF =1,所以|MN |=3.故选B .1211.(2018·全国卷Ⅲ)设F 1,F 2是双曲线C :-=1(a >0,b >0)的左、右焦点,O 是x 2a 2y 2b2坐标原点.过F 2作C 的一条渐近线的垂线,垂足为P .若|PF 1|=|OP |,则C 的离心率为6( )A .B .2C .D .532答案 C解析 由题可知|PF 2|=b ,|OF 2|=c ,∴|PO |=a .在Rt △POF 2中,cos ∠PF 2O ==,|PF 2||OF 2|bc ∵在△PF 1F 2中,cos ∠PF 2O ==,|PF 2|2+|F 1F 2|2-|PF 1|22|PF 2||F 1F 2|bc∴=⇒c 2=3a 2,∴e =.故选C .b 2+4c 2-(6a )22b ·2cb c 312.(2018·天津高考)已知双曲线-=1(a >0,b >0)的离心率为2,过右焦点且垂直x 2a 2y 2b2于x 轴的直线与双曲线交于A ,B 两点.设A ,B 到双曲线的同一条渐近线的距离分别为d 1和d 2,且d 1+d 2=6,则双曲线的方程为( )A .-=1B .-=1x 24y 212x 212y 24C .-=1 D .-=1x 23y 29x 29y 23答案 C解析 ∵双曲线-=1(a >0,b >0)的离心率为2,∴e 2=1+=4,∴=3,即b 2=3a 2,x 2a 2y 2b 2b 2a 2b 2a2∴c 2=a 2+b 2=4a 2,由题意可设A (2a ,3a ),B (2a ,-3a ),∵=3,∴渐近线方程为y =±b 2a2x ,则点A 与点B 到直线x -y =0的距离分别为d 1==a ,d 2=33|23a -3a |223-32=a ,又∵d 1+d 2=6,∴a +a =6,解得a =,∴b 2=|23a +3a |223+3223-3223+3239.∴双曲线的方程为-=1,故选C .x 23y 2913.(2018·江苏高考)在平面直角坐标系xOy 中,若双曲线-=1(a >0,b >0)的右x 2a 2y 2b2焦点F (c ,0)到一条渐近线的距离为c ,则其离心率的值是________.32答案 2解析 双曲线的一条渐近线方程为bx -ay =0,则F (c ,0)到这条渐近线的距离为=c ,|bc |b 2+(-a )232∴b =c ,∴b 2=c 2,又b 2=c 2-a 2,∴c 2=4a 2,3234∴e ==2.c a14.(2017·全国卷Ⅰ)已知双曲线C :-=1(a >0,b >0)的右顶点为A ,以A 为圆心,bx 2a 2y 2b2为半径作圆A ,圆A 与双曲线C 的一条渐近线交于M ,N 两点.若∠MAN =60°,则C 的离心率为________.答案 233解析 如图,由题意知点A (a ,0),双曲线的一条渐近线l 的方程为y =x ,即bx -ay =0,ba∴点A 到l 的距离d =.aba 2+b 2又∠MAN =60°,|MA |=|NA |=b ,∴△MAN 为等边三角形,∴d =|MA |=b ,即3232=b ,∴a 2=3b 2,∴e ===.ab a 2+b 232c a a 2+b 2a 2233三、模拟小题15.(2018·河北黄冈质检)过双曲线-=1(a >0,b >0)的右焦点F 作圆x 2+y 2=a 2x 2a 2y 2b2的切线FM (切点为M ),交y 轴于点P ,若M 为线段FP 的中点,则双曲线的离心率为( )A .B .C .2D .235答案 A解析 连接OM .由题意知OM ⊥PF ,且|FM |=|PM |,∴|OP |=|OF |,∴∠OFP =45°,∴|OM |=|OF |·sin45°,即a =c ·,∴e ==.故选A .22ca 216.(2018·河南洛阳尖子生联考)设F 1,F 2分别为双曲线-=1的左、右焦点,过F 1x 29y 216引圆x 2+y 2=9的切线F 1P 交双曲线的右支于点P ,T 为切点,M 为线段F 1P 的中点,O 为坐标原点,则|MO |-|MT |等于( )A .4B .3C .2D .1答案 D解析 连接PF 2,OT ,则有|MO |=|PF 2|=(|PF 1|-2a )=(|PF 1|-6)=|PF 1|-3,|MT |12121212=|PF 1|-|F 1T |=|PF 1|-=|PF 1|-4,于是有|MO |-|MT |=|PF 1|-3-|PF 1|-1212c 2-321212124=1,故选D .17.(2018·哈尔滨调研)已知双曲线C 的右焦点F 与抛物线y 2=8x 的焦点相同,若以点F 为圆心,为半径的圆与双曲线C 的渐近线相切,则双曲线C 的方程为( )2A .-x 2=1 B .-y 2=1y 23x 23C .-=1D .-=1y 22x 22x 22y 22答案 D解析 设双曲线C 的方程为-=1(a >0,b >0),而抛物线y 2=8x 的焦点为(2,0),x 2a 2y 2b2即F (2,0),∴4=a 2+b 2.又圆F :(x -2)2+y 2=2与双曲线C 的渐近线y =±x 相切,由b a双曲线的对称性可知圆心F 到双曲线的渐近线的距离为=,∴a 2=b 2=2,故双2bb 2+a 22曲线C 的方程为-=1.故选D .x 22y 2218.(2018·安徽淮南三校联考)已知双曲线-=1右焦点为F ,P 为双曲线左支上一x 24y 22点,点A (0,),则△APF 周长的最小值为( )2A .4+ B .4(1+)22C .2(+) D .+32662答案 B解析 由题意知F (,0),设左焦点为F 0,则F 0(-,0),由题意可知△APF 的周66长l 为|PA |+|PF |+|AF |,而|PF |=2a +|PF 0|,∴l =|PA |+|PF 0|+2a +|AF |≥|AF 0|+|AF |+2a =++2×2=4+4=4(+1),当且(0+6)2+(2-0)2(6-0)2+(0-2)222仅当A ,F 0,P 三点共线时取得“=”,故选B .19.(2018·河南适应性测试)已知F 1,F 2分别是双曲线-=1(a >0,b >0)的左、右x 2a 2y 2b2焦点,P 是双曲线上一点,若|PF 1|+|PF 2|=6a ,且△PF 1F 2的最小内角为,则双曲线的渐π6近线方程为( )A .y =±2xB .y =±x12C .y =±x D .y =±x222答案 D解析 不妨设P 为双曲线右支上一点,则|PF 1|>|PF 2|,由双曲线的定义得|PF 1|-|PF 2|=2a ,又|PF 1|+|PF 2|=6a ,所以|PF 1|=4a ,|PF 2|=2a .又因为Error!所以∠PF 1F 2为最小内角,故∠PF 1F 2=.由余弦定理,可得=,c 2=3a 2,b 2=c 2-a 2=2a 2⇒=π6(4a )2+(2c )2-(2a )22·4a ·2c 32b a ,所以双曲线的渐近线方程为y =±x ,故选D .2220.(2018·山西太原五中月考)已知F 1,F 2是双曲线-=1(a >0,b >0)的左、右焦点,x 2a 2y 2b2过F 1的直线l 与双曲线的左支交于点A ,与右支交于点B ,若|AF 1|=2a ,∠F 1AF 2=,则2π3=( )S △AF 1F 2S △ABF 2A .1B .C .D .121323答案 B解析 如图所示,由双曲线定义可知|AF 2|-|AF 1|=2a .又|AF 1|=2a ,所以|AF 2|=4a ,因为∠F 1AF 2=,所以S △AF 1F 2=|AF 1|·|AF 2|·sin ∠F 1AF 2=×2a ×4a ×=22π31212323a 2.设|BF 2|=m ,由双曲线定义可知|BF 1|-|BF 2|=2a ,所以|BF 1|=2a +|BF 2|,又知|BF 1|=2a+|BA |,所以|BA |=|BF 2|.又知∠BAF 2=,所以△BAF 2为等边三角形,边长为4a ,所以S △π3ABF 2=|AB |2=×(4a )2=4a 2,所以==,故选B .34343S △AF 1F 2S △ABF 223a 243a 21221.(2018·广东六校联考)已知点F 为双曲线E :-=1(a >0,b >0)的右焦点,直线y =x 2a 2y 2b2kx (k >0)与E 交于不同象限内的M ,N 两点,若MF ⊥NF ,设∠MNF =β,且β∈,,则该π12π6双曲线的离心率的取值范围是( )A .[,+]B .[2,+1]2263C .[2,+]D .[,+1]2623答案 D解析 如图,设左焦点为F ′,连接MF ′,NF ′,令|MF |=r 1,|MF ′|=r 2,则|NF |=|MF ′|=r 2,由双曲线定义可知r 2-r 1=2a ①,∵点M 与点N 关于原点对称,且MF ⊥NF ,∴|OM |=|ON |=|OF |=c ,∴r +r =4c 2 ②,由①②得r 1r 2=2(c 2-a 2),又知S △MNF =2S △MOF .∴r 1r 221212=2·c 2·sin2β,∴c 2-a 2=c 2·sin2β,∴e 2=,又∵β∈,,∴sin2β∈,,1211-sin2βπ12π61232∴e 2=∈[2,(+1)2].又e >1,∴e ∈[,+1],故选D .11-sin2β32322.(2018·河北名校名师俱乐部二调)已知F 1,F 2分别是双曲线x 2-=1(b >0)的左、y 2b 2右焦点,A 是双曲线上在第一象限内的点,若|AF 2|=2且∠F 1AF 2=45°,延长AF 2交双曲线的右支于点B ,则△F 1AB 的面积等于________.答案 4解析 由题意知a =1,由双曲线定义知|AF 1|-|AF 2|=2a =2,|BF 1|-|BF 2|=2a =2,∴|AF 1|=2+|AF 2|=4,|BF 1|=2+|BF 2|.由题意知|AB |=|AF 2|+|BF 2|=2+|BF 2|,∴|BA |=|BF 1|,∴△BAF 1为等腰三角形,∵∠F 1AF 2=45°,∴∠ABF 1=90°,∴△BAF 1为等腰直角三角形.∴|BA |=|BF 1|=|AF 1|=×4=2.∴S △F 1AB =|BA |·|BF 1|=2222212×2×2=4.1222一、高考大题本考点在近三年高考中未涉及此题型.二、模拟大题1.(2019·河北武邑中学月考)已知∀m ∈R ,直线l :y =x +m 与双曲线C :-=1(b >0)x 22y 2b2恒有公共点.(1)求双曲线C 的离心率e 的取值范围;(2)若直线l 过双曲线C 的右焦点F ,与双曲线交于P ,Q 两点,并且满足=,求FP → 15FQ →双曲线C 的方程.解 (1)联立Error!消去y ,整理得(b 2-2)x 2-4mx -2(m 2+b 2)=0.当b 2=2,m =0时,易知直线l 是双曲线C 的一条渐近线,不满足题意,故b 2≠2,易得e ≠.2当b 2≠2时,由题意知Δ=16m 2+8(b 2-2)(m 2+b 2)≥0,即b 2≥2-m 2,故b 2>2,则e 2===>2,e >.c 2a 2a 2+b 2a 22+b 222综上可知,e 的取值范围为(,+∞).2(2)由题意知F (c ,0),直线l :y =x -c ,与双曲线C 的方程联立,得Error!消去x ,化简得(b 2-2)y 2+2cb 2y +b 2c 2-2b 2=0,当b 2=2时,易知直线l 平行于双曲线C 的一条渐近线,与双曲线C 只有一个交点,不满足题意,故b 2≠2.设P (x 1,y 1),Q (x 2,y 2),即Error!因为=,所以y 1=y 2, ③FP → 15FQ →15由①③可得y 1=,y 2=,代入②整理得5c 2b 2=9(b 2-2)(c 2-2),-cb 23(b 2-2)-5cb 23(b 2-2)又c 2=b 2+2,所以b 2=7.所以双曲线C 的方程为-=1.x 22y 272.(2018·惠州月考)已知双曲线C :-=1(a >0,b >0)的一条渐近线的方程为y =x 2a 2y 2b 23x ,右焦点F 到直线x =的距离为.a 2c 32(1)求双曲线C 的方程;(2)斜率为1且在y 轴上的截距大于0的直线l 与双曲线C 相交于B ,D 两点,已知A (1,0),若·=1,证明:过A ,B ,D 三点的圆与x 轴相切.DF → BF →解 (1)依题意有=,c -=,b a 3a 2c 32∵a 2+b 2=c 2,∴c =2a ,∴a =1,c =2,∴b 2=3,∴双曲线C 的方程为x 2-=1.y 23(2)证明:设直线l 的方程为y =x +m (m >0),B (x 1,x 1+m ),D (x 2,x 2+m ),BD 的中点为M ,由Error!得2x 2-2mx -m 2-3=0,∴x 1+x 2=m ,x 1x 2=-,m 2+32又∵·=1,DF → BF →即(2-x 1)(2-x 2)+(x 1+m )(x 2+m )=1,∴m =0(舍)或m =2,∴x 1+x 2=2,x 1x 2=-,72M 点的横坐标为=1,x 1+x 22∵·=(1-x 1)(1-x 2)+(x 1+2)(x 2+2)DA → BA →=5+2x 1x 2+x 1+x 2=5-7+2=0,∴AD ⊥AB ,∴过A ,B ,D 三点的圆以点M 为圆心,BD 为直径,∵点M 的横坐标为1,∴MA ⊥x 轴,∵|MA |=|BD |,12∴过A ,B ,D 三点的圆与x 轴相切.3.(2019·山西太原一中月考)已知直线l :y =x +2与双曲线C :-=1(a >0,b >0)x 2a 2y 2b2相交于B ,D 两点,且BD 的中点为M (1,3).(1)求双曲线C 的离心率;(2)设双曲线C 的右顶点为A ,右焦点为F ,|BF |·|DF |=17,试判断△ABD 是否为直角三角形,并说明理由.解 (1)设B (x 1,y 1),D (x 2,y 2).把y =x +2代入-=1,x 2a 2y 2b2并整理得(b 2-a 2)x 2-4a 2x -4a 2-a 2b 2=0,则x 1+x 2=,x 1x 2=-.4a 2b 2-a 24a 2+a 2b 2b 2-a 2由M (1,3)为BD 的中点,得==1,x 1+x 222a 2b 2-a 2即b 2=3a 2,故c ==2a ,a 2+b 2所以双曲线C 的离心率e ==2.c a(2)由(1)得C 的方程为-=1,x 2a 2y 23a2A (a ,0),F (2a ,0),x 1+x 2=2,x 1x 2=-<0,4+3a 22不妨设x 1≤-a ,x 2≥a ,则|BF |==(x 1-2a )2+y 21(x 1-2a )2+3x 21-3a 2=a -2x 1,|DF |==(x 2-2a )2+y 2(x 2-2a )2+3x 2-3a 2=2x 2-a ,所以|BF |·|DF |=(a -2x 1)(2x 2-a )=2a (x 1+x 2)-4x 1x 2-a 2=5a 2+4a +8,又|BF |·|DF |=17,所以5a 2+4a +8=17,解得a =1或a =-(舍去).95所以A (1,0),x 1+x 2=2,x 1x 2=-.72所以=(x 1-1,y 1)=(x 1-1,x 1+2),AB →=(x 2-1,x 2+2),AD →·=(x 1-1)(x 2-1)+(x 1+2)(x 2+2)AB → AD →=2x 1x 2+(x 1+x 2)+5=0,所以⊥,即△ABD 为直角三角形.AB → AD →4.(2018·山东临沂月考)P (x 0,y 0)(x 0≠±a )是双曲线E :-=1(a >0,b >0)上一点,M ,x 2a 2y 2b 2N 分别是双曲线E 的左、右顶点,直线PM ,PN 的斜率之积为.15(1)求双曲线的离心率;(2)过双曲线E 的右焦点且斜率为1的直线交双曲线于A ,B 两点,O 为坐标原点,C 为双曲线上一点,满足=λ+,求λ的值.OC → OA → OB →解 (1)由点P (x 0,y 0)(x 0≠±a )在双曲线-=1上,有-=1.x 2a 2y 2b 2x 20a 2y 2b2由题意有·=,y 0x 0-ay 0x 0+a 15可得a 2=5b 2,c 2=a 2+b 2=6b 2,e ==.c a 305(2)联立Error!得4x 2-10cx +35b 2=0.设A (x 1,y 1),B (x 2,y 2),则Error!①设=(x 3,y 3),=λ+,即Error!OC → OC → OA → OB →2323又C为双曲线上一点,即x-5y=5b2,有(λx1+x2)2-5(λy1+y2)2=5b2.化简得212122λ2(x-5y)+(x-5y)+2λ(x1x2-5y1y2)=5b2.②又A(x1,y1),B(x2,y2)在双曲线上,212122所以x-5y=5b2,x-5y=5b2.由①式又有x1x2-5y1y2=x1x2-5(x1-c)(x2-c)=-4x1x2+5c(x1+x2)-5c2=10b2,②式可化为λ2+4λ=0,解得λ=0或λ=-4.。
(福建共享)新2020高考数学一轮复习课时规范练47直线与圆、圆与圆的位置关系理新人教A版【下载】

7. D 当直线经过点 (0,1) 时 , 直线与圆有两个不同的交点
=2
=4.
, 此时 m=1; 当直线与圆相切时 , 有圆心
到直线的距离 d=
=1, 解得 m= ( 切点在第一象限 ), 所以要使直线与圆在第一象限内有两
个不同的交点 , 则 1<m<
8.- 因为 P( - 3,1) 关于 x 轴的对称点的坐标为 P' ( - 3, - 1),
2. C 圆心 (1,0) 到直线 x- y+3=0 的距离 d= =2.
由条件 q: 圆 C上至多有 2 个点到直线 x-
y+3=0 的距离为 1, 则 0<r<3.
则 p 是 q 的充要条件 . 故选 C.
3. C 圆 C1 的圆心 C1(0,0), 半径 r 1=1, 圆 C2 的方程可化为 ( x- 3) 2+( y- 4) 2=25-m, 所以圆心 C2(3,4),
∴直线 3x-ay- 11=0 过圆心 C(1, - 2), ∴3+2a- 11=0, 解得 a=4,
- 3=7.
即为 (1, - 1), 点 (1, - 1) 到圆心 C(1, - 2) 的距离 d=
=1,
圆 C: x2+y2- 2x+4y=0 的半径 r=
,
∴圆 C中以
为中点的弦长为 2
故选 D.
假设
, 则 - 3( x1+x2) =y1+y2,
=(1, - 3),
解得 k=
, 假设不成立 ,
∴不存在这样的直线 l.
16. (1) 证明 设 AP的中点为 E, 切点为 F, 连接 OE, EF( 图略 ), 则|OE|+|EF|=|OF|= 2, 故
2020全国卷高考专题:平面解析几何
10 平面解析几何1.(2020•北京卷)已知半径为1的圆经过点(3,4),则其圆心到原点的距离的最小值为( ). A . 4 B . 5C . 6D . 7【答案】A【解析】求出圆心C 的轨迹方程后,根据圆心M 到原点O 的距离减去半径1可得答案.【详解】设圆心(),C x y 1=,化简得()()22341x y -+-=,所以圆心C 的轨迹是以(3,4)M 为圆心,1为半径的圆,所以||1||OC OM +≥5==,所以||514OC ≥-=, 当且仅当C 在线段OM 上时取得等号,故选:A. 【点睛】本题考查了圆的标准方程,属于基础题.2.(2020•北京卷)设抛物线的顶点为O ,焦点为F ,准线为l .P 是抛物线上异于O 的一点,过P 作PQ l ⊥于Q ,则线段FQ 的垂直平分线( ).A . 经过点OB . 经过点PC . 平行于直线OPD . 垂直于直线OP【答案】B【解析】依据题意不妨作出焦点在x 轴上的开口向右的抛物线,根据垂直平分线的定义和抛物线的定义可知,线段FQ 的垂直平分线经过点P ,即求解.【详解】如图所示:.因为线段FQ 的垂直平分线上的点到,F Q 的距离相等,又点P 在抛物线上,根据定义可知,PQ PF =,所以线段FQ 的垂直平分线经过点P .故选:B.【点睛】本题主要考查抛物线的定义的应用,属于基础题.3.(2020•北京卷)已知双曲线22:163x y C -=,则C 的右焦点的坐标为_________;C 的焦点到其渐近线的距离是_________.【答案】 (1). ()3,0 (2).【解析】根据双曲线的标准方程可得出双曲线C 的右焦点坐标,并求得双曲线的渐近线方程,利用点到直线的距离公式可求得双曲线的焦点到渐近线的距离.【详解】在双曲线C 中,a =b =3c ==,则双曲线C 的右焦点坐标为()3,0,双曲线C 的渐近线方程为2y x=±,即0x ±=,所以,双曲线C=故答案为:()3,0【点睛】本题考查根据双曲线的标准方程求双曲线的焦点坐标以及焦点到渐近线的距离,考查计算能力,属于基础题.4.(2020•北京卷)已知椭圆2222:1x y C a b+=过点(2,1)A --,且2a b =.(Ⅰ)求椭圆C 的方程:(Ⅱ)过点(4,0)B -的直线l 交椭圆C 于点,M N ,直线,MA NA 分别交直线4x =-于点,P Q .求||||PB BQ 的值.【答案】(Ⅰ)22182x y +=;(Ⅱ)1. 【解析】(Ⅰ)由题意得到关于a ,b 的方程组,求解方程组即可确定椭圆方程;(Ⅱ)首先联立直线与椭圆的方程,然后由直线MA ,NA 的方程确定点P ,Q 的纵坐标,将线段长度的比值转化为纵坐标比值的问题,进一步结合韦达定理可证得0P Q y y +=,从而可得两线段长度的比值.【详解】(1)设椭圆方程为:()222210x y a b a b+=>>,由题意可得:224112a ba b⎧+=⎪⎨⎪=⎩,解得:2282a b ⎧=⎨=⎩,故椭圆方程为:22182x y +=. (2)设()11,M x y ,()22,N x y ,直线MN 的方程为:()4y k x =+,与椭圆方程22182x y +=联立可得:()222448x k x ++=,即:()()222241326480k x k x k +++-=,则:2212122232648,4141k k x x x x k k --+==++.直线MA 的方程为:()111122y y x x ++=++, 令4x =-可得:()()()1111111141214122122222P k x k x y x y x x x x ++-++++=-⨯-=-⨯-=++++, 同理可得:()()222142Q k x y x -++=+.很明显0P Qy y <,且:P Q PB yPQ y =,注意到: ()()()()()()()()122112121242424421212222P Q x x x x x x y y k k x x x x +++++⎛⎫+++=-++=-+⨯ ⎪++++⎝⎭,而:()()()()()122112124242238x x x x x x x x +++++=+++⎡⎤⎣⎦2222648322384141k k k k ⎡⎤⎛⎫--=+⨯+⎢⎥ ⎪++⎝⎭⎣⎦()()()22226483328412041k k k k -+⨯-++=⨯=+, 故0,P Q P Q y y y y +==-.从而1PQPB y PQy ==. 【点睛】解决直线与椭圆的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.5.(2020•全国1卷)已知A 为抛物线C :y 2=2px (p >0)上一点,点A 到C 的焦点的距离为12,到y 轴的距离为9,则p =( ) A . 2 B . 3 C . 6 D . 9【答案】C【解析】利用抛物线的定义建立方程即可得到答案.【详解】设抛物线的焦点为F ,由抛物线的定义知||122A p AF x =+=,即1292p=+,解得6p.故选:C.【点晴】本题主要考查利用抛物线的定义计算焦半径,考查学生转化与化归思想,是一道容易题.6.(2020•全国1卷)已知⊙M :222220x y x y +---=,直线l :220x y ++=,P 为l 上的动点,过点P 作⊙M 的切线,PA PB ,切点为,A B ,当||||PM AB ⋅最小时,直线AB 的方程为( ) A. 210x y --= B. 210x y +-=C. 210x y -+=D. 210x y ++=【答案】D【解析】由题意可判断直线与圆相离,根据圆的知识可知,四点,,,A P B M 共圆,且AB MP ⊥,根据44PAMPM AB SPA ⋅==可知,当直线MP l ⊥时,PM AB ⋅最小,求出以MP 为直径的圆的方程,根据圆系的知识即可求出直线AB 的方程.【详解】圆的方程可化为()()22114x y -+-=,点M 到直线l的距离为2d ==>,所以直线l 与圆相离.依圆的知识可知,四点,,,A P B M 四点共圆,且AB MP ⊥,所以14442PAMPM AB SPA AM PA ⋅==⨯⨯⨯=,而PA =,当直线MP l ⊥时,min MP =,min 1PA =,此时PM AB ⋅最小.∴()1:112MP y x -=-即1122y x =+,由1122220y x x y ⎧=+⎪⎨⎪++=⎩解得,10x y =-⎧⎨=⎩. 所以以MP 为直径的圆的方程为()()()1110x x y y -++-=,即2210x y y +--=, 两圆的方程相减可得:210x y ++=,即为直线AB 的方程.故选:D .【点睛】本题主要考查直线与圆,圆与圆的位置关系的应用,以及圆的几何性质的应用,意在考查学生的转化能力和数学运算能力,属于中档题.7.(2020•全国1卷)已知F 为双曲线2222:1(0,0)x y C a b a b-=>>的右焦点,A 为C 的右顶点,B 为C 上的点,且BF 垂直于x 轴.若AB 的斜率为3,则C 的离心率为______________. 【答案】2【解析】根据双曲线的几何性质可知,2b BF a=,AF c a =-,即可根据斜率列出等式求解即可.【详解】联立22222221x cx y a b a b c =⎧⎪⎪-=⎨⎪⎪=+⎩,解得2x c b y a =⎧⎪⎨=±⎪⎩,所以2b BF a =.依题可得,3BF AF =,AF c a =-,即()2223b c a a c a a c a -==--,变形得3c a a +=,2c a =, 因此,双曲线C 的离心率为2.故答案为:2.【点睛】本题主要考查双曲线的离心率的求法,以及双曲线的几何性质的应用,属于基础题.8.(2020•全国1卷)已知A 、B 分别为椭圆E :2221x y a+=(a >1)的左、右顶点,G 为E 的上顶点,8AG GB ⋅=,P 为直线x =6上的动点,P A 与E 的另一交点为C ,PB 与E 的另一交点为D .(1)求E 的方程;(2)证明:直线CD 过定点.【答案】(1)2219x y +=;(2)证明详见解析. 【解析】(1)由已知可得:(),0A a -, (),0B a ,()0,1G ,即可求得21AG GB a ⋅=-,结合已知即可求得:29a =,问题得解(2)设()06,P y ,可得直线AP 的方程为:()039y y x =+,联立直线AP 的方程与椭圆方程即可求得点C 的坐标为20022003276,99y y y y ⎛⎫-+ ⎪++⎝⎭,同理可得点D 的坐标为2002200332,11y y y y ⎛⎫-- ⎪++⎝⎭,即可表示出直线CD 的方程,整理直线CD 的方程可得:()02043233y y x y ⎛⎫=- ⎪-⎝⎭,命题得证.【详解】(1)依据题意作出如下图象:由椭圆方程222:1(1)x E y a a+=>可得:(),0A a -, (),0B a ,()0,1G∴(),1AG a =,(),1GB a =-∴218AG GB a ⋅=-=,∴29a =∴椭圆方程为:2219x y += (2)证明:设()06,P y , 则直线AP 的方程为:()()00363y y x -=+--,即:()039y y x =+联立直线AP 的方程与椭圆方程可得:()2201939x y y y x ⎧+=⎪⎪⎨⎪=+⎪⎩,整理得:()2222000969810y x y x y +++-=,解得:3x =-或20203279y x y -+=+将20203279y x y -+=+代入直线()039y y x =+可得:02069y y y =+ 所以点C 的坐标为20022003276,99y y y y ⎛⎫-+ ⎪++⎝⎭. 同理可得:点D 的坐标为2002200332,11y y y y ⎛⎫-- ⎪++⎝⎭∴直线CD 的方程为:0022********2000022006291233327331191y y y y y y y x y y y y y y ⎛⎫-- ⎪++⎛⎫⎛⎫--⎝⎭-=-⎪ ⎪-+-++⎝⎭⎝⎭-++, 整理可得:()()()2220000002224200000832338331116963y y y y y y y x x y y y y y +⎛⎫⎛⎫--+=-=- ⎪ ⎪+++--⎝⎭⎝⎭整理得:()()0002220004243323333y y y y x x y y y ⎛⎫=+=- ⎪---⎝⎭故直线CD 过定点3,02⎛⎫⎪⎝⎭【点睛】本题主要考查了椭圆的简单性质及方程思想,还考查了计算能力及转化思想、推理论证能力,属于难题.9.(2020•全国2卷)若过点(2,1)的圆与两坐标轴都相切,则圆心到直线230x y --=的距离为( )A.B.C.D.【答案】B【解析】由题意可知圆心在第一象限,设圆心的坐标为(),,0a a a >,可得圆的半径为a ,写出圆的标准方程,利用点()2,1在圆上,求得实数a 的值,利用点到直线的距离公式可求出圆心到直线230x y --=的距离.【详解】由于圆上的点()2,1在第一象限,若圆心不在第一象限, 则圆与至少与一条坐标轴相交,不合乎题意,所以圆心必在第一象限, 设圆心的坐标为(),a a ,则圆的半径为a ,圆的标准方程为()()222x a y a a -+-=.由题意可得()()22221a a a -+-=,可得2650a a -+=,解得1a =或5a =, 所以圆心的坐标为()1,1或()5,5,圆心到直线的距离均为121132555d ⨯--==; 圆心到直线的距离均为225532555d ⨯--==圆心到直线230x y --=的距离均为d ==230x y --=.故选:B.【点睛】本题考查圆心到直线距离的计算,求出圆的方程是解题的关键,考查计算能力,属于中等题.10.(2020•全国2卷)设O 为坐标原点,直线x a =与双曲线2222:1(0,0)x y C a b a b-=>>的两条渐近线分别交于,D E 两点,若ODE 的面积为8,则C 的焦距的最小值为( ) A. 4 B. 8C. 16D. 32【答案】B【解析】因为2222:1(0,0)x y C a b a b -=>>,可得双曲线的渐近线方程是b y x a=±,与直线x a =联立方程求得D ,E 两点坐标,即可求得||ED ,根据ODE 的面积为8,可得ab值,根据2c =值不等式,即可求得答案.【详解】2222:1(0,0)x y C a b a b -=>>∴双曲线的渐近线方程是b y x a=±直线x a =与双曲线2222:1(0,0)x yC a b a b-=>>的两条渐近线分别交于D ,E 两点不妨设D 为在第一象限,E 在第四象限.联立x ab y x a =⎧⎪⎨=⎪⎩,解得x a y b =⎧⎨=⎩ 故(,)D a b ,联立x ab y x a =⎧⎪⎨=-⎪⎩,解得x a y b =⎧⎨=-⎩,故(,)E a b -,∴||2ED b = ∴ODE 面积为:1282ODES a b ab =⨯==△,双曲线2222:1(0,0)x y C a b a b -=>>∴其焦距为28c =≥==,当且仅当a b ==∴C 的焦距的最小值:8,故选:B.【点睛】本题主要考查了求双曲线焦距的最值问题,解题关键是掌握双曲线渐近线的定义和均值不等式求最值方法,在使用均值不等式求最值时,要检验等号是否成立,考查了分析能力和计算能力,属于中档题.11.(2020•全国2卷)已知椭圆C 1:22221x y a b+=(a >b >0)的右焦点F 与抛物线C 2的焦点重合,C 1的中心与C 2的顶点重合.过F 且与x 轴垂直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且|CD |=43|AB |.(1)求C 1的离心率;(2)设M 是C 1与C 2的公共点,若|MF |=5,求C 1与C 2的标准方程.【答案】(1)12;(2)221:13627x y C +=,22:12C y x =.【解析】(1)求出AB 、CD ,利用43CD AB =可得出关于a 、c 的齐次等式,可解得椭圆1C 的离心率的值;(2)由(1)可得出1C 的方程为2222143x y c c+=,联立曲线1C 与2C 的方程,求出点M 的坐标,利用抛物线的定义结合5MF =可求得c 的值,进而可得出1C 与2C 的标准方程. 【详解】(1)(),0F c ,AB x ⊥轴且与椭圆1C 相交于A 、B 两点,则直线AB 的方程为x c =,联立22222221x cx y a b a b c=⎧⎪⎪+=⎨⎪=+⎪⎩,解得2x c b y a =⎧⎪⎨=±⎪⎩,则22bAB a =,抛物线2C 的方程为24y cx =,联立24x c y cx =⎧⎨=⎩,解得2x cy c =⎧⎨=±⎩,4CD c ∴=, 43CD AB =,即2843b c a=,223b ac =,即222320c ac a +-=,即22320e e +-=, 01e <<,解得12e =,因此,椭圆1C 的离心率为12;(2)由(1)知2a c =,b =,椭圆1C 的方程为2222143x y c c+=,联立222224143y cx x y c c ⎧=⎪⎨+=⎪⎩,消去y 并整理得22316120x cx c +-=,解得23x c =或6x c =-(舍去), 由抛物线的定义可得25533c MF c c =+==,解得3c =.因此,曲线1C 的标准方程为2213627x y +=,曲线2C 的标准方程为212y x =.【点睛】本题考查椭圆离心率求解,同时也考查了利用抛物线的定义求抛物线和椭圆的标准方程,考查计算能力,属于中等题.12.(2020•全国3卷)设O 为坐标原点,直线2x =与抛物线C :22(0)y px p =>交于D ,E 两点,若OD OE ⊥,则C 的焦点坐标为( ) A. 1,04⎛⎫⎪⎝⎭B. 1,02⎛⎫ ⎪⎝⎭C. (1,0)D. (2,0)【答案】B【解析】根据题中所给的条件OD OE ⊥,结合抛物线的对称性,可知4DOx EOx π∠=∠=,从而可以确定出点D 的坐标,代入方程求得p 的值,进而求得其焦点坐标,得到结果.【详解】因为直线2x =与抛物线22(0)y px p =>交于,E D 两点,且OD OE ⊥, 根据抛物线的对称性可以确定4DOx EOx π∠=∠=,所以()2,2D ,代入抛物线方程44p =,求得1p =,所以其焦点坐标为1(,0)2,故选:B.【点睛】该题考查的是有关圆锥曲线的问题,涉及到的知识点有直线与抛物线的交点,抛物线的对称性,点在抛物线上的条件,抛物线的焦点坐标,属于简单题目.13.(2020•全国3卷)设双曲线C :22221x y a b -=(a >0,b >0)的左、右焦点分别为F 1,F 2,离心率为P 是C 上一点,且F 1P ⊥F 2P .若△PF 1F 2的面积为4,则a =( )A. 1B. 2C. 4D. 8【答案】A【解析】根据双曲线的定义,三角形面积公式,勾股定理,结合离心率公式,即可得出答案. 【详解】5ca=,c ∴=,根据双曲线的定义可得122PF PF a -=, 的12121||42PF F PF F S P =⋅=△,即12||8PF PF ⋅=,12F P F P ⊥,()22212||2PF PF c ∴+=, ()22121224PF PF PF PF c ∴-+⋅=,即22540a a -+=,解得1a =,故选:A.【点睛】本题主要考查了双曲线的性质以及定义的应用,涉及了勾股定理,三角形面积公式的应用,属于中档题.14.(2020•全国3卷)已知椭圆222:1(05)25x y C m m +=<<的离心率为4,A ,B 分别为C 的左、右顶点.(1)求C 的方程;(2)若点P 在C 上,点Q 在直线6x =上,且||||BP BQ =,BP BQ ⊥,求APQ 的面积.【答案】(1)221612525x y +=;(2)52. 【解析】(1)因为222:1(05)25x y C m m+=<<,可得5a =,b m =,根据离心率公式,结合已知,即可求得答案;(2)点P 在C 上,点Q 在直线6x =上,且||||BP BQ =,BP BQ ⊥,过点P 作x 轴垂线,交点为M ,设6x =与x 轴交点为N ,可得PMB BNQ ≅△△,可求得P 点坐标,求出直线AQ 直线方程,根据点到直线距离公式和两点距离公式,即可求得APQ 的面积. 【详解】(1)222:1(05)25x y C m m +=<<∴5a =,b m =,根据离心率4c e a ====, 解得54m =或54m =-(舍),∴C 的方程为:22214255x y ⎛⎫ ⎪⎝⎭+=,即221612525x y +=;(2)不妨设P ,Q 在x 轴上方点P 在C 上,点Q 在直线6x =上,且||||BP BQ =,BP BQ ⊥, 过点P 作x 轴垂线,交点为M ,设6x =与x 轴交点为N根据题意画出图形,如图||||BP BQ =,BP BQ ⊥,90PMB QNB ∠=∠=︒,又90PBM QBN ∠+∠=︒,90BQN QBN ∠+∠=︒,∴PBM BQN ∠=∠,根据三角形全等条件“AAS ”,可得:PMB BNQ ≅△△,221612525x y +=,∴(5,0)B ,∴651PM BN ==-=, 设P 点为(,)P P x y ,可得P 点纵坐标为1P y =,将其代入221612525x y +=,可得:21612525P x +=,解得:3P x =或3P x =-,∴P 点为(3,1)或(3,1)-,①当P 点为(3,1)时,故532MB =-=,PMB BNQ ≅△△,∴||||2MB NQ ==,可得:Q 点为(6,2),画出图象,如图(5,0)A -,(6,2)Q ,可求得直线AQ 的直线方程为:211100x y -+=,根据点到直线距离公式可得P 到直线AQ 的距离为:5d ===,根据两点间距离公式可得:AQ ==,∴APQ面积为:15252⨯=;②当P 点为(3,1)-时,故5+38MB ==,PMB BNQ ≅△△,∴||||8MB NQ ==,可得:Q 点为(6,8),画出图象,如图(5,0)A -,(6,8)Q ,可求得直线AQ 的直线方程为:811400x y -+=,根据点到直线距离公式可得P 到直线AQ 的距离为:d ===,根据两点间距离公式可得:AQ ==∴APQ面积为:1522=,综上所述,APQ 面积为:52. 【点睛】本题主要考查了求椭圆标准方程和求三角形面积问题,解题关键是掌握椭圆的离心率定义和数形结合求三角形面积,考查了分析能力和计算能力,属于中档题.15.(2020•江苏卷)在平面直角坐标系xOy 中,若双曲线22x a ﹣25y =1(a >0)的一条渐近线方程为y x ,则该双曲线的离心率是____. 【答案】32【解析】根据渐近线方程求得a ,由此求得c ,进而求得双曲线的离心率.【详解】双曲线22215xy a -=,故b =由于双曲线的一条渐近线方程为2yx =,即22b a a=⇒=,所以3c ===,所以双曲线的离心率为32c a =.故答案为:32【点睛】本小题主要考查双曲线的渐近线,考查双曲线离心率的求法,属于基础题. 16.(2020•江苏卷)在平面直角坐标系xOy 中,已知0)P ,A ,B 是圆C :221()362x y +-=上的两个动点,满足PA PB =,则△PAB 面积的最大值是__________. 【答案】【解析】根据条件得PC AB ⊥,再用圆心到直线距离表示三角形P AB 面积,最后利用导数求最大值.【详解】PA PB PC AB =∴⊥设圆心C 到直线AB 距离为d ,则||1AB PC ==所以11)2PABSd ≤⋅+=令222(36)(1)(06)2(1)(236)04y d d d y d d d d '=-+≤<∴=+--+=∴=(负值舍去) 当04d ≤<时,0y '>;当46d ≤<时,0y '≤,因此当4d =时,y 取最大值,即PABS取最大值为故答案为:【点睛】本题考查垂径定理、利用导数求最值,考查综合分析求解能力,属中档题.17.(2020•江苏卷)在平面直角坐标系xOy 中,已知椭圆22:143x y E +=的左、右焦点分别为F 1,F 2,点A 在椭圆E 上且在第一象限内,AF 2⊥F 1F 2,直线AF 1与椭圆E 相交于另一点B .(1)求△AF 1F 2的周长;(2)在x 轴上任取一点P ,直线AP 与椭圆E 的右准线相交于点Q ,求OP QP ⋅的最小值; (3)设点M 在椭圆E 上,记△OAB 与△MAB 的面积分别为S 1,S 2,若S 2=3S 1,求点M 的坐标. 【答案】(1)6;(2)-4;(3)()2,0M 或212,77⎛⎫-- ⎪⎝⎭.【解析】(1)根据椭圆定义可得124AF AF +=,从而可求出12AF F △的周长; (2)设()0,0P x ,根据点A 在椭圆E 上,且在第一象限,212AF F F ⊥,求出31,2A ⎛⎫⎪⎝⎭,根据准线方程得Q 点坐标,再根据向量坐标公式,结合二次函数性质即可出最小值;(3)设出设()11,M x y ,点M 到直线AB 的距离为d ,由点O 到直线AB 的距离与213S S =,可推出95d =,根据点到直线的距离公式,以及()11,M x y 满足椭圆方程,解方程组即可求得坐标. 【详解】(1)∵椭圆E 的方程为22143x y +=,∴()11,0F -,()21,0F由椭圆定义可得:124AF AF +=. ∴12AF F △的周长为426+=(2)设()0,0P x ,根据题意可得01x ≠.∵点A 在椭圆E 上,且在第一象限,212AF F F ⊥∴31,2A ⎛⎫⎪⎝⎭,∵准线方程为4x =,∴()4,Q Q y , ∴()()()()200000,04,4244Q OP QP x x y x x x ⋅=⋅--=-=--≥-,当且仅当02x =时取等号.∴OP QP ⋅的最小值为4-.(3)设()11,M x y ,点M 到直线AB 的距离为d .∵31,2A ⎛⎫⎪⎝⎭,()11,0F - ∴直线1AF 的方程为()314y x =+,∵点O 到直线AB 的距离为35,213S S = ∴2113133252S S AB AB d ==⨯⨯⨯=⋅,∴95d =,∴113439x y -+=① ∵2211143x y +=②,∴联立①②解得1120x y =⎧⎨=⎩,1127127x y ⎧=-⎪⎪⎨⎪=-⎪⎩. ∴()2,0M 或212,77⎛⎫-- ⎪⎝⎭. 【点睛】本题考查了椭圆的定义,直线与椭圆相交问题、点到直线距离公式的运用,熟悉运用公式以及根据213S S =推出95d =是解答本题的关键. 18.(2020•新全国1山东)已知曲线22:1C mx ny +=.( )A . 若m >n >0,则C 是椭圆,其焦点在y 轴上B . 若m =n >0,则CC . 若mn <0,则C是双曲线,其渐近线方程为y = D . 若m =0,n >0,则C 是两条直线 【答案】ACD【解析】结合选项进行逐项分析求解,0m n >>时表示椭圆,0m n =>时表示圆,0mn <时表示双曲线,0,0m n =>时表示两条直线.【详解】对于A ,若0m n >>,则221mx ny +=可化为22111x y m n+=, 因为0m n >>,所以11m n<,即曲线C 表示焦点在y 轴上的椭圆,故A 正确; 对于B ,若0m n =>,则221mx ny +=可化为221x y n+=, 此时曲线CB不正确;对于C ,若0mn <,则221mx ny +=可化为22111x y m n+=,此时曲线C 表示双曲线, 由220mx ny +=可得y =,故C 正确; 对于D ,若0,0m n =>,则221mx ny +=可化为21y n=,y n=±,此时曲线C表示平行于x 轴的两条直线,故D 正确;故选:AC D. 【点睛】本题主要考查曲线方程的特征,熟知常见曲线方程之间的区别是求解的关键,侧重考查数学运算的核心素养.19.(2020•新全国1山东).C :y 2=4x 的焦点,且与C 交于A ,B 两点,则AB =________.【答案】163【解析】先根据抛物线的方程求得抛物线焦点坐标,利用点斜式得直线方程,与抛物线方程联立消去y 并整理得到关于x 的二次方程,接下来可以利用弦长公式或者利用抛物线定义将焦点弦长转化求得结果. 【详解】∵抛物线的方程为24y x =,∴抛物线焦点F 坐标为(1,0)F , 又∵直线AB 过焦点F∴直线AB 的方程为:1)y x =- 代入抛物线方程消去y 并化简得231030x x -+=,解法一:解得121,33x x ==所以12116||||3|33AB x x =-=-=解法二:10036640∆=-=> 设1122(,),(,)A x y B x y ,则12103x x +=,过,A B 分别作准线1x =-的垂线,设垂足分别为,C D 如图所示. 12||||||||||11AB AF BF AC BD x x =+=+=+++1216+2=3x x =+故答案为:163【点睛】本题考查抛物线焦点弦长,涉及利用抛物线的定义进行转化,弦长公式,属基础题.20.(2020•新全国1山东)已知椭圆C :22221(0)x y a b a b +=>>的离心率为2,且过点A (2,1). (1)求C 的方程:(2)点M ,N 在C 上,且AM ⊥AN ,AD ⊥MN ,D 为垂足.证明:存在定点Q ,使得|DQ |为定值.【答案】(1)22163x y +=;(2)详见解析. 【解析】(1)由题意得到关于a ,b ,c 的方程组,求解方程组即可确定椭圆方程.(2)设出点M ,N 的坐标,在斜率存在时设方程为y kx m =+, 联立直线方程与椭圆方程,根据已知条件,已得到m,k 的关系,进而得直线MN 恒过定点,在直线斜率不存在时要单独验证,然后结合直角三角形的性质即可确定满足题意的点Q 的位置.的【详解】(1)由题意可得:222222411c aa b a b c ⎧=⎪⎪⎪+=⎨⎪=+⎪⎪⎩,解得:2226,3a b c ===,故椭圆方程为:22163x y +=.(2)设点()()1122,,,M x y N x y .因为AM ⊥AN ,∴·0AM AN =,即()()()()121222110x x y y --+--=,①当直线MN 的斜率存在时,设方程为y kx m =+,如图1. 代入椭圆方程消去y 并整理得:()22212k4260xkmx m +++-=2121222426,1212km m x x x x k k-+=-=++ ②, 根据1122,y kx m y kx m =+=+,代入①整理可得:()()()()221212k1x 2140x km k x x m ++--++-+=将②代入,()()()22222264k 121401212m km km k m k k -⎛⎫++---+-+= ⎪++⎝⎭, 整理化简得()()231210k m k m +++-=,∵2,1A ()不在直线MN 上,∴210k m +-≠,∴23101k m k ++=≠,,于是MN 的方程为2133y k x ⎛⎫=-- ⎪⎝⎭, 所以直线过定点直线过定点21,33E ⎛⎫-⎪⎝⎭. 当直线MN 的斜率不存在时,可得()11,N x y -,如图2.代入()()()()121222110x x y y --+--=得()2212210x y -+-=,结合2211163x y +=,解得()1122,3x x ==舍,此时直线MN 过点21,33E ⎛⎫- ⎪⎝⎭,,由于AE 为定值,且△ADE 为直角三角形,AE 为斜边,所以AE 中点Q 满足QD 为定值(AE 3=). 由于()21,32,13,A E ⎛⎫-⎪⎝⎭,故由中点坐标公式可得41,33Q ⎛⎫ ⎪⎝⎭. 故存在点41,33Q ⎛⎫⎪⎝⎭,使得|DQ|为定值. 【点睛】本题考查椭圆的标准方程和性质,圆锥曲线中的定点定值问题,关键是第二问中证明直线MN 经过定点,并求得定点的坐标,属综合题,难度较大.21.(2020•天津卷)设双曲线C 的方程为22221(0,0)x y a b a b-=>>,过抛物线24y x =的焦点和点(0,)b 的直线为l .若C 的一条渐近线与l 平行,另一条渐近线与l 垂直,则双曲线C 的方程为( )A. 22144x y -=B. 2214y x -=C. 2214x y -=D. 221x y -=【答案】D【解析】由抛物线的焦点()1,0可求得直线l 的方程为1yx b+=,即得直线的斜率为b -,再根据双曲线的渐近线的方程为b y x a =±,可得b b a -=-,1bb a-⨯=-即可求出,a b ,得到双曲线的方程. 【详解】由题可知,抛物线的焦点为()1,0,所以直线l 的方程为1yx b+=,即直线的斜率为b -,又双曲线的渐近线的方程为b y x a =±,所以b b a -=-,1bb a-⨯=-,因为0,0a b >>,解得1,1a b ==.故选:D .【点睛】本题主要考查抛物线的简单几何性质,双曲线的几何性质,以及直线与直线的位置关系的应用,属于基础题.22.(2020•天津卷)已知直线80x +=和圆222(0)x y r r +=>相交于,A B 两点.若||6AB =,则r 的值为_________.【答案】5【解析】根据圆的方程得到圆心坐标和半径,由点到直线的距离公式可求出圆心到直线的距离d ,进而利用弦长公式||AB =r .【详解】因为圆心()0,0到直线80x -+=的距离4d ==,由||AB =6==5r .故答案为:5.【点睛】本题主要考查圆的弦长问题,涉及圆的标准方程和点到直线的距离公式,属于基础题.23.(2020•天津卷)已知椭圆22221(0)x y a b a b+=>>的一个顶点为(0,3)A -,右焦点为F ,且||||OA OF =,其中O 为原点.(Ⅰ)求椭圆方程;(Ⅱ)已知点C 满足3OC OF =,点B 在椭圆上(B 异于椭圆的顶点),直线AB 与以C 为圆心的圆相切于点P ,且P 为线段AB 的中点.求直线AB 的方程.【答案】(Ⅰ)221189x y +=;(Ⅱ)132y x =-,或3y x =-. 【解析】(Ⅰ)根据题意,并借助222a b c =+,即可求出椭圆的方程;(Ⅱ)利用直线与圆相切,得到CP AB ⊥,设出直线AB 的方程,并与椭圆方程联立,求出B 点坐标,进而求出P 点坐标,再根据CP AB ⊥,求出直线AB 的斜率,从而得解.【详解】(Ⅰ)椭圆()222210x y a b a b+=>>的一个顶点为()0,3A -,∴3b =,由OA OF =,得3c b ==,又由222a b c =+,得2228313a =+=,的所以,椭圆的方程为221189x y +=;(Ⅱ)直线AB 与以C 为圆心的圆相切于点P ,所以CP AB ⊥,根据题意可知,直线AB 和直线CP 的斜率均存在, 设直线AB 的斜率为k ,则直线AB 的方程为3y kx ,即3y kx =-,2231189y kx x y =-⎧⎪⎨+=⎪⎩,消去y ,可得()2221120k x kx +-=,解得0x =或21221k x k =+. 将21221k x k =+代入3y kx =-,得222126321213k y k k k k =⋅--=++, 所以,点B 的坐标为2221263,2121k k k k ⎛⎫- ⎪++⎝⎭,因为P 为线段AB 的中点,点A 的坐标为()0,3-, 所以点P 的坐标为2263,2121k k k -⎛⎫⎪++⎝⎭,由3OC OF =,得点C 的坐标为()1,0, 所以,直线CP 的斜率为222303216261121CPk kk k k k --+=-+-+=,又因为CP AB ⊥,所以231261k k k ⋅=--+,整理得22310k k -+=,解得12k =或1k =.所以,直线AB 的方程为132y x =-或3y x =-. 【点睛】本题考查了椭圆标准方程的求解、直线与椭圆的位置关系、直线与圆的位置关系、中点坐标公式以及直线垂直关系的应用,考查学生的运算求解能力,属于中档题.当看到题目中出现直线与圆锥曲线位置关系的问题时,要想到联立直线与圆锥曲线的方程.24.(2020•浙江卷)已知点O (0,0),A (–2,0),B (2,0).设点P 满足|P A |–|PB |=2,且P 为函数y=|OP |=( )A.2B.C.D.【答案】D【解析】根据题意可知,点P既在双曲线的一支上,又在函数y =P 的坐标,得到OP 的值.【详解】因为||||24PA PB -=<,所以点P 在以,A B 为焦点,实轴长为2,焦距为4的双曲线的右支上,由2,1c a ==可得,222413b c a =-=-=,即双曲线的右支方程为()22103yx x -=>,而点P还在函数y =的图象上,所以,由()22103y x x y ⎧⎪⎨->==⎪⎩,解得22x y ⎧=⎪⎪⎨⎪=⎪⎩,即OP ==D . 【点睛】本题主要考查双曲线的定义的应用,以及二次曲线的位置关系的应用,意在考查学生的数学运算能力,属于基础题.25.(2020•浙江卷)设直线:(0)l y kx b k =+>,圆221:1C x y +=,222:(4)1C x y -+=,若直线l 与1C ,2C 都相切,则k =_______;b =______.【答案】 (1).3 (2). 3-【解析】由直线与圆12,C C 相切建立关于k ,b 的方程组,解方程组即可. 【详解】由题意,12,C C1=1=,所以||4b k b =+,所以0k =(舍)或者2b k =-,解得33k b ==-.故答案为:33-【点晴】本题主要考查直线与圆的位置关系,考查学生的数学运算能力,是一道基础题.26.(2020•浙江卷)如图,已知椭圆221:12x C y +=,抛物线22:2(0)C y px p =>,点A 是椭圆1C 与抛物线2C 的交点,过点A 的直线l 交椭圆1C 于点B ,交抛物线2C 于M (B ,M 不同于A ).(Ⅰ)若116=p ,求抛物线2C 的焦点坐标; (Ⅱ)若存在不过原点的直线l 使M 为线段AB 的中点,求p 的最大值. 【答案】(Ⅰ)1(,0)32;(Ⅱ【解析】【详解】(Ⅰ)当116=p 时,2C 的方程为218y x =,故抛物线2C 的焦点坐标为1(,0)32;(Ⅱ)设()()()112200,,,,,,:A x y B x y M x y I x y m λ=+,由()22222222220x y y my m x y m λλλ⎧+=⇒+++-=⎨=+⎩, 1200022222,,222m m my y y x y m λλλλλλ--∴+===+=+++, 由M 在抛物线上,所以()222222244222m pm mp λλλλλ=⇒=+++, 又22222()220y pxy p y m y p y pm x y mλλλ⎧=⇒=+⇒--=⎨=+⎩, 012y y p λ∴+=,2101022x x y m y m p m λλλ∴+=+++=+,2122222m x p m λλ∴=+-+.由2222142,?22x y x px y px⎧+=⎪⇒+=⎨⎪=⎩即2420x px +-=12x p ⇒==-222221822228162p p p m p p p λλλλλ+⇒-+=+⋅=++≥+,所以24218p p +≥,21160p ≤,10p ≤, 所以,p 的最大值为10,此时2105(,)A .法2:设直线:(0,0)l x my t m t =+≠≠,()00,A x y .将直线l 的方程代入椭圆221:12x C y +=得:()2222220m y mty t +++-=,所以点M 的纵坐标为22M mty m =-+. 将直线l 的方程代入抛物线22:2C y px =得:2220y pmy pt --=, 所以02M y y pt =-,解得()2022p m y m+=,因此()220222p m xm+=,由220012x y +=解得22212242160m m p m m ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭,所以当102,5m t ==时,p 取到最大值为1040. 【点晴】本题主要考查直线与圆锥曲线的位置关系的综合应用,涉及到求函数的最值,考查学生的数学运算能力,是一道有一定难度的题.27.(2020•上海卷)椭圆22143x y +=,过右焦点F 作直线l 交椭圆于P 、Q 两点,P 在第二象限已知()(),,'','Q Q Q Q Q x y Q x y 都在椭圆上,且y'0Q Q y +=,'FQ PQ ⊥,则直线l 的方程为【答案】10x y +-=28.(2020•上海卷)双曲线22122:14x y C b-=,圆2222:4(0)C x y b b +=+>在第一象限交点为A ,(,)A A A x y ,曲线2222221,44,A A x y x x b x y b x x ⎧-=>⎪Γ⎨⎪+=+>⎩。
2020版高考数学 47 椭圆的定义、标准方程及其性质 理(含解析)新人教A版
课后限时集训(四十七)椭圆的定义、标准方程及其性质(建议用时:60分钟)A组基础达标一、选择题1.已知方程错误!+错误!=1表示焦点在y轴上的椭圆,则实数k的取值范围是( )A。
错误!B.(1,+∞)C.(1,2) D.错误!C [由题意得错误!解得1<k<2.故选C。
]2.(2018·惠州二模)设F1,F2为椭圆x29+错误!=1的两个焦点,点P在椭圆上,若线段PF1的中点在y轴上,则错误!的值为( )A.错误!B。
错误!C。
错误! D.错误!D [如图,设线段PF1的中点为M,因为O是F1F2的中点,所以OM∥PF2,可得PF2⊥x轴,|PF2|=错误!=错误!,|PF1|=2a-|PF2|=错误!,错误!=错误!,故选D.]3.如图,底面直径为12 cm的圆柱被与底面成30°角的平面所截,截口是一个椭圆,则这个椭圆的离心率为( )A.错误!B.错误!C.错误!D。
错误!A [由题意得2a=错误!=8错误!(cm),短轴长即2b为底面圆直径12 cm,∴c=错误!=2错误!cm,∴e=错误!=错误!。
故选A.]4.以椭圆上一点和两个焦点为顶点的三角形的面积的最大值为1,则椭圆长轴长的最小值为( )A.1 B.错误!C.2 D.2错误!D [设a,b,c分别为椭圆的长半轴长、短半轴长、半焦距,依题意知,错误!×2cb=1⇒bc=1,2a=2错误!≥2错误!=2错误!,当且仅当b=c =1时,等号成立.故选D.]5.已知A(-1,0),B是圆F:x2-2x+y2-11=0(F为圆心)上一动点,线段AB的垂直平分线交BF于点P,则动点P的轨迹方程为( ) A.错误!+错误!=1 B.错误!-错误!=1C.x23-错误!=1 D。
错误!+错误!=1D [由题意得|PA|=|PB|,∴|PA|+|PF|=|PB|+|PF|=r=23>|AF|=2,∴点P的轨迹是以A,F为焦点的椭圆,且a =错误!,c=1,∴b=错误!,∴动点P的轨迹方程为错误!+错误!=1,故选D.]二、填空题6.(2018·全国卷Ⅰ改编)已知椭圆C:错误!+错误!=1的一个焦点为(2,0),则C的离心率为________.错误![由题意可知a2-4=4,∴a2=8,即a=2错误!。
【冲刺必刷】人教A版 高中数学2020届 高考复习专题--直线与圆的方程(含解析)
直线与圆的方程一、重点知识结构本章以直线和圆为载体,揭示了解析几何的基本概念和方法。
直线的倾斜角、斜率的概念及公式、直线方程的五种形式是本章的重点之一,而点斜式又是其它形式的基础;两条直线平行和垂直的充要条件、直线l1到l2的角以及两直线的夹角、点到直线的距离公式也是重点内容;用不等式(组)表示平面区域和线性规划作为新增内容,需要引起一定的注意;曲线与方程的关系体现了坐标法的基本思想,是解决解析几何两个基本问题的依据;圆的方程、直线(圆)与圆的位置关系、圆的切线问题和弦长问题等,因其易与平面几何知识结合,题目解法灵活,因而是一个不可忽视的要点。
二、高考要求1、掌握两条直线平行和垂直的条件,掌握两条直线所成的角和点到直线的距离公式,能够根据直线的方程判断两条直线的位置关系;3、会用二元一次不等式表示平面区域;4、了解简单的线性规划问题,了解线性规划的意义,并会简单的应用;5、了解解析几何的基本思想,了解用坐标法研究几何问题的方法;6、掌握圆的标准方程和一般方程,了解参数方程的概念,理解圆的参数方程的概念。
三、热点分析在近几年的高考试题中,两点间的距离公式,中点坐标公式,直线方程的点斜式、斜率公式及两条直线的位置关系是考查的热点。
但由于知识的相互渗透,综合考查直线与圆锥曲线的关系一直是高考命题的大热门,应当引起特别注意,本章的线性规划内容是新教材中增加的新内容,在高考中极有可能涉及,但难度不会大。
四、复习建议本章的复习首先要注重基础,对基本知识、基本题型要掌握好;求直线的方程主要用待定系数法,复习时应注意直线方程各种形式的适用条件;研究两条直线的位置关系时,应特别注意斜率存在和不存在的两种情形;曲线与方程的关系体现了坐标法的基本思想,随着高考对知识形成过程的考查逐步加强,对坐标法的要求也进一步加强,因此必须透彻理解。
既要掌握求曲线方程的常用方法和基本步骤,又能根据方程讨论曲线的性质;圆的方程、直线与圆的位置关系,圆的切线问题与弦长问题都是高考中的热点问题;求圆的方程或找圆心坐标和半径的常用方法是待定系数法及配方法,应熟练掌握,还应注意恰当运用平面几何知识以简化计算。
2020届高考数学(理)一轮必刷题 专题48 圆的方程(解析版)
考点48 圆的方程1.(广东省2019届高考适应性考试理)若向量a ,b ,c 满足a b ≠,0c ≠,且()()0c a c b -⋅-=,则a b a bc++-的最小值是()AB .C .2D .32【答案】C 【解析】设向量a OA =,b OB =,c OC =,则由()()0c a c b -⋅-=得0AC BC ⋅=,即C 的轨迹为以AB 为直径的圆,圆心为AB 中点M ,半径为1||2AB , 因此11||||||(||)||22c OC OM r OA OB AB =≤+=++ 1111(||)(||)(||)(||)2222OA OB OA OB a b a b =++-=++- 从而2a b a bc++-≥,选 C.2.(河南省重点高中2019届高三4月联合质量检测数学理)设是圆 上的点,直线与双曲线:的一条斜率为负的渐近线平行,若点到直线距离的最大值为8,则()A .9B .C .9或D .9或【答案】C 【解析】 因为双曲线的一条斜率为负的渐近线的斜率为,所以,解得. 圆的圆心坐标是,半径为,因为圆心到直线距离为, 所以点到直线距离的最大值为,解得或.当时,;当时,.综上,或.故选.3.(广西桂林市、崇左市2019届高三下学期二模联考数学理)过双曲线的右支上一点分别向圆:和圆:作切线,切点分别为,则的最小值为()A.5 B.4 C.3 D.2【答案】A【解析】圆的圆心为,半径为;圆的圆心为,半径为,设双曲线的左右焦点为,,连接,,,,可得.当且仅当为右顶点时,取得等号,即最小值5.故选:.4.(福建省龙岩市2019届高三5月月考数学理)已知点A 在圆22(2)1x y -+=上,点B 在抛物线28y x=上,则||AB 的最小值为( ) A .1 B .2 C .3 D .4【答案】A 【解析】由题得圆()2221x y -+=的圆心为(2,0),半径为1. 设抛物线的焦点为F(2,0),刚好是圆()2221x y -+=的圆心, 由题得|AB|≥|BF|-|AF|=|BF|-1, 设点B 的坐标为(x,y),所以|AB|≥x -(-2)-1=x+1,因为x≥0, 所以|AB|≥1,所以|AB|的最小值为1. 故选:A5.(新疆2019届高三第三次诊断性测试数学理)若直线1ax by +=与圆221x y +=有两个公共点,则点(),P a b 与圆221x y +=的位置关系是( )A .在圆上B .在圆外C .在圆内D .以上都有可能【答案】B 【解析】解:因为直线1ax by +=与圆221x y +=有两个公共点,1<,即1<因为点P 1, 所以点P 在圆外,故选B .6.(河南省焦作市2018-2019学年高三年级第三次模拟考试数学理)已知抛物线E :y 2=2px (p >0)的准线为l ,圆C :(x ﹣2p )2+y 2=4,l 与圆C 交于A ,B ,圆C 与E 交于M ,N .若A ,B ,M ,N 为同一个矩形的四个顶点,则E 的方程为( )A .y 2=xB .y 2C .y 2=2xD .y 2=x【答案】C 【解析】 【分析】 如图,圆C :(x ﹣2p )2+y 2=4的圆心C (2p ,0)是抛物线E :y 2=2px (p >0)的焦点, ∵圆C :(x ﹣2p )2+y 2=4的半径为2, ∴|NC|=2,根据抛物线定义可得:|NA|=|NC|=2. ∵A ,B ,M ,N 为同一个矩形的四个顶点, ∴点A ,N 关于直线x =2p 对称,即22N A P x x P +=⨯=,∴32N x p =, ∴|NA|=322p p ⎛⎫-- ⎪⎝⎭=2,∴2p =2,则E 的方程为y 2=2x . 故选:C .7.(闽粤赣三省十校2019届高三下学期联考数学理)过抛物线24y x =的焦点F 的直线交抛物线于A B 、两点,分别过A B 、作准线的垂线,垂足分别为A B ''、两点,以线段A B ''为直径的圆C 过点(2,3)-,则圆C 的方程为( )A .22(1)(1)5x y ++-=B .22(1)(1)17x y +++=C .22(1)(2)26x y +++=D .22(1)(2)2x y ++-=【答案】A 【解析】由抛物线方程可知:()1,0F ,准线方程为:1x =-设直线AB 方程为:1x my =+,代入抛物线方程得:2440y my --= 设()11,A x y ,()22,B x y ,则124y y m +=,124y y = 又()11,A y '-,()21,B y '-,C 在圆上 0A C B C ''∴⋅=即()()()()1211330y y -⨯-+--= ()12121030y y y y ⇒-++= 即101240m -+= 12m ⇒=∴圆心坐标为:()1,2m -,即()1,1-=∴圆的方程为:()()22115x y ++-=本题正确选项:A .8.(东北三省三校(哈尔滨师大附中、东北师大附中、辽宁省实验中学)2019届高三第一次模拟数学理)Rt ABC ∆中,090ABC ∠=,AB =4BC =,ABD ∆中,0120ADB ∠=,则CD 的取值范围是( ) A.2,2] B.(4,2] C.2,2]+ D.2,2]【答案】C 【解析】由题,以点B 为坐标原点,AB 所在直线为x 轴,BC 所在直线为y轴建立直角坐标系;(0,0);(0,4)B A C设点(,)D x y ,因为0120ADB ∠=,所以由题易知点D 可能在直线AB 的上方,也可能在AB 的下方; 当点D 可能在直线AB 的上方;直线BD 的斜率1yk x=;直线AD的斜率2k =由两直线的夹角公式可得:2121tan12011k k k k x-=⇒=+⋅化简整理的22((1)4x y ++=可得点D的轨迹是以点1)M -为圆心,半径2r =的圆,且点D 在AB 的上方,所以是圆在AB 上方的劣弧部分;此时CD的最短距离为:22CM r -== 当当点D 可能在直线AB 的下方;同理可得点D的轨迹方程:22((1)4x y +-=此时点D的轨迹是以点N 为圆心,半径2r =的圆,且点D 在AB 的下方,所以是圆在AB 下方的劣弧部分;此时CD的最大距离为:22CN r +==所以CD的取值范围为2⎡⎤⎣⎦.9.(湖北省黄冈市2019届高三上学期元月调研理)已知圆关于对称,则的值为A .B.1 C.D.0【答案】A【解析】化圆为.则圆心坐标为,圆关于对称,所以直线经过圆心,,得.当时,,不合题意,.故选A.10.(北京市朝阳区2018-2019学年度高三期末)在平面直角坐标系xOy中,过A(4,4),B(4,0),C (0,4)三点的圆被x轴截得的弦长为()A.2 B.C.4 D.【答案】C【解析】根据题意,设过三点的圆为圆,其方程为,又由,则由,解得,即圆,令,得,解得,即圆M与轴的交点坐标分别为,所以圆M被轴截得的弦长为4,故选C.11.(江西省名校学术联盟2019届高三年级教学质量检测考试12月联考)数学理)已知点,,则以线段为直径的圆的方程为A .B .C .D .【答案】D 【解析】 圆心为的中点,半径为,则以线段为直径的圆的方程为.故选D.12.(四川省南充市2018-2019学年上学期高2019届高三年级第一次高考适应性考试)点,是圆上的不同两点,且点,关于直线对称,则该圆的半径等于A .B .C .1D .3【答案】D 【解析】圆x 2+y 2+kx+2y-4=0的圆心坐标为(,因为点M ,N 在圆x 2+y 2+kx+2y-4=0上,且点M ,N 关于直线l :x-y+1=0对称, 所以直线l :x-y+1=0经过圆心, 所以.所以圆的方程为:x 2+y 2+4x+2y-4=0,圆的半径为:故选:C .13.(2017届四川省成都市石室中学高三二诊模拟考试数学理)在直角坐标系xOy 中,点(0,3)A ,直线:24l y x =-,设圆C 的半径为1,圆心在l 上,若圆C 上存在唯一一点M ,使2M A M O =,则圆心C 的非零横坐标是__________. 【答案】125【解析】圆心在l 上,设(),24C a a -,点(),M x y ,因为2MA MO ==,化简得:()2214x y ++=,所以点(),M x y 在以()0,1D -为圆心,以2为半径的圆上,又点(),M x y 在圆C 上,所以圆C 与圆D 有唯一公共点,即两圆相切,211CD =-=,或者213CD =+=,即251280a a -+=或25120a a -=,解得0a =(舍)或125,故填125. 14.(广东省肇庆市2019届高中毕业班第三次统一检测数学理)已知椭圆C :2212x y +=,直线l :1y x =-与椭圆C 交于A ,B 两点,则过点A ,B 且与直线m :43x =相切的圆的方程为______. 【答案】2211639x y ⎛⎫+-= ⎪⎝⎭. 【解析】解:椭圆C :2212x y +=,直线l :1y x =-与椭圆C 交于A ,B 两点,联立可得:22121x y y x ⎧+=⎪⎨⎪=-⎩,消去y 可得,2225848y xy x xy x +--+,解得0x =或43x =,可得(0,1)A -,41(,)33B , 过点A ,B 且与直线m :43x =相切的圆切点为B ,圆的圆心1(0,)3,半径为:43.所求圆的方程为:2211639x y ⎛⎫+-= ⎪⎝⎭.故答案为:2211639x y ⎛⎫+-= ⎪⎝⎭. 15.(宁夏石嘴山市第三中学2019届高三四模考试数学理)点(),M x y 在曲线C :224210x x y -+-=上运动,22+1212150t x y x y a =+---,且t 的最大值为b ,若,a b R +∈,则111a b++的最小值为_____. 【答案】1 【解析】曲线C 可整理为:()22225x y -+= 则曲线C 表示圆心为()2,0,半径为5的圆()()2222+121215066222t x y x y a x y a =+---=++---设d =d 表示圆上的点到()6,6-的距离则max 515d ==2max 15222t a b ∴=--=,整理得:14a b ++=()111111*********b a a b a b a b a b +⎛⎫⎛⎫∴+=+++=⨯+++ ⎪ ⎪+++⎝⎭⎝⎭又121b a a b ++≥=+(当且仅当11b a a b +=+,即1a =,2b =时取等号) 1114114a b ∴+≥⨯=+,即111a b ++的最小值为1 本题正确结果:116.(贵州省贵阳市2019年高三5月适应性考试二理)圆与曲线相交于,,,四点,为坐标原点,则__________.【答案】.【解析】 ∵圆的圆心为M (-3,2), ∴圆关于M (-3,2)中心对称,又曲线,关于(-3,2)中心对称, ∴圆与曲线的交点关于(-3,2)中心对称,不妨设与,与关于(-3,2)中心对称,则,,∴,故答案为.17.(北京市房山区2019年高考第一次模拟测试数学理)已知点A (-2,0),B (0,2),若点P 在圆(x-3)2+(y+1)2=2上运动,则面积的最小值为______.【答案】4 【解析】∵点A (-2,0),B (0,2),∴AB 的直线方程为=1,即x-y+2=0.圆心C (3,-1)到直线AB 的距离为d=,因为点P 在圆(x-3)2+(y+1)2=2上运动,所以点P到直线AB距离的最小值为:=,且.则ABP面积的最小值为.故答案为:4.18.(湖南省长沙市第一中学2018届高三下学期高考模拟卷三数学理)已知直线过定点,线段是圆的直径,则________.【答案】7.【解析】直线可化为,联立,解得点,∵线段是圆的直径,∴19.(广西桂林市、崇左市2019届高三下学期二模联考数学理)以抛物线:的顶点为圆心的圆交于两点,交的准线于两点.已知,,则等于__________.【答案】.【解析】如图:,,,,,,,,解得:,故答案为:.20.(北京市大兴区2019届高三4月一模数学理)在极坐标系下,点π(1,)2P 与曲线2cos ρθ=上的动点Q距离的最小值为_________.1 【解析】由题得点P 的直角坐标为(0,1),222222cos 2cos +201)1x y x x y ρθρρθ=∴=∴-=∴-+=,,,(,所以曲线是以点(1,0)为圆心,以1为半径的圆,所以点P 11-=.1.21.(江苏省南京市、盐城市2019届高三第二次模拟考试)在平面直角坐标系xOy 中,已知点()1,0A -,()5,0B .若圆()()22:44M x y m -+-=上存在唯一点P ,使得直线PA ,PB 在y 轴上的截距之积为5,则实数m 的值为______.【答案】【解析】根据题意,设P 的坐标为(,)a b ,直线PA 的方程为(1)1by x a =++,其在y 轴上的截距为1b a +, 直线PB 的方程为(5)5b y x a =--,其在y 轴上的截距为55b a --,若点P 满足使得直线PA ,PB 在y 轴上的截距之积为5,则有5()()515b b a a ⨯-=+-, 变形可得22(2)9b a +-=,则点P 在圆22(2)9x y -+=上,若圆22:(4)()4M x y m -+-=上存在唯一点P ,则圆M 与22(2)9x y -+=有且只有一个公共点,即两圆内切或外切,2,则两圆只能外切, 则有2425m +=,解可得:m =故答案为:22.(湖北省十堰市2019届高三年级元月调研考试理)已知圆22:(6)(6)16M x y -+-=,点(8,4)A ,过点A 的动直线与圆M 交于P ,Q 两点,线段PQ 的中点为N ,O 为坐标原点,则OMN ∆面积的最大值为______. 【答案】12 【解析】由题可知MN PQ ⊥,所以点N 在以线段AM 为直径的圆上,OMN ∆的边OM =N 到直线OM 的距离最大时,OMN ∆的面积最大,以线段AM 为直径的圆的圆心为()7,5,直线OM的方程为0x y -=,点()7,5到直线OM=所以N 到直线OM 的距离的最大值为故OMN ∆的面积的最大值为1122⨯=. 故答案为:1223.(江西省名校学术联盟2019届高三年级教学质量检测考试12月联考数学理)已知圆与轴相切于点,与轴正半轴交于点,,且,设点是圆上的动点,则的取值范围是__________. 【答案】【解析】由题意,可设圆C 的方程为,则,,所以, 则圆C 的方程为,即,可得,设,则== =,由题意可知,,所以.故答案为:. 24.(江苏省苏州市2018届高三调研测试理)在平面直角坐标系中,已知过点的圆和直线相切,且圆心在直线上,则圆的标准方程为__________. 【答案】【解析】根据题意,设圆C 的圆心为(m ,n ),半径为r ,则圆C 的标准方程为(x ﹣m )2+(y ﹣n )2=r 2,则有, 解可得:m =1,n =﹣2,r,则圆C 的方程为:(x ﹣1)2+(y +2)2=2, 故答案为:(x ﹣1)2+(y +2)2=225.(东北三省三校(哈尔滨师大附中、东北师大附中、辽宁省实验中学)2019届高三第一次模拟数学理)已知椭圆1C :2214x y +=的左、右两个顶点分别为,A B ,点P 为椭圆1C 上异于,A B 的一个动点,设直线,PA PB 的斜率分别为12,k k ,若动点Q 与,A B 的连线斜率分别为34,k k ,且3412(0)kk kk λλ=≠,记动点Q的轨迹为曲线2C .(1)当4λ=时,求曲线2C 的方程;(2)已知点1(1,)2M ,直线AM 与BM 分别与曲线2C 交于,E F 两点,设AMF ∆的面积为1S ,BME ∆的面积为2S ,若[1,3]λ∈,求12S S 的取值范围. 【答案】(1) 224(2)x y x +=≠± (2) []5,7【解析】(1)设()00,P x y ()02x ≠±,则220014x y +=,因为()()2,0,2,0A B -,则2020001222000011422444x y y y k k x x x x -=⋅===-+---(),Q x y 设 ()2x ≠±所以2341222244y y y k k k k x x x λλ=⋅===-+--,整理得 2214x y λ+= ()2x ≠±.所以,当4λ=时,曲线2C 的方程为 ()2242x y x +=≠±.(2)设()()1122,,,E x y F x y . 由题意知,直线AM 的方程为:62x y =-,直线BM 的方程为:22x y =-+.由(Ⅰ)知,曲线2C 的方程为2214x y λ+= ()2x ≠±,联立 ()2262244x y x x y λλ=-⎧≠±⎨+=⎩,消去x ,得()29160y y λλ+-=,得 1691y λλ=+ 联立()2222244x y x x y λλ=-+⎧≠±⎨+=⎩,消去x ,得()2120y y λλ+-=,得 221y λλ=+2212111111sin 91222211111sin 2222MA MF AMF y y MA MF S S MB ME MB ME BME y y λλ∠--+=====+∠-- 设()918911g ,λλλλ+==-++ 则()g λ在[]1,3上递增 又()()15,37g g ==,12S S ∴的取值范围为[]5,7 26.(四川省成都市高新区2019届高三上学期“一诊”模拟考试数学理)已知抛物线,过点的直线与抛物线相切,设第一象限的切点为. (Ⅰ)证明:点在轴上的射影为焦点; (Ⅱ)若过点的直线与抛物线相交于两点,圆是以线段为直径的圆且过点,求直线与圆的方程.【答案】(I )详见解析;(II )详见解析. 【解析】(Ⅰ)由题意知可设过点的直线方程为,由消去整理得,又因为直线与抛物线相切, 所以,解得.当时,直线方程为,可得点坐标为,又因为焦点,所以点在轴上的射影为焦点. (Ⅱ)设直线的方程为,由,其中恒成立.设,,则,所以,.由于圆是以线段为直径的圆过点,则,所以所以,解得或.当时,直线的方程为,圆的方程为;当时,直线的方程为,圆的方程为.27.(江西省抚州市七校2019届高三10月联考数学理)已知圆与直线相切于点,圆心在轴上.(1)求圆的方程;(2)过点且不与轴重合的直线与圆相交于两点,为坐标原点,直线分别与直线相交于两点,记的面积分别是.求的取值范围.【答案】(1);(2).【解析】(1)由题可知,设圆的方程为,,解得,,所以圆的方程为.(2)由题意知,,设直线的斜率为,则直线的方程为,由,得,解得或,则点的坐标为.又直线的斜率为,同理可得点的坐标为.由题可知,,.因此,又,同理,所以,当且仅当时取等号.又,所以的取值范围是.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Earlybird 考点测试47 圆与方程 高考概览高考在本考点中常考题型为选择题、填空题、解答题,分值为5分或12分,中等难度 考纲研读 1.掌握确定圆的几何要素,掌握圆的标准方程与一般方程 2.能根据给定直线、圆的方程,判断直线与圆的位置关系;能根据给定两个圆的方程判断两圆的位置关系 3.能用直线和圆的方程解决一些简单的问题 4.初步了解用代数方法处理几何问题的思想
一、基础小题 1.圆心在y轴上,半径为1,且过点(1,2)的圆的方程为( ) A.x2+(y-2)2=1 B.x2+(y+2)2=1 C.(x-1)2+(y-3)2=1 D.x2+(y-3)2=1 答案 A 解析 设圆心坐标为(0,b),则由题意知0-12+b-22=1,解得b=2,故圆的方程为x2+(y-2)2=1.故选A. 2.若点P(1,1)为圆C:(x-3)2+y2=9的弦MN的中点,则弦MN所在直线的方程为( ) A.2x+y-3=0 B.x-2y+1=0 C.x+2y-3=0 D.2x-y-1=0 答案 D
解析 圆心C(3,0),kPC=-12,则kMN=2,所以弦MN所在直线的方程为y-1=2(x-1),即2x-y-1=0.故选D. 3.圆O1:x2+y2-2x=0与圆O2:x2+y2-4y=0的位置关系是( ) A.相离 B.相交 C.外切 D.内切 答案 B 解析 圆O1:x2+y2-2x=0的圆心为O1(1,0),半径r1=1;圆O2:x2+y2-4y=0的圆心为O2(0,2),半径r2=2.由于1<|O1O2|=5<3,故两圆相交.故选B. 4.经过三点A(-1,0),B(3,0),C(1,2)的圆的面积是( ) A.π B.2π C.3π D.4π 答案 D Earlybird 解析 如图,根据A,B,C三点的坐标可以得出AC=BC=22,AB=4,所以AC⊥BC,所以AB为过A,B,C三点的圆的直径,且该圆的圆心坐标为(1,0),圆的半径为2,所以圆的面积为S=πR2=π×22=4π.故选D. 5.对任意的实数k,直线y=kx-1与圆x2+y2-2x-2=0的位置关系是( ) A.相离 B.相切 C.相交 D.以上三个选项均有可能 答案 C 解析 直线y=kx-1恒经过点A(0,-1),又02+(-1)2-2×0-2=-1<0,得点A在圆内,故直线y=kx-1与圆x2+y2-2x-2=0相交,故选C. 6.设圆的方程是x2+y2+2ax+2y+(a-1)2=0,若0是( ) A.原点在圆上 B.原点在圆外 C.原点在圆内 D.不确定 答案 B 解析 将圆的方程化成标准方程为(x+a)2+(y+1)2=2a,因为0(0+1)2-2a=(a-1)2>0,所以原点在圆外.故选B. 7.若圆x2+y2=a2与圆x2+y2+ay-6=0的公共弦长为23,则a的值为( ) A.2 B.±2 C.1 D.±1 答案 B 解析 设圆x2+y2=a2的圆心为O,半径r=|a|,将x2+y2=a2与x2+y2+ay-6=0联立,可得a2+ay-6=0,即公共弦所在的直线方程为a2+ay-6=0,原点O到直线a2+ay
-6=0的距离为6a-a,根据勾股定理可得a2=3+6a-a2,解得a=±2.故选B. 8.过点M(1,2)的直线l与圆C:(x-3)2+(y-4)2=25交于A,B两点,C为圆心,当∠ACB最小时,直线l的方程是________. 答案 x+y-3=0 解析 由题意知,当∠ACB最小时,圆心C(3,4)到直线l的距离达到最大,此时直线l
与直线CM垂直,又直线CM的斜率为4-23-1=1,所以直线l的斜率为-11=-1,因此所求的Earlybird 直线l的方程是y-2=-(x-1),即x+y-3=0. 二、高考小题 9.(2018·全国卷Ⅲ)直线x+y+2=0分别与x轴,y轴交于A,B两点,点P在圆(x-2)2+y2=2上,则△ABP面积的取值范围是( ) A.[2,6] B.[4,8] C.[2,32] D.[22,32] 答案 A 解析 ∵直线x+y+2=0分别与x轴,y轴交于A,B两点,∴A(-2,0),B(0,-2),则|AB|=22.∵点P在圆(x-2)2+y2=2上,圆心为(2,0),∴圆心到直线x+y+2=0的
距离d1=|2+0+2|2=22,故点P到直线x+y+2=0的距离d2的范围为[2,32],则S
△ABP=12|AB|d2=2d2∈[2,6],故选A. 10.(2018·北京高考)在平面直角坐标系中,记d为点P(cosθ,sinθ)到直线x-my-2=0的距离.当θ,m变化时,d的最大值为( ) A.1 B.2 C.3 D.4 答案 C
解析 ∵cos2θ+sin2θ=1,∴P点的轨迹是以原点为圆心的单位圆,又x-my-2=0表示过点(2,0)且斜率不为0的直线,如图,可得点(-1,0)到直线x=2的距离即为d的最大值.故选C. 11.(2018·全国卷Ⅰ)直线y=x+1与圆x2+y2+2y-3=0交于A,B两点,则|AB|=________. 答案 22 解析 根据题意,圆的方程可化为x2+(y+1)2=4,所以圆的圆心为(0,-1),且半径
是2,根据点到直线的距离公式可以求得圆心到直线的距离d=|0+1+1|12+-12=2,所以|AB|=24-2=22. 12.(2018·江苏高考)在平面直角坐标系xOy中,A为直线l:y=2x上的第一象限内
的点,B(5,0),以AB为直径的圆C与直线l交于另一点D.若AB→·CD→=0,则点A的横坐标Earlybird 为________. 答案 3
解析 解法一:设A(a,2a),a>0,则Ca+52,a,∴圆C的方程为x-a+522+(y-a)2
=a-524+a2,由 x-a+522+y-a2=a-524+a2,y=2x,得 xD=1,yD=2, ∴AB→·CD→=(5-a,-2a)·-a-32,2-a=a2-2a-152+2a2-4a=0,∴a=3或a=-1,又a>0,∴a=3,∴点A的横坐标为3.
解法二:由题意易得∠BAD=45°.设直线DB的倾斜角为θ,则tanθ=-12,∴tan∠ABO=-tan(θ-45°)=3,∴kAB=-tan∠ABO=-3.∴AB的方程为y=-3(x-5), 由 y=-3x-5,y=2x,得xA=3. 13.(2016·全国卷Ⅲ)已知直线l:mx+y+3m-3=0与圆x2+y2=12交于A,B两点,过A,B分别作l的垂线与x轴交于C,D两点.若|AB|=23,则|CD|=________. 答案 4 解析 由题意可知直线l过定点(-3,3),该定点在圆x2+y2=12上,不妨设点A(-3,3),由于|AB|=23,r=23,所以圆心到直线AB的距离为d=232-32=3,
又由点到直线的距离公式可得d=|3m-3|m2+1=3,解得m=-33,所以直线l的斜率k=-m
=33,即直线l的倾斜角为30°. 如图,过点C作CH⊥BD,垂足为H,所以|CH|=23,在Rt△CHD中,∠HCD=30°,Earlybird 所以|CD|=23cos30°=4. 14.(2017·江苏高考)在平面直角坐标系xOy中,A(-12,0),B(0,6),点P在圆O:x2+y2=50上.若PA→·PB→≤20,则点P的横坐标的取值范围是________.
答案 [-52,1] 解析 解法一:因为点P在圆O:x2+y2=50上, 所以设P点坐标为(x,±50-x2)(-52≤x≤52). 因为A(-12,0),B(0,6),
所以PA→=(-12-x,-50-x2)或PA→=(-12-x,50-x2),PB→=(-x,6-50-x2)或PB→=(-x,6+50-x2). 因为PA→·PB→≤20,先取P(x, 50-x2)进行计算, 所以(-12-x)(-x)+(-50-x2)(6-50-x2)≤20,即2x+5≤50-x2.
当2x+5≤0,即x≤-52时,上式恒成立;
当2x+5>0,即x>-52时,(2x+5)2≤50-x2, 解得-5≤x≤1,故x≤1. 同理可得P(x,-50-x2)时,x≤-5. 又-52≤x≤52,所以-52≤x≤1. 故点P的横坐标的取值范围为[-52,1]. 解法二:设P(x,y),
则PA→=(-12-x,-y),PB→=(-x,6-y). ∵PA→·PB→≤20, ∴(-12-x)(-x)+(-y)·(6-y)≤20,即2x-y+5≤0.
如图,作圆O:x2+y2=50,直线2x-y+5=0与⊙O交于E,F两点, ∵P在圆O上且满足2x-y+5≤0, ∴点P在EDF上. Earlybird 由 x2+y2=50,2x-y+5=0得F点的横坐标为1. 又D点的横坐标为-52, ∴P点的横坐标的取值范围为[-52,1]. 三、模拟小题 15.(2018·合肥质检)设圆x2+y2-2x-2y-2=0的圆心为C,直线l过(0,3)与圆C交于A,B两点,若|AB|=23,则直线l的方程为( ) A.3x+4y-12=0或4x-3y+9=0 B.3x+4y-12=0或x=0 C.4x-3y+9=0或x=0 D.3x-4y+12=0或4x+3y+9=0 答案 B 解析 当直线l的斜率不存在,即直线l的方程为x=0时,弦长为23,符合题意;当直线l的斜率存在时,可设直线l的方程为y=kx+3,由弦长为23,半径为2可知,
圆心到该直线的距离为1,从而有|k+2|k2+1=1,解得k=-34,综上,直线l的方程为x=0或3x+4y-12=0,故选B. 16.(2018·湖南长沙模拟)已知⊙O:x2+y2=1,A(0,-2),B(a,2),从点A观察点B,要使视线不被⊙O挡住,则实数a的取值范围是( ) A.(-∞,-2)∪(2,+∞)
B.-∞,-433∪433,+∞
C.-∞,-233∪233,+∞ D.-433,433 答案 B 解析 点B在直线y=2上,过点A(0,-2)作圆的切线,设切线的斜率为k,由点斜式
得切线方程为y=kx-2,即kx-y-2=0,由圆心到切线的距离等于半径,得|-2|k2+1=1,
解得k=±3,∴切线方程为y=±3x-2,和直线y=2的交点坐标为-433,2,433,2,∴要使视线不被⊙O挡住,则实数a的取值范围是-∞,-433∪433,+∞.故选B. 17.(2018·广东茂名模拟)若圆x2+y2-4x-4y-10=0上至少有三个不同点到直线l: