列方程解应用题(行程问题中的相遇和追击)
一元一次方程应用题-相遇及追击问题

一船航行于A、B两个码头之间,顺水航行需要3小时,逆水航行需要5小时,已知水流速度是4km/h,求这两个码头之间的距离。
顺水速度=船速+水速 逆水速度=船速-水速
A码头
B码头
水流方向
从甲地到乙地,水路比公路近40千米,上午十时,一艘轮船从甲地驶往乙地,下午1时一辆汽车从甲地驶往乙地,结果同时到达终点。已知轮船的速度是每小时24千米,汽车的速度是每小时40千米,求甲、乙两地水路、公路的长,以及汽车和轮船行驶的时间?
甲
乙
A
B
A车路程+B车路程=相距路程
解:设B车行了x小时后与A车相遇,根据题意列方程得 50x+30x=240 解得 x=3 答:设B车行了3小时后与A车相遇。
练 一
例1、 A、B两车分别停靠在相距240千米的甲、乙两地,甲车每小时行50千米,乙车每小时行30千米。 (2)若两车同时相向而行,请问B车行了多长时间后两车相距80千米?
1、画出示意图:
3km/h甲
乙2km/h
A
B
2、甲乙相遇时,两人所走的路程与AB两地的距离有什么关系?
时间角度:甲行走的时间=乙行走的时间
3、甲行走的时间与乙行走的时间有什么关系?
甲行走的速度×时间+乙行走的速度×时间=AB的距离
练习1
西安站和武汉站相距1500km,一列慢车从西安开出,速度为65km/h,一列快车从武汉开出,速度为85km/h,两车同时相向而行,几小时相遇?
慢车先行路程
快车路程
(慢车先行路程+慢车后行路程)+快车路程=总路程
慢车后行路程
相遇问题
慢车后行的时间=快车行驶的时间
例2:甲、乙从一点出发,同向而行,甲每小时走3km,乙每小时走2km,乙先出发3小时,甲再出发追赶乙,问甲要多久才能追上乙?
一元一次方程应用题------行程问题

基本的数量关系: 路程=速度×时间要特别注意:(1)路程、速度、时间的对应关系(即在某段路程上所对应的速度和时间各是多少)(2)在列方程时候,时间单位和路程单位一定要与速度单位一致1、甲、乙二人相向相遇问题⑴甲走的路程+乙走的路程=总路程 ⑵二人所用的时间相等或有提前量2、甲、乙二人中,慢者所行路程或时间有提前量的同向追击问题⑴甲走的路程-乙走的路程=提前量 ⑵二人所用的时间相等或有提前量3、单人往返⑴ 各段路程和=总路程 ⑵ 各段时间和=总时间 ⑶ 匀速行驶时速度不变4、行船问题与飞机飞行问题⑴ 顺水速度=静水速度+水流速度 ⑵ 逆水速度=静水速度-水流速度5、考虑车长的过桥或通过山洞隧道问题将每辆车的车头或车尾看作一个人的行驶问题去分析,一切就一目了然。
6、时钟问题:⑴通常将时钟问题看作以整时整分为起点的同向追击问题来分析。
常用数据:① 时针的速度是0.5°/分 ② 分针的速度是6°/分 ③ 秒针的速度是6°/秒一、一般行程问题(相遇与追击问题)例题1:某人从家里骑自行车到学校。
若每小时行15千米,可比预定时间早到15分钟;若每小时行9千米,可比预定时间晚到15分钟;求从家里到学校的路程有多少千米?解:等量关系 ⑴ 速度15千米行的总路程=速度9千米行的总路程⑵ 速度15千米行的时间+15分钟=速度9千米行的时间-15分钟方法一:设预定时间为x 小/时,则列出方程是:15(x -0.25)=9(x +0.25)方法二:设从家里到学校有x 千米,则列出方程是:60159601515-=+x x例题2、一列火车匀速行驶,经过一条长300m 的隧道需要20s 的时间。
隧道的顶上有一盏灯,垂直向下发光,灯光照在火车上的时间是10s ,根据以上数据,你能否求出火车的长度?火车的长度是多少?若不能,请说明理由。
解:方法一:设这列火车的长度是x 米,根据题意,得1020300x x =+ x =300 答:这列火车长300米。
应用题--行程问题(相遇,追及问题)

列方程解应用题之行程问题教学目的1.知识与能力:使学生会分析不同类型的相遇及追及问题中的相等关系,列出一元一次方程解简单的应用题。
2.过程与方法:使学生加强了解列一元一次方程解应用题的方法步骤。
3.情感态度与价值观:通过小组合作,加强同学们之间的交流以及团结互助的精神。
教学重点利用路程、速度、时间的关系,根据相遇及追及问题中的等量关系,列出一元一次方程。
教学难点寻找相遇及追及问题中的等量关系。
教学过程一、导入想一想回答下面的问题:1、A、B两车分别从相距S千米的甲、乙两地同时出发,相向而行,两车会相遇吗?2、如果两车相遇,则相遇时两车所走的路程与甲、乙两地的距离有什么关系?3、如果两车同向而行,B车先出发a小时,在什么情况下两车能相遇?为什么?4、如果A车能追上B车,你能画出线段图吗?二、例题1A、B两车分别停靠在相距240千米的甲、乙两地,A车每小时行50千米,B车每小时行30千米。
若两车同时相向而行,请问B车行了多长时间后与A车相遇?三、练习1(1)挖一条长2200m 的水渠,由甲、乙两队从两头同时施工。
甲队每天挖130m,乙队每天挖90m,挖好水渠需要几天?(2)A、B两车分别停靠在相距115千米的甲、乙两地,A车每小时行50千米,B车每小时行30千米,A车出发1.5小时后B车再出发。
若两车相向而行,请问B车行了多长时间后与A车相遇?四、例题2小明每天早上要在7:50之前赶到距离家1000米的学校上学,一天,小明以80米/分的速度出发,5分后,小明的爸爸发现他忘了带语文书,于是,爸爸立即以180米/分的速度去追小明,并且在途中追上他。
(1)爸爸追上小明用了多少时间?(2)追上小明时,距离学校还有多远?五、练习2(3)A、B两车分别停靠在相距115千米的甲、乙两地,A车每小时行50千米,B车每小时行30千米,A车出发1.5小时后B车再出发。
若两车同向而行(B车在A车前面),请问B车行了多长时间后被A车追上?(4)小王、叔叔在400米长的环形跑道上练习跑步,小王每秒跑5米,叔叔每秒跑7.5米。
浅谈相遇和追击问题

浅谈相遇和追击问题列方程解应用题在中学数学中,既是重点又是难点,而行程问题中的相遇问题和追击问题学生更不易掌握。
为了让学生更加准确快速求解相遇和追击问题,特谈几种解法。
大家知道,在行程问题中,时间,速度,路程三者的关系是:路程=速度×时间,时间=路程÷速度,速度=路程÷时间;只要我们把握读懂题意,大胆分析。
特别是相遇问题和追击问题,还是易解的。
1.同时出发,相向而行对于此类问题,同学们只要抓住速度之和×时间=总路程。
例1.已知甲乙两地相距27千米,甲乙两个分别以5千米/小时,4千米/小时的速度从甲乙两地同时相向而行,问多少时间后他们能相遇?分析:此问题属同时出发,相向而行,故设出发x小时后,他们相遇。
根据题意得:(5+4) X=27解得x=3即他们出发3小时后相遇。
2.异时出发,相向而行此问题较难,但只要我们抓住:速度之和×相同时间+先走路程=总路程例2.已知AB两地相距32千米,甲以6千米/小时的速度从A地出发向B地前行2小时后,已再从B地以4千米每小时的速度向A地前进,问乙走多少时间后与甲相遇?分析:此问题属异地出发,相向而行。
可设乙出发x小时后与甲相遇,根据题意可得:(6+4)x+6×2=32解得:x=2即乙出发2小时后与甲相遇。
3.异地出发,同时同向而行此问题属追击问题。
关键在于抓住:距离之差=速度之差×时间例3.已知甲乙两地相离7千米,甲乙两人分别以5.5千米/小时、4.5千米/小时的速度同相向而行,问多少时间后甲能追上乙?分析:此问题属追击问题,可利用异地出发,同时同向而行的规律。
设甲出发x小时候追上乙,根据题意得:(5.5-4.5)x=7解得:x=7即甲出发7小时后可追上乙。
4.同地出发,异时追击就此问题,难度更大。
但只要我们认真分析抓住关键:慢速×慢速所有时间=快速×快速所用时间,即他们所走路程相等。
一元一次方程应用题归类汇集(含答案) (5)

一元一次方程应用题归类汇集一、一般行程问题(相遇与追击问题)1.行程问题中的三个基本量及其关系:路程=速度×时间时间=路程÷速度速度=路程÷时间2.行程问题基本类型(1)相遇问题:快行距+慢行距=原距(2)追及问题:快行距-慢行距=原距1、从甲地到乙地,某人步行比乘公交车多用3.6小时,已知步行速度为每小时8千米,公交车的速度为每小时40千米,设甲、乙两地相距x千米,则列方程为。
2、某人从家里骑自行车到学校。
若每小时行15千米,可比预定时间早到15分钟;若每小时行9千米,可比预定时间晚到15分钟;求从家里到学校的路程有多少千米?3、一列客车车长200米,一列货车车长280米,在平行的轨道上相向行驶,从两车头相遇到两车车尾完全离开经过16秒,已知客车与货车的速度之比是3:2,问两车每秒各行驶多少米?4、与铁路平行的一条公路上有一行人与骑自行车的人同时向南行进。
行人的速度是每小时3.6km,骑自行车的人的速度是每小时10.8km。
如果一列火车从他们背后开来,它通过行人的时间是22秒,通过骑自行车的人的时间是26秒。
⑴行人的速度为每秒多少米?⑵这列火车的车长是多少米?5、一次远足活动中,一部分人步行,另一部分乘一辆汽车,两部分人同地出发。
汽车速度是60千米/时,步行的速度是5千米/时,步行者比汽车提前1小时出发,这辆汽车到达目的地后,再回头接步行的这部分人。
出发地到目的地的距离是60千米。
问:步行者在出发后经过多少时间与回头接他们的汽车相遇(汽车掉头的时间忽略不计)6、某人计划骑车以每小时12千米的速度由A地到B地,这样便可在规定的时间到达B地,但他因事将原计划的时间推迟了20分,便只好以每小时15千米的速度前进,结果比规定时间早4分钟到达B地,求A、B两地间的距离。
7、一列火车匀速行驶,经过一条长300m的隧道需要20s的时间。
隧道的顶上有一盏灯,垂直向下发光,灯光照在火车上的时间是10s,根据以上数据,你能否求出火车的长度?火车的长度是多少?若不能,请说明理由。
列方程解应用题-行程问题专题

列方程解应用题——行程问题【知识要点】行程类应用题基本关系:路程=速度×时间相遇问题:甲、乙相向而行,则:甲走的路程+乙走的路程=总路程追及问题:甲、乙同向不同地,则:追者走的路程=前者走的路程+两地间的距离环形跑道问题:①甲、乙两人在环形跑道上同时同地同向出发:快的必须多跑一圈才能追上慢的。
②甲、乙两人在环形跑道上同时同地反向出发:两人第一次相遇时的总路程为环形跑道一圈的长度。
飞行问题,基本等量关系:顺风速度=无风速度+风速逆风速度=无风速度-风速顺风速度-逆风速度=2×风速航行问题,基本等量关系:顺水速度=静水速度+水速逆水速度=静水速度-水速顺水速度-逆水速度=2×水速【典型例题】例1、某队伍长450 ,以的速度行进,一个通讯兵从排尾赶到排头,并立即返回排尾,他的速度是,那么往返需要多少时间?例2、在一直形的长河中有甲、乙船,现同时由A城顺流而下,乙船到B地时接到通知,需立即返回到C地执行任务,甲船继续顺流航行。
已知甲、乙两船在静水中的速度都是,水流速度为每小时,A、C两地间的距离为。
如果乙船由A地经B地再到达C地,共用了4 ,问乙船从B地到C地时甲船驶离B地有多远?例3、甲、乙两人在400 长的环形跑道上练习百米赛跑,甲的速度是14 ,乙的速度是16 。
(1)若两人同时同地相向而行,问经过多少秒后两人相遇?(2)若两人同时同地同向而行,问经过多少秒后两人相遇?例4、甲、乙两人从相距36千米的两地相向而行,若甲先出发2小时,则在乙动身2.5小时后两人相遇;若乙先出发2小时,则甲动身3小时后两人相遇.求甲、乙两人的速度.例5、甲、乙两个运动员分别从相距100米的直跑道两端同时相对出发,甲以每秒6.25米,乙以每秒3.75米的速度来回匀速跑步,他们共同跑了8分32秒,在这段时间内两个多次相遇(两人同时到达同一地点).他们最后一次相遇的地点离乙的起点有多少米?甲追上乙多少次?甲与乙迎面相距多少次?例6、两列火车分别行驶在两平行的轨道上,其中快车车长100米,慢车车长150米,当两车相向而行时,快车驶过慢车某个窗口(快车车头到达窗口某一点至车尾离开这一点)所用的时间为5秒。
列一元二次方程解应用题-行程问题
列一元二次方程解应用题——行程问题班级_________ 姓名________学号学习目标:1、回顾行程问题中的相遇问题、追及问题和航行问题以及它们常见的等量关系,进一步认识建立方程模型的作用,提高数学的应用意识,并能根据具体问题的实际意义,检验结果的合理性;2、进一步体会运用方程解决问题的关键是寻找等量关系,提高分析问题、解决问题的能力.典例精析:例1、(1) A、B两地相距40千米,甲从A地往B地,若每小时走x千米,那么需走______小时;如果每小时多走2千米,那么需走______小时,这样可比原先早______小时到达B地. (2)飞机在静风中速度为每小时a千米,风速为每小时b千米(a >b),则该飞机逆风飞行2小时能飞行千米;若顺风飞行120千米需小时.(3)小明与小李在我校400米的环行跑道上练习短跑,小明与小李的速度分别为5m/s,4m/s,两人同地同向而行,若小李先跑10秒,则经过______秒时两人首次相遇.例2、(1)甲、乙两人同时从A地出发,步行18千米到B地,甲每小时比乙多走1千米,结果比乙早到36分钟,求甲、乙两人的速度.(2)A、B两地相距18千米,甲、乙两人都从A地往B地,乙步行两小时后,甲骑自行车出发,结果甲比乙提前6分钟到达乙地,若甲速比乙速的3倍还多2千米,求乙的速度.(3)A、B两地相距18千米,甲、乙分别从A、B两地同时出发,相遇后甲再经过2.5小时到达B地,乙再经过1小时36分到达A地,求甲、乙两人的速度.(4)A、B两地相距18千米,某班同学要从A地去B地只有一辆汽车,全班分为两组.甲组先乘车,乙组先步行,同时出发,开到途中C地,甲组下车步行,汽车回头接乙组,把乙组送到B地时,甲组恰好也到达B地,设车速为60km/h,步行速度为4km/h,上、下车时间忽略不计.①求AC的距离;②两组各步行多少千米?例3、一艘轮船顺流航行130千米,又逆流航行66千米,共用去8小时,已知船在顺流航行时比在逆流航行时每小时多行4千米,求船在静水中的速度和水流速度.随堂练习:1、A地B地相距1600千米,经技术改造,列车实施了提速,提速后比提速前速度每小时增加了20千米,提速后,列车从A地到B地的时间减少了4小时,这条铁路在现有的条件下,要求安全行驶速度不超过140千米/时,问铁路是否可能再次提速度?1 / 42、《九章算术》“勾股”章有一题:“今有二人同所立.甲行率七,乙行率三,乙东行,甲南行十步而斜东北与乙会.问甲乙行各几何?”大意是说:甲乙二人同时从同一地点出发,甲的速度为7,乙的速度为3,乙一直向东走,甲先向南走10步,后又斜向东北方向走了一段后与乙相遇,相遇时甲乙各走多远?3、某人骑自行车由A城向B城出发,到B城后立即返回,他以同样的速度往回骑了1小时后,休息了20分钟,继续上路后速度每小时增加4千米.已知A、B两地相距60千米,他从B返回A所用的时间和从A到B的时间一样,问自行车的原来速度是多少?4、某河的水流速度为2千米/时,A、B两地相距36千米,一动力橡皮船从A地出发,逆流而上去B地,出航后1小时,机器发生故障,橡皮船随水向下漂流,30分钟后机器修复,继续向B地开去,但船速比修复前每小时慢了1千米,到达B地比预定时间迟54分钟,求橡皮船在静水中的速度?5、《中华人民共和国道路交通安全法实施条例》中规定:超速行驶属违法行为,为确保行车安全,一段高速公路全程限速110千米/时(即任一时刻的车速都不能超过110千米/时).以下是张师傅和李师傅行驶完全程为400千米的高速公路的对话片段.张:“你的车速太快了,平均每小时比我多跑20千米,比我少一个小时就跑完了全程,应该慢点啊!”李:“虽然我的时速快,但是最大的时速不超过我平均时速的10%,可没有超速违法啊!”李师傅超速违法吗?为什么?课后作业:1、一只船在静水中速度为每小时a千米,水速为每小时b千米,则这只船顺流速度为____________千米/时,逆流速度为_________千米/时.2、甲、乙两人从A、B两地相向而行,甲的速度为a千米/时,乙的速度为b千米/时,经过t小时相遇,则A、B两地相距_________千米;二人相遇后,甲到达B地还需________小时,乙走完全程需_________小时.3、A、B两物体位于半径为r的圆周上的同一位置,它们分别以a米/秒,b米/秒的速度沿圆周运动(a>b).如果同向则需______秒首次相遇;如果反向,则需_____秒首次相遇.4、从A站到B站有120千米,一辆客车和一辆货车同时从A站出发,1小时后,客车在货车前面24千米;客车到达B站比货车早25分钟.求客车和货车每小时各走多少千米?2 / 45、一列货车要在一定时间内行驶840千米,但行驶到中点时,被阻30分钟,为按时到达,必须每小时多行2千米,求驶完全程原定时间为多少?6、雁塔中学全体同学到距学校15千米的科技馆参观,一部分同学骑自行车先走,40分钟后,其余同学乘汽车出发,结果他们同时到达科技馆.已知汽车的速度是自行车的3倍,求汽车的速度.7、甲、乙两地间的路,有一部分是上坡路,其余是下坡路.邮递员骑自行车从甲地到乙地需2小时40分,从乙地回到甲地少用20分钟.已知他骑自行车走下坡路比走上坡路每小时多走6千米,又甲、乙两地相距36千米,求他骑自行车上坡、下坡的速度以及甲地到乙地上、下坡的长度.8、一条公路干线上,有相距18千米的A、B两个村庄,A村的一辆汽车的速度为54千米/时,B村的一辆汽车的速度为36千米/时,如果两车分别从A、B两村同时同向而行,经过几小时后,两车相距45千米?9、东西两村相距120千米,甲从西村到东村,乙从东村到西村,两人同时出发,相遇后,甲继续走2小时到东村,乙继续走8小时到西村,求甲、乙两人的速度.10、A、B两地间的路程为15千米,早晨6时整,甲从A地出发步行前往B地,20分钟后,乙从B地出发骑车前往A地,乙到达A地后停留40分钟,然后骑车按原路原速返回,结果甲、乙两人同时到达B地.如果乙骑车比甲步行每小时多走10千米,问几点钟甲、乙两人同时到达B地?3 / 411、甲、乙两地相距252千米,中途有一中转站,汽车空载比重载每小时多走4千米;若一辆汽车从甲地载货到中转站,卸货后再空车到乙共需6小时30分,若从乙地载货到中转站,卸货后再空车到甲地共需6小时48分,求中转站到甲、乙两地的距离各是多少?(卸货时间不计)友情提示:部分文档来自网络整理,供您参考!文档可复制、编辑,期待您的好评与关注!4 / 4。
小升初应用题行程之追及相遇问题
六年级数学导学案概念理解:基本概念:行程问题是研究物体运动的,它研究的是物体速度、时间、行程三者之间的关系。
基本公式:路程=速度×时间;路程÷时间=速度;路程÷速度=时间关键问题:确定行程过程中的位置相遇问题:速度和×相遇时间=相遇路程(请写出其他公式)追击问题:追击时间=路程差÷速度差(写出其他公式)例题讲解:(简单的相遇追及问题)【例1】一列快车和一列慢车同时从甲乙两地相向而行,慢车每小时行50千米,快车比慢车快20%,经过2.5小时,两车相遇,请问甲乙两地相距多少千米?解:快车的速度=50×(1+20%)=60千米/时相遇的距离=(50+60)×2.5=275(千米)【练习1】甲、乙二人分别从A、B两地同时出发,如果两人同向而行,甲26分钟赶上乙;如果两人相向而行,6分钟可相遇,又已知乙每分钟行50米,求A、B两地的距离。
【例2】一辆汽车从甲地到乙地每小时行驶30千米,然后按原路返回,若想往返的平均速度为40千米,则返回时每小时应行驶()千米。
解:【练习2】现在龟兔进行赛跑,它们同时从起点出发,乌龟跑前一半路程的速度是4m/s,跑后一半路程的速度是6m/s,兔子前一半时间的速度是4m/s,后一半时间的速度是6m/s,问谁先到终点?【练习3】1000米赛跑,已知甲到终点时,乙离终点50米;乙到达终点时,丙离终点100米。
那么甲到终点时,丙离终点()米。
多次往返问题(追及相遇综合问题)【例3】、小强和大强位于AB两地同时出发往返于AB两地之间,小强的速度是20米/分钟,大强的速度是30米/分钟,AB间的距离是100米,问第四次相遇点距离B点的距离?解:1、通过相遇求全程:第四次相遇总共走了全程:1+2×3路程:(1+2×3)×100=700(米)2、通过速度分全程:小强和大强的速度比:2:3小强走了总路程的:(700÷5)×2=280(米)3、通过追踪求相遇:相遇时小强走了两个全程又80米第四次相遇点距B点为20米:环形跑道上的相遇与追及问题:例1:绕湖一周是24千米,小张和小王从湖边某一地点同时出发反向而行.小王速度为4千米/小时;小张速度为6千米/小时.问:两人出发多少时间第一次相遇?练习1:绕湖一周是24千米,小张和小王从湖边某一地点同时出发反向而行.小王以4千米/小时速度每走1小时后休息5分钟;小张以6千米/小时速度每走50分钟后休息10 分钟.问:两人出发多少时间第一次相遇?例2:绕湖一周是24千米,小张和小王从湖边某一地点同时出发反向而行.小王速度为4千米/小时;小张速度为6千米/小时.问:两人出发多少时间第一次相遇?课后巩固训练题:(每题10分,共100分)1.A.B两地相距960千米,甲车和乙车同时从A地出发驶向B地,甲车每小时行80千米,乙车每小时行60千米,甲车到达B地后修车用了半小时,以原速返回A地,两车对面相遇时距B地多远?2.甲以5千米/时的速度先走16分钟,乙以13千米/时的速度追甲,则乙追上甲需要的时间为多少小时?3.A.B.C是一条路上的三个车站,B站到A、C两站的距离相等,甲和乙同时分别从A、C两站出发相向而行,甲经过B站200米时与乙相遇,然后两人继续前进,甲走到C站立即返回,经过B站600米时又追上乙,A、B两站距离是多少米?4.甲乙二人同时从A地出发到B地,甲到B地返回,在离B地20千米处与乙相遇,已知甲每小时行18千米,乙每小时行10千米,求A、B两地距离。
行程问题---追及问题
x+ x
4 12
12x
1 4x + 4× = 12x 2
练习 1、一队学生去校外进行军事野营训练,他们每小时走 5千米,行进了18分钟的时候,学校要将一份紧急通 知传给队长。通讯员从学校出发,骑自行车以14千 米/时的速度按原路追上去,通讯员用多少时间可以 追上学生队伍?
2、运动场的跑道一圈长400米,甲练习骑自行车,平 均每分钟450米;乙练习跑步,平均每分钟250米 两人从同一处同时同向出发,经过多少时间首次相遇? 何时第二次相遇呢?
3、甲、乙二人从A地去B地,甲比乙早出发1小时,但 晚到30分钟;如果甲每小时走4千米,乙每小时走的
比甲多走2千米,求A、B两地的距离。
追击问题:甲的路程=社会实践活动,每小
时走4千米。出发30分钟后,学校派一名通信员骑自行 车以12千米/时的速度去追赶队伍。问通信员用多少时 间可以追上队伍? 队伍提前走的+通信员出发后走的=通信员追队伍所走的 时间
(小时)
速度
1 2
(千米/时)
路程
1 4(x+ 2 )
(千米)
队伍 通信员
列方程解应用题 ------行程问题
追及问题
(甲速度>乙速度情况下)
追及问题(甲和乙同向而行,同时出发,出发地不一样) 相 (1)甲时间=乙时间 遇 (2)甲路程=乙路程+两者所差距离
追及问题(甲和乙同向而行,出发地一样,不同时出发) 相 (1)甲路程=乙路程 遇 (2)甲时间=乙时间-乙先走的时间 追及问题绕圈(同时、同地、同向) (1)甲路程=乙路程+一圈路程(第一次相遇) (2)甲时间=乙时间
列方程解应用题行程问题
列方程解应用题——行程问题【知识要点】行程类应用题基本关系:路程=速度×时间相遇问题:甲、乙相向而行,则:甲走的路程+乙走的路程=总路程追及问题:甲、乙同向不同地,则:追者走的路程=前者走的路程+两地间的距离环形跑道问题:①甲、乙两人在环形跑道上同时同地同向出发:快的必须多跑一圈才能追上慢的。
②甲、乙两人在环形跑道上同时同地反向出发:两人第一次相遇时的总路程为环形跑道一圈的长度。
飞行问题,基本等量关系:顺风速度=无风速度+风速逆风速度=无风速度-风速∴ 顺风速度-逆风速度=2×风速航行问题,基本等量关系:顺水速度=静水速度+水速逆水速度=静水速度-水速∴ 顺水速度-逆水速度=2×水速【典型例题】例1、 某队伍长450m ,以s m 5.1的速度行进,一个通讯兵从排尾赶到排头,并立即返回排尾,他的速度是s m 3,那么往返需要多少时间?例2、在一直形的长河中有甲、乙船,现同时由A 城顺流而下,乙船到B 地时接到通知,需立即返回到C 地执行任务,甲船继续顺流航行。
已知甲、乙两船在静水中的速度都是h km 5.7,水流速度为每小时km 5.2,A 、C 两地间的距离为km 10。
如果乙船由A 地经B 地再到达C 地,共用了4h ,问乙船从B 地到C 地时甲船驶离B 地有多远?例3、甲、乙两人在400m长的环形跑道上练习百米赛跑,甲的速度是14m,乙的速度是16m。
(1)若两人同时同地相向而行,问经过多少秒后两人相遇?(2)若两人同时同地同向而行,问经过多少秒后两人相遇?例4、甲、乙两人从相距36千米的两地相向而行,若甲先出发2小时,则在乙动身2.5小时后两人相遇;若乙先出发2小时,则甲动身3小时后两人相遇.求甲、乙两人的速度.例5、甲、乙两个运动员分别从相距100米的直跑道两端同时相对出发,甲以每秒6.25米,乙以每秒3.75米的速度来回匀速跑步,他们共同跑了8分32秒,在这段时间内两个多次相遇(两人同时到达同一地点).他们最后一次相遇的地点离乙的起点有多少米?甲追上乙多少次?甲与乙迎面相距多少次?例6、两列火车分别行驶在两平行的轨道上,其中快车车长100米,慢车车长150米,当两车相向而行时,快车驶过慢车某个窗口(快车车头到达窗口某一点至车尾离开这一点)所用的时间为5秒。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7x-6.5x=5
(2)设x秒后甲可以追上乙,根据题意,得
=6.5
乙队从B地出发与甲相向而行,乙队出发20小时后相遇, 已知乙的速度比甲的速度每小时快1千米,求甲、乙的速 度各是多少?
分析:设:甲速为x千米/时,则乙速为(x+1)千米/时
A C
甲2小时所走 的路程 2x
230KM
D
B
乙20小时所走 的路程 20(x+1)
甲20小时所走 的路程 20x
相等关系:甲走总路程+乙走路程=230
解:设甲的速度为x千米/时,则乙的速度为(x+1)
千米/时,根据题意,得
2x+20x+20(x+1)=230
2x+20x+20x+20=230 42x=210 x=5 ∴乙的速度为 x+1=5+1=6
答:甲、乙的速度各是5千米/时、6千米/时.
课练一
1、甲、乙骑自行车同时从相距 65千米的两地相向而行, 2小时相遇.甲比乙每小时多骑2.5千米,求乙的时速.
列方程解应用题
行程问题中的相遇和追击
追及问题
两匹马赛跑,黄色马的速度是6m/s,棕色马 的速度是7m/s,如果让黄马先跑5m,棕色马
再开始跑,几秒后可以追上黄色马?
5米
棕色马路程 = 黄色马路程+5
一列长200米的火车,速度是20m/s,完 全通过一座长400米的大桥需要几秒?
例1.A、B两地相距230千米,甲队从A地出发两小时后,
25 60 ×48
B
C
乙走 X 小时所走的路程 72x
相等关系:
甲走的路程=乙走的路程
解:设乙车开出x小时后追上甲车,根据题意,得
25 ×48+ 48x = 72x 60
24x=20
5 x= 6
5 答:乙开出 6
小时后追上甲车.
课练二、(只列方程不解)
甲、乙两位同学练习赛跑,甲每秒跑7米,乙每秒跑6.5 米.(1)如果甲让乙先跑5米,几秒钟后甲可以追上 乙? (2)如果甲让乙先跑1秒,几秒钟后甲可以追上 乙? 解:(1)设x秒后甲可以追上乙,根据题意,得
解:快车行驶了x小时后与慢车相遇,根据题意,得 65+x(65+85)=365
例2、甲、乙两车自西向东行驶,甲车的速度是每小时48 千米,乙车的速度是每小时72千米,甲车开出25分钟后 乙车开出,问几小时后乙车追上甲车?
分析: 设x小时后乙车追上甲车
A
甲先走25分 甲走 X 小时所走的路程 钟的路程 48x
解:设乙的速度为x千米/时,则甲的速度为(x+2.5)千 米/时,根据题意,得
2(x+2.5)+2x=65
2x+5+2x=65
4x=60
X=15
答:乙的时速为15千米/时.
2、甲、乙两站间的路程为365KM.一列慢车从甲站开 往乙站,每小时行驶65KM;慢车行驶了1小时后,另有 一列快车从乙站开往甲站,每小时行驶85KM.快车行 驶了几小时与慢车相遇?(只列方程不解)