高一数学第二学期期末模拟训练(二)(必修4)2013.6

合集下载

【浙教版】高中数学必修四期末模拟试题带答案(2)

【浙教版】高中数学必修四期末模拟试题带答案(2)

一、选择题1.已知0,2πα⎛⎫∈ ⎪⎝⎭,2sin 2cos 21αα-=,则cos α的值为( )A .15B C .3D 2.在ΔABC 中,2sin (22c a Ba b c c -=、、分别为角A B C 、、的对边),则ΔABC 的形状为 A .直角三角形B .等边三角形C .等腰三角形或直角三角形D .等腰直角三角形3.在ABC 中三内角A ,B ,C 的对边分别为a ,b ,c ,且222b c a +=,2bc ,则角C 的大小是( )A .6π或23π B .3πC .23π D .6π4.在斜三角形ABC 中,sin A cos C ,且tan B·tan C =1A 的值为( ) A .4πB .3π C .2π D .34π 5.己知平面向量,a b 满足1a a b =-=,则32a b a b -++的最大值为( ) A .4B .25C .325+D .66.设平面向量()a=1,2,()b=2,y -,若a b ,则2a b -等于( )A .4B .5C .D .457.设θ为两个非零向量,a b 的夹角,且6πθ=,已知对任意实数t ,b ta +的最小值为1,则b =( ) A .14B .12C .2D .48.已知2a b ==,0a b ⋅=,()()0c a c b -⋅-=,若2d c -=,则d 最大值为( )A .B .1+C .2+D .9.在平面直角坐标系中,AB 是单位圆上的一段弧(如右图),点P 是圆弧AB 上的动点,角α以Ox 为始边,OP 为终边.以下结论正确的是( )A .tan α<cos α<sin αB .cos α<tan α<sin αC .sin α<cos α<tan αD .以上答案都不对10.已知0>ω,2πϕ≤,在函数()()sin f x x ωϕ=+,()()cos g x x ωϕ=+的图象的交点中,相邻两个交点的横坐标之差的绝对值为2π,当,64x ππ⎛⎫∈- ⎪⎝⎭时,函数()f x 的图象恒在x 轴的上方,则ϕ的取值范围是( ) A .,63ππ⎛⎫⎪⎝⎭B .,63ππ⎡⎤⎢⎥⎣⎦C .,32ππ⎛⎫ ⎪⎝⎭D .,32ππ⎡⎤⎢⎥⎣⎦11.已知函数11()sin sin sin sin f x x x x x ⎛⎫⎛⎫=+- ⎪⎪⎝⎭⎝⎭,现有命题:①()f x 的最大值为0; ②()f x 是偶函数; ③()f x 的周期为π; ④()f x 的图象关于直线2x π=对称.其中真命题的个数是( ) A .4B .3C .2D .112.已知函数()sin()f x A x ωϕ=+(0A >,0>ω,0ϕπ≤≤)的部分图象如图所示,则()f x 的解析式是( )A .()2sin 6f x x π⎛⎫=+⎪⎝⎭B .()2sin 3f x x π⎛⎫=+⎪⎝⎭C .()2sin 26f x x π⎛⎫=+⎪⎝⎭D .2n 2)3(si f x x π⎛⎫=+⎪⎝⎭二、填空题13.如图,以Ox 为始边作钝角α,角α的终边与单位圆交于点P (x 1,y 1),将角α的终边顺时针旋转3π得到角β.角β的终边与单位圆相交于点Q (x 2,y 2),则x 2﹣x 1的取值范围为_____.14.函数()3sin cos22f x x x π⎛⎫=++ ⎪⎝⎭的最大值为_________. 15.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且222A Bsin +=1﹣cos 2C ,cos (B +C )>0,则ab的取值范围为_____. 16.设10AB =,若平面上点P 满足对任意的R λ∈,28AP AB λ-≥,PA PB ⋅的最小值为_______.17.已知||1,||3,0OA OB OA OB ==⋅=|,点C 在AOB ∠内,且30AOC ∠=︒,设(,)OC mOA nOB m n R =+∈,则mn等于 . 18.若函数()cos()(0)3f x x πωω=->的图象在(0,)π内有且只有两条对称轴,则ω的取值范围是___________.19.函数(x)Asin(x )f ωϕ=+ (0A >,0>ω,0ϕπ<< )的部分图象如图所示,则4f π⎛⎫= ⎪⎝⎭________.20.已知ABC 的重心为G ,过G 点的直线与边AB 和AC 的交点分别为M 和N ,若AM MB λ=,且AMN 与ABC 的面积之比为2554,则实数λ=__________. 三、解答题21.已知函数()sin()1g x ax bπ=-++,从下面三个条件中任选一个条件,求出,a b 的值,并解答后面的问题. ①已知函数f (x )=2sin(x +6π)·sin(x -3π)+2的最小值为a ,最大值为b ; ②已知0,0a b >>,且4a b +=,当19a b+取到最小值时对应的a ,b ; ③已知函数3()f x b x a=+-,满足(1)(1)6f x f x -++=. (1)选择条件________,确定,a b 的值; (2)求函数()g x 的单调递增区间和对称中心. 22.(1)化简:()cos 20tan 203sin 40-⋅°°°;(2)证明:()()21tan 31sin 21tan 312sin πx xπx x+--=---. 23.函数()cos()0,02f x x πωϕωϕ⎛⎫=+><<⎪⎝⎭的部分图象如图所示.(1)写出()f x 的解析式; (2)将函数()f x 的图象向右平移12π个单位后得到函数()g x 的图象,讨论关于x 的方程()3()0f x g x m -=(11)m -<≤在区间,2ππ⎡⎤-⎢⎥⎣⎦上的实数解的个数. 24.已知函数()()sin f x A x ωϕ=+(0A >,0>ω,02πϕ<<)的部分图象如图所示,其中最高点以及与x 轴的一个交点的坐标分别为,16π⎛⎫⎪⎝⎭,5,012π⎛⎫⎪⎝⎭.(1)求()f x 的解析式;(2)设M ,N 为函数y t =的图象与()f x 的图象的两个交点(点M 在点N 左侧),且3MN π=,求t 的值.25.已知向量n 与向量m 的夹角为3π,且1n =,3m =,()0n n m λ⋅-=.(1)求λ的值(2)记向量n 与向量3n m -的夹角为θ,求cos 2θ. 26.已知a =(1,2)b =(-3,2),当k 为何值时. (1)ka b +与3a b -垂直; (2)ka b +与3a b -平行.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】利用二倍角公式化简得到2sin cos ,αα=再利用同角的平方关系求解. 【详解】由题得24sin cos 12cos 1,ααα+-= 所以24sin cos 2cos ,ααα= 因为0,2πα⎛⎫∈ ⎪⎝⎭, 所以2sin cos ,αα=因为22221sin cos 1,cos cos 14αααα+=∴+=,所以24cos ,(0,),cos 52πααα=∈∴= 故选:D 【点睛】方法点睛:三角函数求值常用的方法有:三看(看角、看名、看式)三变(变角、变名、变式).2.A解析:A 【解析】依题意,利用正弦定理及二倍角公式得sin sin 1cos 2sin 2C A BC --=,即sin sin cos A C B =,又()sin sin sin cos cos sin A B C B C B C =+=+,故sin cos 0B C =,三角形中sin 0B ≠,故πcos 0,2C C ==,故三角形为直角三角形,故选A. 3.A解析:A 【分析】由222b c a +=可得cosA =2bc =可得2A =C 值. 【详解】∵222b c a +=,∴cos A 2222b c a bc +-===, 由0<A <π,可得A 6π=,∵2bc =,∴24A =∴5sin 64C sinC π⎛⎫-=⎪⎝⎭,即)1sinCcosC 122cos C +-=解得50C 6π<< ∴2C=3π或43π,即C=6π或23π 故选A 【点睛】本题考查正弦定理和余弦定理的运用,同时考查两角和差的正弦公式和内角和定理,属于中档题.4.A解析:A 【详解】由tan tan 1B C =sin sin (1cos B C B C =,进而得cos cos A C B =,由于sin cos A B C =, 所以sin cos A A =,可得4A π=,故选A.5.B解析:B 【分析】利用1a a b =-=得到2cos ,b a b =〈〉,令[]cos ,,1,1t a b t =〈〉∈-,则2b t =,利用平面向量的运算法则得到29832a b a b t -+-=+求解. 【详解】因为1a a b =-=,所以22222cos ,1a a b a a b a b b =-=-〈〉+=, 则2cos ,b a b =〈〉, 令[]cos ,,1,1t a b t =〈〉∈-, 所以2b t =, 则()23232a b a b -=-22124a a b t b =-+==()2222a b a b a a b t b +=+=++22418t t =+=+,所以29832a b a b t -+-=+利用基本不等式知:2a b a b +≤+≤,≤==此时2t =±. 则32a b a b -++的最大值为 故选:B. 【点睛】思路点睛:利用已知条件得到2cos ,b a b =〈〉,令[]cos ,,1,1t a b t =〈〉∈-,则2b t =,把问题化为了单一变量的函数问题,再利用平面向量的运算法则得到29832a b a b t -+-=+.6.D解析:D 【分析】利用向量共线定理即可得出y ,从而计算出2a b -的坐标,利用向量模的公式即可得结果. 【详解】//,220a b y ∴-⨯-=,解得4y =-,()()()221,22,44,8a b ∴-=---=,2248a b ∴-=+= D.【点睛】本题主要考查平面向量平行的性质以及向量模的坐标表示,属于中档题. 利用向量的位置关系求参数是出题的热点,主要命题方式有两个:(1)两向量平行,利用12210x y x y -=解答;(2)两向量垂直,利用12120x x y y +=解答.7.C解析:C 【分析】由题意可知,2222()2b ta a t a bt b +=+⋅+,令222()2g t a t a bt b =+⋅+,由二次函数的性质可知,当22cos62b a b t aaπ⋅=-=-时,()g t 取得最小值1,变形可得22sin16b π=,从而可求出b 【详解】解:由题意可知,2222()2b ta a t a bt b +=+⋅+,令222()2g t a t a bt b =+⋅+,因为2222224()44(cos1)06a b a b a b π∆=⋅-=-<,所以()g t 恒大于零, 所以当232cos622b b a b t aaaπ⋅=-=-=-时,()g t 取得最小值1,所以2223332122b b bg a a b b a a a ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=-+⋅-+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 化简得2114b =,所以2b =, 故选:C 【点睛】此题考查平面向量数量积的运算,涉及二次函数的最值,考查转化思想和计算能力,属于中档题8.C解析:C 【分析】不妨设(2,0),(0,2)a b ==,设(,),(,)c m n d x y ==,则由()()0c a c b -⋅-=求出点(,)a b 满足的关系(点(,)C a b 在一个圆上),而2d c -=表示点(,)D x y 在以(,)C a b 为圆心,2为半径的圆上,d 表示该圆上的点到原点的距离,由几何意义可得解. 【详解】∵2a b ==,0a b ⋅=,∴不妨设(2,0),(0,2)a OA b OB ====,如图,设(,)c OC m n ==,(,)d OD x y ==,则()()(2,)(,2)(2)(2)0c a c bm n m n m m n n -⋅-=-⋅-=-+-=,即22(1)(1)2m n -+-=,∴点(,)C m n 在以(1,1)M M 上, 又2d c -=,∴(,)D x y 在以(,)C a b 为圆心,2为半径的圆C 上, 则2d OC ≤+,当且仅当D 在OC 延长线上时等号成立, 又OC 的最大值是圆M 的直径 ∴d 最大值为2. 故选:C .【点睛】本题考查平面向量的数量积与向量的模,解题关键是引入坐标表示向量,用几何意义表示向量,求解结论.9.D解析:D 【分析】根据三者的符号可得sin cos ,sin tan αααα>>,利用作差法可得tan ,cos αα大小关系不确定,从而可得正确的选项. 【详解】由题设可得AB 上的动点P 的坐标为()cos ,sin αα且()()1122cos ,sin ,cos ,sin A B θθθθ,其中122πθαθπ<<<<,12324ππθθπ<<<<, 注意到当13,4παθ⎛⎤∈ ⎥⎝⎦,tan 1α≤-,故按如下分类讨论: 若1324ππθα<<≤,则sin 0,cos 1,tan 1ααα>>-≤-, 故sin cos tan ααα>>. 若234παθ<≤,则sin 0,cos 0,tan 0ααα><<,且220sin sin 2θα<≤< 所以222221sin sin 1sin sin 12θθαα+-≤+-<, 因为234πθπ<<,故220sin 2θ<<,故222211sin sin 12θθ-<+-<, 所以222sinsin 1θθ+-有正有负,所以2sin sin 1αα+-有正有负,而2sin sin 1tan cos cos ααααα+--=,cos 0α<,故tan cos αα-有正有负,故tan ,cos αα大小关系不确定. 故选:D. 【点睛】方法点睛:三角函数式的大小比较,可先依据终边的位置判断出它们的符号,也可以利用作差作商法来讨论,注意根据三角函数值的范围确定代数式的符号.10.D解析:D 【分析】由()()f x g x =得()()sin cos x x ωϕωϕ+=+,所以()tan 1x ωϕ+=,可求得()4k x k Z ππϕω+-=∈,再利用,相邻两个交点的横坐标之差的绝对值为2π,可得2x ππω∆==,即可得2ω=,再利用正弦函数图象的特点,可得032πϕπϕπ⎧-+≥⎪⎪⎨⎪+≤⎪⎩,即可求出ϕ的取值范围. 【详解】由()()f x g x =得()()sin cos x x ωϕωϕ+=+,所以()tan 1x ωϕ+=, 可得:()4x k k Z πωϕπ+=+∈,所以因为相邻两个交点的横坐标之差的绝对值为2x ππω∆==, 所以2ω=,所以()()sin 2f x x ϕ=+,当,64x ππ⎛⎫∈- ⎪⎝⎭时,232x ππϕϕϕ-+<+<+,要满足函数()f x 的图象恒在x 轴的上方,需满足方程032πϕπϕπ⎧-+≥⎪⎪⎨⎪+≤⎪⎩ ,解得32ππϕ≤≤, 故选:D 【点睛】本题主要考查正弦函数的图象和性质,属于中档题.11.A解析:A 【分析】先求函数的定义域,再根据函数奇偶性定义,周期函数的定义可判断②③的正误,再根据函数解析的特征可判断④的正误,最后利用换元法可求判断①的正误. 【详解】22111()sin sin sin sin sin sin f x x x x x x x ⎛⎫⎛⎫=+-=- ⎪⎪⎝⎭⎝⎭, 由sin 0x ≠可得,x k k Z π≠∈,故函数的定义域为{}|,x x k k Z π≠∈, 所以函数的定义域关于原点对称.又()()()222211()sin sin sin sin f x x x f x x x-=--=-=-,故()f x 为偶函数, 故②正确.又()()()221()sin sin f x x f x x πππ+=+-=+, 故()f x 是周期函数且周期为π,故③正确.又()()()221()sin sin f x x f x x πππ-=--=-,故()f x 的图象关于直线2x π=对称,故④正确.令2sin t x =,则(]0,1t ∈且()1f x t t=-,因为1y t t=-为(]0,1上的增函数,故()max 0f x =,故①正确. 故选:A. 【点睛】思路点睛:对于复杂函数的性质的研究,注意先研究函数的定义域,再研究函数的奇偶性或周期性,最后再研究函数的单调性,讨论函数图象的对称性,注意根据()()f a x f x -=来讨论. 12.D解析:D 【分析】结合图象,依次求得,,A ωϕ的值. 【详解】 由图象可知2A =,2,,22362T T πππππωω⎛⎫=--==== ⎪⎝⎭,所以()()2sin 2f x x ϕ=+,依题意0ϕπ≤≤,则2333πππϕ-≤-≤, 2sin 0,0,6333f ππππϕϕϕ⎛⎫⎛⎫-=-+=-+== ⎪ ⎪⎝⎭⎝⎭,所以2n 2)3(si f x x π⎛⎫=+ ⎪⎝⎭.【点睛】方法点睛:根据三角函数()()sin f x A x b ωϕ=++或的部分图象求函数解析式的方法: (1)求A 、()()max min:2f x f x b A -=,()()max min2f x f x b +=;(2)求出函数的最小正周期T ,进而得出2Tπω=; (3)取特殊点代入函数可求得ϕ的值.二、填空题13.【分析】由题意利用任意角的三角函数的定义两角和差的三角公式求得再利用正弦函数的定义域和值域求出的取值范围【详解】由已知得∴∵∴∴∴的取值范围为故答案为:【点睛】本题主要考查任意角的三角函数的定义两角解析:1,12⎛⎤⎥⎝⎦【分析】由题意利用任意角的三角函数的定义,两角和差的三角公式,求得21sin 6x x πα⎛⎫- ⎪⎝-⎭=再利用正弦函数的定义域和值域,求出21x x -的取值范围. 【详解】 由已知得1233x cos x cos cos ππβααβα⎛⎫=-===- ⎪⎝⎭,,,∴2113226x x cos cos cos cos cos sin sin ππβαααααα⎛⎫⎛⎫-=-=--=-+=- ⎪ ⎪⎝⎭⎝⎭, ∵2παπ<<,∴5366πππα<-<,∴1162sin πα⎛⎫⎛⎤-∈ ⎪ ⎥⎝⎭⎝⎦,, ∴21x x -的取值范围为112⎛⎤⎥⎝⎦,, 故答案为:112⎛⎤ ⎥⎝⎦,. 【点睛】本题主要考查任意角的三角函数的定义,两角和差的三角公式,正弦函数的定义域和值域,属于中档题.14.4【分析】采用二倍角公式和诱导公式转化为关于的二次函数再结合二次函数图像求解即可【详解】令则原函数等价于对称轴为画出大致图像如图:显然在时取到最大值所以函数最大值为4故答案为:4【点睛】本题考查诱导【分析】采用二倍角公式和诱导公式转化为关于cos x 的二次函数,再结合二次函数图像求解即可 【详解】22()3sin cos 23cos 2cos 12cos 3cos 12f x x x x x x x π⎛⎫=++=+-=+- ⎪⎝⎭,令cos t x =[]11t ,∈-,则原函数等价于()2231f t t t =+-,对称轴为34t =-,画出大致图像,如图:显然在1t =时取到最大值,()max 4f t =,所以函数()3sin cos22f x x x π⎛⎫=++ ⎪⎝⎭最大值为4故答案为:4 【点睛】本题考查诱导公式,二倍角公式的应用,二次函数型三角函数最值的求解,属于中档题15.(2+∞)【分析】由已知结合二倍角公式及诱导公式可求然后结合正弦定理及同角基本关系可求【详解】∵21﹣cos2C ∴1﹣2cos2C ∴cos (A+B )=2cos2C ﹣1即﹣cosC =2cos2C ﹣1整解析:(2,+∞) 【分析】由已知结合二倍角公式及诱导公式可求C ,然后结合正弦定理及同角基本关系可求. 【详解】 ∵222A Bsin+=1﹣cos 2C , ∴1﹣222A Bsin+=cos 2C , ∴cos (A +B )=2cos 2C ﹣1, 即﹣cosC =2cos 2C ﹣1,整理可得,(2cosC ﹣1)(cosC +1)=0, ∵cosC ≠﹣1,∴cosC 12=, 0C π<< ∴C 13π=,∵cos (B +C )>0, ∴11032B ππ+<<, ∴06B π<<,由正弦定理可得13sin B a sinA b sinB sinB π+==(),=,12=+∵06B π<<,∴0tanB <∴1tanB122tanB +>2, 故ab的范围(2,+∞). 故答案为:(2,)+∞ 【点睛】本题考查三角形的正弦定理和内角和定理的运用,考查运算能力,属于中档题.16.【分析】建立如图所示的坐标系则设则所以从而结合可得对任意恒成立则必然成立可得而从而可求得结果【详解】解:以线段的中点为原点以所在的直线为轴以其中垂线为轴建立直角坐标系则设则所以因为所以化简得由于上述 解析:9-【分析】建立如图所示的坐标系,则(5,0),(5,0)A B -,设(,)P x y ,则(5,),(10,0)AP x y AB =+=,所以2(21010,2)AP AB x y λλ-=+-,从而2(21010,2)AP AB x y λλ-=+-,结合28AP AB λ-≥,可得222100(20040)4404360x x x y λλ-+++++≥,对任意R λ∈恒成立,则0∆≤必然成立,可得4y ≥,而2225PA PB x y ⋅=+-216259x ≥+-≥-,从而可求得结果 【详解】解:以线段AB 的中点为原点,以AB 所在的直线为x 轴,以其中垂线为y 轴,建立直角坐标系,则(5,0),(5,0)A B -,设(,)P x y ,则(5,),(10,0)AP x y AB =+=, 所以2(21010,2)AP AB x y λλ-=+-,因为28AP AB λ-≥,所以22(21010)464x y λ+-+≥, 化简得222100(20040)4404360x x x y λλ-+++++≥, 由于上述不等式对任意R λ∈恒成立,则0∆≤必然成立,222(20040)4100(440436)0x x x y ∆=+-⨯⨯+++≤,解得4y ≥,所以4y ≥或4y ≤-, 因为(5,),(5,)PA x y PB x y =---=--, 所以2225PA PB x y ⋅=+-, 因为x ∈R ,216y ≥,所以2222516259x y x +-≥+-≥-, 即9PA PB ⋅≥-,所以PA PB ⋅的最小值为9-, 故答案为:9-【点睛】此题考查向量的数量积运算,考查数形结合思想,考查计算能力,属于中档题17.【详解】方法一:①又②③将②③代入①得:所以点在内所以方法二:以直线OAOB 分别为轴建立直角坐标系则设又得即解得故答案为:3解析:【详解】 方法一:3cos OA OC AOCOA OC⋅∠==⋅, ① 又()2OA OC OA mOA nOB m OA m ⋅=⋅+==, ②22222222||()||||23OC mOA nOB m OA n OB mnOA OB m n =+=++⋅=+, ③ 将②③代入①得:2233m n=+,所以229m n =,点C 在AOB ∠内, 所以3mn=. 方法二:以直线OA ,OB 分别为,x y 轴建立直角坐标系,则()(10,03A B ,, , 设()31cos30,sin 30=,2OC λλ⎫=︒︒⎪⎪⎝⎭,又()(()1,033OC mOA nOB m n m n =+=+=,得()31,=32m n λ⎫⎪⎪⎝⎭,即 3=132m nλ⎧⎪⎪⎨⎪=⎪⎩, 解得3mn=. 故答案为:3.18.【分析】求出函数图象的对称轴的一般形式再根据其所在的范围可求的取值范围【详解】令则其中由题设可得:存在整数使得由可得结合可得故即故答案为:【点睛】方法点睛:对于含参数的余弦型函数(正弦型函数)如果知解析:47(,33]【分析】求出函数图象的对称轴的一般形式,再根据其所在的范围可求ω的取值范围. 【详解】 令3x k πωπ-=,则3k x πωπ+=,其中k Z ∈.由题设可得:存在整数k Z ∈,使得471033330k k k k πππππππππωωωω++++≤<<<≤,由4330k k ππππωω++≤<可得4133k -<≤-,结合k Z ∈可得1k =-, 故71033πππππωω-+-+<≤即4733ω<≤. 故答案为:47(,33]. 【点睛】方法点睛:对于含参数的余弦型函数(正弦型函数),如果知道它在给定范围上的单调性或对称轴的条数、零点的个数等,一般是求出性质的一般形式,再把存在性问题转化为不等式的整数解问题,确定出整数的取值后可求参数的取值范围.19.【分析】观察图象可求得进而可得然后求出的值可得;而后由可求得的值得出最后代值计算即可得解【详解】由图象可知∴∴∴又∴()∴()∵∴∴则故答案为:【点睛】本题重点考查了正弦型三角函数的图象和性质考查逻【分析】观察图象可求得2A =,311341264T πππ=-=,进而可得T π=,然后求出ω的值,可得()()22f x sin x ϕ=+;而后由26f π⎛⎫= ⎪⎝⎭,可求得ϕ的值,得出()2sin 26f x x π⎛⎫=+ ⎪⎝⎭,最后代值计算即可得解. 【详解】由图象可知2A =,311341264T πππ=-=,∴T π=, ∴22πωπ==,∴()()22f x sin x ϕ=+,又26f π⎛⎫=⎪⎝⎭,∴2262k ππϕπ⨯+=+(k Z ∈), ∴26k πϕπ=+(k Z ∈),∵0ϕπ<<,∴6π=ϕ, ∴()2sin 26f x x π⎛⎫=+ ⎪⎝⎭, 则222cos 34466f sin ππππ⎛⎫⎛⎫=⨯+==⎪ ⎪⎝⎭⎝⎭. 故答案为:3. 【点睛】本题重点考查了正弦型三角函数的图象和性质,考查逻辑思维能力和计算能力,属于常考题.20.5或【分析】利用重心的性质把AG 用AMAN 表示再由MGN 三点共线得关于的方程再由三角形面积比得关于的另一方程联立即可求得实数入的值【详解】如图设因为G 为的重心所以因为三点共线所以即①②由①②解得或故解析:5或54【分析】利用重心的性质,把AG 用AM 、AN 表示,再由M ,G ,N 三点共线得关于,u λ的方程,再由三角形面积比得关于,u λ的另一方程,联立即可求得实数入的值. 【详解】 如图,设AN AC μ→→=, 因为G 为ABC 的重心, 所以11111(1)3333AG AB AC AM AN λμ=+=++, 因为,,M G N 三点共线, 所以111(1)133λμ++=,即112uλ+=①,5425ABC AMN S S ∆∆=, 1sin 542125sin 2AB AC AAM AN A ⋅⋅∴=⋅⋅, 1154(1)25u λ∴+⋅=②,由①②解得,559u λ=⎧⎪⎨=⎪⎩或 5456u λ⎧=⎪⎪⎨⎪=⎪⎩, 故答案为:5或54【点睛】关键点点睛:根据重心及三点共线可求出λ和u 的关系,再根据三角形的面积比得出λ和u 的另一关系,联立方程求解是关键,属于中档题. 三、解答题21.(1)1,3a b ==;(2)递增区间为7[2,2]()66k k k Z ππππ++∈,对称中心为,13k ππ⎛⎫-+ ⎪⎝⎭()k Z ∈. 【分析】(1)选择条件①,利用两角和与差的公式,二倍角公式和辅助角公式整理函数()f x ,利用最值即求得参数,a b ;选择条件②,妙用“1”代入,使用基本不等式,计算取等号条件,即求得参数,a b ;根据分式函数对称中心和已知条件对照,即求得参数,a b ; (2)先利用参数,a b 得()sin()13g x x π=-++,再利用整体代入法求函数单调增区间和对称中心即可. 【详解】解:(1)选择条件①,()2sin()sin()263f x x x ππ=+-+,故111()=2cos sin 2sin 222222f x x x x x x x ⎫⎛⎫⎛⎫+-+=-+⎪⎪ ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭()sin(2)23f x x π∴=-++,当sin(2)13x π+=-时,max ()3f x =; 当sin(2)13x π+=时,min ()1f x =. 故1,3a b ==;选择条件②,0,0a b >>,4a b +=,则19119191()()(19)(104444b a a b a b a b a b +=++=+++≥+=,当且仅当9b a a b=时,等号成立,即3b a =代入4a b +=,得1,3a b ==; 选择条件③,函数3()f x b x a=+-的定义域{}x x a ≠,值域为{}y y b ≠,即该分式函数对称中心为(),a b ,又(1)(1)6f x f x -++=得()f x 对称中心为()13,, 故1,3a b ==;(2)由(1)知1,3a b ==, 得()sin()13g x x π=-++,要使()g x 递增,只需sin()3x π+递减, 故令322,232k x k k Z πππππ+≤+≤+∈, 解得722,66k x k k Z ππππ+≤≤+∈, 所以()g x 递增区间为72,2()66k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦, 令3x k ππ+=,解得:3x k ππ=-+,k Z ∈,所以()g x 的对称中心为,13k ππ⎛⎫-+ ⎪⎝⎭()k Z ∈. 【点睛】方法点睛: 求三角函数性质问题时,通常先利用两角和与差的三角函数公式、二倍角公式及辅助角公式将函数化简成基本形式()()sin f x A x b ωϕ=++,再利用整体代入法求解单调性、对称性等性质.22.(1)2-;(2)详见解析.【分析】(1)首先变形sin 20tan 20cos 20=,再通分变形,利用辅助角公式化简求值;(2)利用诱导公式化简正切,即sin tan cos x x x =,代入后化简证明.【详解】(1)原式sin 20cos 203cos 20sin 40⎛⎫=-⋅ ⎪⎝⎭sin 203cos 20cos 2020sin 40⎫-=⋅⎪⎪⎝⎭ ()2sin 2060cos 20cos 20sin 40-=⋅ 2sin 40cos 20cos 20sin 40-=⋅ 2=- ;(2)原式sin 11tan cos sin 1tan 1cos xx x xx x --==++ ()()()2cos sin cos sin cos sin cos sin cos sin x x x x x x x x x x --==++- ()222222cos sin sin 21sin 2cos sin 1sin sin x x x x x x x x +--==---21sin 212sin x x -=- 【点睛】思路点睛:三角函数化简求值或证明,如果有正切,正弦和余弦时,第一步先正切化为正弦和余弦公式,第一题通分后利用辅助角公式化简;第二题,也可以左右都化简,证明等于同一个式子.23.(1)()cos(2)6f x x π=+;(2)见解析. 【分析】(1)根据图象求出周期,再根据最低点可求ϕ,从而得到函数解析式.(2)求出()g x 的解析式,故方程可化为cos 206m x π⎛⎫---= ⎪⎝⎭,可通过直线y m =-与cos 26y x π⎛⎫=- ⎪⎝⎭ 的图象的交点的个数解决方程的解的个数. 【详解】(1)由函数的图象可得()f x 的周期为2236πππ⎛⎫⨯-= ⎪⎝⎭,故22πωπ==,又26312fππ⎛⎫+⎪=- ⎪⎪⎝⎭,故5cos2+112πϕ⎛⎫⨯=-⎪⎝⎭,所以526kπϕππ+=+即2,6k k Zπϕπ=+∈,因为02πϕ<<,故6π=ϕ,所以()cos(2)6f x xπ=+.(2)()cos(2)cos266g x x xππ=-+=,故()3()cos(2)3cos26f xg x m x x mπ-⋅-=+--cos2cos sin2sin3cos2cos2666x x x m m xπππ⎛⎫=---=---⎪⎝⎭故方程在区间,2ππ⎡⎤-⎢⎥⎣⎦上的实数解的个数即为y m=-与cos26y xπ⎛⎫=-⎪⎝⎭图象交点的个数,cos26y xπ⎛⎫=-⎪⎝⎭在,2ππ⎡⎤-⎢⎥⎣⎦上的图象如图所示,由图象可得:当1m-=-或312m<-<即1m=或312m-<<-2个不同的解;当31m-<-≤31m≤<时,方程有4个不同的解;当33m<-≤即33m≤<时,方程有3个不同的解;【点睛】方法点睛:(1)平移变换有“左加右减”(水平方向的平移),注意是对自变量x做加减.(2)与余弦型函数有关的方程的解的个数的讨论,一般可转化为动直线与确定函数的图象的交点个数来讨论.24.(1)()sin 26f x x π⎛⎫=+⎪⎝⎭;(2)12±. 【分析】(1)由周期求出ω,取点,16π⎛⎫ ⎪⎝⎭求出ϕ,进而得出()f x 的解析式; (2)设()0,M x t ,0,3N x t π⎛⎫+ ⎪⎝⎭,解方程005sin 2sin 266x x ππ⎛⎫⎛⎫+=+ ⎪ ⎪⎝⎭⎝⎭,得出0()2k x k π=∈Z ,再由0sin 26t x π⎛⎫=+ ⎪⎝⎭求出t 的值. 【详解】 解:(1)由题意易知1A =,周期524126T πππω⎛⎫=-=⎪⎝⎭,所以2ω=,所以()sin(2)f x x ϕ=+. 将最高点,16π⎛⎫⎪⎝⎭代入()sin(2)f x x ϕ=+中可得1sin 3πϕ⎛⎫=+ ⎪⎝⎭ 得2()32k k ππϕπ+=+∈Z ,即2()6k k πϕπ=+∈Z . 又因为02πϕ<<,所以6π=ϕ,所以()sin 26f x x π⎛⎫=+ ⎪⎝⎭. (2)设()0,M x t ,0,3N x t π⎛⎫+ ⎪⎝⎭,则005sin 2sin 266x x ππ⎛⎫⎛⎫+=+ ⎪ ⎪⎝⎭⎝⎭所以001sin 2cos 22x x +⋅001sin 2cos 22x x ⎛=⋅+⋅ ⎝⎭所以0sin 20x =,所以02()x k k π=∈Z ,即0()2k x k π=∈Z 所以1sin 62t k ππ⎛⎫=+=± ⎪⎝⎭. 【点睛】方法点睛:由图象求函数()sin y A x ωϕ=+的解析式时,有如下步骤:1、由最值得出A 的值;2、由周期结合2T πω=得出ω; 3、取点求出ϕ.25.(1)23λ=;(2)12-. 【分析】(1)先建立方程131cos03πλ-⨯⨯⨯=,再求解出23λ=即可. (2)先求出()332n n m ⋅-=,再求出33n m -=,接着求出1cos 2θ=,最后求cos 2θ. 【详解】 解:(1)由()2131cos 03n n m n m n πλλλ⋅-=-⋅=-⨯⨯⨯=,所以23λ=. (2)因为()2133333122n n m n m n ⋅-=-⋅=-⨯⨯= ()2223396963n m n m n m n m -=-=-⋅+=- 所以()3312cos 3132n n m n n m θ⋅-===⋅-⨯所以2211cos 22cos 12122θθ⎛⎫=-=⨯-=- ⎪⎝⎭. 【点睛】本题考查利用平面向量的数量积求参数、平面向量的夹角公式、差向量的模的求法、二倍角的余弦公式,是中档题. 26.(1)19; (2)13-. 【分析】(1)由题意,求得(3,22),3(10,4)ka b k k a b +=-+-=-,根据因为ka b +与3a b -垂直,列出方程,即可求解;(2)根据ka b +与3a b -平行,列出方程,即可求解.【详解】(1)由题意,向量(1,2),(3,2)a b ==-,则(3,22),3(10,4)ka b k k a b +=-+-=-,因为ka b +与3a b -垂直,所以()(3)10(3)4(22)0ka b a b k k +⋅-=--+=,即2380k -=,解得19k =.(2)若ka b +与3a b -平行,则满足4(3)10(22)0k k ---+=,即2480k -+=,解得13k =-.【点睛】本题主要考查了向量的坐标运算,以向量垂直和平行的判定及应用,其中解答中熟练应用向量的坐标运算公式,根据向量垂直和平行,列出方程求解是解答的关键,着重考查了推理与运算能力.。

人教版高中数学必修四高一下学期期末考试数学

人教版高中数学必修四高一下学期期末考试数学

高中数学必修四高一下学期期末考试数学一、选择题:共12题1.不等式的解集为A. B.C. D.【答案】C【解析】本题考查一元二次不等式的解法.,即,解得.即不等式的解集为.选C.2.数列,,,,,,,则是这个数列的A.第10项B.第11项C.第12项D.第21项【答案】B【解析】本题考查数列的通项.由题意得,令,解得.选B.3.在数列中,,,则的值为A.52B.51C.50D.49【答案】A【解析】本题考查等差数列的性质.由得,所以为等差数列,所以==,所以.选A.4.=A. B. C. D.【答案】A【解析】本题考查同角三角函数的诱导公式及两角和的正弦公式.=== =.选A.【备注】.5.已知角的终边经过点,则的值等于A. B. C. D.【答案】D【解析】本题考查三角函数的定义.由题意得所以=,=,所以=.选D.6.若数列是等差数列,且,则A. B. C. D.【答案】B【解析】本题考查等差数列的性质,诱导公式.因为是等差数列,所以=,又所以,,所以===.选B.【备注】若,等差数列中.7.设,若是与的等比中项,则的最小值为A.8B.4C.1D.【答案】B【解析】本题考查等比数列性质,基本不等式.因为是与的等比中项,所以,即.所以===4(当且仅当时等号成立),即的最小值为4.选B.【备注】若,等比数列中.8.已知是等比数列,,则=A.16()B.16()C.)D.) 【答案】C【解析】本题考查等比数列的通项与求和.由题意得的公比=,所以=,所以,令,则是以8为首项,为公比的等比数列,所以的前n项和=).选C.【备注】等比数列中,.9.在△中,已知,,若点在斜边上,,则的值为A.48B.24C.12D.6【答案】B【解析】本题考查平面向量的线性运算和数量积.因为,,所以==,所以==+0=24.选B.【备注】.10.函数,,的部分图象如图所示,则A. B.C. D.【答案】D【解析】本题考查三角函数的性质和图象,解析式的求解.由图可得,,,即,即,所以,又过点,所以=2,由可得=.所以.选D.【备注】知图求式.11.已知向量,,且∥,则= A. B. C. D.【答案】C【解析】本题考查向量的坐标运算与线性运算,二倍角公式.因为∥,所以,即,即=-3,所以===== .选C.【备注】二倍角公式:,.12.设函数,若存在使得取得最值,且满足,则m的取值范围是A. B.C. D.【答案】C【解析】本题考查三角函数的性质与最值,一元二次不等式.由题意得,且=,解得,(),所以转化为,而,所以,即,解得或.选C.二、填空题:共6题13.不等式的解集是 .【答案】【解析】本题考查分式不等式,一元二次不等式.由题意得且,所以或.所以不等式的解集是.【备注】一元高次不等式的解法:穿针引线法.14.已知,,则的值为_______.【答案】3【解析】本题考查两角和与差的正切角公式.由题意得=== 3.【备注】=是解题的关键.15.已知向量a=,b=, 若m a+n b=(),则的值为______.【答案】-3【解析】本题考查平面向量的坐标运算.由题意得===,即,解得,,所以.16.江岸边有一炮台高30m,江中有两条船,船与炮台底部在同一水面上,由炮台顶部测得两船的俯角分别为45°和60°,而且两条船与炮台底部连线成30°角,则两条船相距 m.【答案】【解析】本题考查解三角形的应用.画出图形,为炮台,为两船的位置;由题意得m,,,;在△中,=m.在Rt△中,,所以m;在△中,由余弦定理得=300.即,两条船相距m.【备注】余弦定理:.17.若将函数f(x)=sin(2x+)的图象向右平移φ个单位,所得图象关于y轴对称,则φ的最小正值是.【答案】【解析】本题主要考查三角函数图象平移、函数奇偶性及三角运算.解法一f(x)=sin(2x+)的图象向右平移φ个单位得函数y=sin(2x+-2φ)的图象,由函数y=sin(2x+-2φ)的图象关于y轴对称可知sin(-2φ)=±1,即sin(2φ-)=±1,故2φ-=kπ+,k∈Z,即φ=+,k∈Z,又φ>0,所以φ=.min解法二由f(x)=sin(2x+)=cos(2x-)的图象向右平移φ个单位所得图象关于y轴对称可知2φ+=kπ,k∈Z,故φ=-,又φ>0,故φmin=.【备注】解题关键:解决三角函数的性质问题,一般化为标准型后结合三角函数的图象求解,注意正余弦函数的对称轴过曲线的最低点或最高点是解题的关键所在.18.已知分别为△的三个内角的对边,,且,则△面积的最大值为 .【答案】【解析】本题考查正、余弦定理,三角形的面积公式.由正弦定理得=,又所以,即,所以=,所以.而,所以;所以≤=(当且仅当时等号成立).即△面积的最大值为.【备注】余弦定理:.三、解答题:共5题19.在△中,已知,,.(1)求的长;(2)求的值.【答案】(1)由余弦定理知,==,所以.(2)由正弦定理知,所以,因为,所以为锐角,则,因此【解析】本题考查二倍角公式,正、余弦定理.(1)由余弦定理知.(2)由正弦定理知,,因此.20.设是公比为正数的等比数列,,.(1)求的通项公式;(2)设是首项为1,公差为2的等差数列,求数列的前n项和. 【答案】(1)设q为等比数列{a n}的公比,则由a1=2,a3=a2+4得2q2=2q+4,即q2-q-2=0,解得q=2或q=-1(舍去),因此q=2.所以{a n}的通项为a n=2·2n-1=2n(n∈N*)(2)S n=+n×1+×2=2n+1+n2-2.【解析】本题考查等差、等比数列的通项与求和.(1)求得q=2,所以a n=2n(n ∈N*);(2)分组求和得S n=2n+1+n2-2.21.已知向量,,函数,且的图象过点.(1)求的值;(2)将的图象向左平移个单位后得到函数的图象,若图象上各最高点到点的距离的最小值为,求的单调递增区间.【答案】(1)已知,过点,解得(2)由(1)知,左移个单位后得到,设的图象上符合题意的最高点为,,解得,,解得,,由得,的单调增区间为【解析】本题考查平面向量的数量积,三角函数的图像与性质,三角恒等变换.(1)由向量的数量积求得,过点,解得;(2),求得,,其单调增区间为.22.某种汽车的购车费用是10万元,每年使用的保险费、养路费、汽油费约为0.9万元,年维修费用第一年是0.2万元,第二年是0.4万元,第三年是0.6万元,……,以后逐年递增0.2万元. 汽车的购车费用、每年使用的保险费、养路费、汽油费、维修费用的总和平均摊到每一年的费用叫做年平均费用.设这种汽车使用x(x∈N*)年的维修总费用为g(x),年平均费用为f(x).(1)求出函数g(x),f(x)的解析式;(2)这种汽车使用多少年时,它的年平均费用最小?最小值是多少?【答案】(1)由题意,知使用x年的维修总费用为g(x)==0.1x+0.1x2,依题意,得f(x)=[10+0.9x+(0.1x+0.1x2)]=(10+x+0.1x2).(2)f(x)=++1≥2+1=3,当且仅当,即x=10时取等号.所以x=10时,y取得最小值3.所以这种汽车使用10年时,它的年平均费用最小,最小值是3万元.【解析】无23.把正奇数数列中的数按上小下大、左小右大的原则排成如下三角形数表:设是位于这个三角形数表中从上往下数第行、从左往右数第个数.(1)若,求,的值;(2)已知函数,若记三角形数表中从上往下数第行各数的和为,求数列的前项和.【答案】(1)三角形数表中前m行共有个数,所以第m行最后一个数应当是所给奇数列中的第项.故第m行最后一个数是.因此,使得的m是不等式的最小正整数解.由得,, 于是,第45行第一个数是,(2)第n行最后一个数是,且有n个数,若将看成第n行第一个数,则第n行各数成公差为的等差数列,故..故.因为,两式相减得..【解析】本题考查数列的概念,数列的通项与求和.(1)找规律得第m行最后一个数是.可得,求出第45行第一个数是,(2)..错位相减可得.。

高一数北师大必修4 章末检测卷(二) Word含答案

高一数北师大必修4 章末检测卷(二) Word含答案

章末检测卷(二)(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分) 1.与向量a =(1,3)的夹角为30°的单位向量是( ) A .(12,32)或(1,3)B .(32,12) C .(0,1) D .(0,1)或(32,12) ★答案★ D2.设向量a =(1,0),b =(12,12),则下列结论中正确的是( )A .|a |=|b |B .a ·b =22C .a -b 与b 垂直D .a ∥b★答案★ C3.已知三个力f 1=(-2,-1),f 2=(-3,2),f 3=(4,-3)同时作用于某物体上一点,为使物体保持平衡,现加上一个力f 4,则f 4等于( ) A .(-1,-2) B .(1,-2) C .(-1,2) D .(1,2) ★答案★ D解析 根据力的平衡原理有 f 1+f 2+f 3+f 4=0,∴f 4=-(f 1+f 2+f 3)=(1,2).4.已知|a |=5,|b |=3,且a ·b =-12,则向量a 在向量b 上的射影等于( ) A .-4 B .4 C .-125D.125 ★答案★ A解析 向量a 在向量b 上的射影为|a |cos 〈a ,b 〉=|a |·a ·b |a ||b |=a ·b |b |=-123=-4.5.若向量a =(1,1),b =(1,-1),c =(-1,2),则c 等于( ) A .-12a +32bB.12a -32bC.32a -12b D .-32a +12b★答案★ B解析 令c =λa +μb ,则⎩⎪⎨⎪⎧λ+μ=-1,λ-μ=2,∴⎩⎨⎧λ=12,μ=-32,∴c =12a -32b .6.已知D ,E ,F 分别是△ABC 的边BC ,CA ,AB 的中点,且BC →=a ,CA →=b ,AB →=c ,则①AD →=-b -12a ;②BE →=a +12b ;③CF →=-12a +12b ;④AD →+BE →+CF →=0.其中正确的等式的个数为( ) A .1 B .2 C .3 D .4★答案★ D解析 ①如图可知AD →=AC →+CD →=AC →+12CB →=-CA →-12BC →=-b -12a ,故①正确.②BE →=BC →+CE →=BC →+12CA →=a +12b ,故②正确.③CF →=CA →+AF →=CA →+12AB →=b +12(-a -b )=-12a +12b ,故③正确.④AD →+BE →+CF →=-DA →+BE →+CF → =-(DC →+CA →)+BE →+CF →=-(12a +b )+a +12b -12a +12b =0,故④正确.7.设点A (1,2)、B (3,5),将向量AB →按向量a =(-1,-1)平移后得到A ′B ′→为( ) A .(1,2) B .(2,3) C .(3,4) D .(4,7)★答案★ B解析 ∵AB →=(3,5)-(1,2)=(2,3),平移向量AB →后得A ′B ′→,A ′B ′→=AB →=(2,3). 8.若a =(λ,2),b =(-3,5),且a 与b 的夹角是钝角,则λ的取值范围是( ) A.⎝⎛⎭⎫103,+∞B.⎣⎡⎭⎫103,+∞C.⎝⎛⎭⎫-∞,103 D.⎝⎛⎦⎤-∞,103 ★答案★ A解析 a·b =-3λ+10<0,∴λ>103.当a 与b 共线时,λ-3=25,∴λ=-65.此时,a 与b 同向,∴λ>103.9.在菱形ABCD 中,若AC =2,则CA →·AB →等于( ) A .2 B .-2C .|AB →|cos A D .与菱形的边长有关★答案★ B解析 如图,设对角线AC 与BD 交于点O ,∴AB →=AO →+OB →. CA →·AB →=CA →·(AO →+OB →) =-2+0=-2.10.设0≤θ<2π,已知两个向量OP 1→=(cos θ,sin θ),OP 2→=(2+sin θ,2-cos θ),则向量P 1P 2→长度的最大值是( )A. 2B. 3 C .3 2 D .2 3 ★答案★ C解析 ∵P 1P 2→=OP 2→-OP 1→=(2+sin θ-cos θ,2-cos θ-sin θ),∴|P 1P 2→|=(2+sin θ-cos θ)2+(2-cos θ-sin θ)2=10-8cos θ≤3 2.11.已知点O 为△ABC 外接圆的圆心,且OA →+OB →+OC →=0,则△ABC 的内角A 等于( ) A .30° B .60° C .90° D .120° ★答案★ B解析 由OA →+OB →+OC →=0,知点O 为△ABC 的重心, 又O 为△ABC 外接圆的圆心, ∴△ABC 为等边三角形,A =60°.12.在四边形ABCD 中,AC →=(1,2),BD →=(-4,2),则该四边形的面积为( ) A. 5 B .2 5 C .5 D .10 ★答案★ C解析 ∵AC →·BD →=-4+4=0, ∴AC →⊥BD →.∴四边形ABCD 的面积S =12|AC →||BD →|=12×5×25=5. 二、填空题(本大题共4小题,每小题5分,共20分)13.已知正方形ABCD 的边长为1,AB →=a ,BC →=b ,AC →=c ,则a +b +c 的模等于________. ★答案★ 2 2解析 |a +b +c |=|AB →+BC →+AC →|=|2AC →| =2|AC →|=2 2.14.已知向量a =(2,-1),b =(-1,m ),c =(-1,2),若(a +b )∥c ,则m =________. ★答案★ -1解析 ∵a =(2,-1),b =(-1,m ), ∴a +b =(1,m -1).∵(a +b )∥c ,c =(-1,2),∴2-(-1)·(m -1)=0. ∴m =-1.15.已知非零向量a ,b ,若|a |=|b |=1,且a ⊥b ,又知(2a +3b )⊥(k a -4b ),则实数k 的值为________. ★答案★ 6解析 由(2a +3b )·(k a -4b )=2k a 2-12b 2 =2k -12=0,∴k =6.16.如图所示,半圆的直径AB =2,O 为圆心,C 是半圆上不同于A ,B 的任意一点,若P 为半径OC 上的动点,则(P A →+PB →)·PC →的最小值是________. ★答案★ -12解析 因为点O 是A ,B 的中点,所以P A →+PB →=2PO →, 设|PC →|=x ,则|PO →|=1-x (0≤x ≤1). 所以(P A →+PB →)·PC →=2PO →·PC →=-2x (1-x ) =2(x -12)2-12.∴当x =12时,(P A →+PB →)·PC →取到最小值-12.三、解答题(本大题共5小题,共70分)17.已知O ,A ,B 是平面上不共线的三点,直线AB 上有一点C ,满足2AC →+CB →=0, (1)用OA →,OB →表示OC →;(2)若点D 是OB 的中点,证明四边形OCAD 是梯形. 解 (1)∵2AC →+CB →=0, ∴2(OC →-OA →)+(OB →-OC →)=0, 2OC →-2OA →+OB →-OC →=0, ∴OC →=2OA →-OB →. (2)如图,DA →=DO →+OA →=-12OB →+OA →=12(2OA →-OB →).故DA →=12OC →.故四边形OCAD 为梯形.18.已知a ,b ,c 在同一平面内,且a =(1,2). (1)若|c |=25,且c ∥a ,求c ; (2)若|b |=52,且(a +2b )⊥(2a -b ),求a 与b 的夹角θ. 解 (1)∵c ∥a ,∴设c =λa ,则c =(λ,2λ). 又|c |=25,∴λ=±2,∴c =(2,4)或(-2,-4). (2)∵()a +2b ⊥(2a -b ),∴(a +2b )·(2a -b )=0. ∵|a |=5,|b |=52,∴a·b =-52. ∴cos θ=a·b|a||b |=-1,∴θ=180°.19.已知a =(cos α,sin α),b =(cos β,sin β),0<α<β<π. (1)求|a |的值;(2)求证:a +b 与a -b 互相垂直. (1)解 ∵a =(cos α,sin α), ∴|a |=cos 2α+sin 2α=1.(2)证明 ∵(a +b )·(a -b )=a 2-b 2=|a |2-|b |2=1-1=0,∴a +b 与a -b 互相垂直. 20.在△ABC 中,AB →·AC →=0,|AB →|=12,|BC →|=15,l 为线段BC 的垂直平分线,l 与BC 交于点D ,E 为l 上异于D 的任意一点. (1)求AD →·CB →的值;(2)判断AE →·CB →的值是否为一个常数,并说明理由. 解 (1)∵AB →·AC →=0,∴AB ⊥AC . 又|AB →|=12,|BC →|=15,∴|AC →|=9.由已知可得AD →=12(AB →+AC →),CB →=AB →-AC →,∴AD →·CB →=12(AB →+AC →)·(AB →-AC →)=12(AB →2-AC →2)=12(144-81)=632. (2)AE →·CB →的值为一个常数.理由:∵l 为线段BC 的垂直平分线,l 与BC 交于点D ,E 为l 上异于D 的任意一点,∴DE →·CB →=0.故AE →·CB →=(AD →+DE →)·CB → =AD →·CB →+DE →·CB → =AD →·CB →=632.21.已知正方形ABCD ,E 、F 分别是CD 、AD 的中点,BE 、CF 交于点P .求证: (1)BE ⊥CF ;(2)AP =AB . 证明如图建立直角坐标系xOy ,其中A 为原点,不妨设AB =2, 则A (0,0),B (2,0),C (2,2),E (1,2),F (0,1).(1)BE →=OE →-OB →=(1,2)-(2,0)=(-1,2), CF →=OF →-OC →=(0,1)-(2,2)=(-2,-1), ∵BE →·CF →=-1×(-2)+2×(-1)=0, ∴BE →⊥CF →,即BE ⊥CF .(2)设P (x ,y ),则FP →=(x ,y -1),CF →=(-2,-1), ∵FP →∥CF →,∴-x =-2(y -1),即x =2y -2. 同理由BP →∥BE →,得y =-2x +4,代入x =2y -2. 解得x =65,∴y =85,即P ⎝⎛⎭⎫65,85. ∴AP →2=⎝⎛⎭⎫652+⎝⎛⎭⎫852=4=AB →2, ∴|AP →|=|AB →|,即AP =AB .。

人教A版必修四高一下期末考试数学模拟卷

人教A版必修四高一下期末考试数学模拟卷

2015-2016张掖二中高一下期末考试数学模拟卷一、选择题(本大题共12小题,每小题5分,共60分)1.设计下列函数求值算法程序时需要运用条件语句的函数为().A.1)(2-=x x fB.x x f 2log )(=C.⎩⎨⎧-<---≥+=)1(2)1(1)(2x x x x x x fD.x x f 3)(=2..从分别写有A ,B ,C ,D ,F ,的五张卡片中任取两张,这两张卡片上的字母顺序恰好相邻的概率为( )A .52B .51C .103D .107 3.为了解某校高三学生的视力情况,随机地抽查了该校200名高三学生的视力情况,得到频率分布直方图(如图所示),由于不慎将部分数据丢失,但知道前4组的频数成等比数列,后6组的频数成等差数列,设最多一组学生数为a ,视力在4.6到5.0之间的频率为b ,则a ,b 的值分别为()A .54,0.78B .0.27,78C .27,0.78D .54,784.阅读如图所示的程序框图,如果输出i=4,那么空白的判断框中应填入的条件是( )A .S <8B .S <9C .S <10D .S <115.甲、乙两人玩猜数字游戏,先由甲心中想一个数字,记为a ,再由乙猜甲刚才所想的数字,把乙猜的数字记为b ,其中{},1,2,3,4,5,6a b ∈,若1a b -≤,就称甲乙“心有灵犀”.现任意找两人玩这个游戏,则他们“心有灵犀”的概率为()A.19 B.29 C.718D.49 6.阅读如下程序框图,运行相应的程序,则程序运行后输出i 的结果为()A .7B .8C .9D .107.在ABC △中,AB =u u u r c ,AC =u u u r b .若点D 满足2BD DC =u u u r u u u r ,则AD =u u u r ()A .2133b c +v vB .5233c b -r rC .2133b c -r rD .1233b c +r r 8.将函数sin(2)y x ϕ=+的图象沿x 轴向左平移8π个单位后,得到一个偶函数的图象,则ϕ的一个可能取值为()(A)34π(B)4π(C)0(D)4π-9.函数)20,0,)(sin(πϕωϕω<≤>∈+=R x x y 的部分图象如图,则()A .4,2πϕπω== B .6,3πϕπω==C .4,4πϕπω==D .45,4πϕπω==10.已知点()1,1A -.()1,2B .()2,1C --.()3,4D ,则向量AB u u u r 在CD u u u r 方向上的投影为( )A 32B 315C .32D .31511.已知βα,为锐角,且cos α=101,cos β=51,则βα+的值是()A .π32B .π43C .4πD .3π12.设5sin 7a π=,2cos 7b π=,2tan 7c π=,则()A.a b c <<B.a c b <<C.b c a <<D.b a c <<二、填空题(每题5分,共20分)13.已知向量),3,1(2),3,1(-=+=b a a 设a 与b 的夹角为θ,则θ= .14.已知sin 2cos 5,tan 3sin 5cos ααααα-=-+那么的值为15.从某小区抽取100户居民进行月用电量调查,发现其用电量都在50到350度之间,频率分布直方图所示.(I)直方图中x 的值为___________;(II)在这些用户中,用电量落在区间[)100,250内的户数为_____________.16.函数π()3sin 23f x x ⎛⎫=- ⎪⎝⎭的图象为C ,如下结论中正确的是________(写出所有正确结论的编号..). ①图象C 关于直线11π12x =对称; ②图象C 关于点2π03⎛⎫ ⎪⎝⎭,对称; ③函数()f x 在区间π5π1212⎛⎫- ⎪⎝⎭,内是增函数; ④由3sin 2y x =的图角向右平移π3个单位长度可以得到图象C . 四,计算题(60分)19.某校高三(1)班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的破坏,但可见部分如下,据此解答如下问题. ⑴求全班人数及分数在[)80,90之间的频数(2)计算频率分布直方图中[)80,90间的矩形的高;⑶若要从分数在[]80,100之间的试卷中任取两份分析学生失分情况,在抽取的试卷中,求至少有一份分数在[]90,100之间的概率.。

【湘教版】高中数学必修四期末模拟试卷(含答案)(2)

【湘教版】高中数学必修四期末模拟试卷(含答案)(2)

一、选择题1.已知函数()f x 满足()cos 1cos21f x x -=-,则()f x 的解析式为( ) A .()()22420f x x x x =+-≤≤B .()()224f x x x x R =+∈C .()()2120f x x x =--≤≤D .()()21f x x x R =-∈2.已知函数()sin cos f x a x b x =+,其中,a b ∈R ,且0ab ≠,若()π4f x f ⎛⎫≤ ⎪⎝⎭对一切x ∈R 恒成立,则( ). A .ππ56f f ⎛⎫⎛⎫>⎪ ⎪⎝⎭⎝⎭B .()5π2f x f x ⎛⎫=-⎪⎝⎭C .π4f x ⎛⎫- ⎪⎝⎭是偶函数D .π4f x ⎛⎫+ ⎪⎝⎭是奇函数3.已知角α满足1cos()63πα+=,则sin(2)6πα-=( )A .9- B .9C .79-D .794.若11sin cos αα+=,则sin cos αα=( ) A .13-B .13C .13-或1D .13或1- 5.己知平面向量,a b 满足1a a b =-=,则32a b a b -++的最大值为( )A .4B .C .3+D .66.已知函数()sin (0)2f x x a a π⎛⎫=>⎪⎝⎭,点A ,B 分别为()f x 图象在y 轴右侧的第一个最高点和第一个最低点,O 为坐标原点,若OAB 为钝角三角形,则a 的取值范围为( )A .10,(2,)2⎛⎫+∞ ⎪⎝⎭ B .0,(1,)3⎛⋃+∞ ⎝⎭C .3⎛⎫ ⎪ ⎪⎝⎭D .(1,)+∞7.已知向量()1,2a =,()2,3b =-,若向量c 满足()//c a b +,()c a b ⊥+,则c =( )A .7793⎛⎫⎪⎝⎭,B .7739⎛⎫-- ⎪⎝⎭, C .7739⎛⎫ ⎪⎝⎭,D .7793⎛⎫-- ⎪⎝⎭, 8.在△ABC 中,点D 在线段BC 的延长线上,且3BC CD =,点O 在线段CD 上(与点C ,D 不重合),若()1AO xAB x AC =+-,则x 的取值范围是( )A .10,2⎛⎫ ⎪⎝⎭B .10,3⎛⎫ ⎪⎝⎭C .1,02⎛⎫-⎪⎝⎭ D .1,03⎛⎫- ⎪⎝⎭9.已知函数()sin 26f x x π⎛⎫=- ⎪⎝⎭,若方程()35f x =的解为1x ,2x (120x x π<<<),则()12sin x x -=( ) A .35B .45-C .23-D .3-10.已知0>ω,2πϕ≤,在函数()()sin f x x ωϕ=+,()()cos g x x ωϕ=+的图象的交点中,相邻两个交点的横坐标之差的绝对值为2π,当,64x ππ⎛⎫∈- ⎪⎝⎭时,函数()f x 的图象恒在x 轴的上方,则ϕ的取值范围是( )A .,63ππ⎛⎫⎪⎝⎭B .,63ππ⎡⎤⎢⎥⎣⎦C .,32ππ⎛⎫ ⎪⎝⎭D .,32ππ⎡⎤⎢⎥⎣⎦11.现有四个函数:①y =x |sin x |,②y =x 2cos x ,③y =x ·e x ;④1y x x=+的图象(部分)如下,但顺序被打乱,则按照从左到右将图象对应的函数序号安排正确的一组是( )A .①②③④B .①③②④C .②①③④D .③②①④12.函数()sin ln ||f x x x =⋅的部分图象大致为( )A .B .C .D .二、填空题13.已知10cos 0,42ππθθ⎛⎫⎛⎫+=∈ ⎪ ⎪⎝⎭⎝⎭,则sin 23πθ⎛⎫-= ⎪⎝⎭______ 14.已知sin10cos102cos140m ︒-︒=︒,则m =_________.15.设()2sin17cos172a =︒+︒,22cos 131b =︒-,32c =,则a ,b ,c 的大小关系是______.16.如图,正方形ABCD 的边长为2,E 是以CD 为直径的半圆弧上一点,则AD AE ⋅的最大值为______.17.如图,边长为2的菱形ABCD 的对角线相交于点O ,点P 在线段BD 上运动,若1AB AO ⋅=,则AP PD ⋅的最大值为______.18.已知函数()sin()f x A x ωϕ=+(0A >,0>ω,||2ϕπ<)的部分图象如图所示.则函数()y f x =的解析式为________.19.sin 75=______.20.如图,在四边形ABCD 中,60B ∠=︒,2AB =,6BC =,1AD =,若M ,N 是线段BC 上的动点,且||1MN =,则DM DN ⋅的取值范围为_________.三、解答题21.已知函数2()2sin sin 26f x x x.(1)求()f x 的最小正周期; (2)若,212x ππ⎡⎤∈-⎢⎥⎣⎦,求()f x 的值域. 22.已知函数()212sin sin 2cos 32f x x x x π⎛⎫=-+-⎪⎝⎭.(1)求函数()f x 的单调增区间; (2)当,64x ππ⎛⎫∈-⎪⎝⎭时,函数()()()221216g x f x mf x m =-+-有四个零点,求实数m 的取值范围.23.已知向量(1,2),(,2),(3,1)==-=-OA OB m OC ,O 为坐标原点. (1)若AB AC ⊥求实数m 的值; (2)在(1)的条件下,求△ABC 的面积.24.已知单位向量1e ,2e 的夹角为60︒,向量12a e e =+,21b e te =-,t R ∈. (1)若//a b ,求t 的值; (2)若2t =,求向量a ,b 的夹角.25.海水受日月的引力,在一定的时候发生涨落的现象叫潮,一般地,早潮叫潮,晚潮叫汐.在通常情况下,船在涨潮时驶进航道,靠近码头;在落潮时返回海洋.下面是某港口在某季节每天的时间和水深关系表: 时刻 2:00 5:00 8:00 11:00 14:00 17:00 20:00 23:00 水深/米7.05.03.05.07.05.03.05.0()()sin ,0,2f t A t B A πωϕωϕ⎛⎫=++>< ⎪⎝⎭来描述.(1)根据以上数据,求出函数()()sin f t A t B ωϕ=++的表达式;(2)一条货船的吃水深度(船底与水面的距离)为4.0米,安全条例规定至少要有2米的安全间隙(船底与洋底的距离),该船在一天内(0:00~24:00)何时能进入港口然后离开港口?每次在港口能停留多久?26.一只红蚂蚁与一只黑蚂蚁在一个圆(半径为1cm 的圆)的圆周上爬动,且两只蚂蚁均从点1,0A 同时逆时针匀速爬动,红蚂蚁每秒爬过α角,黑蚂蚁每秒爬过β角(其中0180αβ︒︒<<<).如果两只蚂蚁都在第14秒时回到A 点,并且在第2秒时均位于第二象限.(1)求α,β的值.(2)两只蚂蚁的爬行速度保持不变,若红蚂蚁从点A 逆时针...匀速爬行,黑蚂蚁同时从点A 顺时针...匀速爬行,求当它们从点A 出发后第一次相遇时,红蚂蚁爬过的距离.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】利用换元法,设[]cos 12,0x t -=∈-,将原函数转化成关于t 的关系式,进行整理即得()f x 的解析式.【详解】函数()f x 满足()22cos 1cos212cos 112cos 2f x x x x -=-=--=-,设cos 1x t -=,则cos 1x t =+,由[]cos 1,1x ∈-知[]2,0t ∈-, 故原函数可转化为()()2221224f t t t t =+-=+,[]2,0t ∈-,即()f x 的解析式为()()22420f x x x x =+-≤≤.故选:A. 【点睛】方法点睛:求函数解析式的方法(1)待定系数法:已知函数类型,可用待定系数法求解,先设出()f x ,再利用题目中给的已知条件,列出关于待定系数的方程组,进而求出待定的系数;(2)换元法:主要用于解决已知复合函数()f g x ⎡⎤⎣⎦的表达式求()f x 的解析式的问题,令()g x t =,解出x ,然后代入()f g x ⎡⎤⎣⎦中即可求得()f t ,从而求得()f x ,要注意新元的取值范围;(3)配凑法:配凑法是将()f g x ⎡⎤⎣⎦右端的代数式配凑成关于()g x 的形式,进而求出()f x 的解析式;(4)构造方程组法(消元法):主要解决已知抽象函数关系式求解函数解析式的问题.方法是根据不同的变量之间的关系,利用变换形式构造不同的等式,通过解方程组求解.2.B解析:B 【分析】利用辅助角公式可得()()f x x ϕ=+,又()π4f x f ⎛⎫≤ ⎪⎝⎭对一切x ∈R 恒成立知π422f a ⎛⎫=+=⎪⎝⎭a b =,整理得()sin 4f x x π⎛⎫=+ ⎪⎝⎭,利用正弦函数的单调性可判断A ,利用诱导公式以及三角函数的奇偶性可判断选项BCD ,进而可得正确选项. 【详解】由0ab ≠知0a ≠且0b ≠,利用辅助角公式可得()()sin cos f x a x b x x ϕ=+=+,其中tan baϕ=, 又()π4f x f ⎛⎫≤ ⎪⎝⎭对一切x ∈R 恒成立,知π4f ⎛⎫⎪⎝⎭是()f x 的最值,所以πππsin cos 444f b a ⎛⎫=+=+= ⎝⎪⎭, 即22221122a b ab a b +++=,所以2211022a b ab +-=,即()2102a b -=, 所以a b =,tan 1b a ϕ==,可得4πϕ=,所以()sin 4f x x π⎛⎫=+ ⎪⎝⎭,对于选项A :9sin sin 55420f ππππ⎛⎫⎛⎫=+=⎪ ⎪⎝⎭⎝⎭, 5sin sin 66412f ππππ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭,又因为5912202πππ<<,则59sin sin 1220ππ<,当0a >时,ππ56f f ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭,当0a <时,ππ56f f ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭,故选项A 不正确; 对于选项B :sin sin 5π5π11π3π2244sin 4f x x x x π⎛⎫-=--- ⎪⎝⎛⎫⎛⎫⎛⎫+== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎭()ππ4sin sin 4x f x x π⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭--+,故选项B 正确;对于选项C :sin sin ππ444x x f x π⎛⎫--⎛⎫=+= ⎪⎝⎭ ⎪⎝⎭是奇函数,故选项C 不正确;对于选项D :si πππ442n sin cos 4f x x x x π⎛⎫⎛⎫=+== ⎪ ⎪⎛⎫+++ ⎪⎭⎝⎭⎝⎭⎝是偶函数,故选项D 不正确, 故选:B 【点睛】关键点点睛:本题的关键点是从已知条件()π4f x f ⎛⎫≤⎪⎝⎭对一切x ∈R 恒成立,知π4f ⎛⎫ ⎪⎝⎭是()f x 的最值,π422f a ⎛⎫=+= ⎪⎝⎭,从而得()sin 4f x x π⎛⎫=+ ⎪⎝⎭,属于中档题.3.D解析:D 【分析】由已知利用诱导公式可求133sin πα⎛⎫-= ⎪⎝⎭,sin 2263cos ππαα⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭,再由二倍角公式化简,即可得结果. 【详解】162633cos sin sin ππππααα⎡⎤⎛⎫⎛⎫⎛⎫+=-+=-= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,2sin 2cos 2cos 2262633cos πππππαααα⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫∴-=--=-=- ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦22171212()339sin πα⎛⎫=--=-⨯= ⎪⎝⎭.故选D . 【点睛】本题主要考查了诱导公式,二倍角公式在三角函数化简求值中的应用,属于基础题.三角函数求值有三类,(1)“给角求值”;(2)“给值求值”:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题关键在于“变角”,使其角相同或具有某种系;(3)“给值求角”:实质是转化为“给值求值”,先求角的某一函数值,再求角的范围,确定角.4.A解析:A 【分析】将已知式同分之后,两边平方,再根据22sin cos 1αα+=可化简得方程23(sin cos )2sin cos 10αααα--=,解出1sin cos 3αα=-或1,根据111sin cos sin 2,222ααα⎡⎤=∈-⎢⎥⎣⎦,得出1sin cos 3αα=-.【详解】由11sin cos sin cos sin cos αααααα++== 两边平方得22(sin cos )(sin cos )αααα+222sin cos 2sin cos (sin cos )αααααα++=212sin cos 3(sin cos )αααα+== 23(sin cos )2sin cos 10αααα∴--=,1sin cos 3αα∴=-或1,111sin cos sin 2,222ααα⎡⎤=∈-⎢⎥⎣⎦,1sin cos 3αα∴=-.故选:A. 【点睛】本题考查了同角三角函数间的基本关系,以及二倍角的正弦函数公式,属于中档题,要注意对sin cos αα范围的判断.5.B解析:B 【分析】利用1a a b =-=得到2cos ,b a b =〈〉,令[]cos ,,1,1t a b t =〈〉∈-,则2b t =,利用平面向量的运算法则得到29832a b a b t -+-=+,再利用基本不等式即可求解.【详解】因为1a a b =-=, 所以22222cos ,1a a ba ab a b b =-=-〈〉+=,则2cos ,b a b =〈〉, 令[]cos ,,1,1t a b t =〈〉∈-, 所以2b t =, 则()23232a b a b -=-22124a a b t b =-+== ()2222a b a b a a b t b +=+=++418t t =+=+,所以29832a b a b t -+-=+,利用基本不等式知:2a b a b +≤+≤,≤=,=此时t =.则32a b a b -++的最大值为 故选:B. 【点睛】思路点睛:利用已知条件得到2cos ,b a b =〈〉,令[]cos ,,1,1t a b t =〈〉∈-,则2b t =,把问题化为了单一变量的函数问题,再利用平面向量的运算法则得到29832a b a b t -+-=+,最后利用基本不等式即可解决.6.B解析:B 【分析】首先根据题的条件,将三角形三个顶点的坐标写出来,之后根据三角形是钝角三角形,利用向量夹角为钝角的条件,从而转化为向量的数量积0OA OB ⋅<或0AB AO ⋅<,找出a所满足的条件,最后求得结果. 【详解】 由题意得24,(0,0),(,1),(3,1)2T a O A a B a aππ==-,因为OAB 为钝角三角形,所以0OA OB ⋅<或0AB AO ⋅<,即2310a -<,或2220a -+<,从而0a <或1a >. 故选:B. 【点睛】该题考查的是有关利用钝角三角形求对应参数的取值范围,涉及到的知识点有正弦型函数图象上的特殊点的坐标,钝角三角形的等价转化,向量的数量积坐标公式,属于中档题.7.D解析:D 【分析】设出(,)c x y =,根据向量的共线与垂直的坐标运算,列出方程组,即可求解. 【详解】设(,)c x y =,向量()1,2a =,()2,3b =-,可得(1,2),(3,1)c a x y a b +=+++=-, 由()//c a b +,可得3(1)2(2)x y -⨯+=+,即3270x y ++=, 由()c a b ⊥+,可得30x y -=,联立方程组327030x y x y ++=⎧⎨-=⎩,解得77,93x y =-=-,即77(,)93c =--.故选:D. 【点睛】本题主要考查了向量的坐标表示,以及向量的共线与垂直的坐标运算及应用,其中解答中熟记向量的共线和垂直的坐标运算时解答的关键,着重考查推理与运算能力.8.D解析:D 【分析】设CO yBC =,则()1AO AC CO AC yBC yAB y AC =+=+=-++,根据3BC CD =得出y 的范围,再结合()1AO xAB x AC =+-得到,x y 的关系,从而得出x的取值范围. 【详解】 设CO yBC =,则()()1AO AC CO AC yBC AC y AC AB yAB y AC =+=+=+-=-++,因为3BC CD =,点O 在线段CD 上(与点C ,D 不重合), 所以10,3y ⎛⎫∈ ⎪⎝⎭,又因为()1AO xAB x AC =+-,所以x y =-,所以1,03x ⎛⎫∈- ⎪⎝⎭.故选:D【点睛】本题考查平面向量基本定理及向量的线性运算,考查利用向量关系式求参数的取值范围问题,难度一般. 9.B解析:B【分析】求出函数()f x 在(0,)π上的对称轴,然后由正弦函数性质得1223x x π+=,这样12sin()x x -化为2222sin(2)sin 2cos(2)336x x x πππ⎛⎫-=+=- ⎪⎝⎭,而已知条件为23sin(2)65x π-=,再由正弦函数性质确定226x π-的范围,从而由平方关系求得结论. 【详解】函数()sin 26f x x π⎛⎫=- ⎪⎝⎭的对称轴满足:()262x k k Z πππ-=+∈,即()23k x k Z ππ=+∈,令0k =可得函数在区间()0,π上的一条对称轴为3x π=, 结合三角函数的对称性可知1223x x π+=,则:1223x x π=-, ()122222sin sin 2sin 2cos 2336x x x x x πππ⎛⎫⎛⎫⎛⎫-=-=+=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,由题意:0πx <<,则112666x πππ-<-<,23sin 265x π⎛⎫-= ⎪⎝⎭,120x x π<<<,则2226x πππ<-<,由同角三角函数基本关系可知:24cos 265x π⎛⎫-=- ⎪⎝⎭, 故选:B .【点睛】 关键点点睛:本题考查正弦函数的性质,考查平方关系.解题时根据自变量的范围求得此范围内函数的对称轴,从而得出两个变量12,x x 的关系,可化双变量为单变量,再根据函数值及函数性质确定出单变量的范围,从而求得结论.注意其中诱导公式的应用,目的是把求值式与已知条件中的角化为一致.10.D解析:D【分析】由()()f x g x =得()()sin cos x x ωϕωϕ+=+,所以()tan 1x ωϕ+=,可求得()4k x k Z ππϕω+-=∈,再利用,相邻两个交点的横坐标之差的绝对值为2π,可得2x ππω∆==,即可得2ω=,再利用正弦函数图象的特点,可得032πϕπϕπ⎧-+≥⎪⎪⎨⎪+≤⎪⎩,即可求出ϕ的取值范围.【详解】由()()f x g x =得()()sin cos x x ωϕωϕ+=+,所以()tan 1x ωϕ+=, 可得:()4x k k Z πωϕπ+=+∈,所以 因为相邻两个交点的横坐标之差的绝对值为2x ππω∆==, 所以2ω=,所以()()sin 2f x x ϕ=+, 当,64x ππ⎛⎫∈- ⎪⎝⎭时,232x ππϕϕϕ-+<+<+, 要满足函数()f x 的图象恒在x 轴的上方,需满足方程032πϕπϕπ⎧-+≥⎪⎪⎨⎪+≤⎪⎩ ,解得32ππϕ≤≤, 故选:D【点睛】本题主要考查正弦函数的图象和性质,属于中档题.11.D解析:D【分析】根据各函数的特征如函数值的正负,单调性、奇偶性,定义域、值域等进行判断.【详解】左边第一个图象中0x <时,0y <,只有③满足,此时只有D 可选,实际上,左边第二个图象关于y 轴对称,是偶函数,只有②满足,而0x >时,10y x x=+>恒成立,只有最右边的图象满足,由此也可得顺序是③②①④,选D .故选:D .【点睛】思路点睛:本题考查由函数解析式选择函数图象,解题时可两者结合,由函数解析式和图象分别确定函数的性质,如奇偶性、单调性、函数值的正负,特殊的函数值,变化趋势等等,两者对照可得结论.12.D解析:D【分析】先根据函数的奇偶性,可排除A ,C ,根据当01x <<时,()0f x <即可排除B .得出答案.【详解】因为()sin ln ||(0)f x x x x =⋅≠,所以()sin()ln ||sin ln ||()f x x x x x f x -=-⋅-=-=-,所以()f x 为奇函数,故排除A ,C .当01x <<时,sin 0x >,ln ||0x <,则()0f x <,故排除B ,故选:D .【点睛】思路点睛:函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势;(3)从函数的奇偶性,判断图象的对称性;(4)从函数的特征点,排除不合要求的图象.二、填空题13.【分析】先由求得的值进而求得的值再根据两角差的正弦公式求得的值【详解】依题意即故由于而所以故因此所以【点睛】本小题主要考查二倍角公式考查同角三角函数的基本关系式考查两角差的正弦公式考查化归与转化的数【分析】 先由cos 4πθ⎛⎫+ ⎪⎝⎭求得πcos 22θ⎛⎫+⎪⎝⎭的值,进而求得sin 2,cos 2θθ的值,再根据两角差的正弦公式,求得sin 23πθ⎛⎫-⎪⎝⎭的值. 【详解】 依题意πcos 22θ⎛⎫+ ⎪⎝⎭2π42cos 145θ⎛⎫=+-=- ⎪⎝⎭,即4sin 25θ-=-,故4sin 25θ=,由于πππ3π0,,,2444θθ⎛⎫⎛⎫∈+∈ ⎪ ⎪⎝⎭⎝⎭,而πcos 04θ⎛⎫+> ⎪⎝⎭,所以πππ,442θ⎛⎫+∈ ⎪⎝⎭,故ππ0,,20,42θθ⎛⎫⎛⎫∈∈ ⎪ ⎪⎝⎭⎝⎭,因此3cos 25θ===.所以ππsin 2sin 2cos cos 2sin 333πθθθ⎛⎫-=- ⎪⎝⎭= 【点睛】本小题主要考查二倍角公式,考查同角三角函数的基本关系式,考查两角差的正弦公式,考查化归与转化的数学思想方法,属于中档题.14.【分析】化简得再利用诱导公式与和差角公式化简求解即可【详解】由题故答案为:【点睛】本题主要考查了根据余弦的诱导公式与和差角公式化简求解的问题需要根据题中的角跟特殊角的关系用和差角公式属于中档题【分析】 化简得sin102cos140cos10m ︒-︒=︒,再利用诱导公式与和差角公式化简cos140︒求解即可. 【详解】 由题()sin102cos 1030sin102cos140cos10cos10m ︒+︒+︒︒-︒==︒︒ sin102cos10cos302sin10sin 302cos10cos302cos30cos10cos10︒+︒︒-︒︒︒︒===︒=︒︒.【点睛】本题主要考查了根据余弦的诱导公式与和差角公式化简求解的问题.需要根据题中的角跟特殊角的关系用和差角公式,属于中档题.15.【分析】根据两角和的正弦公式二倍角公式诱导公式即可将化简再根据正弦函数的单调性即可比较出大小关系【详解】所以故答案为:【点睛】本题主要考查两角和的正弦公式二倍角公式诱导公式的应用以及正弦函数的单调性 解析:c a b <<【分析】根据两角和的正弦公式,二倍角公式,诱导公式,即可将,a b 化简,再根据正弦函数的单调性即可比较出大小关系.【详解】)sin17cos17sin17cos 45cos17sin 45sin 622a =︒+︒=︒+︒=,22cos 131cos 26sin 64b =︒-==,sin 60c ==,所以,c a b <<.故答案为:c a b <<.【点睛】本题主要考查两角和的正弦公式,二倍角公式,诱导公式的应用,以及正弦函数的单调性的应用,属于基础题.16.6【分析】先建立平面直角坐标系再表示出点的坐标接着表示出最后求求得最大值即可【详解】解:以点为原点以方向为轴正方向以方向为轴正方向建立平面直角坐标系如图则由图可知以为直径的圆的方程为:参数方向:因为 解析:6【分析】先建立平面直角坐标系,再表示出点E 的坐标,接着表示出AD ,AE ,最后求AD AE ⋅求得最大值即可.【详解】解:以点A 为原点,以AB 方向为x 轴正方向,以AD 方向为y 轴正方向,建立平面直角坐标系,如图,则(0,0)A ,(0,2)D由图可知以CD 为直径的圆的方程为:22(1)(2)1x y -+-=,参数方向:1cos 2sin x y θθ=+⎧⎨=+⎩, 因为E 是以CD 为直径的半圆弧上一点,所以(1cos ,2sin )E θθ++,(0θπ≤≤), 所以(0,2)AD =,(1cos ,2sin )AE θθ=++,则0(1cos )2(2sin )42sin AD AE θθθ⋅=⨯+++=+, 当2πθ=时,AD AE ⋅取得最大值6.故答案为:6【点睛】本题考查平面向量数量积的坐标表示,是基础题17.【分析】以为原点和分别为和轴建立的平面直角坐标系求得设得到即可求解【详解】以为原点和分别为和轴建立如图所示的平面直角坐标系设则因为可得联立方程组解答所以设则当时取得最大值最大值为故答案为:【点睛】本 解析:34 【分析】 以O 为原点,OC 和OD 分别为x 和y 轴建立的平面直角坐标系,求得(1,0),(0,3)A D -,设(0,),[3,3]P t t ∈-,得到233()4AP PD t ⋅=--+,即可求解.【详解】 以O 为原点,OC 和OD 分别为x 和y 轴建立如图所示的平面直角坐标系,设(,0),(0,),0,0A a B b a b -->>,则224a b +=,因为1AB AO ⋅=,可得2(,)(,0)1a b a a -⋅==,联立方程组,解答1,3a b ==,所以(1,0),(0,3)A D -, 设(0,),[3,3]P t t ∈-,则22333(1,)(0,3)3()44AP PD t t t t t ⋅=⋅-=-+=--+≤, 当3t =时,AP PD ⋅取得最大值,最大值为34. 故答案为:34.【点睛】本题主要考查了平面向量的数量积的运算及应用,此类问题通常采取建立直角坐标系,利用平面向量的坐标运算求解,着重考查转化思想,以及运算与求解能力,属于基础题. 18.【分析】由最值求得由周期求得由最高点的坐标求得【详解】由题意所以又所以所以故答案为:【点睛】方法点睛:由函数图象确定三角函数的解析式主要参考正弦函数图象中五点法由最大值和最小值确定由周期确定利用点的解析:2n 2)3(si f x x π⎛⎫=+ ⎪⎝⎭. 【分析】 由最值求得A ,由周期求得ω,由最高点的坐标求得ϕ.【详解】 由题意2A =,4312T πππ⎛⎫=⨯-= ⎪⎝⎭,所以22πωπ==, 2sin 2212πϕ⎛⎫⨯+= ⎪⎝⎭,2,62k k Z ππϕπ+=+∈,又2πϕ<,所以3πϕ=. 所以2n 2)3(si f x x π⎛⎫=+ ⎪⎝⎭. 故答案为:2n 2)3(si f x x π⎛⎫=+⎪⎝⎭. 【点睛】 方法点睛:由函数图象确定三角函数的解析式,主要参考正弦函数图象中“五点法”,由最大值和最小值确定A ,由周期确定ω,利用点的坐标确定ϕ,这样可得出表达式()sin()f x A x ωϕ=+.19.【解析】试题分析:将非特殊角化为特殊角的和与差是求三角函数值的一个有效方法考点:两角和的正弦解析:【解析】试题分析:232162sin 75sin(4530)sin 45cos30cos 45sin 302︒︒︒︒︒︒︒+=+=+==将非特殊角化为特殊角的和与差,是求三角函数值的一个有效方法.考点:两角和的正弦 20.【分析】首先以点为原点建立空间直角坐标系利用向量的坐标表示再求取值范围【详解】如图建立平面直角坐标系当时取得最小值当时取得最大值所以的取值范围为故答案为:【点睛】关键点点睛:本题的关键是利用坐标法解解析:11,154⎡⎤⎢⎥⎣⎦【分析】首先以点B 为原点,建立空间直角坐标系,利用向量的坐标表示DM DN ⋅,再求取值范围.【详解】如图,建立平面直角坐标系,(3A ,(3D ,(),0M x ,()1,0N x +,()2,3DM x =--,()1,3DN x =--,[]0,5x ∈, ()()212335DM DN x x x x ⋅=--+=-+231124x ⎛⎫=-+ ⎪⎝⎭,当32x =时,取得最小值114,当5x =时,取得最大值15, 所以DM DN ⋅的取值范围为11,154⎡⎤⎢⎥⎣⎦故答案为:11,154⎡⎤⎢⎥⎣⎦【点睛】 关键点点睛:本题的关键是利用坐标法解决数量积的范围问题.三、解答题21.(1)最小正周期T π=;(2)3()0,2f x ⎡⎤∈⎢⎥⎣⎦. 【分析】(1)先利用余弦的二倍角公式和两角差的正弦化简后,再由辅助角公式化简,利用周期公式求周期;(2)由x 的范围求出26x π-的范围,再由正弦函数的有界性求f (x )的值域. 【详解】由已知2()2sin sin 26f x x x311cos 22cos 222x x x =-++ 312cos 212x x =-+ sin 216x π⎛⎫=-+ ⎪⎝⎭ (1)函数()f x 的最小正周期T π=;(2)因为,212x ππ⎡⎤∈-⎢⎥⎣⎦,所以72,066x ππ⎡⎤-∈-⎢⎥⎣⎦所以1sin 21,62x π⎛⎫⎡⎤-∈- ⎪⎢⎥⎝⎭⎣⎦, 所以3()0,2f x ⎡⎤∈⎢⎥⎣⎦. 【点睛】本题考查三角函数的周期性、值域及两角和与差的正弦、二倍角公式,关键点是对()f x 的解析式利用公式进行化简,考查学生的基础知识、计算能力,难度不大,综合性较强,属于简单题.22.(1)5[,]1212k k ππππ-+,k Z ∈(2m << 【分析】(1)化简()f x 的解析式,根据正弦函数的增区间可得结果;(2)转化为221()216h t t mt m =-+-在(2内有两个零点,根据二次函数列式可得结果.【详解】(1)()212sin sin 2cos 32f x x x x π⎛⎫=-+- ⎪⎝⎭ 12sin sin cos cos sin 1cos 2332x x x x ππ⎛⎫=-++- ⎪⎝⎭21cos sin 1cos 22x x x x =-++-212cos cos 22x x x =++-1cos 212cos 2222x x x +=++-32cos 222x x =+)3x π=+, 由222232k x k πππππ-≤+≤+,k Z ∈, 得51212k x k ππππ-≤≤+,k Z ∈, 所以函数()f x 的单调增区间为5[,]1212k k ππππ-+,k Z ∈.(2)当,64x ππ⎛⎫∈- ⎪⎝⎭时,52(0,)36x ππ+∈,())3f x x π=+∈,因为函数()()()221216g x f x mf x m =-+-有四个零点,令()t f x =,则(t ∈且221()216h t t mt m =-+-在2内有两个零点,所以2214401600m m m h h ⎧⎛⎫∆=--> ⎪⎪⎝⎭<<⎨⎪>⎪⎝⎭⎪⎪>⎪⎩,即222316043160m m m <<⎪⎪⎪+->⎨⎪⎪-+->⎪⎩,解得m <<⎪⎪⎨⎪⎪⎪⎪⎩m <<, 所以实数mm <<. 【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法:(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.23.(1)1;(2)【分析】(1)根据向量(1,2),(,2),(3,1)==-=-OA OB m OC ,得到向量,AB AC ,再由AB AC ⊥,利用坐标运算求解.(2)由(1)得到 ,AB AC ,然后由12ABC S AB AC =⨯⨯求解. 【详解】(1)因为向量(1,2),(,2),(3,1)==-=-OA OB m OC ,所以向量(1,4),(4,1)AB m AC =--=--,又因为AB AC ⊥,所以4(1)40m --+=,解得 2m =.(2)由(1)知:(0,4),(4,1)AB AC =-=--, 所以4,17AB AC ==所以11422ABC S AB AC =⨯⨯=⨯= 【点睛】本题主要考查平面向量的数量积的坐标运算,还考查了运算求解的能力,属于中档题. 24.(1)1t =-;(2)23π. 【分析】 (1)根据题意,设a kb =,则有122112()()e e k e te kte ke +=-=-+,分析可得11kt k =-⎧⎨=⎩,解可得t 的值; (2)根据题意,设向量a ,b 的夹角为θ;由数量积的计算公式可得a 、||b 以及a b , 由cos a b a b θ⋅=计算可得答案. 【详解】(1)∵根据题意,向量12a e e =+,21b e te =-,若//a b ,则设a kb =,则有122112()()e e k e te kte ke +=-=-+,则有11kt k =-⎧⎨=⎩,解可得1t =-; (2)根据题意,设向量a ,b 的夹角为θ;若2t =,则212b e e =-,则2221||(2)3b e e =-=,则||3b =,又由12a e e =+,则2212||()3a e e =+=,则||3a =,又由12213()(2)2a b e e e e =+-=-, 则312cos 2||||3a b a b θ-===-⨯,又由0θπ,则23πθ=; 故向量a ,b 的夹角为23π. 【点睛】本题考查向量数量积的计算,涉及向量模的计算公式,属于基础题.25.(1)()2sin 566f t t ππ⎛⎫=++ ⎪⎝⎭;(2)在0时进港4时出港或12时进港16时出港,每次在港内可停留4个小时.【分析】由表格易知()()max min 7,3f t f t ==,由()()()()max minmax min,22f t f t f t f t A B -+==,求得A ,B ,再根据14212T =-=和2t =时,函数取得最大值,分别求得,ωϕ即可.(2)根据货船需要的安全水深度为6,由()2sin 5666f t t ππ⎛⎫=++≥⎪⎝⎭求解. 【详解】由表格可知()()max min 7,3f t f t ==,,则()()()()max minmax min2,522f t f t f t f t A B -+====, 又214212,6T T ππω=-===, 当2t =时,()22sin 2576f πϕ⎛⎫=⨯++= ⎪⎝⎭, 即sin 13πϕ⎛⎫+=⎪⎝⎭, 所以232k ππϕπ+=+, 又2πϕ<, 所以6π=ϕ, 所以()2sin 566f t t ππ⎛⎫=++ ⎪⎝⎭. (2)因为货船需要的安全水深度为6,所以()2sin 5666f t t ππ⎛⎫=++≥⎪⎝⎭, 即1sin 662t ππ⎛⎫+≥⎪⎝⎭, 所以5226666k t k ππππππ+≤+≤+, 即12412k t k ≤≤+,又因为[]0,24t ∈,当0k =时,[]0,4t ∈,当1k =时,[]12,16t ∈,所以在0时进港4时出港或12时进港16时出港,每次在港内可停留4个小时.【点睛】方法点睛:由函数y =A sin(ωx +φ)的图象或表格确定A ,ω,φ的题型,常常以“五点法”中的五个点作为突破口,要从图象的升降情况找准“零点”或“最大(小)值点”的位置.要善于抓住特殊量和特殊点.26.(1)3607α⎛⎫=⎪⎝⎭,5407β⎛⎫= ⎪⎝⎭;(2)45πcm . 【分析】(1)根据题中条件,先设()36140k k Z α=⋅∈,()14360m m Z β=⋅∈,再由两只蚂蚁在第2秒时均位于第二象限,0180αβ︒︒<<<,列出不等式求解,得出k 和m 的值,即可得出结果;(2)先设它们从点A 出发后第一次相遇时,所用的时间为t 秒,根据题中条件求出t ,根据弧长的计算公式,即可求出结果.【详解】(1)由题意可得,14α与14β都是360的整数倍,不妨设()36140k k Z α=⋅∈,()14360m m Z β=⋅∈, 则()1807k k Z α=⋅∈,()1807m m Z β=⋅∈, 又两只蚂蚁在第2秒时均位于第二象限,所以902180902180αβ⎧<<⎨<<⎩,即()()29018018072901801807k k Z m m Z ⎧<⋅<∈⎪⎪⎨⎪<⋅<∈⎪⎩,所以()()77427742k k Z m m Z ⎧<<∈⎪⎪⎨⎪<<∈⎪⎩, 因为0180αβ︒︒<<<,所以k m <,所以2k =,3m =,即3607α⎛⎫= ⎪⎝⎭,5407β⎛⎫= ⎪⎝⎭; (2)两只蚂蚁的爬行速度保持不变,若红蚂蚁从点A 逆时针...匀速爬行,黑蚂蚁同时从点A 顺时针...匀速爬行,设它们从点A 出发后第一次相遇时,所用的时间为t 秒, 则()360t αβ+=,即36054036077t ⎡⎤⎛⎫⎛⎫+=⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦,解得145t =, 所以红蚂蚁爬过的角度为144t α=,因为圆的半径为1cm,所以红蚂蚁爬过的距离为1444213605ππ⋅⋅=cm.【点睛】关键点点睛:求解本题第一问的关键在于根据任意角的概念以及题中条件,得到14α与14β都是360的整数倍,利用题中所给限制条件:第2秒时均位于第二象限,即可求解.。

北师大版高中数学必修四第二学期期末测试高一年级.docx

北师大版高中数学必修四第二学期期末测试高一年级.docx

高中数学学习材料鼎尚图文*整理制作第二学期期末测试高一年级数学(必修4)试题一、选择题:(本大题共10小题,每小题4分,共40分。

在每小题给出的四个选项中,只有一项是最符合题目要求的)1.已知角α的终边经过点(3,-4),则sin α+cos α的值为 A.-51 B. 51 C. ±51 D. ±51或±572.已知AB =(5,-3),C (-1,3),CD =2AB ,则点D 的坐标为 A.(11,9) B.(4,0) C.(9,3) D.(9,-3) 3.已知2tan ,αα则为第三象限角的值A .一定为正数B .一定为负数C .可能为正数,也可能为负数D .不存在4.若向量()1,1a =,()1,1b =-,()1,2c =-,则c =A .1322a b -+ B .1322a b - C .3122a b - D.3122a b -+5.设向量)21,(cos α=→a 的模为22,则c os2α= A.41- B.21- C.21 D.236.在sin sin cos cos ,ABC A B A B ∆⋅<⋅中,则这个三角形的形状是 A.锐角三角形 B.钝角三角形C.直角三角形D.等腰三角形7.已知αβ和都是锐角,且sin α=513,cos()αβ+=-45,则sin β的值为A.3365B.1665C.5665D.63658.在△ABC 中,M 是BC 的中点,1AM =,点P 在AM 上且满足2AP PM =,则()PA PB PC ⋅+等于A .-49B .-43 C.43 D.499.将函数sin 2y x =的图象向左平移4π个单位, 再向上平移1个单位,所得图象的函数解析式是A.cos 2y x =B.)42sin(1π++=x y C. 22cos y x =D.22sin y x =10. 设,a b 为向量, 且||||||=a a b b ·,那么A. ⊥a bB. ,a b 同向C. ,a b 反向D. ,a b 平行二、填空题:(本大题共4小题,每小题4分,共16分。

【湘教版】高中数学必修四期末模拟试卷(附答案)(2)

一、选择题1.已知θ为锐角,且满足如tan 311tan θθ=,则tan 2θ的值为( ) A .34B .43 C .23D .322.已知函数()f x 满足()cos 1cos21f x x -=-,则()f x 的解析式为( ) A .()()22420f x x x x =+-≤≤B .()()224f x x x x R =+∈C .()()2120f x x x =--≤≤D .()()21f x x x R =-∈3.已知0,2πα⎛⎫∈ ⎪⎝⎭,1cos 63πα⎛⎫+=⎪⎝⎭,则sin α的值等于( ) A .223- B .223+ C .261- D .261--4.若α∈(2π,π),且3cos 2α=sin(4π-α),则sin 2α的值为( ) A .-118 B .118C .-1718D .17185.在ABC ∆中,5,6AB AC ==,若2B C =,则向量BC 在BA 上的投影是( ) A .75-B .77125-C .77125D .756.已知(),0A a ,()0,C c ,2AC =,1BC =,0AC BC ⋅=,O 为坐标原点,则OB 的取值范围是( ) A .(0,21⎤-⎦B .(0,21⎤+⎦ C .21,21⎡⎤-+⎣⎦D .)21,⎡-+∞⎣7.在ABC 中,4A π=,3B π=,2BC =,AC 的垂直平分线交AB 于D ,则AC CD ⋅=( )A .1-B .2-C .3-D .38.在边长为2的正方形ABCD 中,E ,F 分别为BC 和DC 的中点,则AE AF ⋅=( )A .52B .52-C .4D .4-9.已知函数()()cos f x x ωϕ=+(0>ω,0πϕ-<<)的图象关于点,08π⎛⎫⎪⎝⎭对称,且其相邻对称轴间的距离为23π,将函数()f x 的图象向左平移3π个单位长度后,得到函数()g x 的图象,则下列说法中正确的是( )A .()f x 的最小正周期23T π= B .58πϕ=-C .()317cos 248πx g x ⎛⎫=- ⎪⎝⎭D .()g x 在0,2π⎡⎤⎢⎥⎣⎦上的单调递减区间为,82ππ⎡⎤⎢⎥⎣⎦10.己知函数()sin()(0,||)2f x x πωϕωϕ=+><的最小正周期为π,且图象向右平移12π个单位后得到的函数为偶函数,则下列说法错误的有( )A .()f x 关于点5(,0)12π对称 B .()f x 关于直线6x π=对称C .()f x 在,]1212π5π[-单调递增 D .()f x 在7[,]1212ππ单调递减11.:sin 1p x x >的一个充分不必要条件是( ) A .02x π<<B .203x π<<C .32x ππ-<<D .566x ππ<<12.已知函数()()()3cos 0g x x ωϕω=+>在7,6ππ⎛⎫ ⎪⎝⎭上具有单调性,且满足04g π⎛⎫= ⎪⎝⎭,()3g π=,则ω的取值共有( ) A .6个B .5个C .4个D .3个二、填空题13.已知(0,)θπ∈,且sin 410πθ⎛⎫-= ⎪⎝⎭,则sin 2θ=__________. 14.如图,在边长为1的正方形ABCD 中,P ,Q 分别在边BC ,CD 上,且PB QD PQ +=,则PAQ ∠的大小为__________.15.如果函数sin 2cos 2y x a x =+的图象关于直线12x π=对称,那么该函数在0,2x π⎡⎤∈⎢⎥⎣⎦上的最小值为_______________. 16.如图,已知ABC 为边长为2的等边三角形,动点P 在以BC 为直径的半圆上,若AP AB AC λμ=+,则2λμ+的最小值为_______.17.如图,在ABC 中,已知D 是BC 延长线上一点,点E 为线段AD 的中点,若2BC CD =,且34AE AB AC λ=+,则λ=___________.18.在ABC △中,已知4CA =,3CP =23ACB π∠=,点P 是边AB 的中点,则CP CA ⋅的值为_____.19.已知()()sin 03f x x πωϕω⎛⎫=++> ⎪⎝⎭同时满足下列三个条件:①T π=;②3y f x π⎛⎫=-⎪⎝⎭是奇函数;③()06f f π⎛⎫<⎪⎝⎭.若()f x 在[)0,t 上没有最小值,则实数t 的取值范围是___________.20.如图,从气球A 上测得正前方的B ,C 两点的俯角分别为75︒,30,此时气球的高是60m ,则BC 的距离等于__________m .三、解答题21.已知函数()2sin cos cos 3f x x x x π⎡⎤⎛⎫=⋅-+ ⎪⎢⎥⎝⎭⎣⎦,0,2x π⎡⎤∈⎢⎥⎣⎦. (1)求6f π⎛⎫⎪⎝⎭; (2)求()f x 的值域. 22.设函数23()3sin cos 3sin 2f x x x x =+-. (1)求函数的单调递减区间;(2)将函数()y f x =的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移4π个单位,得到函数()y g x =的图象,求()g x 在3[,]44ππ-上的值域. 23.已知在直角坐标系中(O 为坐标原点),()2,5OA =,()3,1OB =,(),3OC x =. (1)若A ,B ,C 共线,求x 的值;(2)当6x =时,直线OC 上存在点M 使MA MB ⊥,求点M 的坐标.24.如图一,在平面直角坐标系xOy 中,O 为坐标原点,()11,A x y ,()22,B x y ,请根据以下信息,处理问题(1)和(2).信息一:O 为坐标原点,()22,OB x y =,若将OB 顺时针旋转90︒得到向量'OB ,则()22',OB y x =-,且'OB OB =;信息二:()22,OB x y =与()11,OA x y =的夹角记为θ,()22',OB y x =-与()11,OA x y =的夹角记为α,则sin cos θα=;信息三:1sin 2OAB S OA OB θ=⋅⋅△;信息四:11122122x y x y x y x y =-,叫二阶行列式.(1)求证:112212OAB x y S x y =△,(外层“”表示取绝对值);(2)如图二,已知三点()2,1M ,()3,4N ,()1,6Q ,试用(1)中的结论求MNQ △的面积.25.已知函数()2cos ,(0)6f x x πωω⎛⎫=-> ⎪⎝⎭,若()4f x f π⎛≤⎫⎪⎝⎭对任意的实数x 都成立.(1)求ω的最小值;(2)在(1)中ω值的条件下,若函数()()1(0)g x f kx k =+>的最小正周期为π,当0,3x π⎡⎤∈⎢⎥⎣⎦时,方程()g x m =恰有两个不同的解,求实数m 的取值范围. 26.已知函数π()3sin 26f x x ⎛⎫=+ ⎪⎝⎭.(1)用“五点法”画出函数()y f x =在一个周期内的简图;(2)说明函数()y f x =的图像可以通过sin y x =的图像经过怎样的变换得到?(3)若003()[2π3π]2f x x =∈,,,写出0x 的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】先利用两角和的正切计算tan tan 2tan 31tan tan 2θθθθθ+=-,再利用二倍角的正切化简前者,结合tan 311tan θθ=可得1tan 2θ=,从而可求tan 2θ.【详解】32222tan tan tan tan 23tan tan 1tan tan 32tan 1tan tan 213tan 1tan 1tan θθθθθθθθθθθθθθ++--===---⨯-,故32223tan tan tan 33tan 13tan 11tan tan 13tan θθθθθθθθ---===-,故21tan 4θ=, 因为θ为锐角,故1tan 2θ=,故1242tan 21314θ⨯==-, 故选:B. 【点睛】思路点睛:已知θ的三角函数值,求()*n n N θ∈的三角函数值,应利用两角和的三角函数值逐级计算即可.2.A解析:A 【分析】利用换元法,设[]cos 12,0x t -=∈-,将原函数转化成关于t 的关系式,进行整理即得()f x 的解析式.【详解】函数()f x 满足()22cos 1cos212cos 112cos 2f x x x x -=-=--=-,设cos 1x t -=,则cos 1x t =+,由[]cos 1,1x ∈-知[]2,0t ∈-, 故原函数可转化为()()2221224f t t t t =+-=+,[]2,0t ∈-,即()f x 的解析式为()()22420f x x x x =+-≤≤.故选:A. 【点睛】方法点睛:求函数解析式的方法(1)待定系数法:已知函数类型,可用待定系数法求解,先设出()f x ,再利用题目中给的已知条件,列出关于待定系数的方程组,进而求出待定的系数;(2)换元法:主要用于解决已知复合函数()f g x ⎡⎤⎣⎦的表达式求()f x 的解析式的问题,令()g x t =,解出x ,然后代入()f g x ⎡⎤⎣⎦中即可求得()f t ,从而求得()f x ,要注意新元的取值范围;(3)配凑法:配凑法是将()f g x ⎡⎤⎣⎦右端的代数式配凑成关于()g x 的形式,进而求出()f x 的解析式;(4)构造方程组法(消元法):主要解决已知抽象函数关系式求解函数解析式的问题.方法是根据不同的变量之间的关系,利用变换形式构造不同的等式,通过解方程组求解.3.C解析:C 【分析】 求出sin 6απ⎛⎫+⎪⎝⎭,然后由两角差的正弦公式计算. 【详解】∵0,2πα⎛⎫∈ ⎪⎝⎭,∴2,663πππα⎛⎫+∈ ⎪⎝⎭,∴sin 6πα⎛⎫+==⎪⎝⎭ ∴sin sin sin cos cos sin 666666ππππππαααα⎡⎤⎛⎫⎛⎫⎛⎫=+-=+-+⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦11132326-=⨯-⨯=. 故选:C . 【点睛】本题考查两角差的正弦公式,考查同角间的三角函数关系,在应用三角公式化简求值时,要注意已知角与未知角之间的关系,以确定先用哪一个公式变形.4.C解析:C 【分析】按照二倍角的余弦以及两角差的正弦展开可得()3cos sin 2αα+=,对等式平方即可得结果. 【详解】由3cos 2sin 4παα⎛⎫=- ⎪⎝⎭,可得())223cos sin cos sin 2αααα-=-, 又由,2παπ⎛⎫∈⎪⎝⎭,可知cos sin 0αα-≠,于是()3cos sin αα+=,所以112sin cos 18αα=+,故17sin 218α=-, 故选:C. 【点睛】本题主要考查了两角差公式以及二倍角公式的应用,属于中档题.5.B解析:B 【解析】 由正弦定理得,653cos sin sin sin 2sin 5AC AB C B C C C =⇒=⇒=,由余弦定理得,22211cos 25BC AC AB C BC AC BC +-=⇒=⋅,则77cos 125BC θ=- ,故选B. 6.C解析:C 【分析】法一:将A ,C 视为定点,根据A 、C 分别在 x 轴、y 轴上,得到垂直关系, O 是AC 为直径的圆上的动点,AC 的中点为圆心M ,根据圆心M 和BO 的位置关系即可得取值范围. 法二:设B 的坐标,根据2AC =,1BC =得到224a c +=,()221x y c +-=,整理式子至()222251x a y x y ax cy -+=⇒+=++,利用均值不等式得出OB d ==,则212d d -≤即可算出距离的取值范围.【详解】解:法一:将A ,C 视为定点,OA OC ⊥,O 视为以AC 为直径的圆上的动点,AC 的中点为M ,当BO 过圆心M ,且O 在B ,M 之间时,OB 1,O 在BM 的延长线上时,OB 1. 故选:C法二:设(),B x y ,则224a c +=,()221x y c +-=,()222251x a y x y ax cy -+=⇒+=++,即221ax cy x y +=+-,ax cy +≤=,取等号条件:ay cx =,令OB d ==,则22112{210d d d d d ≥-≤⇔--≤或201{210d d d <<⇔+-≥,解得11d ≤≤.故选:C 【点睛】本题考查向量的坐标运算和圆的基本性质,综合性强,属于中档题.7.C解析:C 【分析】由AC 的垂直平分线交AB 于D ,且4A π=可得ACD △为等腰直角三角形,且4A ACD π∠=∠=,2ADC BDC π∠=∠=;进而由2BC =可求出,,DB CD AC 的长,从而求出AC CD ⋅的值. 【详解】解:因为AC 的垂直平分线交AB 于D 、4A π=,所以ACD △为等腰直角三角形,4A ACD π∠=∠=,2ADC BDC π∠=∠=,在BDC 中,3B π=,2BDC π∠=,2BC =,所以1,3BD CD ==,所以3AD CD ==,26AC CD ==,所以32cos63()34AC CD AC CD π⋅=⋅=⨯⨯-=-.故选:C. 【点睛】本题主要考查平面向量的数量积,考查运算求解能力,属于基础题型.8.C解析:C 【分析】建立直角坐标系,利用向量的坐标运算求解即可. 【详解】以点A 为坐标原点,建立如下图所示的直角坐标系(0,0),(2,1),(1,2)A E F(2,1),(1,2)AE AF ∴==21124AE AF ∴⋅=⨯+⨯=故选:C【点睛】本题主要考查了求平面向量的数量积,属于中档题.9.D解析:D 【分析】首先根据三角函数的性质,可知相邻对称轴间的距离是半个周期,判断A ;再求函数的解析式,判断B ;根据平移规律得到函数()g x ,判断C ;最后根据函数()g x 的解析式,利用整体代入的方法求函数的单调递减区间. 【详解】相邻对称轴间的距离是半个周期,所以周期是43π,故A 不正确; 243T ππω==,解得:32ω=,()f x 的图象关于点,08π⎛⎫⎪⎝⎭对称,3,282k k Z ππϕπ∴⨯+=+∈,解得:5,16k k Z πϕπ=+∈ 0πϕ-<<, 1116πϕ∴=-,故B 不正确; ()311cos 216f x x π⎛⎫=-⎪⎝⎭,向左平移3π个单位长度后得()31133cos cos 2316216g x x x πππ⎡⎤⎛⎫⎛⎫=+-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦故C 不正确; 当02x π≤≤时,3339,2161616x πππ⎡⎤-∈-⎢⎥⎣⎦,当3390,21616x ππ⎡⎤-∈⎢⎥⎣⎦时,函数单调递减,即 ,82x ππ⎡⎤∈⎢⎥⎣⎦,故D 正确. 故选:D 【点睛】关键点点睛:本题的关键是根据三角函数的性质求得函数()f x 的解析式,第四个选项是关键,需根据整体代入的方法,先求33216x π-的范围,再确定函数的单调递减区间. 10.A解析:ABD 【分析】由周期可求出ω,再由平移后为偶函数求出ϕ,即得()sin 23πf x x ⎛⎫=- ⎪⎝⎭,求出512f π⎛⎫⎪⎝⎭可判断A ;求出6f π⎛⎫⎪⎝⎭可判断B ;令222,232k x k k Z πππππ-+≤-≤+∈求出单调递增区间可判断C ;由C 选项可判断D. 【详解】()f x 的最小正周期为π,22πωπ∴==,()sin(2)f x x ϕ=+,向右平移12π个单位后得到sin 26y x πϕ⎛⎫=-+ ⎪⎝⎭为偶函数, ,62k k Z ππϕπ∴-=+∈,即2,3k k Z πϕπ=+∈, ||2πϕ<,3ϕπ∴=-,()sin 23f x x π⎛⎫∴=-⎪⎝⎭, 对于A ,55sin 2sin 10121232f ππππ⎛⎫⎛⎫=⨯-==≠ ⎪ ⎪⎝⎭⎝⎭,故()f x 不关于点5(,0)12π对称,故A 错误; 对于B ,sin 2sin 001663f πππ⎛⎫⎛⎫=⨯-==≠± ⎪ ⎪⎝⎭⎝⎭,故B 错误;对于C ,令222,232k x k k Z πππππ-+≤-≤+∈,解得5,1212k x k k Z ππππ-+≤≤+∈, 当0k =时,51212x ππ-≤≤,故()f x 在,]1212π5π[-单调递增,故C 正确; 对于D ,由C 选项可知,()f x 在5[,]1212ππ单调递增,故D 错误.故选:ABD. 【点睛】本题考查正弦型函数的性质,可通过代入验证的方法判断对称轴和对称中心,利用整体换元可求单调区间.11.A解析:A 【分析】首先求解命题p 表示的集合,再根据集合关系表示充分不必要条件,判断选项. 【详解】:sin 2sin 13p x x x π⎛⎫+=+> ⎪⎝⎭,即1sin 32x π⎛⎫+> ⎪⎝⎭,解得:522,636k x k k Z πππππ+<+<+∈, 得22,62k x k k Z ππππ-+<<+∈,设22,62M x k x k k Z ππππ⎧⎫=-+<<+∈⎨⎬⎩⎭经分析,只有选项A 的集合是集合M 的真子集, 故选:A 【点睛】结论点睛:本题考查充分不必要条件的判断,一般可根据如下规则判断:(1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集; (2)p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集; (3)p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)p 是q 的既不充分又不必要条件, q 对的集合与p 对应集合互不包含.12.B解析:B 【分析】根据函数在7,6ππ⎛⎫ ⎪⎝⎭上具有单调性,且满足04g π⎛⎫=⎪⎝⎭,()3g π=,可得周期的范围,进而得到关于ω的方程与不等式,结合n *∈N 可求ω的值,从而可得答案. 【详解】因为()g x 在7,6ππ⎛⎫ ⎪⎝⎭上具有单调性,04g π⎛⎫=⎪⎝⎭,()3g π=, 所以()()7,62,4422121,442T T n n T n N πππωπππωπππω*⎧-≤=⎪⎪⎪-≥=⎨⎪⎪---==∈⎪⎩得263ω≤≤,423n ω-=,n *∈N ,所以242633n -≤≤, 解得15n ≤≤.即1,2,3,4,5n =,可得23ω=,102,3,143,6,经检验均符合题意,所以ω的取值共有5个. 故选:B 【点睛】关键点点睛:本题主要考查余弦函数的几何性质,解题的关键是利用单调区间以及对称点、最值点与周期的关系列出不等式.二、填空题13.【分析】根据利用诱导公式和二倍角公式转化为求解【详解】因为所以故答案为:【点睛】本题主要考查二倍角公式及诱导公式的应用还考查了转化求解问题的能力属于中档题 解析:2425【分析】根据sin 410πθ⎛⎫-= ⎪⎝⎭,利用诱导公式和二倍角公式转化为2sin 2cos 2122sin 4πθθπθ⎛⎫=-=- ⎪⎛⎫- ⎪⎝⎝⎭⎭求解.【详解】因为sin 410πθ⎛⎫-= ⎪⎝⎭, 所以224sin 4sin 2cos 2co 25s 21224πππθθθθ⎡⎤⎛⎫⎛⎫=-=-=- ⎪⎛⎫-= ⎪⎝⎭ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 故答案为:2425【点睛】本题主要考查二倍角公式及诱导公式的应用,还考查了转化求解问题的能力,属于中档题.14.【分析】先分别设则在中由勾股定理得再分别表示出之后利用正切的和角公式求即可解决【详解】解:设则因为是直角三角形所以由勾股定理得:化简得在中在中所以又因为所以故答案为:【点睛】本题主要考查正切的和角公解析:4π【分析】先分别设PB x =,DQ y =,则在PCQ △中,由勾股定理得1xy x y -=+,再分别表示出tan BAP ∠,tan DAQ ∠,之后利用正切的和角公式求()tan BAP DAQ ∠+∠即可解决.【详解】解:设PB x =,DQ y =,则1CP x =-,1CQ y =-, 因为PCQ △是直角三角形,PB QD PQ +=,所以由勾股定理得:()()()22211x y x y -+-=+,化简得1xy x y -=+, 在ABP △中,tan BPBAP x AB∠==, 在ADQ △中,tan DQDAQ y AD∠==, 所以()tan tan tan 11tan tan 1BAP DAQ x yBAP DAQ DAQ BAP xy∠+∠+∠+∠===-∠∠-,又因为02BAP DAQ π<∠+∠<,所以,=4PAQ π∠故答案为:4π 【点睛】本题主要考查正切的和角公式,数据处理能力与运算能力,是中档题.15.【分析】根据三角公式得辅助角公式结合三角函数的对称性求出值再利用的取值范围求出函数的最小值【详解】解:令则则因为函数的图象关于直线对称所以即则平方得整理可得则所以函数因为所以当时即函数有最小值为故答解析:【分析】根据三角公式得辅助角公式,结合三角函数的对称性求出a 值,再利用x 的取值范围求出函数的最小值. 【详解】解:sin 2cos 2sin 2cos 2y x a x x x ⎫=+=+,令cos θ=,则sin θ=则)()sin 2cos cos 2sin 2y x x x θθθ=⋅+⋅=+. 因为函数sin 2cos 2y x a x =+的图象关于直线12x π=对称,所以sin 2cos 21212a ππ⎛⎫⎛⎫⨯+⨯= ⎪ ⎪⎝⎭⎝⎭,即2sin cos 166a a ππ⎛⎫⎛⎫+=±+ ⎪ ⎪⎝⎭⎝⎭, 则21312a a +=±+, 平方得22133144a a a ++=+. 整理可得()230a -=,则3a =,所以函数13sin 23cos 22sin 2cos 22sin 223y x x x x x π⎛⎫⎛⎫=+=+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭. 因为0,2x π⎡⎤∈⎢⎥⎣⎦,所以42,333x πππ⎡⎤+∈⎢⎥⎣⎦ , 当4233x ππ+=时,即2x π=,函数有最小值为3-.故答案为:3-. 【点睛】本题主要考查三角函数最值求解,结合辅助角公式和利用三角函数的对称性建立方程是解决本题的关键.16.1【分析】如图建系设P 点坐标则可得的坐标根据题意可得的表达式代入所求根据的范围利用三角函数求最值即可得答案【详解】取BC 中点O 以O 为原点OCOA 方向为x 轴y 轴正方向建系如图所示由题意得:所以如图以B解析:1 【分析】如图建系,设P 点坐标(cos ,sin )θθ,则可得,,AP AB AC 的坐标,根据题意,可得,λμ的表达式,代入所求,根据θ的范围,利用三角函数求最值,即可得答案. 【详解】取BC 中点O ,以O 为原点,OC ,OA 方向为x 轴y 轴正方向建系,如图所示由题意得:2sin 60OA =︒=(1,0),(1,0)A B C -, 如图以BC 为直径的半圆方程为:221(0)x y y +=≤, 设(cos ,sin )P θθ,因为sin 0θ≤,所以[,2]θππ∈,则(cos ,sin AP θθ=-,(1,3),(1,AB AC =--=-,因为AP ABAC λμ=+,所以cos sin θλμθ=-+⎧⎪⎨=-⎪⎩,整理可得11cos 2211cos 22μθθλθθ⎧=+⎪⎪⎨⎪=-⎪⎩,所以1111322(cos )cos sin()26222626πλμθθθθθ+=--++-=-+, 因为[,2]θππ∈,所以713[,]666πππθ+∈, 当1366ππθ+=时,sin()6πθ+取最大值12,所以2λμ+的最小值为31122-=, 故答案为:1 【点睛】解题的关键是在适当位置建系,进而可得点的坐标及向量坐标,利用向量的坐标运算,即可求得2λμ+的表达式,再利用三角函数图像与性质求解,综合性较强,考查分析理解,计算求值的能力,属中档题.17.【分析】利用表示向量再由可求得实数的值【详解】所以则为线段的中点则因此故答案为:【点睛】本题考查利用平面向量的基底表示求参数考查计算能力属于中等题解析:14-【分析】利用AB 、AC 表示向量AD ,再由12AE AD =可求得实数λ的值. 【详解】()22BC CD BD BC ==-,所以,32BD BC =, 则()33132222AD AB BD AB BC AB AC AB AB AC =+=+=+-=-+,E 为线段AD 的中点,则11332444AE AD AB AC AB AC λ==-+=+,因此,14λ=-.故答案为:14-. 【点睛】本题考查利用平面向量的基底表示求参数,考查计算能力,属于中等题.18.6【分析】根据平方处理求得即可得解【详解】在中已知点是边的中点解得则故答案为:6【点睛】此题考查平面向量的基本运算关键在于根据向量的运算法则求出模长根据数量积的运算律计算求解解析:6 【分析】 根据()12CP CA CB =+,平方处理求得2CB =,()12CP CA CA CB CA ⋅=+⋅即可得解. 【详解】在ABC △中,已知4CA =,3CP 23ACB π∠=,点P 是边AB 的中点, ()12CP CA CB =+ ()222124CP CA CB CA CB =++⋅ 211316842CB CB ⎛⎫⎛⎫=++⨯- ⎪ ⎪⎝⎭⎝⎭,解得2CB =则()()21111162462222CP CA CA CB CA CA CB CA ⎛⎫⎛⎫⋅=+⋅=+⋅=+⨯⨯-= ⎪ ⎪⎝⎭⎝⎭. 故答案为:6 【点睛】此题考查平面向量的基本运算,关键在于根据向量的运算法则求出模长,根据数量积的运算律计算求解.19.【分析】由周期公式可得由三角函数的中心对称可得结合即可得为奇数即可得由可得进而可得即可得解【详解】由可得由是奇函数可得函数的图象关于中心对称所以即又所以所以为奇数由可得因为在上没有最小值所以即故答案解析:511,612ππ⎛⎤⎥⎝⎦【分析】由周期公式可得ω,由三角函数的中心对称可得,3k k Z πϕπ=+∈,结合()06f f π⎛⎫< ⎪⎝⎭即可得k 为奇数,即可得()sin 23πf x x ⎛⎫=- ⎪⎝⎭,由[)0,x t ∈可得2,2333x t πππ⎡⎫-∈--⎪⎢⎣⎭,进而可得432332t πππ<-≤,即可得解. 【详解】由T π=可得22T πω==,()sin 23f x x πϕ⎛⎫=++ ⎪⎝⎭由3y f x π⎛⎫=- ⎪⎝⎭是奇函数可得函数()f x 的图象关于,03π⎛-⎫⎪⎝⎭中心对称, 所以2,33k k Z ππϕπ⎛⎫⨯-++=∈ ⎪⎝⎭,即,3k k Z πϕπ=+∈, 又()06f f π⎛⎫< ⎪⎝⎭,所以2sin sin 33ππϕϕ⎛⎫⎛⎫+<+ ⎪ ⎪⎝⎭⎝⎭, 所以,3k k πϕπ=+为奇数,()sin 2sin 2333f x x k x ππππ⎛⎫⎛⎫=+++=- ⎪ ⎪⎝⎭⎝⎭,由[)0,x t ∈可得2,2333x t πππ⎡⎫-∈--⎪⎢⎣⎭, 因为()f x 在[)0,t 上没有最小值,所以432332t πππ<-≤即511,612t ππ⎛⎤∈⎥⎝⎦. 故答案为:511,612ππ⎛⎤⎥⎝⎦. 【点睛】本题考查了三角函数图象与性质的应用,考查了运算求解能力,牢记知识点是解题关键,属于中档题.20.【分析】由题意画出图形由两角差的正切求出的正切值然后通过求解两个直角三角形得到和的长度作差后可得答案【详解】由图可知在中在中河流的宽度等于故答案为:【点睛】本题给出实际应用问题求河流在两地的宽度着重解析:1)【分析】由题意画出图形,由两角差的正切求出15︒的正切值,然后通过求解两个直角三角形得到DC 和DB 的长度,作差后可得答案. 【详解】由图可知,15DAB ∠=︒ ()tan 45tan 30tan15tan 453021tan 45tan 30︒-︒︒=︒-︒==-+︒︒在Rt ADB 中,60AD =(tan15602120DB AD ∴=⋅︒=⨯=-在Rt ADC 中,60,60DAC AD ∠=︒=tan 60DC AD ∴=⋅︒=()()1201201BC DC DB m ∴=-=-=∴河流的宽度BC 等于)1201m故答案为:1) 【点睛】本题给出实际应用问题,求河流在,B C 两地的宽度,着重考查了三角函数的定义、正余弦定理解三角形的知识,属于中档题.三、解答题21.(12)0,2⎡⎢⎣⎦. 【分析】(1)利用两角和与差的正、余弦公式、正弦余弦的二倍角公式进行化简代入函数值可得答案;(2)根据x 的范围可以得到26x π-及sin 26x π⎛⎫-⎪⎝⎭的范围,再求()f x 的值域可得答案. 【详解】(1)23()2sin cos 3sin cos 22f x x x x x x x ⎛⎫=⋅+=⋅+ ⎪ ⎪⎝⎭31cos 2sin 222x x -=26x π⎛⎫=-+⎪⎝⎭,所以,66f ππ⎛⎫==⎪⎝⎭(2)因为0,2x π⎡⎤∈⎢⎥⎣⎦,所以52,666x πππ⎡⎤-∈-⎢⎥⎣⎦,所以1sin 2,162x π⎛⎫⎡⎤-∈- ⎪⎢⎥⎝⎭⎣⎦,262x π⎡⎛⎫-∈-⎢⎪⎝⎭⎣,()f x 的值域为0,2⎡⎢⎣⎦.【点睛】本题考查了三角函数的化简和性质,关键点是要熟练掌握三角函数的性质,考查了学生的基本运算、基础知识.22.(1)511[,] ()1212k k k Z ππππ++∈;(2)3[2-. 【分析】(1)由二倍角公式,两角差的正弦公式化函数为一个角的一个三角函数形式,然后结合正弦函数的单调区间求解.(2)由图象变换得出()g x ,由整体法可求值域. 【详解】解:(1)()23()22sin 122f x x x =+-=32cos222x x -23x π⎫⎛=- ⎪⎝⎭因为:3222232k x k πππππ+≤-≤+5111212k x k ππππ⇔+≤≤+.所以函数的单调递减区间是511[,] ()1212k k k Z ππππ++∈(2)由题可知, ()))4312g x x x πππ=+-=-.因为1344x ππ-≤≤⇔123123x πππ-≤-≤,所以sin()112x π≤-≤.故()g x 在3[,]44ππ-上的值域为3[2-. 【点睛】方法点睛:本题考查两角差的正弦公式,二倍角公式,考查正弦函数的性质.此类问题的解题方法是:利用二倍角公式降幂,利用诱导公式、两角和与差的正弦(余弦)公式展开与合并,最终把函数化为()sin()f x A x m ωϕ=++形式,然后结合正弦函数性质求解. 如果求函数值域,则可由x 的范围求出x ωϕ+的范围,然后由正弦函数性质得值域. 23.(1)52x =;(2)()2,1或2211,55⎛⎫⎪⎝⎭. 【分析】(1)利用//AB BC ,结合向量共线的坐标表示列方程,解方程求得x 的值.(2)设M 点的坐标为()6,3λλ,利用MA MB ⊥,结合向量垂直的坐标表示列方程,解方程求得λ的值,进而求得M 点的坐标. 【详解】(1)()1,4AB OB OA =-=-;()3,2BC OC OB x =-=- ∵A 、B 、C 共线,∴//AB BC ∴()2430x +-= ∴52x =. (2)∵M 在直线OC 上,∴设()6,3OM OC λλλ== ∴()26,53MA OA OM λλ=-=--()36,13MB OB OM λλ=-=--∵MA MB ⊥∴()()()()263653130λλλλ--+--= 即:24548110λλ-+= 解得:13λ=或1115λ=. ∴()2,1OM =或2211,55OM ⎛⎫=⎪⎝⎭. ∴点M 的坐标为()2,1或2211,55⎛⎫⎪⎝⎭. 【点睛】本小题主要考查向量共线、垂直的坐标表示,属于中档题. 24.(1)证明见解析;(2)4. 【分析】 (1)由1sin 2OAB S OA OB θ=⋅⋅△,再根据'OB OB =,sin cos θα=,转化OAB S =△1'2OA OB =⋅,利用平面向量的数量积运算结合行列式证明. (2)由(1)的结论,由MNQ OMN ONQ OMQ S S S S =+-△△△△求解.(1)如图所示. ∵1sin 2OAB S OA OB θ=⋅⋅△, 又因为'OB OB =,sin cos θα=, ∴1'cos 2OAB S OA OB α=⋅⋅△ 1'2OA OB =⋅ ()()11221,,2x y y x =⋅- ()121212x y y x =+- 122112x y x y =-, 又∵11122122x y x y x y x y =-, ∴112212OABx y S x y =△.(2)∵MNQ OMN ONQ OMQ S S S S =+-△△△△ ∴213421111341616222MNQ S =+-△111(2431)(3614)(2611)222=⨯-⨯+⨯-⨯-⨯-⨯ 511722=+- 4=【点睛】本题主要考查平面向量的数量积运算,行列式以及面积公式的应用,还考查了运算求解的能力,属于中档题. 25.(1)23ω=;(2)[1m ∈+. 【分析】(1)根据条件得到4f π⎛⎫⎪⎝⎭为函数的最大值,结合函数的最值求出ω即可. (2)根据条件求出()g x 的解析式,在同一坐标系中,作出函数()y g x =和y m =的图象,利用数形结合求解.(1)若()4f x f π⎛⎫⎪⎝⎭对任意的实数x 都成立,则4f π⎛⎫⎪⎝⎭为函数的最大值, 则2,46k k ππωπ-=∈Z ,得2,46k k ππωπ=+∈Z ,即28,3k k ω=+∈Z ,∵0>ω,∴当0k =时,ω取得最小值,最小值为23ω=;(2)在(1)中ω值的条件下23ω=,则2()2cos 36f x x π⎛⎫=- ⎪⎝⎭,2()()12cos 1,(0)36g x f kx kx k π⎛⎫=+=-+> ⎪⎝⎭,∵()g x 的最小正周期为π,∴223k ππ=,即3k =,则()2cos 216g x x π⎛⎫=-+ ⎪⎝⎭,作出函数()03y g x x π⎛⎫=≤≤ ⎪⎝⎭和y m =的图象如图:03x π≤≤,则2662x πππ-≤-≤,所以0cos 216x π⎛⎫≤-≤ ⎪⎝⎭,则()13g x ≤≤,且()02cos 1316g π⎛⎫=-+= ⎪⎝⎭,由图象知:要使()g x m =恰有两个不同的解,则[13,3)m ∈+. 【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.26.(1)答案见解析; (2)答案见解析;(3)72π3π ,3π,. 【分析】(1)令26x π+分别等于0,2π,π,32π,2π,求出对应的坐标,再描点作图即可作出函数sin()y A x ωϕ=+在一个周期上的简图.(2)将函数sin y x =的横坐标不变,纵坐标变为原来的3倍,再将得到的图象向左平移6π得,然后将得到的图象的纵坐标不变,横坐标变为原来的12倍即可. (3)由03()2f x =,可得0,x k k Z π=∈或03,x k k Z ππ=+∈,结合0[2π3π]x ∈,即可得答案. 【详解】 (1)列表:26x π+2ππ32π 2πx12π-6π 512π 23π 1112π()f x3 03-(2)将函数sin y x =的横坐标不变,纵坐标变为原来的3倍得到3sin y x =,再将得到的图象向左平移6π得到3sin 6y x π⎛⎫=+ ⎪⎝⎭,再将得到的图象的纵坐标不变,横坐标变为原来的12倍得到,3sin 26y x π⎛⎫=+ ⎪⎝⎭; (3)因为03()2f x =,所以00313sin 2sin 26262x x ππ⎛⎫⎛⎫+=⇒+= ⎪ ⎪⎝⎭⎝⎭,022,66x k k Z πππ+=+∈或0522,66x k k Z πππ+=+∈, 即0,x k k Z π=∈或03,x k k Z ππ=+∈,又因为0[2π3π]x ∈,, 所以0x 的值为72π3π ,3π,. 【点睛】方法点睛:三角函数图象变换步骤:sin y x =先向左(0ϕ>)或向右(0ϕ<)平移ϕ个单位长度,得到函数sin()y x ϕ=+的图象;然后使曲线上各点的横坐标变为原来的1ω倍(纵坐标不变),得到函数()sin y x ωϕ=+的图象;最后把曲线上各点的纵坐标变为原来A (横坐标不变),这时的曲线就是()y Asin x ωϕ=+的图象.。

【鲁教版】高中数学必修四期末模拟试卷及答案(2)

一、选择题1.已知tan 2α=,则sin cos 2sin cos αααα+=-( )A .1B .1-C .2D .2-2.化简22221sin sin cos cos cos 2cos 22αβαβαβ+-=( ) A .12B .21-C .14D .221-3.设等差数列{}n a 满足:()22222222272718sin cos cos cos sin sin 1sin a a a a a a a a -+-=+,公差()1,0d ∈-.若当且仅当11n =时,数列{}n a 的前n 项和n S 取得最大值,则首项1a 的取值范围是( ) A .9,10ππ⎛⎫⎪⎝⎭B .11,10ππ⎡⎤⎢⎥⎣⎦C .9,10ππ⎡⎤⎢⎥⎣⎦D .11,10ππ⎛⎫ ⎪⎝⎭4.在ABC 中三内角A ,B ,C 的对边分别为a ,b ,c ,且2223b c bc a +-=,23bc a =,则角C 的大小是( )A .6π或23π B .3πC .23π D .6π 5.设平面向量()a=1,2,()b=2,y -,若a b ,则2a b -等于( ) A .4B .5C .35D .456.已知O 为坐标原点,点M 的坐标为(2,﹣1),点N 的坐标满足111x y y x x +≥⎧⎪-≤⎨⎪≤⎩,则OM ON ⋅的最大值为( )A .2B .1C .0D .-17.如下图,四边形OABC 是边长为1的正方形,点D 在OA 的延长线上,且2OD =,点P 为BCD 内(含边界)的动点,设(,)OP OC OD R αβαβ=+∈,则αβ+的最大值等于( )A .3B .2C .52D .328.已知向量a 、b 、c 满足0a b c ++=,且a b c <<,则a b ⋅、b c ⋅、a c ⋅中最小的值是( ) A .a b ⋅B .a c ⋅C .b c ⋅D .不能确定9.设函数5()sin 26f x x π⎛⎫=-⎪⎝⎭,将函数()f x 的图象向左平移()0ϕϕ>个单位长度,得到函数()g x 的图象,若()g x 为偶函数,则ϕ的最小值是( ) A .6π B .3π C .23π D .56π 10.下列函数中,既是偶函数,又在(),0-∞上是增函数的是( ) A .()22xxf x -=- B .()23f x x =-C .()2ln =-f x xD .()cos3=f x x x11.已知函数()tan()0,2f x x πωϕωϕ⎛⎫=+≠<⎪⎝⎭,点2,03π⎛⎫⎪⎝⎭和7,06π⎛⎫⎪⎝⎭是其相邻的两个对称中心,且在区间54,63ππ⎛⎫⎪⎝⎭内单调递减,则ϕ=( ) A .6π B .6π-C .3π D .3π-12.设函数()tan 3f x x π=-,()sin 3g x x π⎛⎫=-⎪⎝⎭,则函数()()()h x f x g x =-在区间[]2,2ππ-上的零点个数是( ) A .4B .5C .12D .13二、填空题13.已知α满足1sin 3α=,那么ππcos cos 44αα⎛⎫⎛⎫+- ⎪ ⎪⎝⎭⎝⎭的值为________. 14.已知()tan 2tan αββ+=,,(0,)2παβ∈,则当α最大时,tan2α=________.15.在直角三角形ABC 中,C ∠为直角,45BAC ∠>,点D 在线段BC 上,且13CD CB =,若1tan 2DAB ∠=,则BAC ∠的正切值为_____.16.已知正方形ABCD 的边长为4,若3BP PD =,则PA PB ⋅的值为_________________. 17.已知O 为ABC 内一点,且满足305OA OB OC =++,延长AO 交BC 于点D .若BD DC λ=,则λ=_____.18.在ABC 中,AB =AC =G 为ABC 的重心,则AG BC ⋅=________.19.对任意0,4πϕ⎡⎤∈⎢⎥⎣⎦,函数()sin()f x x ωϕ=+在区间,2ππ⎡⎤⎢⎥⎣⎦上单调递增,则实数ω的取值范围是________.20.某地区每年各个月份的月平均最高气温近似地满足周期性规律,因此第n 个月的月平均最高气温()G n 可近似地用函数()()cos G n A n k ωϕ=++来刻画,其中正整数n 表示月份且[]1,12n ∈,例如1n =表示1月份,n 和k 是正整数,0>ω,()0,πϕ∈.统计发现,该地区每年各个月份的月平均最高气温有以下规律:①该地区月平均最高气温最高的7月份与最低的1月份相差30摄氏度; ②1月份该地区月平均最高气温为3摄氏度,随后逐月递增直到7月份达到最高; ③每年相同的月份,该地区月平均最高气温基本相同. 根据已知信息,得到()G n 的表达式是______.三、解答题21.设函数()2cos 22sin 3f x x x π⎛⎫=++ ⎪⎝⎭. (1)求函数()f x 取得最大值时的自变量x 的值; (2)求函数()f x 的单调递增区间.22.在直角坐标系xOy 中,已知锐角α和β的顶点都在坐标原点,始边都与x 轴非负半轴重合,且终边与单位圆分别交于点5,13P m ⎛⎫ ⎪⎝⎭和点3,5Q n ⎛⎫ ⎪⎝⎭,求()sin αβ-的值. 23.已知椭圆22221(0)x y a b a b+=>>的左右焦点分别为1F 、2F ,左顶点为A ,若122F F =,椭圆的离心率为12e =. (1)求椭圆的标准方程.(2)若P 是椭圆上的任意一点,求1PF PA ⋅的取值范围. 24.已知非零向量a ,b 满足1a =且()()12a b a b -⋅+=. (Ⅰ)若12a b ⋅=,求向量a ,b 的夹角; (Ⅱ)在(Ⅰ)的条件下,求2a b -的值.25.已知函数()sin()2cos(2)f x a x x θθ=+++,其中a R ∈,,22ππθ⎛⎫∈- ⎪⎝⎭. (1)当0a =,6πθ=时,求()f x 在区间[]0,π上的值域;(2)若关于θ的方程()0fπ=有两个不同的实数解,求a 的取值范围.26.已知函数()()sin 0,0,2f x A x A πωϕωϕ⎛⎫=+>><⎪⎝⎭的部分图象如图所示.(1)求()f x 的解析式;(2)将()f x 图象上所有点的横坐标变为原来的2倍(纵坐标不变),得到()g x 的图象.又()14g θ=求2114sin sin 63ππθθ⎛⎫⎛⎫-+-⎪ ⎪⎝⎭⎝⎭的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】已知正切值要求正余弦值,可以利用商的关系将“弦化切”,代入数值即可. 【详解】原式分子分母同除以cos α得 原=tan 12112tan 141αα++==--故选:A. 【点睛】已知正切值求正余弦值,通常有两种做法:一是将所求式子分子分母同除cos α或2cos α,化为tan α求解; 二是利用sin tan cos ααα=得sin tan cos ααα=代入消元即可. 2.A解析:A 【分析】由原式利用二倍角公式,和同角三角函数基本关系进行化简,即可得到结果. 【详解】()()2222cos 2cos 2cos sin cos sin αβααββ=--22222222cos cos cos sin sin cos sin sin αβαβαβαβ=--+,所以22221sin sin cos cos cos 2cos 22αβαβαβ+-()2222222222221sin sin cos cos cos cos cos sin sin cos sin sin 2αβαβαβαβαβαβ=+---+()222222221sin sin cos cos +cos sin +sin cos 2αβαβαβαβ=+ ()()()2222221sin sin +cos cos cos +sin 2αββαββ=+()2211sin cos 22αα=+=. 故选:A 【点睛】本题主要考查三角函数的化简求值,涉及到同角三角函数基本关系和三角恒等变换,属于中档题.3.D解析:D 【解析】因为22222222272718sin cos cos cos sin sin 1sin()a a a a a a a a -+-=+,所以由余弦二倍角公式、平方差公式及两角和与差的余弦公式可得2272718cos 2cos()cos()1sin()a a a a a a a -+-+=+,再运用积化和差公式可得227181cos 2[cos 2cos 2]21sin()a a a a a -++=+,即72181[cos 2cos 2]21sin()a a a a -=+,再由差化积公式可得727218sin()sin()1sin()a a a a a a --+=+.由于{}n a 是等差数列,因此1827a a a a +=+,即1827sin()sin()a a a a +=+,所以72sin()1a a -=-即sin51d =-注意到()1,0d ∈-,则()55,0d ∈-,所以5210d d ππ=-⇒=-,故对称轴方程故等差数列的前n 项和是1(1)2n n n S na d -=+,即221()()222020n d d S n a n n a n ππ=+-=-++,其对称轴是1202a n ππ+=,由题设可得1202123222a ππ+<<,即11110a ππ<<,应选答案D .点睛:解答本题的关键是先借助三角变换中的两角和差的余弦公式、余弦二倍角公式、积化和差与和差化积公式等三角变换公式进行化简,再借助差数列的定义和性质求出等差数列的公差10d π=-,然后将等差数列的前n 项和公式1(1)2n n n S na d -=+变形为221()()222020n d d S n a n n a n ππ=+-=-++,借助对称轴11n =的位置建立不等式组1202123222a ππ+<<,进而求得数列首项的取值范围是11110a ππ<<. 4.A解析:A 【分析】由222b c a +=可得cosA 2=2bc =可得2A =C 值. 【详解】∵222b c a +=,∴cos A 222222b c a bc bc +-===, 由0<A <π,可得A 6π=,∵2bc =,∴24A =∴5sin 6C sinC π⎛⎫-=⎪⎝⎭)1sinCcosC 122cos C +-=解得50C 6π<< ∴2C=3π或43π,即C=6π或23π 故选A 【点睛】本题考查正弦定理和余弦定理的运用,同时考查两角和差的正弦公式和内角和定理,属于中档题.5.D解析:D 【分析】利用向量共线定理即可得出y ,从而计算出2a b -的坐标,利用向量模的公式即可得结果. 【详解】//,220a b y ∴-⨯-=,解得4y =-,()()()221,22,44,8a b ∴-=---=,2248a b ∴-=+= D.本题主要考查平面向量平行的性质以及向量模的坐标表示,属于中档题. 利用向量的位置关系求参数是出题的热点,主要命题方式有两个:(1)两向量平行,利用12210x y x y -=解答;(2)两向量垂直,利用12120x x y y +=解答.6.A解析:A 【分析】根据题意可得,OM ON ⋅=2x ﹣y ,令Z =2x ﹣y ,做出不等式组所表示的平面区域,做直线l 0:2x ﹣y =0,然后把直线l 0向可行域内平移,结合图象可判断取得最大值时的位置. 【详解】根据题意可得,OM ON ⋅=2x ﹣y ,令Z =2x ﹣y做出不等式组所表示的平面区域,如图所示的△ABC 阴影部分:做直线l 0:2x ﹣y =0,然后把直线l 0向可行域内平移, 到点A 时Z 最大,而由x+y=11x ⎧⎨=⎩可得A (1,0), 此时Z max =2. 故选:A . 【点睛】本题主要考查了利用线性规划求解最优解及目标函数的最大值,解题的关键是正确作出不等式组所表示的平面区域,并能判断出取得最大值时的最优解的位置.利用线性规划求最值的步骤:(1)在平面直角坐标系内作出可行域.(2)考虑目标函数的几何意义,将目标函数进行变形.常见的类型有截距型(ax by +型)、斜率型(y bx a++型)和距离型(()()22x a y b +++型).(3)确定最优解:根据目标函数的类型,并结合可行域确定最优解.(4)求最值:将最优解代入目标函数即可求出最大值或最小值。

高中高一数学第二学期期末试题必修四

15_________________________程或者演算步骤〕线※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※励志赠言经典语录精选句;挥动**,放飞梦想。

厚积薄发,一鸣惊人。

关于努力学习的语录。

自古以来就有许多文人留下如头悬梁锥刺股的经典的,而近代又有哪些经典的高中励志赠言出现呢?小编筛选了高中励志赠言句经典语录,看看是否有些帮助吧。

好男儿踌躇满志,你将如愿;真巾帼灿烂扬眉,我要成功。

含泪播种的人一定能含笑收获。

贵在坚持、难在坚持、成在坚持。

功崇惟志,业广为勤。

耕耘今天,收获明天。

成功,要靠辛勤与汗水,也要靠技巧与方法。

常说口里顺,常做手不笨。

不要自卑,你不比别人笨。

不要自满,别人不比你笨。

高三某班,青春无限,超越梦想,勇于争先。

敢闯敢拼,**协力,争创佳绩。

丰富学校体育内涵,共建时代校园文化。

奋勇冲击,永争第一。

奋斗冲刺,誓要蟾宫折桂;全心拼搏,定能金榜题名。

放心去飞,勇敢去追,追一切我们为完成的梦。

翻手为云,覆手为雨。

二人同心,其利断金。

短暂辛苦,终身幸福。

东隅已逝,桑榆非晚。

登高山,以知天之高;临深溪,以明地之厚。

大智若愚,大巧若拙。

聪明出于勤奋,天才在于积累。

把握机遇,心想事成。

奥运精神,永驻我心。

“想”要壮志凌云,“干”要脚踏实地。

**燃烧希望,励志赢来成功。

楚汉名城,喜迎城运盛会,三湘四水,欢聚体坛精英。

乘风破浪会有时,直挂云帆济沧海。

不学习,如何养活你的众多女人。

不为失败找理由,要为成功想办法。

不勤于始,将悔于终。

不苦不累,高三无味;不拼不搏,高三白活。

不经三思不求教不动笔墨不读书,人生难得几回搏,此时不搏,何时搏。

不敢高声语,恐惊读书人。

不耻下问,学以致用,锲而不舍,孜孜不倦。

博学强识,时不我待,黑发勤学,自首不悔。

播下希望,充满**,勇往直前,永不言败。

保定宗旨,砥砺德行,远见卓识,创造辉煌。

百尺高梧,撑得起一轮月色;数椽矮屋,锁不住五夜书声。

高一数学(必修4)期末测试题及其答案

高一数学(必修4)期末测试题及其答案编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高一数学(必修4)期末测试题及其答案)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高一数学(必修4)期末测试题及其答案的全部内容。

高中数学必修4 期末测试题班级: 姓名: 一.选择题:(本大题共30小题,每小题2分,共60分). 1.的正弦值等于( A )(A ) (B) (C ) (D ) 2.215°是 ( C ) (A )第一象限角(B )第二象限角(C)第三象限角 (D )第四象限角3.角的终边过点P (4,-3),则的值为( C ) (A )4 (B)-3 (C) (D )4.若sin <0,则角的终边在( D )(A )第一、二象限 (B)第二、三象限 (C)第二、四象限 (D)第三、四象限5.函数y=cos2x 的最小正周期是( A)(A ) (B) (C ) (D) 6.给出下面四个命题:①;②;③; ④。

其中正确的个数为( B ) (A)1个 (B)2个 (C)3个(D )4个7.向量,,则( B ) (A )⊥ (C )与的夹角为60° (D )与的夹角为30° 8. 的结果是 ( B ) (A ) (B) (C ) (D) 9. 函数是 ( C ) (A ) 周期为的奇函数 (B) 周期为的偶函数(C) 周期为的奇函数 (D) 周期为的偶函数10.要得到函数y=sin(2x-)的图象,只需要将y=sin2x 的图象 ( A )(A .向右平移个单位 B.向左平移个单位C 。

向右平移个单位 D 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一数学第二学期期末模拟训练(二)(必修4)2013.6说明:本试卷分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷60分,第Ⅱ卷90分,共150分,答题时间120分钟.第Ⅰ卷(选择题,共60分)一、选择题:每小题5分,共60分,在每小题给出的四个选项中,只有一个选项是正确的,地请把正确地选项填在题后的括号内. 1.函数)252sin(π+=x y 的一条对称轴方程是 ( )A .2π-=xB .4π-=xC .8π=xD .45π=x 2.角θ满足条件sin2θ<0,且cos θ-sin θ<0,则θ在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限3.己知sin θ+cos θ=51,θ∈(0,π),则cot θ等于 ( )A .43B .-43C . ±43D .-344.已知O 是△ABC 所在平面内一点,若OA +OB +OC =0,且|OA |=|OB |=|OC |,则△ABC 是 ( )A .任意三角形B .直角三角形C .等腰三角形D .等边三角形 5.己知非零向量a 与b 不共线,则 (a +b )⊥(a -b )是|a |=|b |的 ( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件6.化简6sin 2008cos 2002sin 6cos 2008sin 2002sin +-的结果是 ( )A .28tanB .28tan -C .28cot -D .28cot7.已知向量)sin ,(cos θθ=a ,向量)1,3(-=b 则|2|b a -的最大值,最小值分别是( )A .0,24B .24,4C .16,0D .4,08.把函数y =sin x 的图象上所有点的横坐标都缩小到原来的一半,纵坐标保持不变,再把 图象向左平移4π个单位,这时对应于这个图象的解析式 ( )A .y =cos2xB .y =-sin2xC .y =sin(2x -4π) D .y =sin(2x +4π) 9.)20(cos 3sin π≤≤+=x x x y ,则y 的最小值为( )A .– 2B .– 1C .1D .310.在下列区间中,是函数)4sin(π+=x y 的一个递增区间的是( )A .],2[ππB .]4,0[πC .]0,[π-D .]2,4[ππ11.把函数y =x 2+4x +5的图象按向量 a 经一次平移后得到y =x 2的图象,则a 等于 ( )A .(2,-1)B .(-2,1)C .(-2,-1)D .(2,1)12.函数)20,0,)(sin(πϕωϕω<≤>∈+=R x x y 的部分图象如图,则 ( )A .4,2πϕπω==B .6,3πϕπω== C .4,4πϕπω==D .45,4πϕπω==第Ⅱ卷(非选择题,共90分)二、填空题:每小题5分,共20分,把正确答案填写在题中的横线上,或按题目要求作答. 13.已知,4)4tan()4tan(=++-θπθπ且,2πθπ-<<-则θsin = .14.函数21cos sin lg -+=x x y 的定义域为 . 15.已知奇函数)(x f 满足)()2(x f x f -=+,且当)1,0(∈x 时,.2)(xx f =则)18(log 21f 的值为 .16.在△ABC 中,A (-1,1),B (3,1),C (2,5),角A 的内角平分线交对边于D ,则向量AD 的坐标等于 .三、解答题:共70分.要求写出必要的文字说明、重要演算步骤,有数值计算的要明确写出数值和单位,只有最终结果的不得分.17.(本题满分10分)已知).1,2(),0,1(==b a(I )求|3|b a+;(II )当k 为何实数时,k -ab与b a3+平行, 平行时它们是同向还是反向?18.(本题满分12分)已知51cos sin ,02=+<<-x x x π. (I )求sin x -cos x 的值;(Ⅱ)求xx x x x x cot tan 2cos 2cos 2sin 22sin 322++-的值.19.(本题满分12分)已知函数xx x x f 2cos 4sin 5cos 6)(24-+=.(Ⅰ)求函数f (x )的定义域和值域; (Ⅱ)判断它的奇偶性.20.(本题满分12分)设函数b a x f ⋅=)(,其中向量a =(2cos x ,1),b =(cos x ,3sin2x ),x ∈R.(Ⅰ)若f (x )=1-3且x ∈[-3π,3π],求x ; (Ⅱ)若函数y =2sin2x 的图象按向量c =(m ,n )(|m |<2π)平移后得到函数y=f (x )的图象, 求实数m 、n 的值.21.(本题满分12分)如图,某观测站C 在城A 的南偏西︒20方向上,从城A 出发有一条公路,走向是南偏东︒40,在C 处测得距离C 处31千米的公路上的B 处有一辆正沿着公路向城A 驶去,行驶了20千米后到达D 处,测得C 、D 二处间距离为21千米,这时此车距城A 多少千米?22.(本题满分12分)某港口水深y (米)是时间t (240≤≤t ,单位:小时)的函数,记作)(t f y =,下面是某日水深的数据t (小时)0 3 6 9 12 15 18 21 24 y (米)10.013.09.97.010.013.010.17.010.0经长期观察:)(t f y =的曲线可近似看成函数b t A y +=ωsin 的图象(A > 0,0>ω) (I )求出函数)(t f y =的近似表达式;(II )一般情况下,船舶航行时,船底离海底的距离为5米或5米以上时认为是安全的.某船吃水深度(船底离水面的距离)为6.5米,如果该船希望在同一天内安全进出港,请问:它至多能在港内停留多长时间?高一数学第二学期期末模拟训练(二)(必修4)2013.6参考答案一、选择题1.A 2.B 3.B 4.D 5.C 6.C 7.D 8.A 9.C 10.B 11.A 12.C 二、填空题13.21- 14.}322|{Z k k x k x ∈+≤<πππ 15.89- 16.(916,932) 三、解答题17.解:(I )b a 3+= (1,0) + 3(2,1) = ( 7,3) , ∴|3|b a+= 2237+=58. (II )k -a b = k(1,0)-(2,1)=(k -2,-1). 设k -a b =λ(b a3+),即(k -2,-1)= λ(7,3),∴⎩⎨⎧=-=-λλ3172k ⎪⎩⎪⎨⎧-=-=⇒3131λk . 故k= 31-时, 它们反向平行.18.解法一:(Ⅰ)由,251cos cos sin 2sin ,51cos sin 22=++=+x x x x x x 平方得 即 .2549cos sin 21)cos (sin .2524cos sin 22=-=--=x x x x x x 又,0cos sin ,0cos ,0sin ,02<-><∴<<-x x x x x π故 .57cos sin -=-x x(Ⅱ)xx x x x x xx x x x x sin cos cos sin 1sin 2sin 2cot tan 2cos 2cos 2sin 2sin 3222++-=++-sin cos (2cos sin )121108()(2).255125x x x x =--=-⨯-=-解法二:(Ⅰ)联立方程⎪⎩⎪⎨⎧=+=+.1cos sin ,51cos sin 22x x x由①得,cos 51sin x x -=将其代入②,整理得,012cos 5cos 252=--x x ①②⎪⎪⎩⎪⎪⎨⎧=-=∴<<-=-=∴.54cos ,53sin ,02.54cos 53cos x x x x x π 或 故 .57cos sin -=-x x(Ⅱ)xx xx x x cot tan 2cos 2cos 2sin 2sin 322++- xxx x x xsin cos cos sin 1sin 2sin 22++-=sin cos (2cos sin )3443108()(2).5555125x x x x =--=-⨯⨯-+=- 19.解:(I )由cos2x ≠0得22ππ+=k x ,解得x ≠Z k k ∈+,42ππ,所以f(x)的定义域为 R x x ∈{且x ≠Z k k ∈+,42ππ} (II )∵f(x)的定义域关于原点对称且f(-x)=f(x), ∴f(x)为偶函数. (III )当x ≠Z k k ∈+,42ππ时, 因为1cos 32cos )1cos 3)(1cos 2(2cos 4sin 5cos 6)(22224-=--=-+=x x x x x x x x f , 所以f(x)的值域为1{-y ≤1122y y <<或者≤2}. 20.解:(Ⅰ)依题设,f(x)=2cos 2x+3sin2x=1+2sin(2x+6π).由1+2sin(2x+6π)=1-3,得sin(2x+6π)=-23.∵-3π≤x ≤3π,∴-2π≤2x+6π≤65π,∴2x+6π=-3π, 即x=-4π.(Ⅱ)函数y=2sin2x 的图象按向量c=(m ,n)平移后得到函数y=2sin2(x-m)+n 的图象,即函数y=f(x)的图象.由(Ⅰ)得 f(x)=2sin2(x+12π)+1. ∵|m|<2π,∴m=-12π,n=1.21.解:在BCD ∆中,21=CD ,20=BD ,31=BC ,由余弦定理得,7120212312021cos 222-=⨯⨯-+=∠BDC所以774cos 1sin 2=∠-=∠BDC BDC . 在ACD ∆中,CD =21,)60sin(sin 604020︒-∠=∠︒=︒+︒=∠BDC ACD CAD ,=143560sin 60cos sin =︒∠-︒∠⋅⋅BDC BDC . 由正弦定理得=∠∠=⋅CADACDCD AD sin sin 1523143521=⋅(千米). 所以此车距城A 有15千米. 22.解:(I )由已知数据,易知)(t f y =的周期为T = 12,∴ 62ππω==T . 由已知,振幅13,3,7,10.A b A A b b +==⎧⎧⎨⎨+==⎩⎩得 ∴ 106sin 3+=t y π. (II )由题意,该船进出港时,水深应不小于5 + 6.5 = 11.5(米),∴ 13sin1011.5,sin.662tt ππ+≥≥即 ∴ πππππ652662+≤≤+k t k . ∴ )(512112z k k t k ∈+≤≤+. 故该船可在当日凌晨1时进港,17时出港,它在港内至多停留16小时.。

相关文档
最新文档