酶工程课后题
酶工程课后题答案.doc

第一章1.简述酶与一般催化剂的共性以及作为生物催化剂的特点共同点:只能催化热力学所允许的的化学反应,缩短达到化学平衡的时间,而不改变平衡点:反应前后酶本身没有质和量的改变:很少量就能发挥较大的催化作用:其作用机理都在于降低了反应的活化能。
酶作为生物催化剂的特点:1.极高的催化率;2.高度专一性;3.酶活的可调节性;酶的不稳定性。
5.酶失活的因素和机理。
酶失活的因素主要包括物理因素,化学因素和生物因素物理因素1热失活:热失活是由于热伸展作用使酶的反应基团和疏水区域暴露,促使蛋白质聚合。
2冷冻和脱水:很多变构酶在温度降低是会产生构象变化。
在冷冻过程中,溶质(酶和盐)随着水分子的结晶而被浓缩,引起酶微环境中的pH和离子强度的剧烈改变,很容易引起蛋白质的酸变性。
3.辐射作用:电离辐射和非电离辐射都会导致多肽链的断裂和酶活性丧失。
4.机械力作用:化学因素1.极端pH:极端pH远离蛋白质的等电点,酶蛋白相同电荷间的静电斥力会导致蛋白肽链伸展,埋藏在酶蛋白内部非电离残基发生电离,启动改变。
交联或破坏氨基酸的化学反应,结果引起不可逆失活。
极端pH也容易导致蛋白质水解。
2.氧化作用:酶分子中所含的带芳香族侧链的氨基酸以及Met, Cys等,与活性氧有极高的反应性,极易受到氧化攻击。
3.聚合作用:加热或高浓度电介质课破坏蛋白质胶体溶液的稳定性,促使蛋白质结构发生改变,分子间聚合并沉淀。
4.表面活性剂和变性剂:表面活性剂主要改变酶分子正常的折叠,暴露酶分子疏水内核的疏水基团,使之变性;变性剂与酶分子结合,改变其稳定性,使之发生变性。
生物因素微生物或蛋白水解酶的作用使酶分子被水解。
6.简述酶活力测定方法的原理直接测定法:有些酶促反应进行一段时间后,酶底物或产物的变量可直接检测。
间接测定法:有些酶促反应的底物或产物不易直接检测,一次必须与特定的化学试剂反应,形成稳定的可检测物。
酶偶联测定法:与间接测定法相类似,只是使用一指示酶,使第一酶的产物在指示酶的作用下转变成可测定的新产物。
酶工程习题(含参考答案)

酶工程习题(含参考答案)一、单选题(共47题,每题1分,共47分)1.酶的提取是()的技术过程。
A、从含酶物料中分离获得所需酶B、使胞内酶从含酶物料中充分溶解到溶剂或者溶液中C、从含酶溶液中分离获得所需酶D、使酶从含酶物料中充分溶解到溶剂或者溶液中正确答案:D2.有些酶在细胞进入平衡期以后还可以继续合成较长的一段时间,这是由于()。
A、该酶所对应的mRNA稳定性好B、该酶所对应的DNA稳定性好C、细胞自溶后使酶分泌出来D、培养基中还有充足的营养成分正确答案:A3.对酶的空间结构和催化机理有充分了解的基础上,对酶的结构进行精确的调控,从而获得具有所需催化活性的新酶的方法称为()。
A、酶的人工改造B、酶的理性设计C、酶的定向进化D、酶的理性进化正确答案:B4.DNA重排操作中,由亲本基因通过DNase I剪切获得的随机片段()。
A、具有同样长度、无序列倾向性B、具有同样长度、有序列倾向性C、具有不同长度、无序列倾向性D、具有不同长度、有序列倾向性正确答案:D5.天苯肽是由()缩合而成。
A、L-天冬氨酸的a-羧基与D-苯丙氨酸甲酯的a-羧基B、L-天冬氨酸的a-羧基与L-苯丙氨酸甲酯的氨基C、L-天冬氨酸的a-羧基与L-苯丙氨酸的氨基D、L-天冬氨酸的a-羧基与L-苯丙氨酸甲酯的a-羧基正确答案:B6.以下以代号表示的试剂中哪种能用于组氨酸咪唑基的化学修饰的()。
A、DNFBB、DNSC、DPCD、DTNB正确答案:C7.搅拌罐反应器中进行某酶催化反应,反应液体积为5立方米,反应液温度从20℃升至40℃,热利用率为80%,反应过程中实际所需热量为()kcal。
A、125000B、125C、80D、80000正确答案:A8.以下不是用于酶分子修饰的大分子修饰剂的是()。
A、戊二醛B、右旋糖苷C、肼D、聚乙二醇E、肝素正确答案:A9.动物细胞的营养要求较复杂,必须供给各种氨基酸、维生素、激素和生长因子等,一般加入()就可以满足要求。
酶工程习题及答案

酶工程试题(A)一名词解释(每题3分,共计30分)1. 酶工程:又叫酶技术,是酶制剂的大规模生产和应用的技术。
2.自杀性底物:底物经过酶的催化后其潜在的反应基团暴露,再作用于酶而成为酶的不可逆抑制剂,这种底物叫自杀性底物。
3.别构酶;调节物与酶分子的调节中心结合后,引起酶分子的构象发生变化,从而改变催化中心对底物的亲和力,这种影响被称为别构效应,具有别构效应的酶叫别构酶4.诱导酶:有些酶在通常的情况下不合成或很少合成,当加入诱导物后就会大量合成,这样的酶叫诱导酶5.Mol催化活性:表示在单位时间内,酶分子中每个活性中心转换的分子数目6.离子交换层析:利用离子交换剂作为载体这些载体在一定条件下带有一定的电荷,当带相反电荷的分子通过时,由于静电引力就会被载体吸附,这种分离方法叫离子交换层析。
7.固定化酶:通过物理的或化学的方法,将酶束缚于水不溶的载体上,或将酶束缚于一定的空间内,限制酶分子的自由流动,但能使酶发挥催化作用的酶8.修饰酶:在体外用一定的化学方法将酶和一些试剂进行共价连接后而形成的酶9.非水酶学:通常酶发挥催化作用都是在水相中进行的,研究酶在有机相中的催化机理的学科即为非水酶学10模拟酶:利用有机化学合成的方法合成的比酶结构简单的具有催化作用的非蛋白质分子叫模拟酶。
二填空题(每空1分,共计30分)1.决定酶催化活性的因素有两个方面,一是酶分子结构,二是反应条件。
2.求Km最常用的方法是双倒数作图法。
3.多底物酶促反应的动力学机制可分为两大类,一类是序列机制,另一类是乒乓机制。
4.可逆抑制作用可分为竞争性,反竞争性,非竞争性,混合性;5.对生产酶的菌种来说,我们必须要考虑的条件有,一是看它是不是致病菌,二是能够利用廉价原料,发酵周期短,产酶量高,三是菌种不易退化,四是最好选用能产生胞外酶的菌种,有利于酶的分离纯化,回收率高。
6.酶活力的测定方法可用终止反应法和连续反应法。
7.酶制剂有四种类型即液体酶制剂,固体酶制剂,纯酶制剂和固定化酶制剂。
《酶工程》 课后习题答案

① 酶工程:由酶学与化学工程技术、基因工程技术、微生物学技术相结合而产生的一门新技术,是工业上有目的地设计一定的反应器和反应条件,利用酶的催化功能,在常温常压下催化化学反应,生产人类所需产品或者服务于其它目的地一门应用技术。
② 比活力:指在特定条件下,单位质量的蛋白质或者 RNA 所拥有的酶活力单位数。
③ 酶活力:也称为酶活性,是指酶催化某一化学反应的能力。
其大小可用在一定条件下,酶催化某一化学反应的速度来表示,酶催化反应速度愈大,酶活力愈高。
④ 酶活国际单位 : 1961 年国际酶学会议规定:在特定条件(25℃,其它为最适条件 )下,每分钟内能转化1 μmol 底物或者催化1 μmol 产物形成所需要的酶量为 1 个酶活力单位,即为国际单位(IU)。
⑤ 酶反应动力学:指主要研究酶反应速度规律及各种因素对酶反应速度影响的科学。
酶的研究简史如下:(1)不清晰的应用:酿酒、造酱、制饴、治病等。
(2)酶学的产生: 1777 年,意大利物理学家 Spallanzani 的山鹰实验; 1822 年,美国外科医生 Beaumont 研究食物在胃里的消化; 19 世纪 30 年代,德国科学家施旺获得胃蛋白酶。
1684 年,比利时医生Helment 提出 ferment—引起酿酒过程中物质变化的因素(酵素);1833 年,法国化学家 Payen 和Person 用酒精处理麦芽抽提液,得到淀粉酶; 1878 年,德国科学家 K hne 提出 enzyme—从活生物体中分离得到的酶,意思是“在酵母中”(希腊文)。
(3)酶学的迅速发展(理论研究): 1926 年,美国康乃尔大学的”独臂学者”萨姆纳博士从刀豆中提取出脲酶结晶,并证明具有蛋白质的性质;1930 年,美国的生物化学家 Northrop 分离得到了胃蛋白酶、胰蛋白酶、胰凝乳蛋白酶结晶,确立了酶的化学本质。
I.酶工程发展如下:①1894 年,日本的高峰让吉用米曲霉制备淀粉酶,酶技术走向商业化:②1908 年,德国的Rohm 用动物胰脏制得胰蛋白酶,皮革软化及洗涤;③1911 年, Wallerstein 从木瓜中获得木瓜蛋白酶,用于啤酒的澄清;④1949 年,用微生物液体深层培养法进行-淀粉酶的发酵生产,揭开了近代酶工业的序幕;⑤1960 年,法国科学家 Jacob 和 Monod 提出的控制子学说,阐明了酶生物合成的调节机制,通过酶的诱导和解除阻遏,可显著提高酶的产量;⑥1971 年各国科学家开始使用“酶工程”这一位词。
酶工程课后题

1.简述酶工程的概念及内容2.1.名词解释:诱导物、终产物阻遏、分解代谢产物阻遏、葡萄糖效应① 诱导物:诱导酶起始合成的物质(通常是酶的底物),可以引起阻遏蛋白的构象变化,使之不利于与操纵基因结合,如乳糖;而能引起阻遏蛋白的构象变化从而有利于其与操纵基因结合,阻遏酶产生的物质称为辅助阻遏,如氨基酸和核苷酸等。
② 终产物阻遏:催化某一特异产物合成的酶,在培养基中有该产物存在的情况下常常是不合成的,即受阻遏的。
③ 分解代谢产物阻遏:大肠杆菌在含有能分解的两种底物(如葡萄糖和乳糖)的培养基中生长时,首先分解利用其中的一种底物(葡萄糖),而不分解另一种底物(乳糖),这是因为葡萄糖的分解代谢产物阻遏了分解利用乳糖的有关酶合成的结果,此作用即为分解代谢产物阻遏。
④ 葡萄糖效应:由于葡萄糖常对分解利用其他底物的有关酶的合成有阻遏作用,故分解代谢产物阻遏又称为葡萄糖效应。
3.举例说明酶生物合成调节机制在产酶生物菌种改造中的指导意义若通过基因工程手段和传统诱变的技术获得在抗代谢物存在时也能正常生长的突变株,有的突变株的相关酶系合成对这种抗代谢物不敏感,这也就解除了某些代谢物对有关酶系的反馈阻遏。
例如,异亮氨酸合成途径中的关键酶——高丝氨酸脱氢酶受蛋氨酸的反馈阻遏,通过选育蛋氨酸结构类似物抗性突变株或者蛋氨酸缺陷型菌株,可提高该酶量,从而提高异亮氨酸产量。
此外,在育种工作中,还可以筛选组成型菌株以提高酶的产量。
以β-半乳糖苷酶的生产为例,将诱导型菌株培养在含有抑制物质邻硝基-β -D 岩藻糖苷和乳糖的培养基中时,由于诱导酶的合成被抑制,野生型因不能利用乳糖而不能生长,但组成型酶突变株对于乳糖的利用则不受限制,因而此环境中生长的突变株为组成型酶产生菌。
4.在酶的发酵过程中,提高酶产量的措施有哪些①添加诱导物:对于诱导酶的发酵生产,在发酵培养基中添加诱导物能使酶的产量显著增加。
诱导物一般分为三类:酶的作用底物,如青霉素是青霉素酰化酶的诱导物;酶的反应产物,如纤维素二糖可诱导纤维素酶的产生;酶的底物类似物,如异丙基β -D-硫代半乳糖苷对β -半乳糖苷酶的诱导效果比乳糖高几百倍。
酶工程 课后习题答案

第一章酶工程基础1.名词解释:酶工程、比活力、酶活力、酶活国际单位、酶反应动力学①酶工程:由酶学与化学工程技术、基因工程技术、微生物学技术相结合而产生的一门新技术,是工业上有目的地设计一定的反应器和反应条件,利用酶的催化功能,在常温常压下催化化学反应,生产人类所需产品或服务于其它目的地一门应用技术。
②比活力:指在特定条件下,单位质量的蛋白质或RNA所拥有的酶活力单位数。
③酶活力:也称为酶活性,是指酶催化某一化学反应的能力。
其大小可用在一定条件下,酶催化某一化学反应的速度来表示,酶催化反应速度愈大,酶活力愈高。
④酶活国际单位: 1961年国际酶学会议规定:在特定条件(25℃,其它为最适条件)下,每分钟内能转化1μmol底物或催化1μmol产物形成所需要的酶量为1个酶活力单位,即为国际单位(IU)。
⑤酶反应动力学:指主要研究酶反应速度规律及各种因素对酶反应速度影响的科学。
2.说说酶的研究简史酶的研究简史如下:(1)不清楚的应用:酿酒、造酱、制饴、治病等。
(2)酶学的产生:1777年,意大利物理学家 Spallanzani 的山鹰实验;1822年,美国外科医生 Beaumont 研究食物在胃里的消化;19世纪30年代,德国科学家施旺获得胃蛋白酶。
1684年,比利时医生Helment提出ferment—引起酿酒过程中物质变化的因素(酵素);1833年,法国化学家Payen和Person用酒精处理麦芽抽提液,得到淀粉酶;1878年,德国科学家Kűhne提出enzyme—从活生物体中分离得到的酶,意思是“在酵母中”(希腊文)。
(3)酶学的迅速发展(理论研究):1926年,美国康乃尔大学的”独臂学者”萨姆纳博士从刀豆中提取出脲酶结晶,并证明具有蛋白质的性质;1930年,美国的生物化学家Northrop分离得到了胃蛋白酶、胰蛋白酶、胰凝乳蛋白酶结晶,确立了酶的化学本质。
3.说说酶工程的发展概况I.酶工程发展如下:①1894年,日本的高峰让吉用米曲霉制备淀粉酶,酶技术走向商业化:②1908年,德国的Rohm用动物胰脏制得胰蛋白酶,皮革软化及洗涤;③1911年,Wallerstein从木瓜中获得木瓜蛋白酶,用于啤酒的澄清;④1949年,用微生物液体深层培养法进行a-淀粉酶的发酵生产,揭开了近代酶工业的序幕;⑤1960年,法国科学家Jacob和Monod提出的操纵子学说,阐明了酶生物合成的调节机制,通过酶的诱导和解除阻遏,可显著提高酶的产量;⑥1971年各国科学家开始使用“酶工程”这一名词。
酶工程习题参考答案
第五章酶工程习题答案一、填空题1.决定酶催化活性的因素有两个方面,一是酶分子结构,二是反应条件。
2. Km是米氏常数。
它与酶的种类和反应条件有关。
3..对生产酶的菌种来说,我们必须要考虑的条件有,一是看它是不是致病菌,二是能够利用廉价原料,发酵周期短,产酶量高,三是菌种不易退化,四是最好选用能产生胞外酶的菌种,有利于酶的分离纯化,回收率高。
4.酶制剂有四种类型即液体酶制剂固体酶制剂纯酶制剂固定化酶制剂5.通常酶的固定化方法有吸附法,共价键结合法,交联法,包埋法。
6. 酶分子的体外化学修饰又可分为酶的表面修饰和内部修饰。
经化学修饰的酶热稳定性有较大提高,这是因为修饰剂的多个功能基团与酶分子上的的多个基团(如氨基、羧基、咪唑基等)相互交联,增加了酶分子构象的稳定性。
7. 生物酶工程主要包括三个方面:基因工程方法大量生产酶(克隆酶);对酶基因修饰产生遗传修饰酶(突变酶);设计新的酶基因,合成新的酶。
二、问答题1.解释下列名词:核酶:具有催化功能的RNA,包括剪切型核酶和剪接型核酶两类。
克隆酶:通过基因工程手段,克隆各种天然的蛋白质或酶基因,并将其与适当的调节信号连接,再通过一定的载体(质粒)导入能够大量繁殖的微生物体内,使之高效表达。
突变酶:利用有控制地对天然酶基因进行剪切、修饰或突变,从而改变这些酶的催化特性、底物专一性或辅酶专一性,使之更加符合人们的需要。
进化酶:创造特殊的进化条件,模拟自然进化机制(随即突变、基因重组和自然选择),在体外改造酶基因,并定向选择(或筛选)出所需性质的突变酶。
人工酶:又称模拟酶或酶模型,指利用有机化学、生物化学等方法设计和合成一些较天然酶简单的非蛋白质分子或蛋白质分子,以这些分子作为模型来模拟酶对其作用底物的结合和催化过程。
固定化酶:指在一定空间内呈闭锁状态存在的酶,能连续地进行反应,反应后的酶可以回收重复使用。
细胞固定化技术:将细胞限制或定位于特定空间位置的技术称为细胞固定化技术。
酶工程教材课后习题详解
简述酶活力单位的概念和酶活力的测定方法?概念:在最适条件(温度25℃)下,每分钟内催化1微摩尔(μmol)底物转化为产物所需的酶量为1个酶活力单位,即IU=1μmol /min。
测定方法:化学测定法、光学测定法、气体测定法1.如何控制微生物发酵产酶的工艺条件?发酵过程中,为了能对生产过程进行必要的控制,需要对有关工艺参数进行定期取样测定或进行连续测量。
参数中,对发酵过程影响较大的有温度、PH、溶解氧浓度等。
(1)温度:温度对发酵的影响是多方面的,主要表现在对细胞生长、产物形成、发酵液的物理性质和生物合成方面。
例如:枯草杆菌的最适温度为34--37℃,黑曲霉的最适温度为28--32℃(2)pH:发酵过程中pH的变化取决于所用的菌种、培养基的成分和培养条件。
微生物生长和生物合成都有其最适和能够耐受的pH范围,大多数微生物生长的最适pH6.3-7.5,霉菌和酵母生长的最适pH4-6,放线菌生长的最适pH7-8。
(3)溶解氧浓度:对于好氧发酵,溶解氧浓度是最重要的参数之一。
好氧性微生物深层培养时,需要适量的溶解氧以维持其呼吸代谢和某些产物的合成,氧的不足会造成代谢异常,产量降低。
2.提高酶产量的措施主要有哪些?50页选育优良的产酶细胞、添加诱导物、控制阻遏物浓度、添加表面活性剂等3.酶的生物合成有哪几种模式?根据酶的合成与细胞生长之间的关系,可将酶的生物合成分为3种模式,即:生长偶联型——(同步合成型、中期合成型)部分生长偶联型——延续合成型非生长偶联型——滞后合成型1.简述细胞破碎的主要方法和特点?机械破碎法:通过机械运动产生剪切力使组织细胞破碎.a捣碎法:常用于动物内脏、植物叶芽、细菌的细胞b研磨法:常用于微生物和植物细胞c匀浆法:常用于易于分散、比较柔软、颗粒细小的组织细胞物理破碎法:通过各种物理因素作用,使组织细胞的外层结构破坏,而使细胞破碎。
常用于微生物细胞的破碎.1.温度差破碎法;2.压力差破碎法(渗透压突变);3. 超声波破碎法化学破碎法:通过各种化学试剂对细胞膜的作用,而使细胞破碎.1.有机溶剂处理:破坏膜磷脂结构,常用丙酮、丁醇、氯仿等。
酶工程课程习题库和参考答案
C、化学诱变 D、物理诱变
四、判断题 ( F )1、相同的酶在不同的 pH 条件下进行测定时,酶活力不同。
(×)2、固定化细胞在一定的空间范围内生长繁殖,由于细胞密度增大,使生化反应 加速,所以能够提高酶活力。 (×)3、只有以金属离子为激活剂的酶,才可以进行金属离子置换修饰。 (√)4、包埋法可以用于酶、细胞和原生质体的固定化。 (√)5、有机溶剂的极性系数是指某种溶剂在正辛烷与水两相中的分配系数 五、简答题 1、何谓酶工程,其主要内容有哪些?
物相容性的物质,进行共价连接,从而改变酶的结构和性质。 10、酶的金属离子置换修饰:把酶分子中的金属离子换成另一种金属离子,使酶的特性 和功能发生改变。 二、填空题 1、根据分子中起催化作用的主要组分的不同,酶可以分为_蛋白类酶_和 __核酸 类酶__两大类。 2、转录是以DNA 为模板,以核苷三磷酸 为底物,在依赖 DNA 的 RNA 聚合酶 的作用下生成RNA 的过程。 3、植物细胞培养主要用于生产色素、香精、药物 、酶 、等次级代谢产物。 4、细胞破碎的主要方法有机械破碎,物理破碎,化学破碎法 ,酶促破碎法 。 5、定点突变是在 DNA 序列的某一特定位点上 进行碱基的改变,从而获得突变基因 的操作技术。
延。 4、何谓膜分离技术?在酶的生产中有何应用?
答:借助于一定孔径的高分子薄膜,将不同大小、不同形状和不同特性的物质颗粒 或分子进行分离的技术称为膜分离技术。
在酶的生产中,可以利用微滤技术除去粗酶液中的微生物细胞,利用超滤技术除去相 对分子质量不同的蛋白质等杂质,进行酶的分离纯化,同时还达到酶液浓缩的目的,特 别适用于液体酶制剂的生产。 5、 何谓大分子结合修饰?有何作用?
1、答:端粒酶(Telomerase)是催化端粒合成和延长的酶。端粒酶的催化过程主要包
球球总结的-酶工程课后题作业
球球总结的-酶工程课后题作业1、什么是酶工程,其研究的内容有哪些?它是从应用的目的出发研究酶,是在一定生物反应装置中利用酶的催化性质将相应原料转化为有用物质的技术。
酶工程分为化学酶工程和生物酶工程。
前者指自然酶、化学修饰酶固定化酶及化学人工酶的研究和应用;后者则是酶学和基因重组技术为主的现代分子生物学技术相结合的产物,主要包括3个方面(1)用基因工程技术大量生产酶(克隆酶)(2)修饰酶基因差产生遗传修饰酶(突变酶)(3)设计新的酶基因合成自然界不曾有的新酶3、目前公认的酶的作用机制有哪些?研究酶动力学和酶的抑制作用对于了解酶的作用机制有何帮助?(1)酶的作用机制1、酶能降低反应物的活化能2、酶与底物首先形成一个不稳定的过渡态中间复合物3、酶的趋近和定向效应,构象变化效应、酸碱催化机制、共价催化和微环境效应5个方面影响酶的催化作用。
(2)酶促反应动力学是研究酶促反应的速率以及一个像比速率的各种因素。
酶促反应动力学的研究有着重要的理论意义和实践意义。
如在研究酶的结构和功能的关系以及酶的作用机制时,需要动力学提供实验依据;为了充分发挥酶催化反应的高效率,寻找最有力的反应条件;为了解酶在代谢中的作用和某些药物的作用机制等,都需要掌握酶促反应的规律。
4、什么是别构酶?它与普通酶的区别是什么?它是怎样调节酶活力的?能发生别构效应的酶称为别构酶。
别构酶通过别构效应,调节酶活力。
别构效应:当效应剂(底物、产物或其它效应物)与酶分子中的调解中心结合后,就诱导或稳定住酶分子的某些构象。
使酶的活性中心对底物的亲和力和催化能力受到影响,从而调节酶促反应的速度及代谢途径的进程。
别构效应也有正协同效应和负协同效应之分。
正协同效应:使得在一定配体浓度区间内,酶促反应速度对配体浓度变化极其敏感。
负协同效应:提供了一个配体浓度对酶促反应速度影响不敏感的区间。
(2)与普通酶的区别:○1其动力学不符合米氏方程,其活力得到代谢物的浓度的调节。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.培养基为微生物生产和产酶提供养分,进行培养基设计时,我们需要考虑哪些因素?
常用培养基的的一些基本要求:
A、都必须含有作为合成细胞组成的原料
B、满足生化反应的基本条件
C、一定的pH值
D、对于大规模发酵生产,除考虑上述微生物的需要外,还必须
重视培养基原料来源丰富、价廉、质量稳定
2.分析影响微生物产酶水平的发酵条件。
1)温度对产酶的影响:温度主要通过影响微生物细胞膜的流动性和生物大分子的活性来影响微生物的生命活动。
微生物生长繁殖和产酶的最适温度往往不一致。
2)pH对产酶的影响:主要是引起细胞膜电荷变化,以及影响营养物离子化程度,从而影响微生物对营养物的吸收;pH值影响微生物代谢相关酶的活性。
同一种微生物在不同的生长阶段和不同生理生化过程中,对环境pH值也有不同的要求。
3)溶解氧(Dissolved Oxygen)对产酶的影响:微生物需氧变化规律与生长速率有关,(降低温度可得到较高的溶氧值)
4)泡沫对产酶的影响:泡沫的存在阻碍了CO2的排出,影响溶氧量,也影响补料,同时,还易使发酵液溢出罐外造成泡料。
因此,生产上必须采用消泡措施。
5)湿度对产酶的影响:固体发酵法生产酶制剂时,培养基的湿度和发酵时空气中的相对湿度对微生物菌体生长繁殖和产酶关系很大。
3.染菌的危害有哪些?一旦在生产中发生染菌现象,如何诊断染菌原因和采取措施?
染菌的危害:产量大幅度下降,倒罐,甚至被迫停产。
如何诊断:
1)从染菌的时间来看,早期染菌(24 h以内)极有可能是种子染菌,培养基与设备灭菌不彻底。
中后期染菌可能是中间补料、设备渗漏、操作不当,空气系统不好。
2)从染菌的微生物类型来看,如常出现耐热芽孢杆菌,极有可能是灭菌不彻底,如有其它各种微生物,有可能是冷凝水、空气系统不好、操作不规范。
3)整个工厂所有的产品都出现染菌,而且染菌的种类相似(有的是同一种菌)---公用系统有问题(空气系统)。
4)部分发酵罐染菌
5)个别发酵罐连续染菌—设备问题(死角、漏了)
6)个别发酵罐偶尔染菌.
措施:1)中期或其他情况染菌,倒罐为最常见。
2)早期发现染菌,而且培养基对热稳定,可以再次灭菌,或加入抑菌/灭菌物质。
3)晚期染菌,可以采用提前放罐。
4.酶生产的发酵类型有哪些?各具有什么特点?
1)固体发酵特点:
①培养基组成简单:以谷物和农业废物为主要原料,只需外加适量水分、无机盐等。
②防止污染:利用霉菌能在水份较低的基质表面进行增殖的特性,在这种条件下,细菌生长不好,因此不易引起细菌污染。
2)液体发酵:
①液体表面发酵法:通入无菌空气,通过发酵液表面与空气接触进行氧气交换,没有通气搅拌设备,并维持一定的温度进行发酵
②液体深层通气发酵法:液体培养基内部进行微生物培养的过程,主要设备是具有搅拌浆和通气系统的密闭容器,分为分批发酵、补料分批发酵、连续发酵。
分配发酵特点:无菌培养基接种后进行发酵,在发酵过程中不补充培养基。
除掉通入无菌空气外,没有物质进出密封的发酵罐体系。
(全进全出)
补料分批发酵特点:在发酵过程的间隙,补充培养基,但无发酵液被从发酵罐中取走。
优点:⑴可以消除底物抑制。
避免葡萄糖效应;⑵可以实现高密度细胞培养。
⑶可以延长次级代谢产物的生产时间。
⑷可以稀释有毒代谢产物。
连续发酵特点:⑴微生物可长期保持在指数期的生长状态和稳定的生长速率。
⑵可简化操作,减少非生产时间和提高设备利用率;便于自控。
⑶产品质量稳定。
⑷节约大量的人力、动力、水和蒸汽,且使水、汽、电的负荷均匀合理。
⑸恒浊法中的微生物以最高速度生长,生产中可获得大量菌体或与菌体生长
相平行的代谢产物。
恒化法可用于与生长速率相关的各种理论的研究。
⑹缺点主要使菌种易退化,其次是易染菌,且染菌的危害会较大。
5.液体深层发酵的概念及优点?
液体深层通气发酵法:液体培养基内部进行微生物培养的过程,主要设备是具有搅拌浆和通气系统的密闭容器,分为分批发酵、补料分批发酵、连续发酵。
优点:
①菌种、底物、产物易于扩散;对工艺条件如温度、溶氧、pH和营养成分等控制容易;
②液体输送方便,易于机械化操作;劳动强度低小,设备利用率高;
③由于是在密闭环境中进行纯种发酵,酶产量和质量稳定;
④易于大规模机械化生产,生产效率高,易于自动化控制
6.培养基的主要成分有哪些?
7.常见的灭菌方式?
1)化学药品灭菌;2)干热灭菌;3)湿热灭菌;4)高温短时灭菌;5)其它(过滤,辐射等)
8.设计一个流程,如何从自然界中筛选并选育一株高产淀粉酶的芽孢杆菌?
菌体样本采集:土样:含淀粉质丰富的土壤,如面粉厂附近的土壤
材料的预处理:因为芽孢杆菌是耐热菌,所以进行高压蒸汽灭菌的方法,杀死营养细胞,保留芽孢。
富集(增殖)培养:将菌液涂布于培以淀粉为为唯一碳源的培养基中,30℃培养,使产淀粉酶的菌株从自然界中的劣势种变成人工环境下的优势种,便于后续的分离纯化
分离纯化:将富集培养后代菌液稀释不同的稀释度后,用平板划线的方法接种在灭菌的以淀粉为唯一碳源的培养基上,进行分离纯化得单菌落。
筛选:初筛:透明圈法:将适量的碘液滴加在平板中的菌落附近,如果菌落周围的现象是出现透明圈,则说明此菌能够分泌淀粉酶使淀粉发生水解。
选取淀粉水
解圈直径与菌落直径之比比较大的单菌落接种于灭菌的培养基上进行进一
步筛选。
复筛:初筛获得的产淀粉酶的菌株测定其淀粉酶活,最后确定诱变出发菌株
诱变:选择合适诱变源,采用物理诱变和化学诱变相结合的复合诱变方式对筛选得的产淀粉酶菌株进行诱变。
筛选高产淀粉酶菌株:采用上述初筛和复筛方案进行诱变鉴定
遗传稳定性鉴定筛选出的菌株,要经过多次传代之后,再进一步鉴定其产生淀粉酶的能力是否发生了变化。
如果产生了回复突变,则需要重复诱变筛选过程,直至到筛选出遗传稳定的高产菌株为止。