地震波
地震波的特性及其利用

地震波的特性及其利用地震波是由地球内部产生的振动波,是地震活动的主要表现形式。
地震波的传递过程中,具有很多独特的特性和规律,这些特性给地震学家研究地球内部结构和探测自然资源提供了很多方法。
本文将介绍地震波的特性及其利用。
一. 地震波的分类地震波按照传播介质的种类分为P波、S波和表面波。
P波是指压力波,它是在固体、液体和气体中传播的一种纵波,速度比S波快,可以通过液体和气体介质。
在地震波传播中,压缩性强的纵波作用于岩石时,岩石会轻微收缩,伸长性强的横波作用于岩石时,岩石会产生剪切变形。
S波是指切向波,它只能在固体介质中传播,是一种横波。
表面波是指沿地表传播的地震波,速度慢,振幅较大,是造成地震灾害的主要波。
二. 地震波传播速度地震波的传播速度受到传播介质的物理性质和地震波的类型等多种因素的影响。
通常情况下,P波速度最快,平均速度在5-8km/s之间,S波速度次之,平均速度在3-5km/s之间,表面波速度最慢,平均速度在2-4km/s之间。
三. 地震波产生原理地震波的产生原理主要是一个物理学原理,即通过地球内部产生振动波。
在地球内部发生岩石变形或破裂时,会产生弹性波,这些波沿各个方向传播,最终形成地震波。
地震波的产生通常是由于地壳内部的应力集中引起的,如地震断层、岩石滑坡等。
四. 地震波的利用1.地震勘探:地震是勘探自然资源的重要工具,勘探目标通常是油气、矿产等,测量已知介质中的地震波传播速度和反射强度等数据,并对地下介质的性质进行推断。
这种方法已被广泛应用于石油和天然气勘探,因为不同的介质对地震波的传播速度和反射强度具有不同的响应,可以推断出介质的性质来。
2. 地震学研究:研究地震活动是地震研究的重要领域之一。
地震波传播规律的研究,可以帮助地震学家分析地震活动的特点,进而预测地震的发生和发展趋势。
通过研究地震波传播,还可以深入了解地球的内部结构和物理性质,如温度、压力、密度等参数。
3. 地震灾害预测和应对:利用地震波特性对地震灾害进行预测和应对也是地震应用的一个重要分支。
地震波的传播特点

地震波的传播特点地震是自然界中常见的地球现象之一,地震波的传播是地震研究的重要方面。
地震波是由地震震源产生的能量在地球内部传播的振动波动。
地震波的传播具有以下几个特点:一、地震波的传播速度不同地震波在地球内部传播时,具有不同的传播速度。
根据传播介质的不同,地震波可分为P波、S波和表面波。
P波是一种纵波,传播速度最快,大约为每秒6公里。
S波是一种横波,传播速度次于P波,大约为每秒3.5公里。
表面波传播速度最慢,一般小于每秒2公里。
这些不同的传播速度导致地震波在传播过程中会经历折射、反射和衍射等现象,产生复杂的波动形态。
二、地震波的传播路径呈辐射状地震波自震源出发,沿着球面扩散传播,传播路径呈辐射状。
辐射半径越大,地震波传播的范围就越广。
例如,当地震波经过地球内部的岩石层传播时,由于介质的不均匀性,地震波传播会发生偏折,使得地震波线在地球内部呈现出复杂的路径。
三、地震波的传播具有方向性地震波的传播具有方向性,主要表现为传播方向、传播强度和传播速度的差异。
P波和S波在传播过程中会随着地球的密度和岩石的弹性模量的变化而发生折射和反射,从而使得地震波的传播路径和强度出现变化。
此外,地震波在地球内部传播时还会受到岩层的衍射和散射影响,使得地震波在不同的方向上具有不同的传播特点。
四、地震波的传播速度与介质特性有关地震波的传播速度与介质的物理性质有关。
例如,地震波在固体介质中传播速度较快,而在液体和气体介质中传播速度较慢。
这是因为固体介质具有较高的密度和弹性模量,使得地震波传播时受到的阻力较小,传播速度相对较快。
而在液体和气体介质中,由于密度和弹性模量较低,地震波传播时会受到较大的阻力,传播速度较慢。
总结地震波的传播特点,可以看出地震波的传播受多种因素的影响,包括介质的物理性质、传播路径和传播方向等。
地震波传播的复杂性使得地震研究人员需要通过地震波的观测和分析,来了解地球内部的结构和性质,进而为地震预测和防灾减灾提供科学依据。
地震波的分类和异同点

地震波的分类和异同点地震波是由地震源释放的能量在地球内部传播所产生的波动。
根据波传播的方式和振动方向的不同,地震波可以分为P波、S波和表面波。
下面将分别介绍这三种地震波的特点,并对它们的异同点进行比较。
一、P波P波是最快传播的地震波,也是最早被观测到的波动。
它是一种纵波,振动方向与波传播方向平行。
P波具有以下特点:1. 速度快:P波在地球内部的传播速度约为每秒6-7公里,比S波和表面波快得多。
2. 可通过固体、液体和气体传播:P波可以在固体、液体和气体中传播,但在液体和气体中传播速度较慢。
3. 振动方向与波传播方向平行:P波的振动方向与波传播方向平行,即粒子在振动时沿波的传播方向前后振动。
二、S波S波是次于P波传播的地震波,也是第二早被观测到的波动。
它是一种横波,振动方向垂直于波传播方向。
S波具有以下特点:1. 速度较慢:S波的传播速度约为每秒3-4公里,比P波慢。
2. 只能通过固体传播:S波只能在固体介质中传播,无法通过液体和气体。
3. 振动方向垂直于波传播方向:S波的振动方向垂直于波传播方向,即粒子在振动时呈现出左右摆动的形式。
三、表面波表面波是沿地球表面传播的地震波,它是由P波和S波在地表上的散射和折射形成的。
表面波具有以下特点:1. 速度较慢:表面波的传播速度比P波和S波都慢,通常为每秒2-3公里。
2. 振动方向复杂:表面波的振动方向是复杂的,既有沿水平方向振动的Rayleigh波,也有沿垂直方向振动的Love波。
3. 强度较大:表面波在地表上的振动范围较大,能够造成较大的破坏。
异同点比较:1. 传播速度:P波的传播速度最快,S波次之,表面波最慢。
2. 传播介质:P波可以通过固体、液体和气体传播,S波只能通过固体传播,表面波在地表上传播。
3. 振动方向:P波的振动方向与波传播方向平行,S波的振动方向垂直于波传播方向,表面波的振动方向复杂。
4. 破坏程度:由于表面波在地表上的振动范围较大,因此其破坏力较大,P波和S波相对较小。
关于地震波的传播速度

关于地震波的传播速度
1、纵波是推进波,地壳中传播速度为5.5~7千米/秒,最先到达震中,又称P波,它使地面发生上下振动,破坏性较弱。
2、横波是剪切波,在地壳中的传播速度为3.2~4.0千米/秒,第二个到达震中,又称S波,它使地面发生前后、左右抖动,破坏性较强。
地震波是由地震震源向四处传播的振动,指从震源产生向四周辐射的弹性波。
按传播方式可分为纵波(P波)、横波(S波)(纵波和横波均属于体波)和面波(L波)三种类型。
地震发生时,震源区的介质发生急速的破裂和运动,这种扰动构成一个波源。
由于地球介质的连续性,这种波动就向地球内部及表层各处传播开去,形成了连续介质中的弹性波。
地震学的主要内容之一就是研究地震波所带来的信息。
地震波是一种机械运动的传布,产生于地球介质的弹性。
它的性质和声波很接近,因此又称地声波。
但普通的声波在流体中传播,而地震波是在地球介质中传播,所以要复杂得多,在计算上地震波和光波有些相似之处。
波动光学在短波的情况下可以过渡到几何光学,从而简化了计算;同样地,在一定条件下地震波的概念可以用地震射线来代替而形成了几何地震学。
不过光波只是横波,地震波却纵、横两部分都有,所以在具体的计算中,地震波要复杂得多。
地震波对剪力的影响

地震波对剪力的影响一、引言地震作为一种自然灾害,一直以来都备受人们的关注。
地震波是地震发生时在地壳中传播的波动现象,其对建筑物、桥梁等结构物的影响尤为显著。
在众多地震波的影响因素中,剪力是一个重要的参数,它直接关系到结构的稳定性和安全性。
本文将深入探讨地震波对剪力的影响,以期为地震防御和防灾减灾提供科学依据。
二、地震波的基本概念地震波是由于地震震源处的岩石破裂和错动而产生的弹性波动。
根据地震波在地球表面的传播方式,可分为纵波(P波)、横波(S波)和面波(L波)三种。
其中,横波(S波)是剪力波,主要传递地震的剪切力,对结构物的影响较大。
三、地震波对剪力的影响机制1.剪力分布不均:地震波在传播过程中,会对地基产生剪切力。
由于地震波的频率、振幅、传播速度等地质条件的差异,导致剪力在地基上的分布不均匀。
2.剪力放大效应:地震波在通过不同地质层时,由于地质层之间的力学性能差异,可能出现剪力放大现象。
这种现象在软土地基上尤为明显,可能导致结构物的稳定性降低。
3.动态响应:地震波传播至结构物时,会使结构物产生动态响应。
在剪力作用下,结构物的底部弯矩、剪力矩等参数发生变化,进而影响结构物的稳定性能。
四、地震波对剪力影响的实例分析1.汶川地震:2008年汶川地震发生后,通过对受灾地区的建筑物进行调查,发现地震波对剪力的影响十分显著。
许多建筑物在地震波的作用下,出现了剪力过大而导致结构破坏的现象。
2.日本的抗震建筑:日本作为地震多发国家,其在抗震建筑方面的研究取得了世界公认的成果。
日本的抗震建筑在设计时充分考虑了地震波对剪力的影响,采用了先进的抗震技术和结构体系,大大提高了建筑物的抗震性能。
五、减小地震波对剪力影响的措施1.优化工程选址:在选址阶段,应充分考虑地质条件、地形地貌等因素,避开地震波传播的高风险区域。
2.提高地基处理效果:通过地基处理技术,提高地基的承载力、抗剪强度等性能指标,减小地震波对剪力的影响。
3.采用抗震结构体系:在建筑设计中,采用具有良好抗震性能的结构体系,如框架结构、钢结构等。
地震波 波长

地震波波长地震波地震波是指地震时由于岩石的破裂和变形所产生的振动波。
它们在地球内部传播,可以使建筑物、桥梁、道路等结构物发生损坏,对人类造成巨大危害。
地震波的分类根据传播方式,地震波可以分为纵波、横波和面波。
纵波:也称为P波,是一种沿着传播方向振动的压缩性弹性波。
它们能够穿过固体、液体和气体等不同介质,并且速度最快。
横波:也称为S波,是一种垂直于传播方向振动的剪切性弹性波。
它们只能穿过固体介质,并且速度比P波慢。
面波:也称为L波和R波,是一种振幅较大、速度较慢的表面弹性波。
它们主要分为两种类型:Rayleigh 波和Love 波。
地震波单位由于地震的破坏力与其能量大小相关,因此科学家通常用里氏震级作为衡量地震大小的指标。
里氏震级是一种基于地震波振幅的指数,它是以10为底的对数单位,每增加1个单位代表地震能量增加10倍。
波长波长是指一种波在传播过程中,一个完整的周期所占据的距离。
在地震中,不同类型的地震波具有不同的波长。
纵波和横波的波长纵波和横波的波长可以通过以下公式计算:λ = v/f其中,λ表示波长,v表示地震速度,f表示频率。
根据这个公式可以得出结论:纵波和横波的频率越高,它们的波长就越短。
因此,在传播过程中,纵波和横波会随着深度增加而逐渐减小其振幅和能量。
面波单位面波单位通常使用秒(s)作为单位。
由于面波单位主要分为两种类型:Rayleigh 波和Love 波,在传播过程中它们会产生不同形状和振幅的周期性变化。
因此,在测量时需要考虑到这些因素,并且使用复杂的算法进行计算。
总结地震是一种强烈而可怕的自然灾害,它会产生各种类型的地震波,这些波在地球内部传播,并且会对人类造成极大的危害。
因此,我们需要加强地震科学研究,并且采取有效措施来减少地震灾害带来的损失。
地震波ppt课件
未来地震波研究将更加注重应用实践,将研究成果应用于实际的地震监 测、预警和抗震减灾工作中,为人类创造更加安全、稳定的生存环境。
海啸预警
在地震引起的海啸预警中,地震波发挥着重要作用。通过分析地震波数据,可以快速判断是否可能发 生海啸,并及时发布预警信息,减少灾害损失。
04
地震波的挑战与未来发 展
地震波数据解析的挑战
数据处理难度大
地震波数据量大、复杂度高,需要高效、准确的处理方法才能提 取有用的信息。
噪声干扰严重
地震波传播过程中容易受到各种噪声的干扰,如何有效去除噪声、 提取真实信号是一大挑战。
我们应该如何利用地震波为人类服务
建立和完善地震监测网络,提 高地震预警的准确性和时效性 ,为灾害防范提供有力支持。
利用地震波数据开展工程抗震 设计和评估,提高建筑物和基 础设施的抗震能力。
通过研究地震波揭示地球内部 结构和性质,推动地球科学的 发展和人类对地球的认识。
对未来地震波研究的展望
未来地震波研究将更加注重跨学科合作,综合运用物理学、数学、地质 学等多学科理论和方法,深入揭示地震波的传播规律和地球内部结构。
分辨率和精度要求高
地震波数据需要高分辨率和高精度的解析,才能准确描述地层结构 和地质构造。
地震波探测技术的未来发展
智能化数据处理
利用人工智能和机器学习技术, 实现地震波数据的自动识别、分
类和解析。
多源信息融合
将不同来源的地震波数据融合,提 高探测精度和分辨率,为地质勘探 和资源开发提供更准确的信息。
提高地热能利用率
通过地震波探测技术了解地热田 的热传导特性和地温场分布,为 地热能的合理利用和提高利用率
地震波传播特性
地震波传播特性地震是地球内部能量释放的一种自然现象,它会引起地震波的传播。
地震波是地震能量在地球内部传播的扰动,具有特定的传播特性。
本文将对地震波的传播特性进行探讨。
一、地震波的类型地震波分为主要波和次要波两大类。
主要波包括纵波(P波)和横波(S波),它们是由地震震源直接产生并在地球内部传播的波动。
次要波包括面波和体波,它们是主要波在地层中传播时产生的。
1. 纵波(P波)纵波是一种具有直接推压和释放作用的波动。
当地震发生时,地震波首先以纵波的形式从震源向四周传播。
纵波的传播速度相对较快,约为地震波中最快的速度,以压缩和扩张的方式传播。
P波能够穿过液体、固体和气体等不同介质,传播路径相对较直。
2. 横波(S波)横波是一种具有横向摇摆作用的波动。
它在地震发生后稍迟于纵波出现。
横波的传播速度略低于纵波,只能在固体介质中传播,无法穿透液体和气体。
S波的振动方向垂直于波的传播方向。
3. 面波面波是纵波和横波在地层界面上的共同表现,包括Rayleigh 波和Love波。
面波是地震波传播距离较长时产生的波动,其振幅较大,传播速度相对较慢。
Rayleigh 波具有颤动上下方向的特点,而Love 波则具有颤动垂直于地表方向的特点。
4. 体波体波是P波在地层中传播时所产生的次级波动,包括后续P波(PP 波)、前续P波(PS波)和前续S波(SP波)等。
这些波动在地球内部穿行,到达地表时会受到面波的干扰。
二、地震波的传播速度和路径地震波的传播速度和路径受到地球内部材料的物理性质和地层结构的影响。
1. 传播速度地震波在地球内部传播的速度不同。
纵波传播速度最快,通常为6-8千米/秒;而横波传播速度稍慢,一般为3-5千米/秒;面波的传播速度最慢,大约为2-3千米/秒。
2. 传播路径地震波会根据地层的物理特性和密度变化来改变传播路径。
当地震波传播的介质密度发生变化时,波会发生折射和反射。
它们可能会在地球内部的不同界面上反射、折射、散射或衍射,导致地震波到达地表的路径复杂多样。
地震波的概念和分类
地震波的概念和分类嘿,朋友!你有没有想过,我们脚底下的大地有时候可不太安稳呢?地震这个家伙一捣乱,就会带来好多麻烦。
而这地震之所以能造成破坏,很大程度上是因为地震波这个“小恶魔”哦,今天呀,我就来给你好好唠唠地震波的概念和分类。
那什么是地震波呢?简单来说,地震波就像是大地在“发脾气”的时候发出的信号。
你想啊,大地就像一个超级大的巨人,平时安安静静的。
可是一旦内部出了问题,比如说地壳的板块之间互相挤啊、撞啊,这个巨人就会不舒服,然后就开始晃动起来。
这一晃动,就产生了地震波,就好像巨人在通过这种方式向周围喊着“我难受啊!”地震波呢,就是这种能量在地球内部和表面传播的一种波动。
这波动可不得了,它带着能量到处跑,跑到哪儿就可能让哪儿的东西跟着晃动起来,房屋啊、桥梁啊,在它面前就像小玩具一样脆弱。
咱再来说说地震波的分类吧。
这地震波就像一个大家族,有好几种类型呢。
首先得说说体波,体波啊,就像那种特别能深入的小探子。
它可以在地球的内部传播,就像水渗进沙子里一样,能一直钻到地球的深处。
体波又分成两种,一种是纵波,这纵波可有趣了。
你可以把它想象成那种能把东西拉长和压缩的力量。
比如说,你有一个弹簧,纵波就像有一双无形的手,一会儿把弹簧拉长,一会儿又把它压缩回去。
在地震的时候呢,纵波跑起来是最快的,它一到啊,地面就会先上下跳动起来。
哎呀,这时候人们就会感觉像在坐那种很颠簸的车,一上一下的,心里直发慌。
还有一种体波叫横波。
横波和纵波可不一样,它就像一个调皮的小捣蛋,是左右摇晃的。
如果把大地比作一块大板子,横波过来的时候就像有人在板子的侧面用力推,板子就左右晃起来了。
横波的速度比纵波慢一些,但是它的破坏力可不小。
你想啊,房子盖在地上,纵波来的时候上下动可能还能勉强撑一下,横波一来左右晃,那房子的根基可就不稳了,很容易就倒掉了。
我就听那些经历过地震的人说,横波一到啊,感觉世界都要翻过来了,那真是可怕极了。
除了体波,还有面波呢。
地震波的波长及其含义
地震波的波长及其含义地震波是地震活动引起的能量在地球内部传播的波动。
它们是地震学研究的重要对象,有助于我们了解地球内部结构和地震发生机制。
地震波可以分为主要的三种类型:P波(纵波)、S波(横波)和表面波。
在地震波中,波长是一个重要的参数,用于描述波的周期性特征。
波长是指波动中相邻两个波峰(或波谷)之间的距离。
对于地震波来说,波长通常用单位距离(如千米、米或厘米)表示。
波长是地震波波动特征的基本属性之一,它与其他地震波参数,如频率、波速和振幅等密切相关。
地震波的波长与地震事件的能量有关。
通常来说,地震波的波长越长,能量传递的距离越远。
P波是地震波中速度最快的一种,其波长相对较短,通常在几百到几千米之间。
P波能够通过固体、液体和气体传播,其速度约为每秒6-7千米,因此在地震发生后很快就能到达观测点。
S波是横波,其波长相对较长,通常在几十到一百几十千米之间。
S波只能在固体介质中传播,其速度约为每秒3-4千米,相对于P波稍慢一些。
相比之下,表面波是最慢的,其波长更长,通常在百到千千米之间。
波长的大小还与地震波的频率有关。
频率是指单位时间内波动的周期数。
频率越高,波动周期越短,波峰之间的距离就越近,波长就越小。
通过研究地震波的频谱,我们可以得出地震波的频率分布情况,从而推算出不同频率范围内地震波的波长。
不同波长的地震波在传播过程中,对地球材料的作用和影响也有所不同。
地震波的波长还与地震测定和地震监测相关。
地震测定是地震学研究中的一项基本任务,通过测定地震波的传播速度和到达时间,可以确定地震源的位置和规模,进而了解地震带和活动断层的情况。
而地震监测则是指对地震活动进行实时的观测和记录,以便及时预警和处理地震灾害。
波长的测定和分析是地震测定和监测的关键内容之一,能够为我们提供地震活动的重要信息。
地震波的波长是描述地震波动特征的重要参数。
它与能量传递的距离、波速、频率和地震学研究中的测定与监测密切相关。
通过对地震波波长的研究,我们可以更好地理解地震发生机制、地球内部结构以及与地震相关的灾害。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
地震被按传播方式分为三种类型:纵波、横波和面波[1]。
纵波是推进波,地壳中传播速度为5.5~7千米/秒,最先到达震中,又称P波,它使地面发生上下振动,破坏性较弱。
横波是剪切波:在地壳中的传播速度为3.2~4.0千米/秒,第二个到达震中,又称S 波,它使地面发生前后、左右抖动,破坏性较强。
面波又称L波,是由纵波与横波在地表相遇后激发产生的混合波。
其波长大、振幅强,只能沿地表面传播,是造成建筑物强烈破坏的主要因素。
[编辑本段]地震纵波和横波我们最熟悉的波动是观察到的水波。
当向池塘里扔一块石头时水面被扰乱,以石头入水处为中心有波纹向外扩展。
这个波列是水波附近的水的颗粒运动造成的。
然而水并没有朝着水波传播的方向流;如果水面浮着一个软木塞,它将上下跳动,但并不会从原来位置移走。
这个扰动由水粒的简单前后运动连续地传下去,从一个颗粒把运动传给更前面的颗粒。
这样,水波携带石击打破的水面的能量向池边运移并在岸边激起浪花。
地震运动与此相当类似。
我们感受到的摇动就是由地震波的能量产生的弹性岩石的震动。
假设一弹性体,如岩石,受到打击,会产生两类弹性波从源向外传播。
第一类波的物理特性恰如声波。
声波,乃至超声波,都是在空气里由交替的挤压(推)和扩张(拉)而传递。
因为液体、气体和固体岩石一样能够被压缩,同样类型的波能在水体如海洋和湖泊及固体地球中穿过。
在地震时,这种类型的波从断裂处以同等速度向所有方向外传,交替地挤压和拉张它们穿过的岩石,其颗粒在这些波传播的方向上向前和向后运动,换句话说,这些颗粒的运动是垂直于波前的。
向前和向后的位移量称为振幅。
在地震学中,这种类型的波叫P波,即纵波(图2.1),它是首先到达的波。
图2.1 地震P波(纵波)和S波(横波)运行时弹性岩石运动的形态弹性岩石与空气有所不同,空气可受压缩但不能剪切,而弹性物质通过使物体剪切和扭动,可以允许第二类波传播。
地震产生这种第二个到达的波叫S波,即横波。
在S波通过时,岩石的表现与在P波传播过程中的表现相当不同。
因为S波涉及剪切而不是挤压,使岩石颗粒的运动横过运移方向(图2.1)。
这些岩石运动可在一垂直向或水平面里,它们与光波的横向运动相似。
P和S波同时存在使地震波列成为具有独特的性质组合,使之不同于光波或声波的物理表现。
因为液体或气体内不可能发生剪切运动,S波不能在它们中传播。
P和S波这种截然不同的性质可被用来探测地球深部流体带的存在(见第6章)。
带偏光眼镜以减弱散射光的人可能熟悉光的偏振现象,只有S波具有偏振现象。
只有那些在某个特定平面里横向振动(上下、水平等)的那些光波能穿过偏光透镜。
传过的光波称之为平面偏振光。
太阳光穿过大气是没有偏振的,即没有光波振动的优选的横方向。
然而晶体的折射或通过特殊制造的塑料如偏光眼镜,可使非偏振光成为平面偏振光。
当S波穿过地球时,他们遇到构造不连续界面时会发生折射或反射,并使其振动方向发生偏振。
当发生偏振的S波的岩石颗粒仅在水平面中运动时,称为SH波。
当岩石颗粒在包含波传播方向的垂直平面里运动时,这种S波称为SV波。
大多数岩石,如果不强迫它以太大的幅度振动,具有线性弹性,即由于作用力而产生的变形随作用力线性变化。
这种线性弹性表现称为服从虎克定律,是以与牛顿同时代的英国数学家罗伯特·虎克(1635~1703年)而命名的。
这种线性关系由图2.2所示的加重物的弹簧伸展来表示。
如果重物的质量加倍,线性弹簧的伸展也加倍,如果重物回到原来大小,则弹簧回到原来位置。
相似地,地震时岩石将对增大的力按比例地增加变形。
在大多数情况下,变形将保持在线弹性范围,在摇动结束时岩石将回到原来位置。
然而在地震事件中有时发生重要的例外表现,例如,当强摇动发生于软土壤时,会残留永久的变形,波动变形后并不总能使土壤回到原位,在这种情况下,地震烈度较难预测。
我们将在本书后面谈到这些关键的非线性效果。
图2.2 当施加的力加倍时,弹簧的伸展也加倍弹簧的运动提供了极好的启示,说明当地震波通过岩石时能量是如何变化的。
与弹簧压缩或伸张有关的能量为弹性势,与弹簧部件运动有关的能量是动能。
任何时间的总能量都是弹性能量和运动能量二者之和。
对于理想的弹性介质来说,总能量是一个常数。
在最大波幅的位置,能量全部为弹性势能;当弹簧振荡到中间平衡位置时,能量全部为动能。
我们曾假定没有摩擦或耗散力存在,所以一旦往复弹性振动开始,它将以同样幅度持续下去。
这当然是一个理想的情况。
在地震时,运动的岩石间的摩擦逐渐生热而耗散一些波动的能量,除非有新的能源加进来,像振动的弹簧一样,地球的震动将逐渐停息。
对地震波能量耗散的测量提供了地球内部非弹性特性的重要信息,然而除摩擦耗散之外,地震震动随传播距离增加而逐渐减弱现象的形成还有其他因素。
由于声波传播时其波前面为一扩张的球面,携带的声音随着距离增加而减弱。
与池塘外扩的水波相似,我们观察到水波的高度或振幅,向外也逐渐减小。
波幅减小是因为初始能量传播越来越广而产生衰减,这叫几何扩散。
这种类型的扩散也使通过地球岩石的地震波减弱。
除非有特殊情况,否则地震波从震源向外传播得越远,它们的能量就衰减得越多。
[编辑本段]波的性质敲击音叉产生的纯音调具有某种频率。
那个频率表示声波在一秒钟内挤压和扩张的次数,或对水波和其他类型的震动,在一秒钟内起落的次数。
频率单位以赫表示,写为Hz,这一个度量单位是为纪念亨利·赫兹而命名的,他是德国物理学家,1887年首次发现电磁波。
1赫等于每秒一个旋回的涨落。
峰脊之间的时间是波动周期;等于相应的波的频率的倒数。
人类可以察觉20~20 000赫频率之间的声音。
一地震的P波可从岩石表面折射到大气中去,如果其频率是在听得见的频率之内,人耳就可能听到这个波运行时的轰鸣声。
在波动频率低于20地震波赫时,人们将感觉到地面振动而听不到地震波运行的声音。
最简单的波是简谐波,即具有单一频率和单一振幅的正弦波,如框图2.1所示。
实际地震记录波形包含着多种波长的波,短波长的波叠加在较长波长的波上,如图2.10所示。
由法国物理学家傅里叶首次于1822年将复杂的波列定量表达为各种不同频率和振幅的简谐波的叠加,如图2.3所示。
较高阶的谐波的频率是最低频的基波频率的整数倍。
实际记录的地面运动可用傅里叶方法,即由计算机分别考察各谐波组分来进行分析波动波动可用一些特定的参量来描述。
考察框图2.1中以实线画出的正弦波,它表示时刻t 位于x处的质点波动位移为y。
假设波的最大幅度为A,波长λ是两个相邻波峰之间的距离。
一完整的波(从一个波峰到下一个波峰)走过一个波长的时间称为周期T。
这样,波速v 是波长除以周期。
v =λ/T波的频率f,是每秒钟走过的完整波的数目,所以f = 1/T一个波的确实位置取决于它相对于波起始的时间和与起始点的距离,图中细线描绘的波是第一个波向前面移动一个短距离,称之为由于这一移动而出现了相移。
框图2.1 两个正弦波之间的相位移动图2.3 3个简单波形及其叠加产生的复杂波形波列也可在时间上向前或向后推移,这样,峰值不再在原来的时间或地点发生。
当这些移动的波叠加在一起时形成,复杂的波形,虽然其组合成分在幅度和频率上完全相同。
这个移动的大小是以一个重要的叫“相位”的量来度量的,它是波相对其起始点的距离。
我们将看到它在地震对大型建筑物结构的破坏上有很大影响[编辑本段]P波和S波的速度1989年10月17日当洛马普瑞特地震袭击时,我在伯克利家中突然感到房屋摇动,我开始计时。
10秒钟后摇动突然变的特别厉害,这表示S波已经到达。
P波总是首先从震源来到,因为地震波它们沿同一路径传播时比S波速度快。
利用波的这一特性,我可以计算出这个地震的震源在80多千米以外。
P波和S波的实际传播速度取决于岩石的密度和内在的弹性。
对线弹性物质而言,当波与运行方向无关时,波速仅取决于两个弹性性质,称为弹性模量:岩石的体积模量k和剪切模量μ。
当向岩石立方块表面施加一均匀压力时,其体积将减小,其单位体积的体积变化作为所需压力大小的度量,称为体积模量。
当P波穿过地球内部传播时发生的就是这种类型的变形;因为它只引起体积变化,所以在流体中也可以发生,与在固体中一样。
通常体积模量越大,P波的速度就越大。
第二种变形类型是,在向岩石立方块体两相对的面上施加方向相反的切向力时,这体积方块将受剪切而变形,而没有体积变化。
同样,圆柱状岩心两头受大小相等方向相反力扭曲时也发生这种变形。
岩石对剪切或扭曲应力的抵抗越大,其刚性就越大。
S波通过剪切岩石而传播,剪切模量给出其速度的量度。
通常是剪切模量越大,S波速度就越大。
P波和S波速度的简单公式在下面给出。
这些表达式与已经提到的波的重要性质一致:因为流体的剪切模量是0,剪切波在水中的速度为0,因为两个弹性模量总是正的,所以P 波比S波传播得快。
因为地球内部的强大压力,岩石的密度随深度增大。
由于密度在P波和S波速度公式中的分母项上,表面看来,波速度应随其在地球的深度增加而减小。
然而体积模量和剪切模量随深度而增加,而且比岩石密度增加得更快(但当岩石熔融时,其剪切模量下降至0)。
这样,在我们的地球内部P和S地震波速一般是随深度而增加的,在第6章中将进一步讨论。
虽然某一给定岩石弹性模量是常数,但在一些地质环境里岩石不同方向上的性质可以显着变化。
这种情况叫各向异性,这时,P波和S波向不同方位传播时具有不同速度。
通过这种各向异性性质的探测,可以提供有关地球内部地质状况的信息,这是当今广泛研究的问题。
但在以下的讨论中将限制在各向同性的情况,绝大多数地震运动属于这种情况。
[编辑本段]地质构造对地震波的影响当水波遇到界面时,如陡岸,会从边界上反射回来,形成一列向岸外传出的水波,与向岸内传来的水波重叠。
当海洋波斜射入浅滩时,波在海水深度变浅时走得较慢,落在海水较深处地震波的波的后面。
其结果是波向浅水弯曲。
于是波前在它们击岸前转向越来越平行海滩(图2.4)。
折射这一名词描述波传播中由于传播路径上条件变化产生波前方向变化的现象。
反射和折射也是光线通过透镜和棱柱时人们熟知的性质。
弹性模量和波速均质各向同性的固体可由两个常数:k和μ来描述其弹性,两常数都可表示为单位面积的力。
k是体积模量,表示不可压缩性。
花岗岩:k约为27×1010达因/厘米2;水:k约为2×1010达因/厘米2。
μ是剪切模量,表示其刚性。
花岗岩:μ约为1.6×1010达因/厘米2;水:μ为0。
密度为ρ的弹性固体内,可以传播两种弹性波。
P波,速度vP =√(k+3/4μ)/ρ。
花岗岩:vP=5.5千米/秒;水:vP=1.5千米/秒。
S波,速度vS=√μ/ρ。
花岗岩:vS=3.0千米/秒;水:vS=0千米/秒。
图2.4 大洋波浪冲上一坡状海滩发生弯折,波锋平行于海滩像声、光或水波一样,地震波也可在一边界上反射或折射,但和其他波不同的特点是,当地震波入射到地球内的一反射面时,例如一P波以一角度射向边界面时,它不但分成一反射地震波的P波和一折射的P波,还要产生一反射S波和折射S波,其原因是,在入射点边界上的岩石不仅受挤压,还受剪切。