模电,数电学习心得
模电实验心得体会

模电实验心得体会模电实验心得体会模拟电子技术是电子技术的基础,也是电子工程师必备的一项重要能力。
为了提高自己的模拟电子技术水平,我参加了本学期的模拟电子技术实验课程,并在实验中积累了一些宝贵的经验和体会。
首先,模拟电子技术实验的开展需要我们对电子元器件有充分的了解和掌握。
在实验中,我们需要使用各种电子元器件来构建电路,如电阻、电容、二极管等。
对于这些电子元器件的参数、使用方法和特性,我们需要通过学习理论知识和进行实验操作来加深理解。
通过实验,我发现只有真正对电子元器件有了解并能熟练使用它们,才能保证实验的顺利进行。
其次,模拟电子技术实验的过程需要我们注重细节和耐心。
在实验中,我们需要按照实验步骤进行电路的搭建和调试,并且要准确记录实验现象和测量值。
在实验过程中,我曾因为粗心大意导致实验失败或测量值出现偏差。
这让我认识到细节决定成败的道理,更加明确了每一步实验操作的重要性。
同时,实验也需要耐心,因为有时电路搭建和调试的过程并不那么顺利,可能需要不断修改和优化。
通过这些实验,我增强了自己的耐心和细致观察的能力。
第三,模拟电子技术实验的基础是理论知识,但理论知识与实践操作相结合才能得到充分的运用和理解。
通过实验,我深刻体会到了理论知识与实践操作的紧密联系。
在实验中,我们需要根据理论知识来设计电路,进行实验测量,并根据测量结果对比理论计算值进行分析和判断。
通过实验实践,我发现理论知识是为了指导实际应用的,只有将理论知识与实践操作相结合,才能理解和掌握模拟电子技术的本质。
第四,模拟电子技术实验激发了我对创新的兴趣和能力。
在实验中,我们需要根据实验要求和目标,设计创新的电路方案,并通过实验验证和改进。
在实验过程中,我曾遇到一些问题,如电路稳定性不好、电路性能达不到要求等。
为了解决这些问题,我积极思考和研究,尝试不同的电路布局和元器件的选择,最终找到了解决问题的办法。
这让我对创新充满信心,并激发了我进一步深入学习模拟电子技术的热情。
数电模电基础知识总结

数电模电基础知识总结在现代科技的快速发展下,电子技术已经渗透到我们生活的方方面面。
而作为电子技术的基础,数电模电知识的掌握显得尤为重要。
本文将对数电模电基础知识进行总结。
一、数电基础知识1. 二进制二进制是数电领域最为基础的概念之一。
它由0和1组成,是计算机系统中最常用的进位制。
在二进制中,每一位的权值是2的幂,例如1表示2^0,2表示2^1,4表示2^2,以此类推。
二进制在计算机内部用于表示和处理数据,是研究数电和计算机组成原理的基石。
2. 逻辑门逻辑门是计算机系统中基本的电子器件,用于实现逻辑运算。
常见的逻辑门包括与门、或门、非门等。
与门接受两个输入,当两个输入同时为1时,输出为1;否则输出为0。
或门接受两个输入,当两个输入中至少有一个为1时,输出为1;否则输出为0。
非门只有一个输入,当输入为1时,输出为0;当输入为0时,输出为1。
通过组合不同类型的逻辑门,可以实现复杂的逻辑运算。
3. 翻转器和触发器翻转器和触发器是将电路的输出状态保持在某个时间点的器件。
翻转器是一种双稳态电路,有两个互逆的输出状态,常见的翻转器有RS翻转器、JK翻转器等。
触发器是一种带有时钟输入的翻转器,常用于存储和处理数据。
二、模电基础知识1. 电阻、电容和电感电阻、电容和电感是模电领域中最基础的电路元件。
电阻用于限制电流大小,电容用于存储电荷和能量,电感用于存储磁能和抵抗电流变化。
它们在电路中起到不同的作用,对电路性质有重要影响。
2. 放大器放大器是模电领域中常见的电路元件,用于将输入信号放大到一定的幅度。
常见的放大器包括运放放大器、功放等。
运放放大器是一种具有高增益的差模放大器,广泛应用于模拟电路设计中。
功放用于放大音频信号,常见于音响设备中。
3. 滤波器滤波器用于将频率范围内的信号通过,而将其他频率范围内的信号抑制。
常见的滤波器包括低通滤波器、高通滤波器、带通滤波器和带阻滤波器等。
滤波器在电子设备中起到重要的作用,例如音频设备中用于剔除噪音和杂音。
数电模电基础知识总结

数电模电基础知识总结在电子技术的领域中,数字电子技术(数电)和模拟电子技术(模电)是两个至关重要的基础分支。
无论是日常生活中的电子设备,还是复杂的工业控制系统,都离不开数电和模电的应用。
接下来,让我们一同走进数电模电的世界,对其基础知识进行一番梳理和总结。
一、模拟电子技术基础知识模拟电子技术主要处理连续变化的电信号,其信号的幅度、频率和相位等参数可以在一定范围内连续取值。
(一)半导体器件半导体是模电的基础材料,常见的半导体器件有二极管、三极管和场效应管等。
二极管具有单向导电性,常用于整流、限幅和钳位等电路。
三极管分为 NPN 型和 PNP 型,它可以实现电流放大作用,是放大器的核心元件。
场效应管则具有输入电阻高、噪声低等优点,在集成电路中应用广泛。
(二)基本放大电路放大电路是模电中的重要内容。
共发射极放大电路、共集电极放大电路和共基极放大电路是常见的三种基本放大电路。
共发射极放大电路具有较大的电压和电流放大倍数,但输入输出电阻适中;共集电极放大电路,又称射极跟随器,其输入电阻高,输出电阻低,电压放大倍数接近于 1,但电流放大倍数较大;共基极放大电路具有较大的频率响应和较宽的通频带。
(三)集成运算放大器集成运放是一种高增益、高输入电阻、低输出电阻的直接耦合放大器。
它在信号运算、处理和产生等方面有着广泛的应用。
通过引入负反馈,可以实现加法、减法、积分、微分等运算功能。
(四)反馈电路反馈在模电中起着重要的作用。
正反馈可以使电路产生自激振荡,常用于正弦波振荡器中;负反馈可以改善放大电路的性能,如提高稳定性、改变输入输出电阻、减小非线性失真等。
(五)功率放大电路功率放大电路的主要任务是在保证信号不失真的前提下,尽可能提高输出功率和效率。
常见的功率放大电路有甲类、乙类和甲乙类功放。
(六)直流电源直流电源包括电源变压器、整流电路、滤波电路和稳压电路等部分。
它为电子设备提供稳定的直流电压。
二、数字电子技术基础知识数字电子技术处理的是离散的数字信号,其信号只有高电平和低电平两种状态,分别用“1”和“0”表示。
电路实验心得体会8篇

电路实验心得体会8篇电路实验心得体会1时间过得很快,转眼间一学期过去了,模拟电路实验这门课也接近了尾声。
在这学期学习过程中,有欢笑,有汗水,有同学们的努力学习,更有王老师对我们的谆谆教诲,一次次的实验课上有批评,有表扬,却让我们学到了很多知识。
那么就将本学期实验课体会总结如下:模拟电路实验这门课,主要是通过学习理论知识,然后在实际中动手操作各种电路实验,再通过结合理论知识,实验操作来验证,加深对所有内容的理解。
所以,理论与实践相结合才能达到更好的效果。
总而言之,实验的重点在于培养学生掌握电工仪表的使用,训练基本接线技能,正确使用电子仪器,学会调试电子线路,并培养学生的动手能力。
在这学期的模拟电子技术实验学习过程中我学到了很多东西,比如:动手能力、逻辑思维以及设计思想都得到了很大的提高。
为了让我们对模拟电路实验的基本原理和实验方法能够熟练掌握和理解,我们这学期开设了模拟电路实验,实验内容主要是分为获得元器件原始数据,测试,验证,调试,总结经验公式,完成实验报告等。
实验设备主要用到的有:双踪示波器,信号发生器,数字万用表,实验电源,交流毫伏表,模拟电子技术试验箱等。
进行介绍,包括它们的特点,分类以及作用,然后让我们将各个电子元件进行实际的实验与验证。
在做完实验后,通过总结实验过程中所出现的问题,以及实际测得的结果与理论估算值比较,讨论分析做出相应的解决方案,整理实验数据,并完成实验报告。
刚开始做实验的时候,示波器不怎么会调,犯了很多错,还好王老师很耐心的教导,后面掌握的还不错。
而在实验中有时我们虽然熟练掌握了操作实验的方法,弄明白了一些理论上不是很容易理解的问题。
但是在操作中也会遇到意想不到的问题,可以说这是很锻炼人的,每次在解决了问题后都会有很多收获,同时也明白团队的意义,只有和组员同心协力,才能最快的完成实验。
在实验前,老师总会很耐心的告诉我们一些要注意的问题。
比如,在连接电路前,要将电源断开,先测什么后测什么,实验中要注意些什么等等;待我们连接好电路,王老师都会先检查,给我们详细讲解后,再让我们测量。
数电模电的基础知识分享

数电模电的基础知识分享以前,村里有个小伙叫“模电”,浓眉大眼,身高力壮,村里的大事小情都要找他。
引得众多小mm纷纷拜倒在他脚下,那可真是风光无限。
不料,好景不长,某天不知从哪里来了个叫“数电”的帅哥,虽然没有八块腹肌,但是能掐会算,口齿伶俐,还能变个魔术。
从此后,村里但凡有大事,都会去找数电,只是在需要干力气活的时候才会想起“模电”。
众mm也纷纷离开了“模电”,竞相向“数电”献殷勤。
“模电”心生嫉妒,但知道自己头脑差,也只能默默咽下这口气。
可是,有一天,“模电”发现自己最后的粉丝“电源”mm也跑去给“数电”暗送秋波,积攒了多时的怨气终于爆发了。
模电把数电堵在村口,吵起来了。
1、2、3、负阻4、模拟上/下变频VS 数字上/下变频变频,就是改变频率的意思。
在无线电领域中,经常会用到一种叫混频器的东西,它就是利用三角函数的积化和差的原理来实现上/下变频(和就是上变频,处理后的信号频率提高了;差就是下变频,处理后的信号频率下降了),而模电当中的混频器常常是由模拟乘法器来实现的,对应着数电的,就是CIC5、模拟滤波器VS 数字滤波器模拟滤波器分为无源和有源两种,其中无源是由RLC组成的,而有源则是在无源的基础上增加了运放,可以调整增益。
数字滤波器分为FIR和IIR两种,一般情况下,FIR是线性相位的,无反馈的(零极点相消的话,是可以有反馈的);IIR是非线性相位的,有反馈的。
以滤波器的频率响应来分类,是可以分为6、模拟调制VS 数字调制所谓调制就是,有两路信号A和B,用A去控制B 的幅度、频率、相位。
7、模拟指数、对数运算VS 数字指数、对数运算在模拟电路中,利用器件的特性(如二极管的8、模拟微积分运算VS 数字微积分运算模拟电路可以利用电容的电压电流特性来计算微分和积分(以前的模拟计算机就是这样搞的)。
而在数电当中,则是通过寄存器的反馈来实现积分(不断地把输出反馈到输入端,进行累加)。
然后,模拟的微分对应的是数字的差分,差分就是前一时刻的值减去后一时刻(得到的是增量),也是用寄存器去保存不同时刻的值,再做减法运算。
电路实训心得体会(精选12篇)

电路实训心得体会(精选12篇)电路实训心得体会 1有时候我们自以为简单地事情,当做起来的时候才知道并不是我们想像中的那么简单。
任何一事要做好都要掌握一定的技巧,还必须具备一定的素质才能完成。
一、焊接掌握焊接技术光靠看书和讲解是不行的。
所谓实习我们自己实际的去练习,去操作,要真正的把理论知识转到实际操作、实践中去。
不能只靠着自己的性子去操作,一定要在老师的指导和讲解下进行操作。
在焊接过程中要注意的是焊接的.温度和时间。
焊接时要使电烙铁的温度高于焊锡。
但是不能太高,以烙铁接头的松香刚刚冒烟为好。
焊接的时间不能太短,因为那样焊点的温度太低,焊点融化不充分。
焊点粗糙容易造成虚焊。
而焊接时间长,焊锡容易流淌,使元件过热容易损坏。
二、调试电路板通电后先测试VT1的集电极电位,使其在0.2-0.4V之间,如果该电压太低,则施加声音信号后,VT1不能退出饱和,VT2则不能导通;如果该电压超过VT2的死去电压,则静态时VT2就导通,是VL1和VL2电亮发光。
所以,对于灵敏度不同的电容话筒,以及β值不同的三极管,VT1的集电极电阻值的大小要通过调试来确定。
离话筒约0.5m距离,用普通大小音量讲话,VL1,VL2应随声音闪烁。
如需大声说话放光管材闪烁,可适当减小R3,也可更换β值更小的三极管。
三、学会看电路图看电路图首先要看电路图的框架结构有几部分、什么功能、每部分的组成结构和由什么元件组成。
并且要知道元件的特性、大小、形状等。
更重要的是知道电路的工作原理。
四、模拟制作印制电路板根据所给的原理图吧各个元件接在面包板上,然后调试。
在调试的过程中看看话筒的灵敏度是否高。
如果话筒灵敏度不够高,就用电位器代替一兆的电阻,再调试。
直到调试好为止。
五、制作印制电路板首先要准备好制作印制电路板的板子,不能太大、也不要太小。
根据原理图元件孔脚,包连通的部分用双面胶贴好。
剩余的部分用三氯化铁氧化掉,当需要被氧化的部分充分氧化后在打孔。
数电模电基础知识总结

数电模电基础知识总结电子技术作为现代科学技术的一支重要分支,是现代社会发展的基础和支撑。
数电模电基础知识是电子技术的核心内容,掌握好这些基础知识对于学习和应用电子技术都有着重要的意义。
本文将对数电模电基础知识进行总结,帮助读者加深对这些知识的理解和掌握。
一、数电基础知识1.数字信号与模拟信号数字信号和模拟信号是电子系统中常用的两种信号形式。
数字信号是以离散的、有限个数的数值表示的信号,是通过对连续模拟信号进行采样和量化得到的。
数字信号具有离散性、可编程性、可靠性等特点,广泛应用于计算机和通信系统中。
而模拟信号是连续的,可以取无限个数的数值,用于传输和处理连续的实时信号。
2.二进制系统二进制系统是一种数学计数系统,它只使用两个数字0和1表示数值。
在计算机中,所有的数据和指令都是用二进制数来表示和处理的。
二进制系统有简单、直观、易于计算等优点,是计算机技术的基础。
3.逻辑门电路逻辑门电路是电子系统中常用的一类组合逻辑电路,根据输入信号经过门电路的逻辑运算,最终得到输出信号。
常见的逻辑门包括与门、或门、非门、异或门等。
逻辑门电路可以实现布尔代数中的逻辑运算,是数字电路设计中的基础。
4.计数器和寄存器计数器和寄存器是数字电路中常用的存储器件。
计数器是一种能够按照一定规律自动计数的电子装置,广泛应用于时序电路设计和计数问题的解决。
寄存器是一种能够暂时存储二进制数据的电子装置,常用于数据存储、传输和处理等。
二、模电基础知识1.放大器放大器是模拟电路中常用的一种电子器件,用于放大信号的幅度。
放大器可以将弱信号放大为较强的信号,以便于处理和传输。
常见的放大器有分立元件放大器、运算放大器和集成放大器等。
2.滤波器滤波器是模拟电路中常用的一种电子器件,用于改变信号频率的分布特性。
滤波器可以根据信号频率的要求实现对特定频段的放大或衰减。
常见的滤波器有低通滤波器、高通滤波器、带通滤波器和带阻滤波器等。
3.振荡器振荡器是模拟电路中常用的一种电子器件,用于产生稳定的周期性信号。
模电心得体会

模电心得体会经过一学期的模拟电子课程学习,我对模拟电子技术有了更深入的了解和体会。
在这段时间里,我积极参与课堂讨论,勤奋学习课本知识以及实践操作,收获颇多。
首先,模拟电子技术给我带来了学习兴趣和求知欲。
通过学习模拟电子课程,我逐渐理解了电子元件的工作原理以及它们在电路中的应用。
比如,通过分析放大电路,我了解到放大器的作用和特点,学会了如何选择适当的工作点和稳定放大电路。
这种知识让我对电子学产生了浓厚的兴趣,同时也使我更加热衷于深入学习和探索电子技术的更多领域。
其次,模拟电子技术让我深刻认识到了理论与实践的重要性。
在课堂上,老师讲解了大量的理论知识,包括电路的基本概念、运算放大器、反馈等等。
而在实验课上,我亲手制作和调试了各种模拟电路,比如滤波器、振荡器、比较器等等。
实践操作让我更直观地感受到了理论知识的实际应用,并且也让我对电路工作过程中可能发生的问题有了更深入的了解。
通过理论与实践的有机结合,我不仅加深了对模拟电子技术的理解,还培养了一定的实践能力和动手能力。
此外,模拟电子技术也培养了我分析和解决问题的能力。
在学习模拟电子技术的过程中,我们经常遇到各种各样的电路问题和实验难题。
有时候,电路无法正常工作,需要仔细检查元件的接线;有时候,电路的放大倍数不理想,需要重新调整工作点。
每次遇到这些问题,我都积极地思考和分析,并采取相应的解决措施。
通过反复实践和修正,我渐渐掌握了解决问题的方法和技巧。
这种能力不仅对模拟电子技术有帮助,也对其他领域的学习和工作有一定的借鉴意义。
最后,模拟电子技术教给了我团队合作和沟通交流的能力。
在实验课上,我们通常分为小组进行实验操作和报告撰写。
这就要求我们相互合作,共同解决问题。
在小组合作过程中,我学会了与队友协作,互相帮助,克服困难。
同时,为了更好地完成实验报告,我们需要进行交流和讨论,以确保每个人都明确自己的任务和要求。
这种合作和交流不仅提高了我们完成实验的效率,也培养了我们的团队合作能力和沟通交流能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
要回答这个问题,首先要弄清数电与模电的根本区别到底在哪。
1)、个人认为,在应用上两者之间最主要的差别是两者的工作逻辑不同。
一般来说,数字电路设计做好数字逻辑就差不多了,----剩下和问题就交给模拟去办了。
打个比方说,一个纯粹的数字电路设计完成,就是逻辑设计的完成,或者说,数字电路的设计大致上是个逻辑数学与电路程相结合的问题。
但到PCB设计时,就得看你的模电功夫和耐心了。
大家学习PCB设计时,可能都看到过74374之类的逻辑器件可能在布线时不一定要按照器件引脚名顺序排列去和别的电路同序连接。
原因在于追求布线简练,这看上去似乎不是什么事,其实这是模拟所要解决的电磁兼容问题。
为了做好这点,将原来的逻辑连接做一些修改是常有的事。
从这点上看,电路设计软件分成logic(schematic)和PCB“两个部分”不无道理。
2)、模电呢?说大了是个全局的问题(从学习上说就是基础问题)。
说简单点,是个基本功问题。
数字电路的模拟“部分”可以从外围元件设计和PCB设计上得以体现。
模拟则远不止于此,特别是一个系统的电磁兼容,是极其重要的。
而元件间、电路板间、设备间、主控室(器)与现场间、通讯线路的电磁兼容以及外来电磁场所的干扰、系统对环境的电磁“污染”都要考虑其中,甚至雷电、静电问题也不能稍有忽略。
这些都是模拟所要解决的问题。
就说单板子的装置,到了PCB设计阶段,元件间的引脚连接、排列、整体布局、散热设计、电源、强电弱电元件(功率元件与信号元件)安置、出入端口、人性化设计、机壳设计甚至多方案(备用方案)融合的考虑等等都会立马突现出来。
这些问题的解决,决不是数字功夫到家就能解决的,必须建立在适当的模拟功底为基础的下进行。
3)、模电的难处
在哪?上面说到了一点。
模电作为全局的知识和技能与要求。
不能不说的有许多边角要求,也实在有大多的边角要求你去“打扫”。
这就象一家之主,什么都要你管,再烦也没有办法!!
模电大体可以认为是去解决信号与干扰之间矛盾的问题。
它所要考虑的不止是电路的逻辑问题,不要解决它们之间的相互关系问题和环境条件的问题,一般也要涉及经济性和实用性的问题。
在逻辑关系上,它通常是定量的;在相互关系问题上,它通常是与干扰(电干扰、电磁干扰、温湿度干扰、漂移、绝缘<气体粉尘>、电泄漏等)做斗争的、考验人们意志的“战斗”,这恐怕是真正的难处所在。
到论坛看看就知道,有多少问题是可以脱离干扰去讨论的呢?
可见,由于涉及面比较广博,要说模电难大抵如此,要成就自己的真功夫当然要下苦功夫,积累是主要的,突击的做法,难免有所缺漏。
最后,有一个关于测试的问题,这是与数字很不同的:使用标准仪器时,要求你预热xx小时后再做。
这种要求也从一些方面反映出模电的某些难处,只是一般人难于碰到或少碰到罢了。
4)、我的看法----不可割裂知识间的联系
时下流行的说法是“现在搞数电的比模电赚钱,搞软件的比硬件的牛”。
软件与硬件的关系到个人专业与择业问题,不谈也罢。
不过,不会一点软件也做不成什么好的硬件。
这样的“人才”也难找。
何况许多人的成就都不一定是在自己原有的专业上取得而是在知识重新取向后取得的。
我个人的很大部分知识,也是被实践需要“逼”出来的。
各位可有同感?
说“搞数电的比模电赚钱”,倒是一种误会。
到如今,哪个人只会模电也就大大制约自己用武之地了----发展空间非常有限。
同样,只会数电,怎样设计出好的板子来,实在难以想象。
个人认为,模电---数电---软件,在大多数人身上,都是一体的,不可割裂看待。
在学习阶段,不要随意偏废。
以防实际需要时束手无策。
至于如何侧重,实际情况非常复杂,就不说了。
模拟,数字就好像是一个人的两条腿,你说少了那条走路舒服?我的想法是模拟数字都上,“全面发展“。
当然会有人说这是“鱼和熊掌兼得了,不实际。
”如果非要在两者之间作个选择的话,我认为不要以
哪个更重要为判断的准则,而是一个人的经历兴趣来挑选。
模拟和数字都是有发展方向的。
模拟上,现在的模拟集成电路已经达到了相当高的水平,其各项电器性能均达到了实用程度,相信以后的模拟集成电路会大展异彩。
众所周知,模拟人才要靠实践经验的积累,而现在的学生模拟电子线路方面都很差(比于数字电路),所以这方面的人才很受欢迎,需要提及的在甚高频,微波更高频率方面的人才就更缺乏了,这在全球都是。
所以如果能在这方面有所成就,嗯?!!!
数字方面,大规模,超大规模集成电路技术的不断完善使得数字电路在现代电子系统的比重越来越大,数字电路建立了根本是信号的数字处理,这门学科现在发展的很快,随之,数字电路的设计理念也日新月异,可以说现在设备之间的竞争很大程度上就是其数字处理能力的抗衡,是数电工程师在推动系统的变迁,他们是系统的核心竞争力量。
现在的超大规模集成芯片已经向系统级芯片的方向发展,FPGA 以经可以达到ASIC的水平(如XILINX的V2 pro),所以工程师们有了更大发挥空间。
说句半玩笑的话,一旦实现软件无线电,模电的工程师就可以下岗了。