数字逻辑知识点总结
数字逻辑知识点总结.doc

数字逻辑知识点总结ch1.1、三极管的截止条件是VVBEBE<<0.5V0.5V,截止的特点是IIbb=I=Icc≈≈00;饱和条件是IIbb≥(≥(EECC--VcesVces))//(β·(β·RRCC)),饱和的特点是VVBEBE≈≈0.7V0.7V,,VVCECE=V=VCESCES≤≤0.3V0.3V。
2、逻辑常量运算公式3、逻辑变量、常量运算公式4、逻辑代数的基本定律根据逻辑变量和逻辑运算的基本定义,可得出逻辑代数的基本定律。
①互非定律:A+A=l,A•A=0;1,;②重叠定律(同一定律):A•A=A,A+A=A;③反演定律(摩根定律):,;④还原定律、三种基本逻辑是与、或、非。
2、三态输出门的输出端可以出现高电平、底电平和高阻三种状态。
ch3.1、组合电路的特点:电路任意时刻输出状态只取决于该时刻的输入状态,而与该时刻前的电路状态无关。
2、编码器:实现编码的数字电路3、译码器:实现译码的逻辑电路4、数据分配器:在数据传输过程中,将某一路数据分配到不同的数据通道上。
5、数据选择器:逻辑功能是在地址选择信号的控制下,从多路数据中选择一路数据作为输出信号。
6、半加器:只考虑两个一位二进制数相加,而不考虑低位进位的运算电路。
7、全加器:实现两个一位二进制数相加的同时,再加上来自低位的进位信号。
8、在数字设备中,数据的传输是大量的,且传输的数据都是由若干位二进制代码0和1组合而成的。
9、奇偶校验电路:能自动检验数据信息传送过程中是否出现误传的逻辑电路。
10、竞争:逻辑门的两个输入信号从不同电平同时向相反电平跳变的现象。
11、公式简化时常用的的基本公式和常用公式有(要记住):1))德.摩根定律)3)))、逻辑代数的四种表示方法是真值表、函数表达式、卡诺图和逻辑图。
ch4.1、触发器:具有记忆功能的基本逻辑单元。
2、触发器能接收、保存和输出数码0,1。
各类触发器都可以由门电路组成。
数字逻辑知识点报告总结

数字逻辑知识点报告总结1. 数字逻辑的定义数字逻辑是一种以数字为基础的逻辑学科,它研究数字之间的关系和数字系统的运算规律。
在数字逻辑中,数字通常表示为0和1,这两个数字是数字逻辑中的基本元素。
数字逻辑研究的范围包括数制、逻辑运算、逻辑代数、逻辑函数、数字逻辑电路等。
2. 基本概念在数字逻辑中,有几个基本概念是必须要了解的,包括数制、位权、数字编码、二进制加法和减法、二进制码等。
其中,数制是指用来表示数字的一组符号和表示方法,位权是指数字中各个位上的数值和位置的关系,数字编码是把数字用一定的代码表示出来,二进制加法和减法是对二进制数字进行加减运算。
3. 逻辑门逻辑门是数字逻辑的基本构件,它用来实现逻辑运算功能。
常见的逻辑门包括与门、或门、非门、异或门和与非门等。
这些逻辑门可以根据输入信号的不同,输出不同的逻辑运算结果。
逻辑门是数字逻辑电路的核心部件,它可以实现各种逻辑功能。
4. 布尔代数布尔代数是逻辑代数的一种,它是一种用来表示逻辑运算的代数系统。
在布尔代数中,逻辑运算可以用加法、乘法和求反运算来表示,这些运算具有一些特定的性质,比如交换律、结合律、分配律等。
布尔代数是数字逻辑的数学基础,它可以用来描述和分析各种逻辑函数和逻辑运算。
5. 逻辑功能在数字逻辑中,逻辑功能是指逻辑门实现的具体功能。
常见的逻辑功能包括与运算、或运算、非运算、异或运算等。
这些逻辑功能可以根据实际需求进行组合和变换,从而实现复杂的逻辑运算。
6. 数字逻辑电路数字逻辑电路是数字逻辑的物理实现,它由逻辑门和其他逻辑功能部件组成。
数字逻辑电路可以用来实现各种逻辑运算、逻辑函数和逻辑功能,它是数字系统中的核心部件。
7. 存储器存储器是一种用来存储信息的设备,它可以用来保存数字信息、程序信息和数据信息等。
在数字逻辑中,存储器通常是由触发器组成的,它可以存储和传输数字信号。
8. 计数器和触发器计数器是一种用来计数和累加的设备,它可以用来实现各种计数功能和定时功能。
数字逻辑知识点总结

ch1.1、三极管的截止条件是V BE <,截止的特点是I b =I c ≈0;饱和条件是 I b ≥(E C -Vces )/(β·R C ),饱和的特点是V BE ≈,V CE =V CES ≤。
2、逻辑常量运算公式3、逻辑变量、常量运算公式4、 逻辑代数的基本定律根据逻辑变量和逻辑运算的基本定义,可得出逻辑代数的基本定律。
①互非定律: A+A = l ,A • A = 0 ;1=+A A ,0=•A A ; ②重叠定律(同一定律):A • A=A , A+A=A ;③反演定律(摩根定律):A • B=A+B 9 A+B=A • B B A B A •=+,B A B A +=•; ④还原定律: A A =ch2.1、三种基本逻辑是与、或、非。
2、三态输出门的输出端可以出现高电平、底电平和高阻三种状态。
ch3.1、组合电路的特点:电路任意时刻输出状态只取决于该时刻的输入状态,而与该时刻前的电路状态无关。
2、编码器:实现编码的数字电路3、译码器:实现译码的逻辑电路4、数据分配器:在数据传输过程中,将某一路数据分配到不同的数据通道上。
5、数据选择器:逻辑功能是在地址选择信号的控制下,从多路数据中选择一路数据作为输出信号。
6、半加器:只考虑两个一位二进制数相加,而不考虑低位进位的运算电路。
7、全加器:实现两个一位二进制数相加的同时,再加上来自低位的进位信号。
8、在数字设备中,数据的传输是大量的,且传输的数据都是由若干位二进制代码0和1组合而成的。
9、奇偶校验电路:能自动检验数据信息传送过程中是否出现误传的逻辑电路。
10、竞争:逻辑门的两个输入信号从不同电平同时向相反电平跳变的现象。
11、公式简化时常用的的基本公式和常用公式有(要记住): 1)()()C A B A BC A ++=+2)B A AB += B A B A +=+ (德.摩根定律) 3)B A B A A +=+4)B A AB BC B A AB +=++5)AB B A B A B A +=+ B A B A AB B A +=+12、逻辑代数的四种表示方法是真值表、函数表达式、卡诺图和逻辑图。
数字逻辑重点

1.基本逻辑和复合逻辑。
如给出输入信号的波形,画出输出的波形,或者发过来
2.几种常见的BCD码,如8421码,2421码,5421码的转换
3.公式法化简,必考一道
4.卡诺图化简,有多余项的函数化简,必考一道
5.组合逻辑电路的分析,按照例题4.1的步骤来分析
6.组合逻辑电路的设计,
7.用译码器74LS138或者数据选择器来实现逻辑函数,P82-P85
8.编码器、译码器、数值比较器的扩展
9.能写出一些实际功能的逻辑函数,比如三变量多数表决器,其中A有否决权
C
F+
=、三变量一致电路等
+
AB
A
C
ABC
B
10.RS触发器、D触发器、JK触发器的真值表、特性表、特征方程、状态转换图,
11.已知触发器的电路,在CP脉冲的作用下,画出触发器的波形,书上的例题,以及习题例题5.2
12.时序逻辑电路的分析
13.集成计数器的应用,74LS161,74LS169,74LS90,74LS192,以及组成任意计数器的接法,P131-P133
14.存储器的分类和扩展,图7-16图7-17图7-18
一、单项选择题。
(10小题,每小题2分,共20分)
二、填空题(5小题,每空1分,共10分)
三、逻辑函数化简(2小题,共10分)
四、分析题(共5小题,每小题8分,共40分)
五、设计题。
(共2小题,共20分)。
数字逻辑基础知识

例1 解 例2 解 例3 解
(2A.8)H=( ? )D (2A.8)H=2×161+A×160+8×16-1 =32+10+0.5=(42.5)D (165.2)O=( ? )D (165.2)O=1×82+6×81+5×80+2×8-1 =64+48+5+0.25=(117.25)D (10101.11)B=( ? )D (10101.11)B=1×24+0×23+1×22+0×21 +1×20+1×2-1+1×2-2 =16+0+4+0+1+0.5+0.25=(21.75)D
八进制数 0 1 2 3 4 5 6 7 10 11 12 13 14 15 16 17 20 21 22 …
十六进制数 0 1 2 3 4 5 6 7 8 9 A B C D E F 10 11 12 …
十、二、八、十六 进制间的关系对照
1.1.2 数制转换
1. K进制与十进制之间的转换 进制与十进制之间的转换 进制与十进制之间的转换 把K进制数转换成十进制数:采用按权展开 按权展开相加法。具体 按权展开 步骤是,首先把非十进制数写成按权展开的多项式,然后 按十进制数的计数规则求其和。
即
(0.35)D=(0.2631…)O
例9 解
(11.375)D=( ? )B 2 11 2 5………… 1 2 2……………1 2 1……………0 0……………1 (11)D=(1011)B 0.375×2=0.75 0.75×2=1.5 0.5×2=1.0
即
即 故
(0.375)D=(0.011)B (11.375)D=(1011.011)B
数字逻辑知识点总结

数字逻辑知识点总结数字逻辑有着相当丰富的知识点,包括逻辑门的基本原理、布尔代数、数字信号的传输与处理、数字电路的设计原理等。
在这篇文章中,我将对数字逻辑的一些重要知识点进行总结,希望能够为初学者提供一些帮助。
1. 逻辑门逻辑门是数字电路中的基本单元,它可以完成各种逻辑运算,并将输入信号转换为输出信号。
常见的逻辑门包括与门、或门、非门、与非门、或非门、异或门等。
每种逻辑门都有其特定的逻辑功能,通过不同的组合可以完成各种逻辑运算。
在数字电路设计中,逻辑门是构建各种复杂逻辑电路的基础。
2. 布尔代数布尔代数是表示逻辑运算的一种代数系统,它将逻辑运算符号化,并进行了各项逻辑规则的代数化处理。
布尔代数是数字逻辑的基础,通过布尔代数可以很方便地表达和推导各种逻辑运算,对于理解数字电路的工作原理非常有帮助。
3. 二进制与十进制的转换在数字逻辑中,我们经常需要进行二进制与十进制的转换。
二进制是计算机中常用的数字表示方法,而十进制则是我们日常生活中常用的数字表示方法。
通过掌握二进制与十进制之间的转换规则,可以方便我们在数字逻辑中进行各种数字运算。
4. 组合逻辑与时序逻辑数字电路可以分为组合逻辑电路与时序逻辑电路。
组合逻辑电路的输出只取决于输入信号的瞬时状态,而时序逻辑电路的输出还受到时钟信号的控制。
理解组合逻辑与时序逻辑的差异对于理解数字电路的工作原理至关重要。
5. 有限状态机有限状态机是数字逻辑中一个重要的概念,它是一种认知和控制系统,具有有限的状态和能够在不同状态之间转移的能力。
有限状态机在数字系统中有着广泛的应用,可以用来设计各种具有状态转移行为的电路或系统。
6. 计数器与寄存器计数器与寄存器是数字逻辑中常用的两种逻辑电路。
计数器用于对计数进行处理,而寄存器则用于存储数据。
理解计数器与寄存器的工作原理和使用方法,对于数字系统的设计和应用具有非常重要的意义。
7. 逻辑电路的设计与分析数字逻辑的一大重点是逻辑电路的设计与分析。
数字逻辑知识点总结

数字逻辑知识点总结一、数制与编码。
1. 数制。
- 二进制。
- 只有0和1两个数码,逢二进一。
在数字电路中,由于晶体管的导通和截止、电平的高和低等都可以很方便地用0和1表示,所以二进制是数字系统的基本数制。
- 二进制数转换为十进制数:按位权展开相加。
例如,(1011)_2 =1×2^3+0×2^2 + 1×2^1+1×2^0=8 + 0+2 + 1=(11)_10。
- 十进制数转换为二进制数:整数部分采用除2取余法,将十进制数除以2,取余数,直到商为0,然后将余数从下到上排列;小数部分采用乘2取整法,将小数部分乘以2,取整数部分,然后将小数部分继续乘2,直到小数部分为0或者达到所需的精度。
- 八进制和十六进制。
- 八进制有0 - 7八个数码,逢八进一;十六进制有0 - 9、A - F十六个数码,逢十六进一。
- 它们与二进制之间有很方便的转换关系。
八进制的一位对应二进制的三位,十六进制的一位对应二进制的四位。
例如,(37)_8=(011111)_2,(A3)_16=(10100011)_2。
2. 编码。
- BCD码(二进制 - 十进制编码)- 用4位二进制数表示1位十进制数。
常见的有8421码,它的权值分别为8、4、2、1。
例如,十进制数9的8421码为1001。
- 格雷码。
- 相邻两个代码之间只有一位不同,常用于减少数字系统中代码变换时的错误。
例如,3位格雷码000、001、011、010、110、111、101、100。
二、逻辑代数基础。
1. 基本逻辑运算。
- 与运算。
- 逻辑表达式为Y = A· B(也可写成Y = AB),当且仅当A和B都为1时,Y才为1,其逻辑符号为一个与门的符号。
- 或运算。
- 逻辑表达式为Y = A + B,当A或者B为1时,Y就为1,逻辑符号为或门符号。
- 非运算。
- 逻辑表达式为Y=¯A,A为1时,Y为0;A为0时,Y为1,逻辑符号为非门(反相器)符号。
数字逻辑知识点

数字逻辑知识点知识点1:编码、无权代码、有权代码知识点2:数制、进制知识点3:定点数、浮点数知识点4:模拟信号、数字信号、模拟电路、数字电路知识点6:逻辑函数、逻辑函数的六种表示方式知识点7:基本的逻辑运算(与、或、非、与非、或非、与或非、异或)、逻辑运算规则知识点8:三个定理:代入定理、反演定理、对偶定理知识点9:逻辑函数两种标准形式、逻辑函数的变换(与非-与非、或非-或非、与或非式)知识点10:逻辑函数的公式法化简、卡若图表示和卡诺图法化简、具有无关项的卡诺图化简1.数字信号的特点是在幅度上和时间上都是离散,其高电平和低电平常用 1和 0 来表示。
2、分析数字电路的主要工具是逻辑代数,数字电路又称作逻辑电路。
3、常用的BCD码有 8421BCD码、2421BCD码、5421BCD码、余三码等。
常用的可靠性代码有格雷码、奇偶校验码等。
4、逻辑代数又称为布尔代数。
最基本的逻辑关系有与、或、非三种。
常用的几种导出的逻辑运算为或非、与非、与或非、同或、异或、非。
5、逻辑函数的常用表示方法有逻辑表达、真值表、逻辑图、卡诺图、波形图。
6、逻辑代数的三个重要规则是代入规则(换元<表达式>代入)、对偶规则(每个逻辑符号取反)、反演规则(整体取反,德摩根)。
7、一些基本概念在电子技术中,被传递、加工和处理的信号可以分为两大类:模拟信号和数字信号(1) 模拟信号:在时间上和幅度上都是连续变化的信号,称为模拟信号,例如正弦波信号、心电信号等。
(2) 数字信号:在时间和幅度上均不连续的信号。
(3) 模拟电路:工作信号为模拟信号的电子电路。
(4) 数字电路:工作信号为数字信号的电子电路。
(5) 研究的对象:数字电路研究的对象是数字电路的输出与输入之间的因果关系,也就是说研究电路的逻辑关系。
(6) 数字集成电路分类:小规模集成电路(SSI)、中规模集成电路(MSI)、大规模集成电路(LSI)、超大规模集成电路(VLSI)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、三极管的截止条件是V BE <0.5V ,截止的特点是I b =I c ≈0;饱和条件是 I b ≥(E C -Vces )/(β·R C ),饱和的特点是V BE ≈0.7V ,V CE =V CES ≤0.3V 。
2、逻辑常量运算公式
3、逻辑变量、常量运算公式
4、 逻辑代数的基本定律
根据逻辑变量和逻辑运算的基本定义,可得出逻辑代数的基本定律。
①互非定律: A+A = l ,A • A = 0 ;1=+A A ,0=•A A ; ②重叠定律(同一定律):A • A=A , A+A=A ;
③反演定律(摩根定律):A • B=A+B 9 A+B=A • B B A B A •=+,B A B A +=•; ④还原定律: A A =
ch2.
1、三种基本逻辑是与、或、非。
2、三态输出门的输出端可以出现高电平、底电平和高阻三种状态。
1、组合电路的特点:电路任意时刻输出状态只取决于该时刻的输入状态,而与该时刻前的电路状态无关。
2、编码器:实现编码的数字电路
3、译码器:实现译码的逻辑电路
4、数据分配器:在数据传输过程中,将某一路数据分配到不同的数据通道上。
5、数据选择器:逻辑功能是在地址选择信号的控制下,从多路数据中选择一路数据作为输出信号。
6、半加器:只考虑两个一位二进制数相加,而不考虑低位进位的运算电路。
7、全加器:实现两个一位二进制数相加的同时,再加上来自低位的进位信号。
8、在数字设备中,数据的传输是大量的,且传输的数据都是由若干位二进制代码0和1组合而成的。
9、奇偶校验电路:能自动检验数据信息传送过程中是否出现误传的逻辑电路。
10、竞争:逻辑门的两个输入信号从不同电平同时向相反电平跳变的现象。
11、公式简化时常用的的基本公式和常用公式有(要记住): 1)()()C A B A BC A ++=+
2)B A AB += B A B A +=+ (德.摩根定律) 3)B A B A A +=+
4)B A AB BC B A AB +=++
5)AB B A B A B A +=+ B A B A AB B A +=+
12、逻辑代数的四种表示方法是真值表、函数表达式、卡诺图和逻辑图。
ch4.
1、触发器:具有记忆功能的基本逻辑单元。
2、触发器能接收、保存和输出数码0,1。
各类触发器都可以由门电路组成。
3、基本触发器特点
1)有两个稳定状态和两个互补的输出。
2)在输入信号驱动下,能可靠地确定其中任一种状态。
5、(从逻辑功能来分,有:RS触发器、JK触发器、D触发器、T触发器、T′触发器等;从结构来分,有:基本触发器、TTL主从触发器、CMOS主从边沿触发器、维持阻塞边沿触发器等。
不同结构的触发器其触发特点不同,这可以由触发器的逻辑符号表示。
在波形分析时,要特别注意触发器的触发特点,才可以画出正确的工作波形。
)
(D 触发器特性方程此表中为简写,详情请见书92页)
6、JK 触发器有两种触发方式:主从和边沿触发方式。
7、触发器逻辑功能的转换 1)JK 型和D 型相互转换
2)JK 型和D 型转换成其他类型
ch5.
1、按触发方式将时序电路分成两类: 1)同步时序电路 2)异步时序电路
2、时序电路分为米里型和莫尔型两类。
此内容为重点,详情请见书100—101页!
3、时序逻辑电路的特点:电路任一时刻的输出状态不仅取决于当时的输入信号,而且还取决于电路原来的状态,或者说与以前的输入有关。
4、时序逻辑电路框图:
x:组合电路的输入信号y:组合电路的输出信号
z:储存电路的输入信号q:储存电路的输出信号
5、数码寄存器:用来存放一组二值代码。
6、移位寄存器:储存二值代码、具有移位功能。
就是在移位脉冲作用下,将二值代码左移或右移,左移和右移的方向是对逻辑图而言的。
7、数码寄存器有双拍和单拍两种工作方式。
1)双拍:接收数码的过程分二步进行,第一步清零,第二步接收数码。
2)单拍:只需一个接收脉冲就可完成接收数码的工作方式。
8、锁存器特点:
1)当锁存信号没有到来时,锁存器的输出状态随输入信号变化而变化
2)当锁存信号到达时,锁存器输出状态保持锁存信号跳变时的状态。
9、计数器应用于:时钟脉冲计数、定时、分频、产生节拍脉冲、数字运算符等。
10、计数器按触发方式分类:同步计数器、异步计数器。
11、状态转换图:(必会!详情见书115页)
(3位二进制计数器转改转换图)
12、进行递增计数的计数器叫做加法计数器;进行递减计数的计数器叫做减法计数器;即可进行递增又可进行递减的计数器,叫做可逆计数器。
13、可逆计数器也称加/减计数器
1)双时钟结构:一个加/减法计数器有两个计数脉冲输入端。
2)单时钟结构:一个加/减法计数器只有一个计数脉冲输入端。
14、利用中规模集成计数器构成任意进制计数器的方法有:乘数法、复位法、置数法。
1)乘数法:计数脉冲接到N进制计数器的时钟输入端,N进制计数器的输出接到M进制计数器的时钟输入端,两个计数器一起构成了N×M进制计数器。
2)用复位法构成N进制计数器所选用的中规模集成计数器的计数容量必须大于N。
当输入N个计数脉冲后,计数器应回到全0状态。
3)置数法:采用置数法,必须对计数器进行置数。
可以在计数器计数到最大时,置入计数器状态转换图中的最小数,作为计数循环的起点,也可以在计数器计数到某个数之后,置入最大数,然后接着从0开始计数。
15、顺序脉冲发生器也称节拍脉冲发生器。
能够产生一组在时间上有先后顺序的脉冲。
ch8.
1、获得矩形脉冲波的方法:
1)利用多谐振荡器直接产生所需要的矩形脉冲波
2)利用整形电路,将不理想的波形变换成所要求的矩形脉冲波
2、555定时器由电阻分压器、比较器、基本RS触发器、三极管开关和输出缓冲器等5部分组成。
3、集成555定时器的应用:多谐振荡器、单稳态触发器、施密特触发器。
1)多谐振荡器:一种能产生矩形波(方波)的电路。
2)单稳态触发器一般用于定时、整形和延时。
3)施密特触发器:一种脉冲波整形电路。
可将边沿变化缓慢的输入信号波形整形为矩形波。
Ch9.
1、模/数转换:将模拟量转换成数字量的过程。
2、数/模转换:把数字量换换成模拟量的过程。
3、实现数/模转换的基本方法:用电阻网络将数字量按着每位数码的权转换成相应的模拟量,然后用求和电路将这些模拟量相加。
4、DAC的主要技术指标:
1)分辨率:DAC电路所能分辨的最小输出电压与满刻度输出电压之比。
2)转换误差
3)建立时间:数字信号由全0变全1,或由全1变全0,模拟信号电压或电流达到稳态值所需要的时间。
5、模/数转换器:把模拟电压或电流转换成与之成正比的数字量。
6、一般模/数(A/D)转换需经采样、保持、量化、编码4个步骤。
但这4个步骤并不是由四个电路来完成的。
例如,采样和保持两步就由采样-保持电路完成,而量化与编码又常常在转换过程中同时完成。
7、采样:按一定时间间隔采集模拟信号。
8、采样定理(必记!):只有当采样频率大于模拟信号的最高频率分量的2倍时,所采集的信号样值才能不失真地反映原来模拟信号的变化规律。
9、若要不产生混叠,采样频率就不能小于正弦波频率的2倍。
要不失真地恢复正弦信号,采样频率必须大于正弦波频率的2倍。
10、采样-保持电路主要有两个指标:采集时间、保持电压下降速率。
11、量化:近似的过程。
12、量化方法:
1)“只舍不入法”:将不够量化单位的值舍掉。
2)“有舍有入法”:将小于Δ/2的值舍去,将小于Δ而大于Δ/2的值视为数字量Δ。
13、编码:量化过程只是把模拟信号按量化单位作了取整处理,只有用代码表示量化后的值才能得到数字量,这一过程成为编码。
14、ADC的主要技术指标:
1)转换时间
2)分解度
3)量化误差
4)精度
5)输入模拟电压范围
补充必会内容:
ch1.进制转换、书12-13页公式
ch3.注意组合逻辑电路与时序逻辑电路的区别
ch4.书91页内容为考试重点!D触发器为重点!
必会题:
P66/3-11、P128/5-8、P136/5-19、5-20
需看题:P107/5-1、5-2、5-3、P131/5-9、5-10。