二氧化碳制冷剂汽车空调

二氧化碳制冷剂汽车空调
二氧化碳制冷剂汽车空调

二氧化碳制冷剂汽车空调

293430112001 曹广升

一、课题背景和目的

自蒙特利尔议定书签定以来, 以CFCs 和HCFCs 等氟利昂作制冷剂的制冷空调界面临着严重的挑战, 为了寻找合适的替代物, 全球范围内开展了广泛的研究。目前推出的包括R 134a在内的HFCs 及其混合物, 不能够满足长期替代的要求, 大多有较高的温室效应指数(GWP) 等缺点。同时, 人们担心这些化合物可能隐含着不可预知的潜在危险,因此, 天然工质就引起了人们的极大关注, 其中的二氧化碳因其具有良好的热力性能和环保特性, 尤其受到了重视。过去CFC12 作为汽车空调的制冷剂,其用量约占全世界CFC12 用量的28 。汽车空调由于处于动态工作环境,负荷大,使用开式或半开式压缩机极易引起泄漏。据测,全世界泄漏到大气中的CFC 物质中有3/4 是由于汽车空调泄漏引起的,在汽车空调装置中用新的制冷剂来替代的任务已十分紧迫。二氧化碳是少数几种无毒、不易燃的工质之一,如果泄露到大气中, 它不会导致臭氧层空洞等问题L 与其它工质相比, 二氧化碳具有明显的点:

(1)ODP= 0, 且GWP=1 很小, 约为R134a 和R22 的千分之一。

(2) 运动粘度低, 流动性大,压缩比较低(约为2.5- 3.0) , 单位容积制冷量大。

(3) 来源广泛, 价格低廉,维护简单, 无须循环利用。

(4) 无毒、不可燃, 对常用材料没有腐蚀性。

另外,二氧化碳空调的安全保护装置与现有系统相同;短期和长期暴露极限相当于甚至好于CFC/HCFC;破裂时释放的能量与现有系统相当;二氧化碳的所有特性都为人熟悉,研究应用方便;系统质量和体积与R134a 系统相当;蒸发潜热较大,单位容积制冷量相当大;充分适用各种润滑油和常用机器零部件材料等等优点。当前, 人们最关心的是环境污染的问题,二氧化碳作为天然物质, 对大气臭氧层无任何破坏作用, 其ODP= 0,至于GWP 值, 制冷系统本身不会产生二氧化碳, 只是利用它作为工质, 并且是从工业废气回收得到的, 用它作为制冷剂时, 其GWP 值为零,正是因为二氧化碳的这些优点, 致使它得到人们的重视和关注,不少专家预言, 二氧化碳将是二十一世纪制冷空调技术的理想制冷剂,并且已被很多国家作为汽车空调制冷

剂的长期替代物进行研究。然而,由于二氧化碳的临界压力高而临界温度低,一般以二氧化碳作为汽车空调的制冷剂工作在跨临界区域,而且压力比较高。

目前,二氧化碳制冷剂的制冷机在美国、日本和欧洲已经有样机,而大规模的应用还存在着许有限制,很多方面需要技术突破,相关的技术文献也不是太多,特别是国内的研究处于起步阶段。研究二氧化碳制冷剂的汽车空调,提高其性能,降低生产和使用成本是一个非常有意义的工作。

二、检索策略

检索策略是为实现检索目标而制订的全盘计划或方案,指导整个检索过程,因此制定正确的检索策略非常必要。

(1)确定课题后,在分析课题的基础上,根据课题要求和特点,确定检索内容的学科范围、文献类型、检索年限。

(2)将与该课题相关概念陈列开来,确定中英文检索词,建立检索命题。

中文:二氧化碳;制冷剂;汽车空调。

英文:CO2, Refrigerants, Automotive Air Conditioning

(3)寻找有关资料,根据学科范围选择检索工具和检索方法,如中国知网、汇文、EI、google等并评估检索结果所得资料是否和课题相关。找出检索词,按逻辑关系列出检索式,制定查找程序。在检索过程中要特别注意确定各检索词之间的组配方式,它是检索策略的重要部分,关系到检索结果的查全、查准。

(4)利用资料后所列的参考书目查寻更多的资料。若所得资料和课题无关,重新将与课题相关的概念陈列开来,并建立检索关键词。若满意所找寻到的资料,征引查获的资料。

(5)根据查到的文献线索获取原始论文,可在检索工具所附的“来源索引”、“收录出版物一览表”等查出刊名的全称,然后查馆藏目录。对该课题大多数文献原文可直接获取。

三、检索过程及初步结果

1.中国期刊全文数据库

中国期刊网是中国知识基础设施(China National Knowledge Infrastructure,简称CNKI)工程的重点项目之一。中国期刊网上的数据库包括理工(A、B、C 三类)、

农业、医药卫生、文史哲、经济法律与政治、教育与社会科学、电子技术与信息科学9 个专辑。

检索范围:全部期刊

检索年份:2001-2010

检索策略1:

篇名:二氧化碳检中8452条

高级检索:

篇名:二氧化碳 and 关键词:制冷剂检中42 篇;

篇名:二氧化碳 and 关键词:制冷剂 and 摘要:汽车空调检中16篇与课题相关2篇《二氧化碳汽车空调》作者:牟春燕; 赵万胜; 姚美红;

《二氧化碳汽车空调系统应用研究进展》作者:陈江平; 穆景阳; 陈芝久;

全文下载阅读。

在读者推荐文章栏显示相关10条推荐文章,选择符合课题的进行阅读。

检索策略2:

篇名:汽车空调检中539篇

高级检索:

篇名:汽车空调 and 篇名:二氧化碳检中20篇

基本与策略1结果类似,可用文章相同

2.汇文

检索策略1:

题名=二氧化碳检中11 条

检索结果比较少,直接寻找与课题相关书目:

《二氧化碳制冷技术》丁国良黄冬平编著

ISBN号: 978-7-5025-9975-1 符合检索要求

索书号条码号年卷期馆藏地书刊状态

TB66/10005 90264375 - 江浦自然科学图书借阅室可借

TB66/10005 90264376 - 江浦自然科学图书借阅室可借

TB66/10005 90264378 - 江浦综合图书阅览室阅览

TB66/10005 90264377 - 丁家桥自科借阅处可借

可以借阅

检索策略2:

主题词=制冷剂检中3 条

没有与课题相关的可用图书

检索策略3:

题名=汽车空调检中15条

主题词=二氧化碳or制冷剂检中0条

3.工程索引(Ei)

美国《工程索引》(The Engineering Index,简称Ei)是检索工程技术领域文献的最主要工具书之一。进入Ei Compendex web界面,Ei的检索分为Easy search(简单检索)、Quick search(快速检索)和Expert search(专家检索)。这里选择Quick

search。

检索词:二氧化碳= CO2

汽车空调= Automotive Air Conditioning

制冷剂= Refrigerants

检索策略1:((co2) WN KY) 检中3323条

二次检索:(((co2) WN KY) AND ((Automotive Air Conditioning ) WN KY)) 检中4条

其中第一条和第二条与课题相关

获取原文:

通过左下角 FULL TEXT LINKS链接获取原文原文第一页如下:

第二篇同样方法获取原文,原文第一页如下图:

检索策略2:

title = CO2 检中731 条

二次检索:title=co2 and abstract=Refrigerants 检中1条《Technical and economic assessment of CO2 transportation for CCS purposes》

Fradet, Aude (Gaz de France); Saysset, Samuel; Odru, Pierre; Broutin, Paul; Ruer, Jacques; Bonnissel, Marc Source: Global Pipeline Monthly, v 3, n 6, July, 2007,

与课题关系不大

检索策略3:

((Automotive Air Conditioning ) WN TI) 检中115 条

二次检索:(((Automotive Air Conditioning ) WN TI) AND ((Refrigerants) WN

AB)) 检中54条

((((Automotive Air Conditioning ) WN TI) AND ((Refrigerants) WN AB)) AND ((co2) WN KY)) 检中1条

《Experimental study on automotive cooling and heating air conditioning system using CO2 as a refrigerant》

Tamura, Tomoichiro (Living Environment Development Center, Matsushita Electric Industrial Co. Ltd.); Yakumaru, Yuuichi; Nishiwaki, Fumitoshi Source: International Journal of Refrigeration, v 28, n 8, December, 2005, p 1302-1307

与研究课题相关,检索策略1中已获取原文。

4. 搜索引擎 https://www.360docs.net/doc/b215847724.html,/

检索策略1:co2 and 汽车空调 and 制冷剂检中368条

与课题相关:《CO2制冷技术新发展》获取原文,需付费。

检索策略2:汽车空调 and 制冷剂 and 二氧化碳检中417条

与课题相关《二氧化碳制冷剂的应用研究》记录为空

《二氧化碳汽车空调器仿真与优化》获取原文,需付费。

四、国内外研究现状的综述

二氧化碳制冷剂汽车空调

摘要: 综述了二氧化碳汽车空调系统的研究现状, 提出CO2作为工质具有优良的环保性能, 在汽车空调系统中无论在理论方面, 还是在部件实现方面, 都完全具备了可能性。

关键词: 二氧化碳; 汽车空调; 制冷剂

1 概述

CO2作为最早采用的制冷剂之一, 在上个世纪并直到30 年代得到了普遍使用, 随着CFCs 的出现, 除在船用领域一直被采用外, CO 2 很快被人们所抛弃, 这种发展的主要原因是在冷却水温高的热带地区, 由于CO 2 的临界温度只有3111 ℃, 采用传统Perk in 蒸汽压缩制冷循环时冷量损失较大, 且存在着饱和压力过高, 压缩机功耗过大的缺点, 当然这也和当时的制造水平有关。

70 年代, CFC 及HCFC 被发现破坏大气臭氧层及温室效应指数较高而面临全面禁用。HFC134a也由于其温室效应指数较高而被认为是一种过渡型的替代物。在此背景下, 采用超临界循环的CO 2 系统以其优良的环保特性、良好的传热性质、较低的流动阻力及相当大的单位容积制冷量, 重新在制冷领域, 尤其在认为用新型化合替代物同样会隐藏着不可预知潜在危险的欧洲得到了青睐。由于汽车空调易于泄漏, 其替代的任务更为迫切, 二氧化碳汽车空调的研制进展最快, 离实用化的距离也最

近。美、日、欧洲都已相继研制成功了二氧化碳汽车空调系统并装车试运行, DAN FO SS、DEN SO、ZEX2EL 等已进入二氧化碳压缩机小批量生产阶段。1996 年德国Konvek ta 公司研制出顶置式巴士空调,并通过各种试验。

1999 年3 月, IEA 联合日本、挪威、瑞典、英国和美国启动“Selected Issue on CO2 as Working Fluid in Compression Systems”的三年计划项目,2000 年9 月18 日在NTH 进行了第一次会议.

当前环境保护问题越来越受到重视, 二氧化碳汽车空调系统产品一旦成熟, 必将使其它制冷工质黯然失色, 我国汽车空调业又将面临新的挑战, 为此本文对二氧化碳汽车空调系统的研究现状进行总结, 以期为关心汽车空调发展的读者提供参考。

2 超临界循环的CO 2 制冷系统原理

20 世纪90 年代初, 挪威技术大学Lo ren tzen 教授开发了采用跨临界制冷循环的汽车空调样机, 并申请获得了国际专利。跨临界的CO 2 蒸汽压缩制冷循环

如图1 所示, 它是一种和深度冷冻装置中的高压(林德) 流程气体液化与分离装置类似的系统, 只不过其目的不是为了气体液化和分离, 而是利用气体液化后可以蒸发吸收汽化潜热的特性以达到制冷的目的。跨临界系统由压缩机C、气体冷却器G、内部热交换器I、节流阀V、蒸发器E 与储液器A 组成封闭回路。气体工质在压缩机中升压至超临界压力P 2, 在p 2h 图上为过程f2a, 然后进入气体冷却器中,被冷却介质(空气或冷却水) 所冷却。为了提高系统的性能系数CO P , 出气体冷却器后的高压气体在内部热交换器中进一步冷却。它是用压缩机回气管前面的低温低压蒸汽过热这一回热原理实现的, 此即过程b2c。理想情况下, 焓降hb2hc= hf2he。然后用

节流阀减压, 经节流后的气体被冷却, 且部分气体液化, 湿蒸汽进入蒸发器E 内汽化, 吸收周围介质的热量。蒸发器中的液体并不全部汽化, 而是设计成有少量液体盈余, 因此其出口状态a 将在两相区内, 这对提高蒸发器的传热效率十分有利。正因为如此, E 出口须配置储液器, 以防止压缩机液击和便于压缩机回油(专用回油

管道如图上虚线所示)。储液器出来的低压饱和蒸汽进入内部热交换器的低压侧通道, 吸收高温高压的超临界气体的热量后, 成为过热蒸汽进入压缩机升压。如此周而复始完成循环。

3 系统结构及部件实现

CO2跨临界系统的工作压力远远超过亚临界循环, 蒸发压力为3~4 M Pa, 冷却压力为10~11 M Pa, 这给压缩机及管路的机械设计与密封带来一些特殊的问题, 需要进行较大改进。CO2具有相当大的单位容积制冷量0℃时单位容积制冷量分别为NH3的1158 倍, 是R12 和R22的8125倍与5112倍) , 故而与传统系统相比, CO2制冷系统的容积流量可显著减小, 这样使得压缩机的尺寸, 阀门与管道的流通面积比一般制冷系统小得多。同时CO2良好的热力性质也为设计结构紧凑、高效的热交换器提供了可能性。

3.1 压缩机

CO2和氨一样, 其绝热指数(K)值较高, 达1130, 这可能会产生压缩机排气温度偏高的顾虑,但由于CO2的低压工作压力P0很高,正因为绝热指数K值高, 压比小, 可减小压缩机余隙容积的再膨胀损失, 使压缩机的容积效率较高。这已为文献[2 ] 的样机测试结果所证实。

同时, 因为CO2压缩机的吸排气压力均比R134a 压缩机的大得多, 因而选择压

缩机类型及合理的压缩机设计显得尤为重要。经过实验和理论研究, Jurgen SUB和HorstKruse认为往复式压缩机, 主要是柱塞和轴塞式压缩机凭借油润滑, 在汽缸壁和活塞之间存在良好的油膜滑动密封, 成为CO2系统的首选(图2)。

因此迄今为止, 汽车空调系统中使用的二氧化碳压缩机采用往复式结构, 图3 为DAN FO SS 研制的三缸斜盘式压缩机、Bock 研制的两缸立式活塞式客车空调压缩机和日本电装的变排量压缩机结构。由于应用于汽车空调系统的CO 2 压缩机汽缸体积小, 以及存在潜在高冲击速度, 对传统使用的簧片阀提出了挑战, 必须采用更为先进的阀门。Bock 将压缩机排气阀改良后发现压缩机效率提高7%。

3.2 热交换器

CO2汽车空调系统热交换器包括蒸发器、气体冷却器和内部气体换热器, 占有整个系统质量的一半及大部分体积, 应有高效、紧凑、重量轻的特点,以满足汽车空调

的特殊要求。制冷循环中的散热由空气冷却器完成, 其作用相当于传统制冷循环中的冷凝器。在空气冷却器中,二氧化碳工作在超临界状态下, 始终处于气态, 并不发生一般冷凝器中的冷凝液化过程。受二氧化碳物性的制约, 空气冷却器中制冷剂侧压力很高, 达11 M Pa 左右。另外, 由于二氧化碳处于超临界状态, 出口温度独立于出口压力, 使它可以有较大的压降。因此, 制冷剂侧往往设计成较大的流量密度和较小的管径( 210~018 mm ) 。同时,小管径也有助于承受较高的压力。同样的平均温差下, 二氧化碳和R 22 的冷却曲线如图4 所示。CO2的冷却曲线特性使采用小迎风面积、长空气流道、低空气流速的逆流式换热器成为可能。采用逆流式设计的气冷器接近方形, 紧凑的结构和较小的空气流量可以使汽车空调中的空气冷却器不必一定放在散热器前, 也可不放在汽车前部, 有利于汽车设计整体优化, 也避免了增加散热器的负荷以及车底热空气进入冷却器中。

图4 二氧化碳和R22 的冷却曲线对比

最初的空气冷却器由Loren tzen 和Pettersen于1990~ 1991 年推出, 为传统的管片式。进一步的模型计算表明, 采用更小的管径有助于提高换热强度。同时, 由于对最小爆炸压力的考虑, 也要求缩小管径。因此, Lorentzen 和Pet tersen 在

1994 年重新设计了气冷器, 管径减小到312 mm -210 mm。由于过小的管径带来制造上的困难, 增加了成本。在这种情况下, 提出了铜制“平行流”空气冷却器的概念, 一组平行的小直径换热管构成一个整体以便于制造。计算和实验都表明这种换热器有较大的潜力, 管径更小, 换热强度更高, 结构更为紧凑, 成为空气冷却器的新标准。与空气冷却器类似, 最初的蒸发器也是从圆管平肋片式逐步发展到铜制“平行流”式换热器。

CO2系统以内部气体换热器取代了原来的吸气软管及液体管, 采用了逆向双管

系统, 通过压缩机吸气管前面的蒸汽过热这一回热原理实现, 有利于提高系统效率, 使节流前制冷剂处于过冷状态, 保持节流机构工作稳定。

3.3 其它

CO2跨临界制冷循环节流前的高压制冷剂不是冷凝液体, 环境温度对系统性能

的影响大为减小, 系统性能基本上由高压侧压力所决定, 可以通过控制节流阀的大小调节高压侧压力, 从而实现对系统冷量的控制。CO 2 跨临界制冷循环具有在一定范围内可连续调节冷量的优点, 受环境影响不大, 适用于汽车空调系统。在车室温度较高工况下可加大制冷量, 显著缩短打冷时间。就控制冷量能力角度来说,膨胀阀已不是简单传统意义的概念了。节流及控制元件应当根据不同汽车空调控制精度要求, 采用不同元件, 一般采用自动控制阀。在系统中还采用了储液器, 用以防止压缩机液击和便于压缩机回油。储液器容量设计比实际来得大, 以满足不同工况要求。为防止水与CO 2反应产生腐蚀, 应在储液器中设置干燥器。

此外, 出于CO2系统高工作压力和汽车空调具体特点考虑, 管路采用小口径铜

管及采用性能良好的接口, 以减少泄漏。出于安全考虑, 系统需要高低压保护装置, 压缩机安全阀等装置。欧洲已制订二氧化碳汽车空调主要部件的设计标准如表1 所列。

4 实用化研究现状

二氧化碳超临界循环理论由挪威技术学院的Lo ren tzen 教授提出, 在欧洲最先得到响应。1994 年起BMW、DA IML ERBEN Z、VOLVO、德国大众、Danfoss、Valeo 等欧洲著名公司发起了名为“RACE”的联合项目, 联合欧洲著名高校、汽车空调制造商等研制CO 2 汽车空调系统, 并计划在2003年欧洲生产的汽车有一半装备CO 2 汽车空调系统。BENZ 汽车公司现已生产装备二氧化碳汽车空调系统的轿车, 德国KONVECTA 生产的以二氧化碳为工质的空调公交客车从1996 年运行至今。DAN

2FOSS、奥地利的Obrist、英国均已研制出二氧化碳车用压缩机。日本的DEN SO、ZEXEL 的二氧化碳压缩机已进入小批量生产阶段。2000 年7 月在美国Arizona 召开的SAE 年会上展出的VISTEON、CALSONIC、MODINE、DC 公司的二氧化碳汽车空调系统的主要性能均已超过R 134a 系统[ 8 ]。美国开展的研究不仅仅限于汽车空调, 其在家用空调、坦克空调、超市陈列柜以及热泵系统的研究也已取得明显进展。

国内对于二氧化碳超临界循环技术的研究也已开始, 但多数以理论分析为主。天津大学马一太教授在获得国家自然科学重点基金的资助, 研制二氧化碳水冷热泵系统; 上海交通大学车用空调工程中心与上海易初通用机器有限公司在上汽集团的支持下, 投资数百万元开展二氧化碳汽车空调系统的研制工作, 目标在三年内完成二氧化碳系统的装车试验。

5 小结

1 CO2跨临界循环系统, 充分利用了CO2高饱和压力, 良好的热力性能及相当大的单位容积冷量,具有高效紧凑等特点, 适合于汽车空调。

2 在CO2跨临界循环系统研究的理论和实验方面已经取得了不小的成就, CO2系统日

趋成熟, 商用化指日可待。

3 CO2具有优良环保性能, 从安全方面考虑, 汽车空调中CO2 虽然压力高, 但其体积很小, 即使在部件破裂的情况下, 制冷剂侧容积不到2L 的CO2汽车空调机所释放出来的潜在能量还赶不上一个典型的CO2灭火器释放的多, 在保护系统的监控与保护下, 机械系统的安全性是完全可靠的。

4 CO2系统结构与原车用空调系统有明显不同, 高压侧压力、回热换热量等系统循环参数对系统COP影响显著, 必须对系统热力循环进行优化设计。

5 以CO2作为工质的汽车空调系统, 无论在理论方面, 还是在部件实现方面, 都完全具备了可能性。

参考文献

[1] 牟春燕,赵万胜,姚美红. 二氧化碳汽车空调. 汽车电器. 2006

[2] 范晓伟,张定才. 二氧化碳汽车空调若干技术关键汽车技术. 2002.6.20

[3] 陈江平, 穆景阳, 陈芝久. 二氧化碳汽车空调系统应用研究进展. 低温与特气2001.4.

[4] 丁国良,黄冬平. 二氧化碳制冷技术.

[5] Hongsheng Liu, Jiangping Chen and Zhijiu Chen. Experimental investigation of a CO2 automotive air conditioner.2004.11.

[6] Tomoichiro Tamura, Yuuichi Yakumaru and Fumitoshi Nishiwaki. Experimental study on automotive cooling and heating air conditioning system using CO2 as a refrigerant. 2005.2.

[7] 陈江平. 新型高致的跨临界二氧化碳汽车空调系挽. 制冷技术. 2002.3.

[8] 彭梦珑,胡烨, 二氧化碳制冷剂的应用研究. 长沙铁道学院学报. 2000.12.

[9] 朱明善. 21 世纪制冷空调行业绿色环保制冷剂的趋势与展望. 暖通空调. 2000.

[10] 陈江平.国外汽车空调系统技术发展趋势. 制冷技术. 2002.

[11] 黄冬平,丁国良. 二氧化碳汽车空调器变工况性能分析. 流体机械. 2000.

[12] 郝红,熊国华. 制冷剂研究现状及发展动向. 化工进展. 2001.

汽车空调系统实验报告

汽车空调系统实验报告 车辆2 陈树郁 201131150501

一、实验目的 1. 学习并理解汽车空调系统的组成及基本工作原理; 2. 熟悉空调系统的制冷循环路线; 3. 掌握对空调系统的操作以及控制系统的结构原理; 4. 理解压力表的结构原理以及对压力表的操作; 5. 理解制冷剂的作用并能掌握加注方法; 6. 具有诊断和排除汽车空调系统常见故障的技能。 二、空调工作基本原理 发动机驱动的压缩机将气态的制冷剂从蒸发器中抽出,并将其送入冷凝器。高压气态制冷剂经冷凝器时液化而进行热交换(释放热量),热量被车外的空气带走。然后高压液态的制冷剂经膨胀阀的节流作用而降压,低压液态制冷剂在蒸发器中气化而进行热交换(吸收热量),此时蒸发器附近被冷却了的空气通过鼓风机吹入车厢内。接着气态制冷剂又被压缩机抽走,泵入冷凝器,如此使制冷剂进行封闭的循环流动,不断地将车厢内的热量排到车外,使车厢内的气温降至适宜的温度。 三、实验设备 1. 曲柄连杆式压缩机(由曲柄,连杆,活塞,进排气阀等组成);

2. 斜盘式压缩机(由主轴,斜盘,气缸,活塞,进排阀等组成); 3. 冷凝器、干燥器、膨胀阀、蒸发器、压力表、制冷剂罐、真空泵、空调系统示教台。 四、实验设备简介 1. 空调压缩机 a) 压缩机的功能把蒸发器中吸收热量后产生的低温低压冷冻剂蒸气吸入后进行压缩,升高其压力和温度之后送往冷凝器,使冷冻剂在冷却循环中进行循环,由蒸发器吸收的热量在通过冷凝器时散发掉。 b) 压缩机的种类压缩机的种类分为曲轴连杆式、斜盘式摇盘式、双作用轴向斜盘式、涡旋式、旋转叶片式等; c) 压缩机的工作原理(双作用式) 当主轴带动斜盘转动时,斜盘便驱动活塞作轴向移动,由于活塞在前后布置的气缸中同时作轴向运动,这相当于两个活塞在作双向运动。 d) 工作过程 前缸活塞向左移动时,排气阀片关闭,缸内压力下降,吸气阀片打开,低压蒸气进入气缸开始了吸气过程,一直到活塞向左移动到终点为止;与此同时后缸活塞也向左移动,但不同的是后缸活塞处于压缩过程,在这过程中蒸气不断被压缩,压力和温度不断

汽车空调制冷剂DIY加注补充方法

汽车空调制冷剂DIY加注补充方法 汽车空调制冷剂补充,就和轮胎冲气一样的方便,安全。 一般的汽车空调每年都会正常损失10%到15%的制冷剂,这是由于汽车空调压缩机的密封方式决定的。这是正常损失,我们只要每年给汽车空调补充一瓶制冷剂就可以了。不需要担心,我告诉各位车友朋友DIY汽车空调加注方法。朋友可以尝试自己动手加注制冷剂。方法如下: 1.一根汽车空调DIY加注补充管。 2.一瓶R134A制冷剂250克,就可以了。 3.现在开始给汽车检测压力:先将DIY补充管开瓶器端中的顶针反时针旋转至最顶端,将制冷剂瓶子旋进开瓶器中,旋紧。 4.找准低压接口,一般在发动机左侧端有个兰色或黑色小帽子,帽子上面有个L字,将小帽子旋下来。 5.将汽车发动机起动并打开空调AC开关,鼓风机开至最大,等待三分种后将DIY管子接口接入汽车空调低压端。 6.DIY管接入低压接口后,DIY管压力表就会瞬间有刻度指示。这时DIY管与空调系统是联通的,看压力表上的压力刻度,就知道系统中的压力了,在什么压力下加注呢?这时有一个知识说明!汽车空调系统中的压力是根据外界环境温度变化而变化的。如下图中,华氏温度与空调系统压力对照表而确认系统中压力高与低,系统压力高了说明系统中的制冷剂多于正常值,反之就要补充制冷剂。如外界温度在30度,空调系统中的压力应该在45PSI左右,小于45PSI就应该补充制冷剂。(华氏温度是美国常用温度单位,谢谢!) 外界环境温度(华氏温度) 低压表的压力 华氏65对应18.33摄氏度系统压力25-35PSI 华氏70对应21.11摄氏度系统压力35-40PSI

华氏75对应23.89摄氏度系统压力35-40PSI 华氏80对应26.67摄氏度系统压力40-50PSI 华氏85对应29.44摄氏度系统压力45-55PSI 华氏90对应32.22摄氏度系统压力45-55PSI 华氏95对应35 摄氏度系统压力50-55PSI 华氏100对应37.78摄氏度系统压力50-55PSI 华氏105对应40.56摄氏度系统压力50-55PSI 华氏110对应43.33摄氏度系统压力50-55PSI 7.如对应上图空调系统中压力过低时,需要补充制冷剂。(注意:A如果你购买的DIY补充管开瓶器端有空气放气阀,则需要将放气阀上的小帽旋下来,用小帽将放气阀中的气门阀心向里轻压及松开,切记轻压及松!这时补充管内的空气就会喷出。切勿将喷出的气体进入眼睛和口中。切记!在将放气阀小帽旋紧后进行下一步操作。谢谢!)将开瓶器中的顶针顺时针旋转,刺穿制冷剂瓶口,开瓶器中的顶针立刻反时针旋转至顶,将制冷剂瓶上下反至,轻摇制冷剂瓶,制冷剂液会流入系统中,同时看压力表刻度,与上图温度与压力PSI单位一至即可。 8.观察到压力表刻度正常时,请立即将开瓶器中的顶针顺时针旋转至最下端并旋紧,移动空调系统低端口接头。如一瓶加入后不够,请按上叙述方法加入第二瓶制冷剂,直至外界温度与系统压力一至为止。 9.这时汽车空调系统制冷剂补充以完成,请将L字小帽子旋紧。完成!淘宝有此产品!

汽车空调制冷剂HFC-134a的使用

20世纪90年代以前的轿车空调制冷系统都采用CFC-12作为制冷剂。70年代,科学家发现含氯的氟利昂破坏大气的臭氧层。1987年部分国家的政府签订了“关于消耗臭氧层物质的蒙特利尔议定书”,CFC-12被列为禁用物质之一。现在,汽车制造业均已开始向不含氯的替代物HFC-134a过渡。 由于缺乏正确的科普宣传和冰箱行业的所谓“无氟”冰箱广告的误导,使大家误以为所有的氟利昂类化学物质或者氟利昂中的氟元素都破坏大气臭氧层,这是十分错误的。真正破坏大气臭氧层的罪魁祸首是氟利昂中的氯元素而非氟元素,科学家们所观察到的正是氯原子对大气臭氧层的破坏和消耗。 氯氟烃类化学性质极其稳定,寿命很长,在低空对流层内难以分解,寿命可长达几十年甚至上百年,所以最终都会升到高空的平流层,在那里,强烈的紫外线将促使其分解,释放出氯原子。这种新生的氯对臭氧具有亲和作用,能夺取其中的一个氧原子而生成氧化氯,并放出氧分子,从而破坏了臭氧。更糟糕的是,氧化氯又能和大气中游离的氧原子起作用,重新还原出氯原子又去消耗臭氧,如此循环不断。事实上,氯原子只参与了破坏臭氧的反应,本身并不消耗,类似于催化剂的作用。虽说臭氧密度相当小,上述反应发生的机会不多,但经不住长年累月的作用。几年前,南极上空就已经出现了一个相当于欧洲面积大小的臭氧空洞,北极地区的臭氧层也变得很稀薄,使更多的太阳光紫外线辐射到地球危害人体健康。因此,国际社会于1987年9月在加拿大缔结了《蒙特利尔协议书》,明确规定禁用CFC-12的期限为2000年。但近年来由于臭氧层的破坏不断加剧,国际社会把CFC-12的完全禁用期提前到1995年,发展中国家则可推迟10年。我国于1992年发文规定:各汽车厂从1996年起在汽车空调中逐步用新制冷剂HFC-134a替代CFC-12,在2000年生产的新车上不准再用CFC-12。 其实,氟利昂类制冷剂就是卤代烃类化合物的商品名称,后来便逐渐变成了这一类化合物的统称。它是由卤族元素,主要是氟(F)原子和氯(Cl)原子取代甲烷(CH4)或乙烷(C2H5)中的氢(H)原子所生成的化合物。该类制冷剂编号的特点是:两位数属卤代甲烷系列如CFC-12。三位数、且首位数为1者,属卤代乙烷系列如HFC-134a。两者的尾数均表示所含氟原子数。甲烷系列两位数之和小于5者,乙烷系列三位数之和小于8者,其差值就是没有在编号中表示(默认)的氯原子数。例如:CFC-12的尾数为2,就说明它含有两个氟原子;两位数之和为5的差数是2,说明它还含有2个氯原子。HFC-134a 的尾数为4,就说明它含有4个氟原子;三位数之和为8,与8的差值为0,说明它里面不含氯原子。在卤代烃中,有H原子被完全取代的,也有未被完全取代的。两位数的甲烷系列,其首位数减去1后的得数就是所剩的H原子数三位数的乙烷系列,其第二位数减去1后的得数就是所剩的H原子数。例如:CFC-12就不剩H原子;CFC-22剩1个H原子;HFC-134a就还剩2个H原子。 根据上述规律,卤代烃可分为三类:第一类是H原子被完全取代了的含氯氟烃,它的编号冠以CFC,第一个C代表氯元素,F为氟元素,后面的C是碳元素。第二类是H原子没有被完全取代的氢氯氟烃,它的编号冠以HCFC。第三类是H原子没有被完全取代,但不含氯的氢氟烃,它在编号前冠以HFC。由于各类氟利昂对臭氧层的消耗程度有很大的不同,所以必须区别对待,国外早已槟弃了氟利昂这一笼统而又含糊的称谓。 既然破坏臭氧层的是含氯卤代烃,那么前两类含氯,便都在禁用范围之列,只有HFC不含氯,允许继续使用。经各国科学家研究较为成熟并已步入实用阶段的就是HFC中的HFC-134a,它是美国杜邦(DuPont)公司率先开发出来的。制冷剂HFC-134a的主要特点是:①不含氯原子,对大气臭氧层不起破坏作用;②具有良好的安全性能(不易燃、不爆炸、无毒、无刺激性和无腐蚀性);③物理性能与CFC-12比较接近,所以制冷系统的改型比较容易;④传热性能比CFC-12好,因此制冷剂的用量可大大减少。 但是HFU134a与现有矿物质的冷冻机油不溶合,因此不得不为之寻找新的压缩机油。通过反复试验与筛选,现已开发出两种与HFC-134a溶合的油,它们的代号为PAG及ESTER,而PAG油应用较为普遍。但仍存在如下问题:①具有高吸湿能力,易使制冷系统的节流元件(毛细管或膨胀阀)发生冰堵,因

汽车空调系统抽真空及制冷剂的加注

1、空调制冷系统抽真空 抽真空是为了排除制冷系统内的空气和水汽,抽真空并不能直接把水分抽出制冷系统,而是产生真空后降低了水的沸点,水气化成蒸汽后被抽出制冷系统。因此,抽真空时时间越长系统内残余的水分就越少。为最大限度地将系统内的空气及湿气抽出,必须采用重复抽真空法,即第一次抽真空完毕后,再连续抽30min 以上。 1)将歧管压力计上的两根高、低压力软管分别与压缩机上的高低接口相连,将 歧管压力计上的中间软管与真空泵相连。。 2)打开歧管压力计上的手动高、低压阀,启动真空泵,并观察两个压力表,将 系统抽真空至~。 3)关闭歧管压力计上的手动高、低压阀,观察压力表指示压力是否回升。若回 升,则表示系统泄漏,此时应进行检漏和修补。若压力表指针保持不动,则打开手动高、低压阀,启动真空泵继续抽真空15~30min,使真空压力表指针稳定。 4)关闭歧管压力计上的手动高、低压阀。 5)关闭真空泵。先关闭手动高、低压阀,然后关闭真空泵,以防止空气进入制 冷系统。 2、空调制冷剂的充注 当制冷系统抽真空达到要求,且经检漏确定制冷系统不存在泄漏部位后,既可向制冷系统充注制冷剂。充注前,先确定充注制冷剂的数量,充注数量过多或过少,都会影响空调制冷效果。压缩机的铭牌上通常都标有所用的制冷剂的种类及其充量。充注制冷剂时可采用高压端充注或低压端充注。 1)高压端充注制冷剂。从压缩机排气阀(高压阀)的旁通孔(多用通道)充注, 充入的是制冷剂液体,特点是安全快速,适用于制冷系统的第一次充注,经检漏、抽真空后的系统充注。但用该方法时必须注意,充注时不可开启压缩机(发动机停转),且制冷剂罐要求倒立。

①当系统抽真空后,关闭歧管压力计上的手动高、低压阀。 ②将中间软管的一端与制冷剂罐注入阀的接头连接打开制冷剂罐开启阀,再拧开歧管压力计软管一端的螺母,让气体溢出几分钟,然后拧紧螺母。 ③拧开高压侧手动阀至全开位置,将制冷剂罐倒立。 ④从高压侧注入规定量的液态制冷剂。关闭制冷剂罐注入阀及歧管压力计上的手动高压阀,然后卸下仪表。从高压侧向系统充注制冷剂时,发动机处于非工作状态(压缩机停转),不要拧开歧管压力计上的手动低压阀,以防产生液压冲击。 2)低压端充注制冷剂。从压缩机吸气阀(低压阀)的旁通孔(多用通道)充注,充入的是制冷剂气体,特点是充注速度慢可在系统补充制冷剂情况下使用。 ①将歧管压力计与压缩机和制冷剂罐连接好。 ②打开制冷剂罐,拧松中间注入软管在歧管压力计上的螺母,直到听见有制冷剂蒸汽流动声,然后拧紧螺母,从而排出注入软管中的空气。 ③打开手动低压阀,让制冷剂进入制冷系统。当系统压力达到时,关闭手动低压阀。 ④启动发动机,接通空调开关,并将鼓风机开关和温控开关都调至最大。 ⑤再打开歧管压力计上的手动阀,让制冷剂继续进入制冷系统,直至充注剂量达到规定值。 ⑥向系统中充注规定量制冷剂后,观察视液窗,确认系统内无气泡、无过量制冷剂。随后将发动机转速调至2000r/min,将鼓风机风量开到最高档,若气温为30℃~35℃,则系统内低压测压力应为~,高压侧压力应为~。 ⑦充注完毕后,关闭歧管压力计上的手动低压阀,关闭装在制冷剂罐上的注入阀,使发动机停止运转,从压缩机上卸下歧管压力计,动作要迅速,以免过多的制冷剂泄出。 注意事项:见红色字部份。

汽车空调系统制冷剂的加注

汽车空调系统制冷剂的加注生产实习授课教案

组织教学(时间5分钟)1、点名检查学生出席情况,填写考勤薄。 2、检查学生穿着工作衣服、帽、鞋等情况。 3、生产安全教育,职业道德教育。 2、4、先在电教室上课后到实习车间实习。 教学过程 入门指导(在电教室进行,时间25分钟)1、教师提问(5分钟): 1)汽车空调的类型 2)汽车空调系统的组成。 3)制冷剂的作用和空调系统工作原理 4)汽车空调高压侧和低压侧的压力范围分别是多少? 5)空调系统的常见故障有哪些? 汽车空调结构原理图 2、播放教学录像(10分钟)。 播放加注制冷剂的操作教学录像,播放过程中指出应注意的事项和容易出现不规范操作的地方。 3、教师强调并板书(10分钟): 1)操作时应带护目镜,应该在通风,无火处排放制冷剂 2)严禁加错制冷剂(R12&R134a) 3)不许明火和电阻加热器加热制冷剂罐

4)连接岐管压力表时要注意排除软管里的空气; 5)高压侧充注制冷剂时,严禁开启空调系统,也不可打开低压手动 阀。 1 、放空制冷剂(10分钟); 示范操作 (在实习车 间进行,时间 70分钟) 示范过程中 在适当时候 提出问题 (1) 准备工作 ①压力表组接入系统,调整控制器到最冷位置; ②友动机转速调至1000 ~1200r/min, 并运行10~15min; (2) 放出制冷剂 ①恢复发动机正常转速, 然后关闭发动机; ②缓慢地开启高、低压侧手动阀,让制冷剂经过中间软管排出; ③中间软管开口端应裹上白色抹布,如有冷冻油排出,必须显示在 抹布上。这时应关小手阀,至刚好无冷冻机油排出。 ④表座上高、低压力表读数均为零, 说明系统已放空。 2 、系统抽真空和检漏(45分钟); 教学 重点

二氧化碳制冷剂汽车空调讲解

二氧化碳制冷剂汽车空调 293430112001 曹广升 一、课题背景和目的 自蒙特利尔议定书签定以来, 以CFCs 和HCFCs 等氟利昂作制冷剂的制冷空调界面临着严重的挑战, 为了寻找合适的替代物, 全球范围内开展了广泛的研究。目前推出的包括R 134a在内的HFCs 及其混合物, 不能够满足长期替代的要求, 大多有较高的温室效应指数(GWP) 等缺点。同时, 人们担心这些化合物可能隐含着不可预知的潜在危险,因此, 天然工质就引起了人们的极大关注, 其中的二氧化碳因其具有良好的热力性能和环保特性, 尤其受到了重视。过去CFC12 作为汽车空调的制冷剂,其用量约占全世界CFC12 用量的28 。汽车空调由于处于动态工作环境,负荷大,使用开式或半开式压缩机极易引起泄漏。据测,全世界泄漏到大气中的CFC 物质中有3/4 是由于汽车空调泄漏引起的,在汽车空调装置中用新的制冷剂来替代的任务已十分紧迫。二氧化碳是少数几种无毒、不易燃的工质之一,如果泄露到大气中, 它不会导致臭氧层空洞等问题L 与其它工质相比, 二氧化碳具有明显的点: (1)ODP= 0, 且GWP=1 很小, 约为R134a 和R22 的千分之一。 (2) 运动粘度低, 流动性大,压缩比较低(约为2.5- 3.0) , 单位容积制冷量大。 (3) 来源广泛, 价格低廉,维护简单, 无须循环利用。 (4) 无毒、不可燃, 对常用材料没有腐蚀性。 另外,二氧化碳空调的安全保护装置与现有系统相同;短期和长期暴露极限相当于甚至好于CFC/HCFC;破裂时释放的能量与现有系统相当;二氧化碳的所有特性都为人熟悉,研究应用方便;系统质量和体积与R134a 系统相当;蒸发潜热较大,单位容积制冷量相当大;充分适用各种润滑油和常用机器零部件材料等等优点。当前, 人们最关心的是环境污染的问题,二氧化碳作为天然物质, 对大气臭氧层无任何破坏作用, 其ODP= 0,至于GWP 值, 制冷系统本身不会产生二氧化碳, 只是利用它作为工质, 并且是从工业废气回收得到的, 用它作为制冷剂时, 其GWP 值为零,正是因为二氧化碳的这些优点, 致使它得到人们的重视和关注,不少专家预言, 二氧化碳将是二十一世纪制冷空调技术的理想制冷剂,并且已被很多国家作为汽车空调制冷

汽车空调制冷剂的加注典型教学案例

《汽车空调制冷剂的加注》 典型教学案例 一、案例背景 1、教材分析: 《汽车空调检测与维修》是根据汽车维修企业机电维修岗位“汽车空调检测与维修”典型工作任务,按照工作过程系统化的要求,确立转换的一门学习领域课程,在学生职业能力培养和职业素养养成方面起着重要的作用。 全面讲授了汽车空调基础知识、汽车空调制冷系统、汽车空调的暖气、通风与净化系统的原理、结构与部件检修;自动控制系统的维修保养技术及常见故障与排除;汽车空调系统的使用、保养与检修知识以及现代汽车微机控制的自动空调系统的工作原理及故障诊断方法和维修技术。为从事汽车维修工作打下坚实基础。 该课题在本教材中占有相当重要的位置,其前一课题是:汽车空调检修专用工具及仪器设备,其后的内容是汽车空调维修操作。本课题是使用检修专用工具及仪器设备进行加注,为后面的维修操作提供支持。 2、学生分析: 学生实习的时间较少,操作技能一般,理论的学习缺乏技能的支撑,理解上存在多个问题,需要特别加强实践操作技能的训练。 该专业的学生一般都是对汽车技术较感兴趣、性格特征活泼、好动,所以在教学过程中应多创造动手机会,让学生在动中学、学中动。争取做到每位学生都有事做,大家都能动起来。 3、教学目标:

1、知识目标: (1)使学生了解加注制冷剂的重要性;(该目标是告诉学生制冷剂的作用。) (2)熟悉汽车空调加注制冷剂的几种方法;(该目标是让学生熟悉制冷剂加注时制冷剂的状态,并通过制冷剂的状态分析出制冷剂的加注方法,进而了解各种方法使用的客观情形。) (3)掌握汽车空调系统加注制冷剂的技术标准与要求。(该目标是为维修空调提供技术参考,强调加注制冷剂的注意事项。) 2、技能目标: 使学生熟练掌握汽车空调系统加注制冷剂的方法。(该目标是本课题的主要内容,是学生重点掌握的内容,让学生在学习的过程中,提高动手操作能力和团队协作能力。) 3、情感目标: (1)培养学生的动手操作能力和安全操作意识; (2)培养学生的团队协作能力。 4、课前准备: 教学组织: ①教学组织形式 安排4辆整车,每辆车安排8名学生参与实训,两名学生为一组。一组操作,其他组观察学习并负责安全监督。 ②学生站位分工和要求 两名学生一组,按照1号、2号进行编号,1号为主,2号为辅。 ③实训教师职责 讲解操作步骤和注意事项;下达“操作开始”口令;工位间巡视、检查、安全、指导和纠正错误组织学生轮换操作。

汽车空调制冷剂应用与发展现状

汽车空调制冷剂应用与发展现状 摘要:汽车空调是现代汽车产业必不可缺的重要组成,是衡量汽车舒适性能和安全性的一个重要指标。而汽车空调的重要组成部分制冷剂的性能决定着汽车空调的品质好坏。全球环境的恶化,大气的污染对汽车空调制冷剂有着越来越高的环保要求,本文介绍了汽车空调现在使用的制冷剂CFC-12和 HFC134a的优缺点和应用现状,以及汽车空调制冷剂研究的现状和发展前景。 关键词:汽车空调制冷剂;应用;发展;现状 1前言 汽车空调制冷系统中循环流动的工作介质叫制冷剂,在收到制冷压缩机压缩功的作用下,它在系统的各个部件间循环流动,从而进行能量的转换和传递,实现制冷机向高温热源放热和从低温热源吸热的功能,达到制冷的目的[1]。 近年,我国的汽车工业得到了长足发展,汽车制冷剂也已处于CFC-12向HFC134a的过渡阶段。全球变暖带来的环境问题,要求汽车空调制冷剂想更加环保的方向发展。 2制冷剂对环境的影响 空调制冷中主要是采用卤代烃制冷剂,其中不含氢原子的称为氯氟烃(CFC),含氢原子称为氢氯氟烃(HCFC),不含氯原子的称为氢氟烃(HFC)。空调制冷剂对大气环境的影响主要有两个方面,一是对大气臭氧层的破坏,另一方面是使全球气候变暖的温室效应。在卤代烃中,随着氯原子数的增加,其对大气臭氧层的破坏就愈严重,因此,CFC对大气臭氧层的破坏最严重,HCFC对大气臭氧层的破坏程度相对较小,HFC不破坏臭氧层。制冷剂对臭氧层的破坏程度用破坏臭氧层潜值(Ozone deple-tionpotential,简称ODP)表示。制冷剂的排放会产生全球气候变暖的温室效应,其影响程度用全球变暖潜值(Global warming potential,简称GWP)表示[2]。 3制冷剂CFC-12的淘汰和HFC134a的替代 在蒙特利尔协议书签订以前,汽车空调系统多数使用CFCl2作为制冷剂。CFCl2是非常理想的制冷剂,它的沸点和摩尔质量分别是:-29.79℃和 120.93kg/kmol,但它的ODP值较高,根据蒙特利尔协议书,CFC12是一级被禁制冷剂。为了寻找新的冷媒来代替CFC类物质,空调行业已经作了广泛的研究,

常用汽车空调制冷剂有哪些

常用汽车空调制冷剂有哪些? (1)氟里昂-12(代号:R12) R12为烷烃的卤代物,学名二氟二氯甲烷。它是我国中小型制冷装置中使用较为广泛的中压中温制冷剂。是一种无色、透明、没有气味,几乎无毒性、不燃烧、不爆炸,很安全的制冷剂。 R12的标准蒸发温度为-29.8℃,冷凝压力一般为0.78~0.98MPa,凝固温度为-155℃,单位容积标准制冷量约为288kcal/m3。R12只有在空气中容积浓度超过80%时才会使人窒息。但与明火接触或温度达400℃以上时,则分解出剧毒的光气。 R12能与任意比例的润滑油互溶且能溶解各种有机物,但其吸水性极弱。因此,在小型氟里昂制冷装置中不设分油器,而装设干燥器。同时规定R12中含水量不得大于0.0025%。R12对一般金属不腐蚀,但能腐蚀镁及含镁超过2%的铝镁合金。它对天然橡胶和塑料有膨润作用,系统中不能用一般天然橡胶作密封垫片,而应采用丁腈橡胶或氯乙醇等人造橡胶。R12的渗透性很强,甚至铸件的极细缝隙,螺纹接合处等都可能泄露,因此要求机器的密封性要良好。否则,会造成密封垫片的膨胀引起制冷剂的泄露。 由于R12在大气中分解后释放出的氯原子对臭氧层具有破坏作用,导致大气中臭氧浓度下降及形成臭氧空洞危害地球环境。根据蒙特利尔协议,发达国家1996年开始停止使用包括R12在内的CFC系列制冷剂,发展中国家在2000年基本停止使用CFC系列制冷剂,到2030年将全面停止使用HCFC系列制冷剂。因此,必须开发适合汽车空调系统的制冷剂R12的替代品。目前,有两种物质可作为R12的替代物应用于汽车空调。一是R134A(四氟乙烷),二是碳氢化合物。 (2)R134A(四氟乙烷) R-134A制冷剂,别名R134A、HFC134A、HFC-134A、由于R-134A属于HFC类物质(非ODS 物质Ozone-depleting Substances)——因此完全不破坏臭氧层,是当前世界绝大多数国家认可并推荐使用的环保制冷剂,也是目前主流的环保制冷剂,广泛用于新制冷空调设备上的初装和维修过程中的再添加,是目前使用最广泛的中低温环保制冷剂。其主要特点是:不含氯原子;具有良好的安全性能;物理性能与CFC12比较接近,所以制冷系统的改型比较容易;传热性能比CFC12好,制冷剂的用量可大大减少。HFC134A和CFC12有相近的蒸发压力并且ODP值为零,GWP值仅0.29,且无明显毒性(长期慢性毒性试验仍在进行中)。 由于R134A良好的综合性能,使其成为一种非常有效和安全的CFC-12的替代品。目前R134A 已商品化,广泛地应用于制冷空调中,尤其是成功地用于汽车空调。这是因为一是由于 R-134A特性使然,二是通过选择单一的冷媒,可以避免制冷剂经过胶皮软管时组成发生变化,目前全球生产的R-134a制冷剂中50%用于汽车空调,由于汽车空调的特殊工况,一般情况下每两年就要加注一次制冷剂。2006年中国新车消费R-134A约6550吨,维修用量约2950吨,合计9500吨,同比增长25%,约占R-134A消费总量的56%。由此可见中国汽车空调市场是巨大的,对制冷剂的需求也是巨大的。 根据欧盟已通过的含氟温室气体控制法规的要求,自2017年1月1日起,欧盟将禁止新生产的汽车空调使用GWP值大于150的制冷剂,由于现在使用的R-134A的GWP值为1300,故将被禁用;在2011年1月1日至2017年1月1日的6年间,在用汽车空调将按比例逐步淘汰GWP值大于150的制冷剂;自2017年1月1日起,将禁止所有汽车空调使用GWP值大于150的制冷剂。因而,汽车空调使用低GWP值的制冷剂成为趋势和必然。 (3)天然制冷剂

汽车空调制冷剂知识小方法检测泄露

汽车补充致冷剂要注意以下两个问题:一个是制冷剂不可互换的问题,另一个是抽真空的问题。 汽车空调制冷剂目前主要有两种,一种是,另一种是一,历史较长且使用普遍,但气内含有氯分子会破坏大气层中的臭氧层而导致温室效应,所以数年前世界各国代表聚会蒙特利尔签定了议定书,规定要在近年停止生产和使用氟里昂类产品,其中首当其冲。 是九十年代开始使用的品种,由于不含氯分子对臭氧层没有破坏作用,对汽车空调系统的改动较少,被联合国有关组织推荐使用,在粤港等地被称为“环保雪种”,现在国内外新车的空调系统很多都使用了制冷剂。 与空调系统相比,两者热力性质和系统结构相似,最大的不同之处是冷冻油。 冷冻油是一种与制冷剂相容,能够对压缩机起润滑作用且化学性质稳定的液体润滑剂,的冷冻油是一种可溶于之中的矿物油,而是一种分子极性较强的致冷剂,它与矿物油是非共溶性的,就好象油水分离,无法对空调系统起涧滑作用,因此的冷冻油一般是用一种叫做或酯类的润滑剂,由于这种润滑剂的特殊性,空调系统对橡胶材质的要求及本身的性质均与有所不同,因此只能在专门与其配套的系统中工作,凡是车用的空调系统,厂方都会在压缩机、冷凝器、蒸发器。 橡胶管和灌充设备上注明的标志以防误用。 目前进口的汽车空调装置多是用制冷剂,而市面上制冷剂的价格又是的三倍左右,因此有些人在车上安装空调器补充致冷剂时为了省那几个钱或贪图方便,将空调系统改为灌充制冷剂,虽然一样可以发出冷风,但将会损害压缩机。 因为一般压缩机都已注入一些同质冷冻油,尽管全部倒出来仍会残留一些冷冻油在机子里面,两种制冷剂的冷冻油混在一起就会慢慢失去润滑作用而损害机器,实谓得不偿失,因此行业专家都建议哪一种制冷剂就灌充到哪一种空调系统中,不可互用。

汽车空调制冷剂加注

汽车空调制冷剂加注 一、汽车空调制冷剂加注前的准备 1、制冷剂 首先查阅《车辆使用手册》,确定其使用的制冷剂类型、加注总量。HFC-134a、CFC-12不能混用或错用,否则将造成压缩机损坏、润滑油沉淀、制冷系统性能降低等后果。 2、润滑油 不同的制冷剂配用不同的润滑油: A.HFC-134a: 聚烃基乙二醇(PAG)和聚脂类润滑油(POE) B.CFC-12: 矿物基润滑油 3、加注装置 使用专用回收、再循环、加注装置,该装置应符合有关规定。 4、加注前的操作程序 (1)卸下制冷系统压缩机上的维修口密封盖,连接软管: 低压表软管(蓝色-黑纹)――接压缩机吸入口 高压表软管(红色-黑纹)――接压缩机排放口 中间软管(黄、白色-黑纹)――接装置进口,它是回收、再循环、加注用软管。 (2)将热电偶温度计装接制冷系统的液体管路内,并尽可能靠近空调压力传感器,以便精确测定液体管路温度。 (3)发动机运转(1000~1500rpm的高怠速工况)5分钟,使制冷系统达到正常工作的压力、温度。 (4)空调状态控制的设定:前车窗开、变速器-N/P档(空、驻车制动档)、车外空气循环、全冷、鼓风机高速档、压缩机结合等。 (5)若车辆设有后空调系统时,应设定为全冷、鼓风机高速。 (6)用硬纸板置于冷凝器之前,使制冷系统液体管路的排放压力快速达到1793KPa(该值各种车辆有相同的数量级)。为保持该压力值不变,调整遮挡面积。 二、制冷剂的加注 汽车空调系统的维修作业,约有80%属于正常的补充加注制冷剂。 1、加注方法 (1)高压侧加注。当车辆制冷系统确认无泄漏等故障,环境温度不高时,发动机可不运转,使用加注机或歧管测试表组进行加注。但加注系统必需具有高压反弹安全阀,防止制冷剂返回贮存罐引起爆炸。 (2)低压侧加注。将贮存罐倒置,令制冷剂从低压侧注入制冷系统。其优点加注省时、方便,罐内压力变化不大。但易产生“液击”现象,冲击压缩机造成损坏。 (3)低压侧用加注机加注。这种方法常用、安全、可靠,加注时间较长。由加注装置予以加热,并由经过培训的专业人员操作。 (4)低压、高压两侧同时加注。使用专用的回收、再循环、加注装置。 2、低压、高压两侧同时加注程序

汽车空调制冷剂的使用

汽车空调制冷剂的使用、危害及未来发展摘要:制冷剂被人们称为汽车空调的血液,汽车空调制冷剂的泄漏造成的环境污染越来越严重。正确分清不同类型的制冷剂及其发展趋势,对制冷剂合理使用与及时回收,将有助于我们的环境保护。 关键词:汽车空调,制冷剂,使用,危害 汽车空调系统是实现对车厢内空气进行制冷、加热、换气和空气净化的装置。它可以为乘车人员提供舒适的乘车环境,降低驾驶员的疲劳强度,提高行车安全。空调装置已成为衡量汽车功能是否齐全的标志之一。而要实现空调的正常运行,制冷剂是不可缺少的。制冷剂是指在制冷系统中传导热能的一种流体,为实现制冷循环的工作介质,也称为制冷工质,或简称工质。广泛应用于工商制冷、家用制冷、汽车空调等主要的制冷行业。空调制冷中主要是采用卤代烃制冷剂,其中不含氢原子的称为氯氟烃(CFC),含氢原子的称为氢氯氟烃(HCFC),不含氯原子的称为氢氟烃(HFC)。 制冷剂的发展分为三个阶段:第一阶段,从1830年到1930年,主要采取NH3、HCS、CO2、空气等作为制冷剂,有的有毒,有的可燃,有的效率很低,主要出于安全性的考虑,尽管使用了一百年之久,当出现了CFCS和HCFCS制冷剂后,还是当机立断,实现了重大的第一次转轨。 第二阶段:从1930年到1990年,主要采用CFCS和HCFCS制冷剂。使用了60年后,发现这些制冷剂破坏臭氧层。出于环保的需要,不得不被迫实现第二次转轨。 第三阶段:从1990年至今,进入以HFCs制冷剂为主的时期。 2010年前世界上汽车用空调制冷剂主要有三种:氟里昂型制冷剂CFC-12、卤烃型制冷剂 HFC-134a、碳氢型制冷剂。在卤代烃中,随着氯原子数的增加,其对大气臭氧层的破坏就愈严重,因此,CFC对大气臭氧层的破坏最严重,HCFC对大气臭氧层的破坏程度相对较小,HFC不破坏臭氧层。制冷剂CFC-12(二氟二氯甲烷)历史较长且使用普遍,是一种不易分解稳定性很强的物质,其寿命长达120多年,当它从大气的对流层流向平流层时,在紫外线的作用下释放出氯原子,氯原子与大气平流层中的高浓度臭氧发生连锁反应,对臭氧的衰减产生链式催化作用,从而使平流层臭氧破坏,导致温室效应和过量的紫外线对地球物种和人类的伤害。10多年来,经科学家研究;大气中的臭氧每减少1%。照射到地面的紫外线就增加2%,人的皮肤癌就增加3%,还受到白内障、免疫系统缺陷和发育停滞等疾病的袭击。现在居住在距南极洲较近的智利南端海伦娜岬角的居民,已尝到苦头,只要走出家门,就要在衣服遮不住的肤面,涂上防晒油,戴上太阳眼镜,否则半小时后,皮肤就晒成鲜艳的粉红色,并伴有痒痛;羊群则多患白内障,几乎全盲。据说那里的兔子眼睛全瞎,猎人可以轻易地拎起兔子耳朵带回家去,河里捕到的鲜鱼也都是盲鱼。所以使用制冷剂的同时环境

三个检测汽车空调制冷剂侧漏的方法和保养

三个检测汽车空调制冷剂侧漏的方法和空调的保养 汽车空调的制冷剂泄露是经常的事情,但是如果通过汽车维修来判断汽车空调制冷剂的泄露情况呢? 目测检漏 发现系统某处有油迹时,此处可能为渗漏点。目测检漏简便易行,没有成本,但是有很大缺陷,除非系统突然断裂的大漏点,并且系统泄漏的是液态有色介质,汽车维修时,否则目测检漏无法定位,因为通常渗漏的地方非常细微,而且汽车空调本身有很多部位几乎看不到。 肥皂水检漏 向系统充入10-20kgcm2压力氮气,再在系统各部位涂上肥皂水,冒泡处即为渗漏点。这种办法是目前路边修理厂最常见的检漏方法,但是人的手臂是有限的,汽车维修时,人的视力范围是有限的,很多时候根本看不到漏点。 氮气水检漏 向系统充入10-20kgcm2压力氮气,把系统浸入水中,冒泡处即为渗漏点。这种方法和前面的肥皂水检漏方法实质一样,虽然汽车维修的成本低,但有明显的缺点:检漏用的水分容易进入系统,导致系统内的材料受到腐蚀,同时高压气体也有可能对系统造成更大的损害,进行检漏时劳动强度也很大,这样就使维护检修的成本上升。 汽车空调如何保养 秋季将到,众多卖衣服的店铺都已经不遗余力地做换季的促销,所以我们可以开始对爱车进行换季保养了。 翻开日历,立秋已过,中秋也将至了。虽然身处广州的我们还没能明显感受到浓浓秋意,但早晚阵阵的凉风似乎已经预示着炎夏的逐渐远去。所以尤其在早晚,不少车主已经逐渐减少了使用空调的频率了。汽车维修学校的专家表示,但经过连续几个月的频繁使用,也是时候对空调系统进行一些清洁和保养了。 可能很多车主都知道有发动机空气滤清器和机油滤清器,但对空调滤清器就有点陌生了。 其实车载空调和我们家庭用的空调基本原理都是一样的,只是车载空调可以有内循环和

汽车空调制冷剂的充注方法

汽车空调制冷剂的充注 方法 集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

汽车空调制冷剂的充注方法 一.系统抽真空 1.连接充注软管和歧管压力表,拧紧螺母。关闭岐管压力表手动阀,拧下制冷管路的维 修阀的阀盖。连接快速脱开适配器并锁紧。 2.将高压表接入高压管的维修阀,低压表接入自蒸发器至压缩机低压管的维修阀。中间 充注软管安装于真空泵接口。 3.启动真空泵,打开歧管压力表的高压阀和低压阀。 4.抽真空时间约为10~15分钟左右. 5.关闭高压阀和低压阀。 6.放置5分钟,观察压力表,指针继续上升,说明真空下降,系统有泄露。检查泄露情 况,并修补漏洞。 7.继续抽真空20~25分钟,重复6步骤,如压力表保持不动,说明无泄漏,可进行下 一步的工作。 8.关闭高压阀和低压阀,停止抽真空。拆下中间充注管,准备冲入制冷剂。 二.充入制冷剂 1.罐装制冷剂使用前的准备工作,操作如下: ①在制冷剂罐上安装启开阀之前,逆时针旋转蝶形手柄,直到阀针完全缩回为止。 ②逆时针旋转板状螺母,使其升到最高位置。 ③将歧管压力表的中间充注软管安装该阀的接头上,顺时针旋转板状螺母并拧紧。 ④顺时针旋转蝶形手柄,使其前端的阀针在制冷剂罐凸台上刺出小孔。 ⑤逆时针旋转蝶形手柄,制冷剂便沿注入软管流到歧管压力表内。 ⑥顺时针旋转蝶形手柄到最低位置,重新封闭制冷剂罐,但不可拆动启开阀,否则罐 内的制冷剂会泄露。

2.充注制冷剂的步骤。 ①连接好歧管压力表和制冷剂罐。 ②逆时针旋松启开阀手柄,使制冷剂进入中间充注软管,这时不能打开两侧的手动阀 门。 ③拧松歧管压力表中间软管的螺母,会看到白色制冷剂气体外溢并听到嘶嘶声,排出 中间软管的空气后,再旋紧中间软管螺母。 ④旋开高压手动阀门,将制冷剂罐倒立,立即以液态注入制冷系统。切忌打开空调装 置,以防倒灌。 ⑤关闭高压手动阀门,打开低压手动阀门,让制冷剂以气态进入制冷系统。从低压手 动阀门注入的制冷剂必须是气态,如液态,会出现压缩机的液击现象而损毁压缩机。 ⑥启动发动机,打开空调装置,适当加大油门,使制冷剂更快的流入。 ⑦当一罐制冷剂充注完后,关闭低压手动阀门。重复1~3步骤,打开低压充注阀 门。

汽车空调常用制冷剂温度压力对照表

R22、R12、R134a、R502、R410a、R600a、R406a、R404a等 汽车空调常用制冷剂温度压力对照表 R22制冷剂温度压力对照表 温度℃绝对压力kpa温度℃绝对压力Kpa温度℃绝对压力Kpa温度℃绝对压力Kpa温度℃绝对压力Kpa -41100-172747622311224552176 -40105-162858642321256562230 -39110-152969661331289572274 -38115-1430710682341322582326 -37120-1331811703351356592377 -36126-1233012724361390602429 -35132-1134213745371426612482 -34138-1035414768381461622535 -33144-936715790391498632590 -32150-838016813401535642646 -31157-739417837411573652702 -30163-640718861421611 -29170-542119886431650 -28178-443620911441690 -27185-345121937451731 -26193-246622963461771 -25201-148223990471814 -242090499241017481856 -232181515251045491900 -222262532261073501944 -212363549271102511989 -202454567281132522034 -192545585291162532081 -182646603301193542129 注: 绝对压力=表压力+1kg/cm2(大气压力) 表压力=绝对压力-1kg/cm2(大气压力) 1kg/cm2约等于0.1Mpa R12制冷剂温度压力对照表 温度℃表压力kg/cm2温度℃表压力kg/cm2温度℃表压力kg/cm2 -500.029-190.5612 3.55 -490.03-180.6313 3.69 -480.032-170.6914 3.83 -470.034-160.7615 3.97 -460.035-150.8316 4.12 -450.037-140.917 4.27 -440.039-130.9718 4.43 -430.041-12 1.0419 4.59 -420.043-11 1.1220 4.75 -410.045-10 1.221 4.91 -400.048-9 1.2822 5.08 -390.05-8 1.3623 5.25 -380.052-7 1.4524 5.43 -370.055-6 1.5425 5.61 -360.057-5 1.6326 5.79 -350.06-4 1.7227 5.97 -340.063-3 1.8128 6.16

汽车空调工作原理及管路连接简图

汽车空调工作原理 汽车空调工作原理 一.汽车空调的工作原理 其实汽车空调和我们熟悉的家用空调制冷原理是一样的。都是利用R12或是R134a压缩释放的瞬间体积急剧膨胀就要吸收大量热能的原理制冷。(由于 R12对大气臭氧层的破坏,出于环保的要求发达国家从1996年开始改用R134a 做制冷剂)汽车空调的构造和家用的分体空调类似,它的压缩机往往是安装在发动机上,并用皮带驱动(也有直接驱动的),冷凝器安装在汽车散热器的前方,而蒸发器在车里面,工作时从蒸发器出来的低压气态致冷剂流经压缩机变成高压高温气体,经过冷凝器散热管降温冷却变成高压低温的液体,再经过贮液干燥器除湿与缓冲,然后以较稳定的压力和流量流向膨胀阀,经节流和降压最后流向蒸发器。致冷剂一遇低压环境即蒸发,吸收大量热能。车厢内的空气不断流经蒸发器,车厢内温度也就因此降低。液态致冷剂流经蒸发器后再次变成低压气体,又重新被吸入压缩机进行下一次的循环工作。在整个系统中,膨胀阀是控制致冷剂进入蒸发器的机关,致冷剂进入蒸发器太多就不易蒸发而太少冷气又会不够,因此膨胀阀是调节中枢。而压缩机是系统的心脏,系统循环的动力源泉。 尽管汽车空调的空调系统的原理与其它空调系统是相同的,但汽车空调是移动式车载的空调装置,它与固定式空调系统相比,动转条件更恶劣,随汽车行驶的颤振,空调系统的制冷剂比固定式更容易泄漏,空调系统的维修与保养也比固定式频繁,空调装置中风路系统在吸入新风时常常会将尘土吸入,堵塞过滤网及蒸发器,在清洗过程中又往往会把制冷剂泄放到大气中去。造成臭氧层消耗,破坏了环境。 二.汽车空调的组成 汽车空调一般主要由压缩机(compressor)、电控离合器、冷凝器(condenser)、蒸发器(evaporator)、膨胀阀(expansion valve)、贮液干燥器(receiver drier)、管道(hoses)、冷凝风扇、真空电磁阀(vacuum solenoid)、怠速器和控制系统等组成。汽车空调分高压管路和低压管路。高压侧包括压缩机输出侧、高压管路、冷凝器、贮液干燥器和液体管路;低压侧包括蒸发器、积累器、回气管路、压缩机输入侧和压缩机机油池。 贮液干燥器——实际上是一个贮存制冷剂及吸收制冷剂水分、杂质的装置。一方面,它相当于汽车的油箱,为泄露制冷剂多出的空间补充制冷剂。另一方面,它又像空气滤清器那样,过滤掉制冷剂中掺杂的杂质。贮液干燥器中还装有一定的硅胶物质,起到吸收水分的作用。

一汽车空调的基本结构

一、汽车空调的基本结构 汽车空调主要有四大件和其它附件组成。四大件为压缩机、冷凝器、膨胀阀、蒸发器;附件包括制冷剂、储液器、干燥瓶、连接管道、电机、视窗、控制系统等。 1.1压缩机 压缩机的功能就象人体的心脏一样,促进血液(制冷剂)在系统中流动,它是一种专门用于提高制冷剂压力的泵。 客车空调常用的压缩机有二种:博克压缩机和比泽尔压缩机。 1.2冷凝器 冷凝器采用风冷式结构。其作用是将气体状态的载热制冷剂液化或冷凝。要达此目的,制冷剂必须放出热。冷凝器风扇强迫空气通过冷凝器的翅片,与其进行热交换,由于空气温度低于冷凝器翅片温度,因而将热从冷凝器中带走,使制冷剂气体冷凝变为液体。 1.3冷凝器风机 冷凝器风机均采用轴流式电机,其空气流动方向与轴线平行。它的特点是风量大、风压小、耗电量小。轴流式风机由扇叶和电机组成,电机为防水型。

1.4干燥过滤器 制冷系统中,会由于制造时没有处理干净而带入微量碎屑、尘土,或由于制冷剂的不纯净而带入脏物,也可能由于制冷剂对系统部件内壁发生侵蚀作用而脱落杂质。如果这些污物积聚在膨胀阀(或节流管)内,将阻碍制冷剂流通。因此,管路中必须安装过滤器。 由于一般制冷剂工质遇到水会对金属产生强烈的腐蚀作用,而且水在膨胀阀中容易形成冰堵现象,影响制冷剂工作正常进行,所以需要干燥器。 注意:在客车空调中,这两者常常是合为一个容器的,称之为干燥过滤器。为保障空调的正常运行,建议一般每年更换一次。 1.5视液镜(俗称视窗) 视液镜用来直接观察系统中制冷剂的流动,并确定系统是否充液不足。当系统正常运行时,可在视窗中观察到无气泡液体的稳定流动。若存在气泡或泡沫,通常表示系统有故障或制冷剂泄漏。 1.6膨胀阀 热力膨胀阀的工作原理是:通过感温包感受蒸发器出口端过热度的变化,导致感温包内充注的工质产生压力变化,并作用于传动膜片上,促使膜片形成上、下位移,再通过传动片将此力传递给传动杆从而推动阀针上下移动,使阀门关小或开大,起到降压、节流作用,同时自动调节蒸发器的制冷剂供给量,保持蒸发器出口端为设定的过热度,并使蒸发器热交换面积得到充分作用,以及减少液击冲缸现象的发生。 因此,热力膨胀阀有三种主要功能:节流、调节和控制。 注意:膨胀阀在出厂时已调整好,不可自行调节膨胀阀。

相关文档
最新文档