解决开关电源产生的噪声的解决方案

解决开关电源产生的噪声的解决方案
解决开关电源产生的噪声的解决方案

解决开关电源产生的噪声的解决方案

根据Dostal,主要噪声类型是由开关频率产生的开关噪

声供应。他说,通常,对于非隔离式DC/DC转换器,此噪声

的频带在500 kHz和3 MHz之间。但是,由于它取决于开关

频率,因此可以使用低通滤波器轻松控制和滤除。开关噪声会产生输出纹波电压,如图1所示。可以使用无源LC低通滤波

器或有源低通滤波器轻松滤除。

图1:由开关稳压器的开关频率引起的输出纹波电压(顶部)。使用LC滤波器的衰减纹波电压显示在底部。

然而,在我们进入滤波器设计之前,让我们更详细地检查

输出纹波电压。

开电源纹波噪声的产生及抑制

电源纹波噪声的产生及抑制 一、纹波 纹波(ripple)的定义是指在直流电压或电流中,叠加在直流稳定量上的交流分量。它主要有以下害处: 1.1.容易在用电器上产生谐波,而谐波会产生更多的危害; 1.2.降低了电源的效率; 1.3.较强的纹波会造成浪涌电压或电流的产生,导致烧毁用电器; 1.4.会干扰数字电路的逻辑关系,影响其正常工作; 1.5.会带来噪音干扰,使图像设备、音响设备不能正常工作。 二、纹波的表示方法 可以用有效值或峰值来表示,或者用绝对量、相对量来表示; 单位通常为:mV 例如: 一个电源工作在稳压状态,其输出为12V5A,测得纹波的有效值为10mV,这10mV 就是纹波的绝对量,而相对量即纹波系数=纹波电压/输出电压=10mv/12V=0.12%。 三、纹波的测试方法 3.1.以20M示波器带宽为限制标准,电压设为PK-PK(也有测有效值的),去除示波器控头上的夹子与地线(因为这个本身的夹子与地线会形成环路,像一个天线接收杂讯,引入一些不必要的杂讯),使用接地环(不使用接地环也可以,不过要考虑其产生的误差),在探头上并联一个10UF电解电容与一个0.1UF瓷片电容,用示波器的探针直接进行测试;如果示波器探头不是直接接触输出点,应该用双绞线,或者50Ω同轴电缆方式测量。 四、开关电源纹波的主要分类 开关电源输出纹波主要来源于五个方面: 4.1.输入低频纹波; 4.2.高频纹波; 4.3.寄生参数引起的共模纹波噪声; 4.4.功率器件开关过程中产生的超高频谐振噪声;

4.5.闭环调节控制引起的纹波噪声。 4.1、输入低频纹波: 低频纹波是与输出电路的滤波电容容量相关。电容的容量不可能无限制地增加,导致输出低频纹波的残留。 交流纹波经DC/DC变换器衰减后,在开关电源输出端表现为低频噪声,其大小由DC/DC变换器的变比和控制系统的增益决定。 电流型控制DC/DC变换器的纹波抑制比电压型稍有提高。但其输出端的低频交流纹波仍较大。要实现开关电源的低纹波输出,必须对低频电源纹波采取滤波措施。可采用前级预稳压和增大DC/DC变换器闭环增益来消除。 低频纹波抑制的几种常用的方法: a、加大输出低频滤波的电感,电容参数。 △●电容上的纹波有两个成分,一个是充放电时的电压升降量,一个是电流进出电容时ESR上的I*R电压降量。 △●通过输出纹波与输出电容的关系式:vripple=Imax/(Co×f)可以看出,加大输出电容值可以减小纹波。 △●或者考虑采用并联的方式减小ESR值,或者使用LOW ESR电容。 b、采用前馈控制方法,降低低频纹波分量。 △●feed forward control(FFC)前馈控制是按照扰动产生校正作用的一种调节方式,主要用于一些纯滞后或容量滞后较大的被控参数的控制。 △●其目的是加速系统响应速度,改善系统的调节品质。 4.2、高频纹波: 高频纹波噪声来源于高频功率开关变换电路 在电路中,通过功率器件对输入直流电压进行高频开关变换后整流滤波再实现稳压输出的,在其输出端含有与开关工作频率相同频率的高频纹波,其对外电路的影响大小主要和开关电源的变换频率、输出滤波器的结构和参数有关; 设计中尽量提高功率变换器的工作频率,可以减少对高频开关纹波的滤波要求。高频纹波抑制常用的方法有以下几种: a、提高开关电源工作频率,以提高高频纹波频率,其纹波电流△I可由下式算 出: 可以看出,增加L值,或者提高开关频率可以减小电感内的电流波动。 b、加大输出高频滤波器,可以抑制输出高频纹波。 c、采用多级滤波。 一般滤波多采用C型、LC型、CLC型,为了更好的抑制纹波,可以采用增加多一级LC滤波。 4.3、寄生参数引起的共模纹波噪声: 由于功率器件与散热器底板和变压器原、副边之间存在寄生电容,导线存在寄生

开关电源中处理变压器的音频噪声

关于开关电源音频噪声处理的一点经验 最近看到论坛很多人在问关于音频噪声的问题,刚好本人以前也有碰到不少同样的情况,也有做过笔记,现在翻出来整理下,希望对一些碰到该问题网友有帮助。 音频噪声一般指开关电源自身在工作的过程中产生的,能被人耳听到频率为20-20kHz的音频信号 主要有以下几种来源: 一:变压器产生的音频噪声 变压器是主要的音频噪声源。 1:磁致伸缩效应,磁芯材料的尺寸随磁通密度变化 3:磁芯中间存在的气隙,可使磁芯吸引力方向产生弯曲。 2:线圈移动,绕组间存在交变电流效应,产生吸引力和排斥力,使线圈反复移动 4:磁芯两部分在交流磁场中的相互吸引力使其产生移动,反复压迫接触面 5:骨架移动,磁芯片的位移可通过骨架传送和放大。 在以上几种移动源共同作用下,形成了比较复杂的机械系统,它能产生在人耳听力范围内的音频信号。 以下简单讲解能有效衰减各种机制产生的音频噪声的常见方法。 首先变压器要采用均匀浸渍,从而能有效填充线圈与线圈之间、线圈与骨架之间、骨架与磁芯之间的固有空隙,降低活动部件发生位移的可能性,必要时可以再磁性元件与线路板接触面填充白胶或喷涂三防漆,进一步减小机械振动的空间,有效降低噪声。 在条件允许的情况下尽量降低峰值磁通密度,要充分考虑高温时的饱和磁通密度,留足够余量防止工作曲线进入非线性区,可以有效降低变压器的音频噪声,有实验证明峰值磁通密度从3000高斯降为2000高斯即可将发出的噪音降低5 dB到15dB 条件允许可以使用非晶、超微晶合金等软磁材料,它们的磁均匀一致性远比一般铁氧体好得多,磁致伸缩效应趋于零,因此对应力不敏感 二:电容产生的音频噪声 通常为了抑制电磁干扰和减小器件电压应力,开关电源一般采用RC、RCD等吸收电路,吸收电容常常选用高压陶瓷电容,而高压陶瓷电容是由非线性电介质钛酸钡等材料制成,电致伸缩效应比较明显,在周期性尖峰电压的作用下,电介质不断发生形变从而产生音频噪声。 解决的方法是把吸收回路用的高压陶瓷电容换成电致伸缩效应很小的聚脂薄膜电容,这样可以基本消除电容产生的噪声。 三:电路振荡产生的音频噪声 当电源在工作过程中有问歇式振荡产生时,会引起线圈磁芯间歇式振动,当此振荡频率接近绕变压器的固有振荡频率时,易引发共振现象,此时将产生人耳所能听到的音频噪声。 电路振荡产生的原因有很多,下面简单讲解: 1:PCB设计不当

话筒噪音解决方案

先找一下自己的噪音问题是出在哪里,方法很简单: 在《不插话筒》的前提下--打开《音量控制--点开《选项》的属性--把《播放》和《录音》的MIC音量都开到最大,高级选项的20FB增强也打开,戴上耳机听听有没有底噪,如果有:证明你的主板因为电路布局和走线不合理而引起的干扰,这种情况只有更换独立声卡才能解决。 如果没有底噪,就证明声卡没有问题,而是由于你的MIC引起的噪音。 现在市售的电脑耳麦和鹅颈会议话筒因成本考虑,在做工方面偷工减料现象比较严重,只要是由于话筒的信号线《屏蔽线》质量太差引起的噪音,这种情况下没必要更换话筒,其实只要去把话筒线换掉就OK 了,可以去电子市场让他们给你更换,花不了什么银子的,最多几块钱就能解决问题,买的时候可以看看线材的内芯和外网屏蔽层的铜丝多少来判断线材的质量好坏,反正是越多越好(等级分别:钢丝,铜丝,无氧铜,后者价钱偏高)。。。买完让商家或搞家电的人帮你换掉就行了,喜欢自己DIY的也可以自己动手!其实多数网友都是第2种原因的居多! 接地线是能减小噪音,电脑的电源都属于高频的开关式电源,整机工作的时候都会带感应电,不接地时,电源的高频杂波会对声卡形成干扰。但是接地不能根本的解决噪音问题

虽然主要问题是在麦上,但是也有一些补救的办法,效果最明显的就是换声卡了,市售的独立声卡接一般的连体麦(耳麦)或者鹅颈麦(会议麦)噪音都会降的很低了,原因是避开了主板的干扰,其次动手能力强的朋友可以自己改动一下主机箱,例如前面说的机箱外壳接地(例如家里的水管或者暖气管),换质量好点的电脑电源,在电脑电源的输出引线套上铁氧体磁环(一般的USB设备的插头处都有一个黑颜色的橡胶块,其实里面就是铁氧体磁环,铁氧体磁环能够很好的吸收线材中包含的高频杂波成分,一般电子市场都有卖的,很便宜),使用带电源净化器的交流电源插座等等。。。 用电脑麦录歌时,尽量不要用手去摸麦头和线,因为人体身上的分布电容会被声卡放大成杂波信号。 选购普通的电脑麦录歌时,引线要尽量短些,才能把噪音系数降到最低 1、您的麦克风,混音是否拉到了最大。 解决方法:麦克风,混音音量拉到百分之八十到九十即可。 2、您的麦克风是否在加强状态。 解决方法:把麦克风加强去掉。因为有的声卡不支持。 3、您的麦克风和电脑主机间连接是否问题。 解决方法:把麦克风和电脑主机连接断掉,再重新正确连接,并查看有无接触不良。 4、您是否使用音箱。 解决方法:使用耳麦。必须使用音箱注意音箱喇叭不要对着麦克风,(自己电脑房间的条件需要宽敞良好)

开关电源纹波、噪音详解——这篇文章令你眼前一亮(民熔)

开关电源纹波、噪声浅谈 纹波与噪声 纹波 开关电源的输出并不是真正恒定的,输出存在着周期性的抖动,这些抖动看上去就和水纹一样,称为纹波。 纹波可以是电压或电流纹波。 通常用2个参数来描述纹波: 最大纹波电 压:纹波的峰峰值。 纹波系数:交流分量的有效值与直流分量之比。 纹波产生的原因 开关电源的纹波来自2个地方: 低频纹波:来自AC输入的周期,电源对输入的抑制比不是完美的,当输入变化,输出也会变化。 高频纹波:来自开关切换的周期,开关电源不是线性连续输出能量,而是将能量组成一个个包来传输,因此会存在和开关周期相对应的纹波。 如果是线性电源,是没有开关纹波的,只有低频纹波。 纹波与噪声

纹波是由于AC周期或开关周期引起的输出抖动,而噪声是随机耦合到输出上的高频信号,是不一样的。 恒流 LED恒流驱动 为什么照明用LED都是电流驱动? LED是二极管,而二极管的PN结的正向导通阻抗是负温度系数,随着温度的升高,二极管正向导通阻抗降低。 如果用恒压源驱动LED,随着LED工作,温度开始升高,温度升高后,正向导通阻抗降低,由于I=U/R,电流升高,且由于功率P=U*I,功率也增加,LED发热更厉害,进一步刺激温度升高,陷于恶性循环,直到LED损坏。 恒压源驱动时,温度和电路是一对正反馈。 所以照明LED都是恒流驱动,如果是非照明,LED几乎没有温升,此时可以用恒压驱动。 恒流精度 恒流精度和其他电影的恒压效果一样,体现在几个方面。 当负载发生变化时,电源输出的电流的恒定程度。 在实际应用时,多个不同的LED串不可能阻抗特性完全相同,将这些不同的负载接到电源上后,电流的误差就定义为恒流精度。 不光是多负载,同一个LED,温度不同时,阻抗特性也不同,不同温度下电流也是有误差的,但这和前面的条件本质还是一样,都是负载变化。

传感器电路的噪声及其抗干扰技术研究

传感器电路的噪声及其抗干扰技术研究 作者:刘竹琴,白泽生延安大学物理与电子信息学院 尽量消除或抑制电子电路的干扰是电路设计和应用始终需要解决的问题。传感器电路通常用来测量微弱的信号,具有很高的灵敏度,如果不能解决好各类干扰的影响,将给电路及其测量带来较大误差,甚至会因干扰信号淹没正常测量信号而使电路不能正常工作。在此,研究了传感器电路设计时的内部噪声和外部干扰,并得出采取合理有效的抗干扰措施,能确保电路正常工作,提高电路的可靠性、稳定性和准确性。 传感器电路通常用来测量微弱的信号,具有很高的灵敏度,但也很容易接收到外界或内部一些无规则的噪声或干扰信号,如果这些噪声和干扰的大小可以与有用信号相比较,那么在传感器电路的输出端有用信号将有可能被淹没,或由于有用信号分量和噪声干扰分量难以分辨,则必将妨碍对有用信号的测量。所以在传感器电路的设计中,往往抗干扰设计是传感器电路设计是否成功的关键。

1 传感器电路的内部噪声 1.1 高频热噪声 高频热噪声是由于导电体内部电子的无规则运动产生的。温度越高,电子运动就越激烈。导体内部电子的无规则运动会在其内部形成很多微小的电流波动,因其是无序运动,故它的平均总电流为零,但当它作为一个元件(或作为电路的一部分)被接入放大电路后,其内部的电流就会被放大成为噪声源,特别是对工作在高频频段内的电路高频热噪声影响尤甚。 通常在工频内,电路的热噪声与通频带成正比,通频带越宽,电路热噪声的影响就越大。在 通频带△f内,电路热噪声电压的有效值:。以一个1 kΩ的电阻为例,如果电路的通频带为1 MHz,则呈现在电阻两端的开路电压噪声有效值为4μV(设温度为室温T=290 K)。看起来噪声的电动势并不大,但假设将其接入一个增益为106倍的放大电路时,其输出噪声可达4 V,这时对电路的干扰就很大了。 1.2 低频噪声 低频噪声主要是由于内部的导电微粒不连续造成的。特别是碳膜电阻,其碳质材料内部存在许多微小颗粒,颗粒之间是不连续的,在电流流过时,会使电阻的导电率发生变化引起电流的变化,产生类似接触不良的闪爆电弧。另外,晶体管也可能产生相似的爆裂噪声和闪烁噪声,其产生机理与电阻中微粒的不连续性相近,也与晶体管的掺杂程度有关。 1.3 半导体器件产生的散粒噪声 由于半导体PN结两端势垒区电压的变化引起累积在此区域的电荷数量改变,从而显现出电容效应。当外加正向电压升高时,N区的电子和P区的空穴向耗尽区运动,相当于对电容充电。当正向电压减小时,它又使电子和空穴远离耗尽区,相当于电容放电。当外加反向电

开关电源产生噪声的原因与解决方案

开关电源产生噪声的原因与解决方案 从数据中心的服务器到电信设备和工业系统,开关模式电源(SMPS)用于各种应用,因为它具有高效率,功率密度和低成本的快速瞬态响应等优点。 此外,为了通过更严格的新监管标准,电源产生的EMI必须保持低于以往的水平。 实际上,这些电源的开关频率会产生许多不同类型的噪声。之前有人认为它们是由开关频率引起的高频噪声的开关噪声开关转换,开关转换后振铃,以及在一个系统中运行的多个开关稳压器引起的拍频。 这里我们将研究开关稳压器和DC/DC转换器产生的这些不同类型的噪声,并讨论解决方案,包括滤波技术,以减少和最小化开关SMPS电源中的噪声。 SMPS噪声 根据Dostal,主要噪声类型是由开关频率产生的开关噪声供应。他说,通常,对于非隔离式DC/DC转换器,此噪声的频带在500 kHz和3 MHz之间。 但是,由于它取决于开关频率,因此可以使用低通滤波器轻松控制和滤除。开关噪声会产生输出纹波电压,如图1所示。可以使用无源LC低通滤波器或有源低通滤波器轻松滤除。 图1:由开关稳压器的开关频率引起的输出纹波电压(顶部)。使用LC滤波器的衰减纹波电压显示在底部。 然而,在我们进入滤波器设计之前,让我们更详细地检查输出纹波电压。 如公式1所示,开关稳压器的输出纹波电压可以通过电感电流纹波精确计算,电感电流纹波基于电感的实际电感值,开关转换器的输入和输出电压,开关频率(fSW)和输出电容(COUT))包括其等效串联电阻(ESR)和等效串联电感(ESL)。 根据ADI的开关转换器数据手册,在电感选择方面存在一些折衷。例如,小电感器以较大的电感器电流纹波为代价提供更好的瞬态响应,而大电感器以较慢的瞬态响应能力为代

传感器的噪声及其抑制方法

传感器的噪声及其抑制方法 1 引言 传感器作为自控系统的前沿哨兵,犹如电子眼一般将被测信息接收并转换为有效的电信号,但同时,一些无用信号也搀杂在其中。这些无用信号我们统称为噪声。 应该说,噪声存在于任何电路之中,但它对传感器电路的影响却尤为突出。这是因为,传感器的输出阻抗一般都很高,使其输出信号衰减厉害,同时,传感器自容易被噪声信号淹没。因此,噪声的存在必定影响传感器的精度和分辨率,而传感器又是检测自控系统的首要环节,于是势必影响整个自控系统的性能。 由此,噪声的研究是传感器电路设计中必须考虑的重要环节,只有有效地抑制、减少噪声的影响才能有效利用传感器,才能提高系统的分辨率和精度。 但噪声的种类多,成因复杂,对传感器的干扰能力也有很大差异,于是抑制噪声的方法也不同。下面就传感器的噪声问题进行较全面的研究。 2 传感器的噪声分析及对策 传感器噪声的产生根源按噪声源分为内部噪声和外部噪声。 2.1 内部噪声——来自传感器件和电路元件的噪声 2.1.1 热噪声 热噪声的发生机理是,电阻中自由电子做不规则的热运动时产生电位差的起伏,它由温度引发且与之呈正比,由下面的奈奎斯特公式表示: 其中,Vn:噪声电压有效值;K:波耳兹曼常数(1.38×10-23J〃K-1);T:绝对温度(K);B:系统的频带宽度(Hz);R:噪声源阻值(Ω)。 噪声源包括传感器自身内阻,电路电阻元件等。 由公式(1)可见,热噪声由于来自器件自身,从而无法根本消除,宜尽可能选择阻值较小的

电阻。 同时,热噪声与频率大小无关,但与频带宽成正比,即,对应不同的频率有均匀功率分布,故,也称白噪声。因此,选择窄频带的放大器和相敏检出器可有效降低噪声。 2.1.2 放大器的噪声 2.1.3 散粒噪声 散粒噪声的噪声源为晶体管,其机理是由到达电极的带电粒子的波动引起电流的波动形成的。噪声电流In与到达电极的电流Ic及频带宽度B成正比,可表示为: 由此可见,使用双极型晶体管的前置放大器来放大传感器的输出信号的场合,选Ic取值尽可能小。同时,也可选择窄频带的放大器降低散粒噪声电流。 2.1.4 1/f噪声 1/f噪声和热噪声是传感器内部的主要噪声源,但其产生机理目前还有争议,一般认为它是一种体噪声,而不是表面效应,源于晶格散射引起。在晶体管的P-N附近是电子-空穴再复合的不规则性产生的噪声,该噪声的功率分布与频率成反比,并由此而得名。其噪声电压表示为: Hooge还在1969年提出了一个解释1/f噪声的经验公式: 式中,SRH和SVH为相应于电阻起伏和电压起伏的功率噪声密度,V为加在R上的偏压,N 为总的自由载流子数,α叫Hooge因子,是一个与器件尺寸无关的常数,它是一个判断材料性能的重要参数。 对于矩形电阻,总的自由载流子数N=PLWH,其中,P为载流子浓度,L、W、H为电阻的长、宽、厚。

城市交通噪声分析及解决方案

城市交通噪声分析及解决方案 摘要:近年来,随着改革开放的加深,我国汽车保有量飞速上涨,所以交通噪声污染对道路沿线居民正常生活、娱乐等方面的影响也呈现恶化的趋势。交通噪声污染也就变成道路沿线特别是交通主干道沿线居民非常关注的环境污染问题之一。根据最近调查显示,鉴于噪声会对人的心理以及机体造成很多不良影响,对神经系统和心血管系统造成危害更为突出;噪音还会损害儿童的大脑,长时间生活于噪声环境里的孩子,智力发育要比在安静环境里的儿童明显低很多。考虑到人们的正常生活,控制和减少交通噪声已刻不容缓。本文通过简要对城市交通噪音的分析以及提出的一些解决方案,希望对从事此事业的人员提供帮助。 关键词:噪声;污染;创新 1.当今国内城市道路交通噪声污染状况 城市道路交通噪声污染,早就成为了人们关注的热点话题。多次的交通环境调查显示,噪声污染的控制均不甚理想。很多大城市现状调查结果显示。道路两侧的居民地带受交通噪声污染都十分严重。历时一年时间的调查,对全国的518条次干路以上公路两侧的众多建筑物进行了大量的考察。其中,包括民用住宅、学校和医院,数量达6300多座。调查结果显示,各等级道路两侧的噪声敏感建筑物受交通噪声污染程度是不同的。高速路两侧的建筑受影响程度尤为严重,可以说交通噪声污染对其周边居民的生活影响非常大[1]。 2.城市道路交通噪声的分析 2.1机动噪声 2.1.1动力噪音分析 机动车辆是产生噪音的最主要因素,发动机噪音的控制对于汽车噪声的控制非常关键。进气噪声,发动机的噪音产生的主要原因之一,因为发动机的空气动力噪声,会随着发动机转速的提高而大大增强。 2.1.2轮胎噪音分析 轮胎噪声也是道路交通噪声的重要噪声源,也是一个不容忽视的因素。由于轮胎噪声本身的噪音机制比较复杂,对各种设备的先进性和方法性要求非常高。当在正常情况下,车辆行驶较快的时候也会发出很大的噪声;当路面潮湿,且车辆速度行驶较慢的时候,噪音尤为明显。 2.2非机动车噪音 非机动车辆的噪音主要来源于电动自行车在行驶过程中的刹车声。据监测,这种声音能使声值提高5dB还要多,防治交通噪声污染不能停滞于建设,要从

抗干扰设计原则

> 抗干扰设计原则 1.电源线的设计 (1)选择合适的电源 (2)尽量加宽电源线 (3)保证电源线、底线走向和数据传输方向一致 (4)使用抗干扰元器件 (5)电源入口添加去耦电容(10~100uf) 2.[ 3.地线的设计 (1)模拟地和数字地分开 (2)尽量采用单点接地 (3)尽量加宽地线 (4)将敏感电路连接到稳定的接地参考源 (5)对pcb板进行分区设计,把高带宽的噪声电路与低频电路分开 (6)尽量减少接地环路(所有器件接地后回电源地形成的通路叫“地线环路”)的面积 3.. 4.元器件的配置 (1)不要有过长的平行信号线 (2)保证pcb的时钟发生器、晶振和cpu的时钟输入端尽量靠近,同时远离其他低频器件(3)元器件应围绕核心器件进行配置,尽量减少引线长度 (4)对pcb板进行分区布局 (5)考虑pcb板在机箱中的位置和方向 (6)缩短高频元器件之间的引线 4.】 5.去耦电容的配置 (1)每10个集成电路要增加一片充放电电容(10uf) (2)引线式电容用于低频,贴片式电容用于高频 (3)每个集成芯片要布置一个的陶瓷电容 (4)对抗噪声能力弱,关断时电源变化大的器件要加高频去耦电容 (5)电容之间不要共用过孔 (6)去耦电容引线不能太长 5.— 6.降低噪声和电磁干扰原则 (1)尽量采用45°折线而不是90°折线(尽量减少高频信号对外的发射与耦合) (2)用串联电阻的方法来降低电路信号边沿的跳变速率 (3)石英晶振外壳要接地 (4)闲置不用的们电路不要悬空 (5)时钟垂直于IO线时干扰小 (6)尽量让时钟周围电动势趋于零

(7)IO驱动电路尽量靠近pcb的边缘 (8)- (9)任何信号不要形成回路 (10)对高频板,电容的分布电感不能忽略,电感的分布电容也不能忽略 (11)通常功率线、交流线尽量在和信号线不同的板子上 6.其他设计原则 (1)CMOS的未使用引脚要通过电阻接地或电源 (2)用RC电路来吸收继电器等原件的放电电流 (3)总线上加10k左右上拉电阻有助于抗干扰 (4)采用全译码有更好的抗干扰性 (5)~ (6)元器件不用引脚通过10k电阻接电源 (7)总线尽量短,尽量保持一样长度 (8)两层之间的布线尽量垂直 (9)发热元器件避开敏感元件 (10)正面横向走线,反面纵向走线,只要空间允许,走线越粗越好(仅限地线和电源线)(11)要有良好的地层线,应当尽量从正面走线,反面用作地层线 (12)保持足够的距离,如滤波器的输入输出、光耦的输入输出、交流电源线和弱信号线等(13)长线加低通滤波器。走线尽量短截,不得已走的长线应当在合理的位置插入C、RC、或LC低通滤波器。 (14)> (15)除了地线,能用细线的不要用粗线。 7.布线宽度和电流 一般宽度不宜小于(8mil) 在高密度高精度的pcb上,间距和线宽一般(12mil) 当铜箔的厚度在50um左右时,导线宽度1~(60mil) = 2A 公共地一般80mil,对于有微处理器的应用更要注意 8.} 9.电源线尽量短,走直线,最好走树形,不要走环形 9.布局 10.首先,要考虑PCB尺寸大小。PCB尺寸过大时,印制线条长,阻抗增加,抗噪声能力下降,成本也增加;过小,则散热不好,且邻近线条易受干扰。 在确定PCB尺寸后.再确定特殊元件的位置。最后,根据电路的功能单元,对电路的全部元器件进行布局。 在确定特殊元件的位置时要遵守以下原则: (1)尽可能缩短高频元器件之间的连线,设法减少它们的分布参数和相互间的电磁干扰。易受干扰的元器件不能相互挨得太近,输入和输出元件应尽量远离。 (2)某些元器件或导线之间可能有较高的电位差,应加大它们之间的距离,以免放电引出意外短路。带高电压的元器件应尽量布置在调试时手不易触及的地方。

谈电子电路噪声干扰及其抑制

谈电子电路噪声干扰及其抑制 [摘要]从广义上讲,噪声与干扰是同义词,是指有用信号以外的无用信号。在测量中它严重影响有用信号的测量精度,特别是妨碍对微弱信号的检测。一般来说,噪声是很难消除的,但可以降低噪声的强度,消除或减小其对测量的影响。 【关键词】电子;电路;噪声干扰;抑制 在测量中电子电路噪声干扰严重影响有用信号的测量精度,特别是妨碍对微弱信号的检测。一般来说,噪声是很难消除的,但可以降低噪声的强度,消除或减小其对测量的影响。 1.噪声干扰的来源与耦合方式 1.1形成噪声的三要素 要想设法抑制噪声和干扰,必须首先确定产生噪声的噪声源是什么,接收电路是什么,噪声源和接收电路之间是怎样耦合的,这就是平常所说的形成噪声的三要素,即:噪声源,对噪声敏感的接收电路及耦合通道。然后才能分别采用相应的方法。通常从三个方面加以解决:对于噪声源,应抑制噪声源产生的噪声;对于噪声敏感的接收电路,应使接收电路对噪声不敏感;对于耦合通道,可隔离耦合通道的传输。 1.2噪声的来源 噪声的来源多种多样,归纳起来可分为系统内部元件产生的随机噪声(也称为固有噪声)和系统外部引入的干扰。 固有噪声:电路中各种元器件本身就是噪声源,如电阻的固有噪声主要是由电阻内部的自由电子无规则的热运动造成的。晶体管的散粒噪声、低频噪声等都是固有噪声。 系统外部引入的干扰:其因素较多也较复杂,如50Hz电源谐波所产生的干扰、生产设备所产生的工业干扰等。 1.3噪声的耦合方式 噪声的耦合方式通常有:传导耦合、经公共阻抗耦合和电磁场耦合3种。 1.3.1传导耦合导线经过具有噪声的环境时,拾取到噪声并传送到电路造成干扰。噪声经电路输入引线或电源引线传至电路最为常见。 1.3.2经公共阻抗的耦合通过地线和电源内阻产生的寄生反馈部分。 1.3.3电磁场耦合由感应噪声产生的干扰,包括电场、磁场和电磁感应。电磁场耦合根据辐射源的远近可分为近场感应与远场的辐射。在近场感应中电容性耦合和电感性耦合往往是同时存在。此外,一般高电压回路易产生电容性耦合源;大电流回路易产生电感性耦合源。 2.抑制噪声干扰的方法 抑制噪声干扰必须从产生噪声干扰的三要素出发,找出解决办法。 2.1在噪声发源处抑制噪声 不难理解,在噪声发源处采取措施不让噪声传播出来,问题会迎刃而解。因此在遇到干扰时,无论情况怎样复杂,首先要查找噪声源,然后研究如何将噪声源的噪声抑制下去。工作现场常见的噪声源有电源变压器、继电器、白炽灯、电机运转、集成电路处于开关工作状态等,应根据不同情况采取适当措施,如电源变压器采取屏蔽措施,继电器线圈并接二极管等。 2.2使接收电路对噪声不敏感

GSM手机TDD噪声处理方案

GSM手机有TDD噪声默认分类 大家都知道GSM手机有TDD噪声,但为什么噪声是217Hz呢? 把手机等效成一个黑盒子,相同时间内进入手机的数据需要在相同的时间内发送出去。有点类似电荷守恒,我们就来分析这个时间。 先分析进入手机的话音数据: (1)Microphone——>采样——>PCM量化——>64Kbit/s数据流——>A律非线形量化(13bitGSM协议规定)——>104Kbit/s数据流——>RPE-LTP语音编码——>13Kbit/s数据流 以上是模数转换过程。13Kbit/s值是GSM协议规定的数据流。前面的采样和PCM量化,不同的芯片厂家各数据不一样,如TI的采样频率为40MHz,然后再抽值。下面是信道编码过程。 由于话音信号有一定的周期性,其周期为20ms,因此先分析20ms内话音是如何编码的,20ms的数据量此时为260bit。 (2)260bit——>CRCcode——>267bit——>Convolutionalcoe——>456bit——>ReorderingandPartitioning——>456bit——>块间交织——>456bit既22.8Kbit/s——>GMSK调制——>RF 其中ReoderingandPartitioning为块内交织,交织深度为8。以上为Fullrate编码方案。下面分析RF是如何在一定时间内把数据传送出去的呢? 首先分析TDMA帧的数据构成。一个TDMA帧为156.25bit,有用的话音信息为114bit,如下:尾比特3bit+话音信息比特57bit+1bit+训练序列26bit+1bit+话音信息比特57bit+尾比特3bit+保护期8.25bit 由前面的分析可知传送给RF的话音数据流为22.8Kbit/s,那么20ms的数据为456bit,456/57=8,说明块内交织深度为8,实际上块间交织深度也为8。 再分析一下GSM的发送规定: GSM规定,逻辑信道话音以复帧形式发送,一个复帧为26个TDMA帧。当然还有超帧,此处不作分析。 复帧中其中24个TDMA帧用于传送话音信息,1个TDMA帧用于随路控制,1路TDMA 帧空闲。则可以分析出复帧包含的信息量为:24*114=8*3*114bit=2736bit 根据前面的分析,这些数据刚好是2736/22.8=120ms。说明一个复帧中包含120ms的信息量。很不幸的是,物理信道上仍旧以TDMA方式发送,则一个TDMA发送时间需要120/26=4.615ms,那么其倒数就正好是217Hz。 消除办法: (1)好多手机都会产生恼人的TDMA噪声,频率为217Hz.其产生的原因如下两种途径: a,天线辐射出的射频能量干扰 此种干扰可被33PF电容有效滤除,即在Receiver两端分别对地加电容,两端间再加一电容,共3个电容即可. b,PA突发工作时带动电源产生的干扰 此种干扰无法滤除,因为217Hz的频率实在是太低啦,又恰好与receiver的音频重叠在一起.无法从频率上分开信号与干扰. (2)串电阻可以减小该TDMA的噪声,同时加大RECEIVER的输出增益,电阻大小可根据调试情况而定(针对PA突发工作时带动电源产生的干扰) (3)GSM的TDMA每个timeslot(时隙)为577uS,每帧有8个timeslot,即每帧长为577us×8=4.616ms。GSM是收发双工的,也就是只要处于通信状态,发射帧是连续发送的。PA在每次发射是都会有一个burst大电流的需求,电源电路就会把这个噪声串到整个电

抗干扰措施

抗干扰技术 在电路设计当中,抗干扰占有一个特别重要的地位。在一切的电子技术当中,都是重点。(或许你会说你是玩单片机的,感觉没这方面的必要,其实是因为数字电路就两种信号,一个高电平,一个低电平,本身就有一定的抗干扰性能,而模拟信号是连续的,容易被干扰,这也是现在的产品都数字化的原因之一,但是玩单片机的就不玩模拟信号?加点抗干扰技术以防万一也没错吧!)举个例子来说,如果要放大一个微弱的信号,当电源不是很好,有较大的纹波,经常4.5V到6V之间跳,工频信号又很强,你的电路有没有什么防护措施,你想想,当这个信号到最后,还是你想要的信号吗?打个比方,如果唐僧身边没有那么多能干的徒弟,菩萨,神仙,他到得了西天吗?那些妖精就是干扰源,徒弟什么的就是抗干扰措施,当然唐僧自身也有一定的抗干扰能力。这就是我们要讲的抗干扰技术。(请各位懒人直接跳到最后的总结) 理论上来说,抗干扰分为3个方面:1、干扰源。2、传输途径。3、敏感原件。也就是我们需要下功夫的地方。按照优先考虑的顺序,也是如上的1、2、3。你要是能把干扰抑制在源头,扼杀在摇篮里,那就不用其他的措施了。但是干扰源来自四面八方,说不定自己后院还起火(比如运放的自激振荡),所以3个方面都是需要加强的。 一般来说,电源的干扰时最普遍的,所以电源做得好就是一切的基础,尽量降低电源的纹波系数,电容可以滤去交流信号,因此在一些用运放的地方电源和地端可以并联10uF、1uF、0.1uF的电容,以滤去不同频率的波。小电容通低频,大电容通高频,但注意电解电容不要正负极接反了,那样也会产生噪声。再就是布线时,电源线和地线要尽量粗点(减小导线的电阻),避免90°折线;模拟电路和数字电路用不同的电源,;数字电路与模拟电路避免使用公共地线;最多模拟地与数字地仅有一点相连,信号连接时,可用光电隔离,防止互相干扰。接地线越短越好,避免地线形成环路。 在传输途径上下功夫,各模块之间连接线尽量短,远离干扰;高频信号传输可使用同轴电缆或多芯屏蔽电缆,对可能的干扰源输出线进行滤波,产生噪声的导线与地线绞合,信号地线、其它可能造成干扰的电路的地线分开,敏感电路加屏蔽罩(屏蔽罩是要接地才有用的),把干扰源围闭在屏蔽罩内也是允许的。隔离也是常用的,隔离分变压器隔离,继电器隔离,光电隔离,光电隔离比较常用。 有的继承电路 而加强自身的抗干扰性能,大部分是靠原件本省的性质和所用的材料等等,我们自己难以决定。 总而言之,想要抗干扰,可采取以下措施: 1、提高电源的稳定性,减小纹波。各个模块的电源可以和地之间用不同的电容 相连。 2、在信号线容易受到干扰的地方,使用滤波电路。 3、各级模块相连的信号线尽量短,也可以用同轴电缆相连。 4、使用屏蔽盒屏蔽各个模块,或者干扰源。 5、模拟电路与数字电路使用不同的电源,信号之间使用光电隔离。 6、布线时,避免地线成环状,接线尽量短,但避免交叉、飞线。各种模块布局 时分开,模拟电路与数字电路分开。电源线与地线要尽量粗一点。原件排列

如何降低电源纹波噪声的分析与应用

如何降低电源纹波噪声的分析与应用 一、什么叫纹波? 纹波(ripple)的定义是指在直流电压或电流中,叠加在直流稳定量上的交流分量; 它主要有以下害处: 1、容易在用电器上产生谐波,而谐波会产生更多的危害; 2、降低了电源的效率; 3、较强的纹波会造成浪涌电压或电流的产生,导致烧毁用电器; 4、会干扰数字电路的逻辑关系,影响其正常工作; 5、会带来噪音干扰,使图像设备、音响设备不能正常工作。 二、纹波的表示方法 可以用有效值或峰值来表示,或者用绝对量、相对量来表示; 例如:一个电源工作在稳压状态,其输出为12V5A,测得纹波的有效值为10mV,这10mV就是纹波的绝对量,而相对量即纹波系数=纹波电压/输出电压 =10mv/12V=0.12 %; 三、纹波的测试方法 以20M示波器带宽为限制标准,电压设为PK-PK(也有测有效值的),去除示波器控头上的夹子与地线(因为这个本身的夹子与地线会形成环路,像一个天线接收杂讯,引入一些不必要的杂讯),使用接地环(不使用接地环也可以,不过要考虑其产生的误差),在探头上并联一个10UF电解电容与一个0.1UF瓷片电容,用示波器的探针直接进行测试;如果示波器探头不是直接接触输出点,应该用双绞线,或者50Ω同轴电缆方式测量。 四、开关电源纹波的主要分类 开关电源输出纹波主要来源于五个方面:输入低频纹波、高频纹波、寄生参数引起的共模纹波噪声、功率器件开关过程中产生的超高频谐振噪声和闭环调节控制引起的纹波噪声 1、低频纹波是与输出电路的滤波电容容量相关。电容的容量不可能无限制地增加,导致输出低频纹波的残留。交流纹波经DC/DC变换器衰减后,在开关

开关电源的纹波和噪声测试方法

开关电源的纹波和噪声(图) 开关电源(包括AC/DC转换器、DC/DC转换器、AC/DC模块和DC/DC模块)与线性电源相比较,最突出的优点是转换效率高,一般可达80%~85%,高的可达90%~97%;其次,开关电源采用高频变压器替代了笨重的工频变压器,不仅重量减轻,体积也减小了,因此应用范围越来越广。但开关电源的缺点是由于其开关管工作于高频开关状态,输出的纹波和噪声电压较大,一般为输出电压的1%左右(低的为输出电压的0.5%左右),最好产品的纹波和噪声电压也有几十mV;而线性电源的调整管工作于线性状态,无纹波电压,输出的噪声电压也较小,其单位是μV。 本文简单地介绍开关电源产生纹波和噪声的原因和测量方法、测量装置、测量标准及减小纹波和噪声的措施。 纹波和噪声产生的原因 开关电源输出的不是纯正的直流电压,里面有些交流成分,这就是纹波和噪声造成的。纹波是输出直流电压的波动,与开关电源的开关动作有关。每一个开、关过程,电能从输入端被“泵到”输出端,形成一个充电和放电的过程,从而造成输出电压的波动,波动频率与开关的频率相同。纹波电压是纹波的波峰与波谷之间的峰峰值,其大小与开关电源的输入电容和输出电容的容量及品质有关。 噪声的产生原因有两种,一种是开关电源自身产生的;另一种是外界电磁场的干扰(EMI),它能通过辐射进入开关电源或者通过电源线输入开关电源。 开关电源自身产生的噪声是一种高频的脉冲串,由发生在开关导通与截止瞬间产生的尖脉冲所造成,也称为开关噪声。噪声脉冲串的频率比开关频率高得多,噪声电压是其峰峰值。噪声电压的振幅很大程度上与开关电源的拓扑、电路中的寄生状态及PCB的设计有关。 利用示波器可以看到纹波和噪声的波形,如图1所示。纹波的频率与开关管频率相同,而噪声的频率是开关管的两倍。纹波电压的峰峰值和噪声电压的峰峰值之和就是纹波和噪声电压,其单位是mVp-p。 图1 纹波和噪声的波形 纹波和噪声的测量方法 纹波和噪声电压是开关电源的主要性能参数之一,因此如何精准测量是一个十分重要问题。目前测量纹波和噪声

抗干扰措施

抗干扰措施的基本原则是:抑制干扰源,切断干扰传播路径,提高敏感器件的抗干扰性能。 1、抑制干扰源 抑制干扰源就是尽可能的减小干扰源的du/dt,di/dt。这是抗干扰设计中最优先考虑和最重要的原则,常常会起到事半功倍的效果。减小干扰源的du/dt主要是通过在干扰源两端并联电容来实现。减小干扰源的di/dt则是在干扰源回路串联电感或电阻以及增加续流二极管来实现。 抑制干扰源的常用措施如下: (1)继电器线圈增加续流二极管,消除断开线圈时产生的反电动势干扰。仅加续流二极管会使继电器的断开时间滞后,增加稳压二极管后继电器在单位时间内可动作更多的次数。 (2)在继电器接点两端并接火花抑制电路(一般是RC串联电路,电阻一般选几K到几十K,电容选0.01uF),减小电火花影响。 (3)给电机加滤波电路,注意电容、电感引线要尽量短。 (4)电路板上每个IC要并接一个0.01μF~0.1μF高频电容,以减小IC对电源的影响。注意高频电容的布线,连线应靠近电源端并尽量粗短,否则,等于增大了电容的等效串联电阻,会影响滤波效果。 (5)布线时避免90度折线,减少高频噪声发射。 (6)可控硅两端并接RC抑制电路,减小可控硅产生的噪声(这个噪声严重时可能会把可控硅击穿的)。 2、切断干扰传播路径的常用措施 (1)充分考虑电源对单片机的影响。电源做得好,整个电路的抗干扰就解决了一大半。许多单片机对电源噪声很敏感,要给单片机电源加滤波电路或稳压器,以减小电源噪声对单片机的干扰。比如,可以利用磁珠和电容组成π形滤波电路,当然条件要求不高时也可用100Ω电阻代替磁珠。 (2)如果单片机的I/O口用来控制电机等噪声器件,在I/O口与噪声源之间应加隔离(增加π形滤波电路)。控制电机等噪声器件,在I/O口与噪声源之间应加隔离(增加π形滤波电路)。 (3)注意晶振布线。晶振与单片机引脚尽量靠近,用地线把时钟区隔离起来,晶振外壳接地并固定。此措施可解决许多疑难问题。 (4)电路板合理分区,如强、弱信号,数字、模拟信号。尽可能把干扰源(如电机,继电器)与敏感元件(如单片机)远离。 (5)用地线把数字区与模拟区隔离,数字地与模拟地要分离,最后在一点接于电源地。A/D、D/A芯片布线也以此为原则,厂家分配A/D、D/A芯片引脚排列时已考虑此要求。(6)单片机和大功率器件的地线要单独接地,以减小相互干扰。大功率器件尽可能放在电路板边缘。 (7)在单片机I/O口,电源线,电路板连接线等关键地方使用抗干扰元件如磁珠、磁环、电源滤波器,屏蔽罩,可显著提高电路的抗干扰性能。

电路噪声的产生及抑制

电路噪声的产生及抑制 电路噪声 对于电子线路中所标称的噪声,可以概括地认为,它是对目的信号以外的所有信号的一个总称。最初人们把造成收音机这类音响设备所发出噪声的那些电子信号,称为噪声。但是,一些非目的的电子信号对电子线路造成的后果并非都和声音有关,因而,后来人们逐步扩大了噪声概念。例如,把造成视屏幕有白班呀条纹的那些电子信号也称为噪声。可能以说,电路中除目的的信号以外的一切信号,不管它对电路是否造成影响,都可称为噪声。例如,电源电压中的纹波或自激振荡,可对电路造成不良影响,使音响装置发出交流声或导致电路误动作,但有时也许并不导致上述后果。对于这种纹波或振荡,都应称为电路的一种噪声。又有某一频率的无线电波信号,对需要接收这种信号的接收机来讲,它是正常的目的信号,而对另一接收机它就是一种非目的信号,即是噪声。在电子学中常使用干扰这个术语,有时会与噪声的概念相混淆,其实,是有区别的。噪声是一种电子信号,而干扰是指的某种效应,是由于噪声原因对电路造成的一种不良反应。而电路中存在着噪声,却不一定就有干扰。在数字电路中。往往可以用示波器观察到在正常的脉冲信号上混有一些小的尖峰脉冲是所不期望的,而是一种噪声。但由于电路特性关系,这些小尖峰脉冲还不致于使数字电路的逻辑受到影响而发生混乱,所以可以认为是没有干扰。 当一个噪声电压大到足以使电路受到干扰时,该噪声电压就称为干扰电压。而一个电路或一个器件,当它还能保持正常工作时所加的最大噪声电压,称为该电路或器件的抗干扰容限或抗扰度。一般说来,噪声很难消除,但可以设法降低噪声的强度或提高电路的抗扰度,以使噪声不致于形成干扰。 电子电路中噪声的产生?如何抑制 这个东西主要是由于电路中的数字电路和电源部分产生的。在数字电路中,普遍存在高频的数字电平,这些电平可以产生两种噪声:1、电磁辐射,就像电视的天线一样,通过发射电磁波来干扰旁边的电路,也就是你说的噪声。2、耦合噪声,指数字电路和旁边的电路存在

开关电源的噪音及解决方法

开关电源具有线性电源无可比拟的许多优点:体积小,重量轻,效率高等等,但开关电源会产生电磁干扰,尤其是中大功率等级的开关电源干扰更为严重。这是由于开关电源存在着整流谐波、开关频率和它的谐波以及在开关转换中所固有的高速电流和电压瞬变。产生电磁干扰是开关电源本身的特点所决定的,是难以避免的,关键是如何采取有效的措施来减小其干扰程度。 通过对开关电源进行电磁兼容性测试得知,一般有以下四项指标不合格。 CE01100Hz~15KHz电源线传导发射。 CE0315KHz~50MHz电源线传导发射。 RE0125Hz~50KHz磁场辐射发射。 RE0214KHz~10GHz电场辐射发射。 2开关电源电磁干扰产生原因分析 开关电源按主电路型式可分为全桥式,半桥式,推挽式等几种,但无论何种类型的开关电源在工作时都会产生很强的噪声。它们通过电源线以共模或差模方式向外传导,同时还向周围空间辐射。开关电源对由电网侵入的外部噪声也很敏感,并经它传递到其他电子设备中产生干扰。图1是一种最简单的开关电源主电路型式,直流变换式它激单边型开关电源,以此为例分析开关电源的噪声来源。 交流电输入开关电源后,由桥式整流器V1~V4整理成直流电压Vi加在高频变压器的初级L1和开关管V5上。开关管V5的基极输入一个几十到几百千赫的高频矩形波,其重复频率和占空比由输出直流电压VO的要求来确定。被开关管放大了的脉冲电流由高频变压器耦合到次级回路。高频变压器初次级匝数之比也是由输出直流电压VO的要求来确定的。高频脉冲电流经二极管V6整流并经C2滤波后变成直流输出电压VO。因此开关电源在以下几个环节都将产生噪声,形成电磁干扰。 (1)高频变压器初级L1、开关管V5和滤波电容C1构成的高频开关电流环路,可能 会产生较大的空间辐射。如果电容器滤波不足,则高频电流还会以差模方式传导到输入交流电源中去。如图1中的I1 。 (2)高频变压器次级L2、整流二极管V6、滤波电容C2也构成高频开关电流环路会 产生空间辐射。如果电容器滤波不足,则高频电流将以差模形式混在输出直流电压上向外传导。如图1中的I2 。 (3)高频变压器的初级和次级间存在分布电容Cd,初级的高频电压通过这些分布电 容将直接耦合到次级上去,在次级的二条输出直流电源线上产生同相位的共模噪声。如果二根线对地阻抗不平衡,还会转变成差模噪声。 (4)输出整流二极管V6会产生反向浪涌电流。二极管在正向导通时PN结内的电荷 积累,二极管加反向电压时积累电荷将消失并产生反向电流。因为开关电流需经二极管整流,二极管由导通转变为截止的时间很短,在短时间内要让存储电荷消失就产生了反向电流的浪涌。由于直流输出线路中的分布电感,分布电容,浪涌引起了高频衰减振荡,这是一种差模噪声。

相关文档
最新文档